|
import pandas as pd |
|
import pickle |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def create_vocab(file,task): |
|
with open ('./data/dict/'+task+'/'+file, 'rb') as fp: |
|
condVocab = pickle.load(fp) |
|
condVocabDict={} |
|
condVocabDict[0]=0 |
|
for val in range(len(condVocab)): |
|
condVocabDict[condVocab[val]]= val+1 |
|
|
|
return condVocabDict |
|
|
|
def gender_vocab(): |
|
genderVocabDict={} |
|
genderVocabDict['<PAD>']=0 |
|
genderVocabDict['M']=1 |
|
genderVocabDict['F']=2 |
|
|
|
return genderVocabDict |
|
|
|
def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag): |
|
condVocabDict={} |
|
procVocabDict={} |
|
medVocabDict={} |
|
outVocabDict={} |
|
chartVocabDict={} |
|
labVocabDict={} |
|
ethVocabDict={} |
|
ageVocabDict={} |
|
genderVocabDict={} |
|
insVocabDict={} |
|
|
|
ethVocabDict=create_vocab('ethVocab',task) |
|
with open('./data/dict/'+task+'/ethVocabDict', 'wb') as fp: |
|
pickle.dump(ethVocabDict, fp) |
|
|
|
ageVocabDict=create_vocab('ageVocab',task) |
|
with open('./data/dict/'+task+'/ageVocabDict', 'wb') as fp: |
|
pickle.dump(ageVocabDict, fp) |
|
|
|
genderVocabDict=gender_vocab() |
|
with open('./data/dict/'+task+'/genderVocabDict', 'wb') as fp: |
|
pickle.dump(genderVocabDict, fp) |
|
|
|
insVocabDict=create_vocab('insVocab',task) |
|
with open('./data/dict/'+task+'/insVocabDict', 'wb') as fp: |
|
pickle.dump(insVocabDict, fp) |
|
|
|
if diag_flag: |
|
file='condVocab' |
|
with open ('./data/dict/'+task+'/'+file, 'rb') as fp: |
|
condVocabDict = pickle.load(fp) |
|
if proc_flag: |
|
file='procVocab' |
|
with open ('./data/dict/'+task+'/'+file, 'rb') as fp: |
|
procVocabDict = pickle.load(fp) |
|
if med_flag: |
|
file='medVocab' |
|
with open ('./data/dict/'+task+'/'+file, 'rb') as fp: |
|
medVocabDict = pickle.load(fp) |
|
if out_flag: |
|
file='outVocab' |
|
with open ('./data/dict/'+task+'/'+file, 'rb') as fp: |
|
outVocabDict = pickle.load(fp) |
|
if chart_flag: |
|
file='chartVocab' |
|
with open ('./data/dict/'+task+'/'+file, 'rb') as fp: |
|
chartVocabDict = pickle.load(fp) |
|
if lab_flag: |
|
file='labsVocab' |
|
with open ('./data/dict/'+task+'/'+file, 'rb') as fp: |
|
labVocabDict = pickle.load(fp) |
|
|
|
return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict |
|
|
|
def open_dict(task,cond, proc, out, chart, lab, med): |
|
if cond: |
|
with open("./data/dict/"+task+"/condVocab", 'rb') as fp: |
|
condDict = pickle.load(fp) |
|
else: |
|
condDict = None |
|
if proc: |
|
with open("./data/dict/"+task+"/procVocab", 'rb') as fp: |
|
procDict = pickle.load(fp) |
|
else: |
|
procDict = None |
|
if out: |
|
with open("./data/dict/"+task+"/outVocab", 'rb') as fp: |
|
outDict = pickle.load(fp) |
|
else: |
|
outDict = None |
|
if chart: |
|
with open("./data/dict/"+task+"/chartVocab", 'rb') as fp: |
|
chartDict = pickle.load(fp) |
|
elif lab: |
|
with open("./data/dict/"+task+"/labsVocab", 'rb') as fp: |
|
chartDict = pickle.load(fp) |
|
else: |
|
chartDict = None |
|
if med: |
|
with open("./data/dict/"+task+"/medVocab", 'rb') as fp: |
|
medDict = pickle.load(fp) |
|
else: |
|
medDict = None |
|
|
|
return condDict, procDict, outDict, chartDict, medDict |
|
|
|
def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict): |
|
meds=data['Med'] |
|
proc = data['Proc'] |
|
out = data['Out'] |
|
chart = data['Chart'] |
|
cond= data['Cond']['fids'] |
|
|
|
cond_df=pd.DataFrame() |
|
proc_df=pd.DataFrame() |
|
out_df=pd.DataFrame() |
|
chart_df=pd.DataFrame() |
|
meds_df=pd.DataFrame() |
|
|
|
|
|
demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance']) |
|
new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']} |
|
demo = demo.append(new_row, ignore_index=True) |
|
|
|
|
|
if (feat_cond): |
|
conds=pd.DataFrame(condDict,columns=['COND']) |
|
features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND']) |
|
|
|
|
|
if(cond ==[]): |
|
cond_df=pd.DataFrame(np.zeros([1,len(features)]),columns=features['COND']) |
|
cond_df=cond_df.fillna(0) |
|
else: |
|
cond_df=pd.DataFrame(cond,columns=['COND']) |
|
cond_df['val']=1 |
|
cond_df=(cond_df.drop_duplicates()).pivot(columns='COND',values='val').reset_index(drop=True) |
|
cond_df=cond_df.fillna(0) |
|
oneh = cond_df.sum().to_frame().T |
|
combined_df = pd.concat([features,oneh],ignore_index=True).fillna(0) |
|
combined_oneh=combined_df.sum().to_frame().T |
|
cond_df=combined_oneh |
|
for c in cond_df.columns : |
|
if c not in features: |
|
cond_df=cond_df.drop(columns=[c]) |
|
|
|
|
|
if (feat_proc): |
|
if proc : |
|
feat=proc.keys() |
|
proc_val=[proc[key] for key in feat] |
|
procedures=pd.DataFrame(procDict,columns=['PROC']) |
|
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC']) |
|
procs=pd.DataFrame(columns=feat) |
|
for p,v in zip(feat,proc_val): |
|
procs[p]=v |
|
features=features.drop(columns=procs.columns.to_list()) |
|
proc_df = pd.concat([features,procs],axis=1).fillna(0) |
|
proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns]) |
|
else: |
|
procedures=pd.DataFrame(procDict,columns=['PROC']) |
|
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC']) |
|
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns]) |
|
proc_df=features.fillna(0) |
|
|
|
|
|
if (feat_out): |
|
if out : |
|
feat=out.keys() |
|
out_val=[out[key] for key in feat] |
|
outputs=pd.DataFrame(outDict,columns=['OUT']) |
|
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT']) |
|
outs=pd.DataFrame(columns=feat) |
|
for o,v in zip(feat,out_val): |
|
outs[o]=v |
|
features=features.drop(columns=outs.columns.to_list()) |
|
out_df = pd.concat([features,outs],axis=1).fillna(0) |
|
out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns]) |
|
else: |
|
outputs=pd.DataFrame(outDict,columns=['OUT']) |
|
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT']) |
|
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns]) |
|
out_df=features.fillna(0) |
|
|
|
|
|
if (feat_chart): |
|
if chart: |
|
charts=chart['val'] |
|
feat=charts.keys() |
|
chart_val=[charts[key] for key in feat] |
|
charts=pd.DataFrame(chartDict,columns=['CHART']) |
|
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART']) |
|
chart=pd.DataFrame(columns=feat) |
|
for c,v in zip(feat,chart_val): |
|
chart[c]=v |
|
features=features.drop(columns=chart.columns.to_list()) |
|
chart_df = pd.concat([features,chart],axis=1).fillna(0) |
|
chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns]) |
|
else: |
|
charts=pd.DataFrame(chartDict,columns=['CHART']) |
|
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART']) |
|
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns]) |
|
chart_df=features.fillna(0) |
|
|
|
|
|
if (feat_lab): |
|
if chart: |
|
charts=chart['val'] |
|
feat=charts.keys() |
|
chart_val=[charts[key] for key in feat] |
|
charts=pd.DataFrame(chartDict,columns=['LAB']) |
|
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB']) |
|
chart=pd.DataFrame(columns=feat) |
|
for c,v in zip(feat,chart_val): |
|
chart[c]=v |
|
features=features.drop(columns=chart.columns.to_list()) |
|
chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns]) |
|
chart_df = pd.concat([features,chart],axis=1).fillna(0) |
|
chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns]) |
|
else: |
|
charts=pd.DataFrame(chartDict,columns=['LAB']) |
|
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB']) |
|
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns]) |
|
chart_df=features.fillna(0) |
|
|
|
|
|
if (feat_meds): |
|
if meds: |
|
feat=meds['signal'].keys() |
|
med_val=[meds['amount'][key] for key in feat] |
|
meds=pd.DataFrame(medDict,columns=['MEDS']) |
|
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS']) |
|
med=pd.DataFrame(columns=feat) |
|
for m,v in zip(feat,med_val): |
|
med[m]=v |
|
features=features.drop(columns=med.columns.to_list()) |
|
meds_df = pd.concat([features,med],axis=1).fillna(0) |
|
meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns]) |
|
else: |
|
meds=pd.DataFrame(medDict,columns=['MEDS']) |
|
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS']) |
|
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns]) |
|
meds_df=features.fillna(0) |
|
|
|
dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1) |
|
return dyn_df,cond_df,demo |
|
|
|
|
|
|
|
def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict): |
|
meds = [] |
|
charts = [] |
|
proc = [] |
|
out = [] |
|
lab = [] |
|
stat = [] |
|
demo = [] |
|
|
|
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False) |
|
dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict) |
|
if feat_chart: |
|
charts = dyn['CHART'].values |
|
if feat_meds: |
|
meds = dyn['MEDS'].values |
|
if feat_proc: |
|
proc = dyn['PROC'].values |
|
print(proc) |
|
if feat_out: |
|
out = dyn['OUT'].values |
|
if feat_lab: |
|
lab = dyn['LAB'].values |
|
if feat_cond: |
|
stat=cond_df.values[0] |
|
y = int(demo['label']) |
|
|
|
demo["gender"].replace(gender_vocab, inplace=True) |
|
demo["ethnicity"].replace(eth_vocab, inplace=True) |
|
demo["insurance"].replace(ins_vocab, inplace=True) |
|
demo["Age"].replace(age_vocab, inplace=True) |
|
demo=demo[["gender","ethnicity","insurance","Age"]] |
|
demo = demo.values[0] |
|
return stat, demo, meds, charts, out, proc, lab, y |
|
|
|
|
|
def generate_ml(dyn,stat,demo,concat_cols,concat): |
|
X_df=pd.DataFrame() |
|
if concat: |
|
dyna=dyn.copy() |
|
dyna.columns=dyna.columns.droplevel(0) |
|
dyna=dyna.to_numpy() |
|
dyna=np.nan_to_num(dyna, copy=False) |
|
dyna=dyna.reshape(1,-1) |
|
dyn_df=pd.DataFrame(data=dyna,columns=concat_cols) |
|
else: |
|
dyn_df=pd.DataFrame() |
|
for key in dyn.columns.levels[0]: |
|
dyn_temp=dyn[key] |
|
if ((key=="CHART") or (key=="MEDS")): |
|
agg=dyn_temp.aggregate("mean") |
|
agg=agg.reset_index() |
|
else: |
|
agg=dyn_temp.aggregate("max") |
|
agg=agg.reset_index() |
|
|
|
if dyn_df.empty: |
|
dyn_df=agg |
|
else: |
|
dyn_df=pd.concat([dyn_df,agg],axis=0) |
|
dyn_df=dyn_df.T |
|
dyn_df.columns = dyn_df.iloc[0] |
|
dyn_df=dyn_df.iloc[1:,:] |
|
|
|
X_df=pd.concat([dyn_df,stat],axis=1) |
|
X_df=pd.concat([X_df,demo],axis=1) |
|
return X_df |
|
|
|
|
|
def generate_text(data,icd,items,feat_cond,feat_chart,feat_meds, feat_proc, feat_out): |
|
|
|
if feat_cond: |
|
conds = data.get('Cond', {}).get('fids', []) |
|
conds=[icd[icd['code'] == code]['description'].to_string(index=False) for code in conds if not icd[icd['code'] == code].empty] |
|
cond_text = '; '.join(conds) |
|
cond_text = f"The patient was diagnosed with {cond_text}." if cond_text else '' |
|
else: |
|
cond_text = '' |
|
|
|
|
|
if feat_chart: |
|
chart = data.get('Chart', {}) |
|
if chart: |
|
charts = chart.get('val', {}) |
|
feat = charts.keys() |
|
chart_val = [charts[key] for key in feat] |
|
chart_mean = [round(np.mean(c), 3) for c in chart_val] |
|
feat_text = [(items[items['itemid'] == f]['label']).to_string(index=False) for f in feat] |
|
chart_text = '; '.join(f"{mean_val} for {feat_label}" for mean_val, feat_label in zip(chart_mean, feat_text)) |
|
chart_text = f"The chart events measured were: {chart_text}." |
|
else: |
|
chart_text = '' |
|
else: |
|
chart_text = '' |
|
|
|
|
|
|
|
if feat_meds: |
|
meds = data.get('Med', {}) |
|
if meds: |
|
feat = meds['signal'].keys() |
|
meds_val = [meds['amount'][key] for key in feat] |
|
meds_mean = [round(np.mean(c), 3) for c in meds_val] |
|
feat_text = [(items[items['itemid'] == f]['label']).to_string(index=False) for f in feat] |
|
meds_text = '; '.join(f"{mean_val} of {feat_label}" for mean_val, feat_label in zip(meds_mean, feat_text)) |
|
meds_text = f"The mean amounts of medications administered during the episode were: {meds_text}." |
|
else: |
|
meds_text = '' |
|
else: |
|
meds_text = '' |
|
|
|
|
|
if feat_proc: |
|
proc = data['Proc'] |
|
if proc: |
|
feat=proc.keys() |
|
feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat] |
|
template = 'The procedures performed were: {}.' |
|
proc_text= template.format(';'.join(feat_text)) |
|
else: |
|
proc_text='' |
|
else: |
|
proc_text='' |
|
|
|
|
|
if feat_out: |
|
out = data['Out'] |
|
if out: |
|
feat=out.keys() |
|
feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat] |
|
template ='The outputs collected were: {}.' |
|
out_text = template.format('; '.join(feat_text)) |
|
else: |
|
out_text='' |
|
else: |
|
out_text='' |
|
|
|
return cond_text,chart_text,meds_text,proc_text,out_text |
|
|