|
import datetime |
|
import os |
|
import sys |
|
import numpy as np |
|
import pandas as pd |
|
from pathlib import Path |
|
from tqdm import tqdm |
|
import importlib |
|
import disease_cohort |
|
importlib.reload(disease_cohort) |
|
import disease_cohort |
|
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + './../..') |
|
if not os.path.exists("./data/cohort"): |
|
os.makedirs("./data/cohort") |
|
if not os.path.exists("./data/summary"): |
|
os.makedirs("./data/summary") |
|
|
|
def get_visit_pts(mimic4_path:str, group_col:str, visit_col:str, admit_col:str, disch_col:str, adm_visit_col:str, use_mort:bool, use_los:bool, los:int, use_admn:bool, disease_label:str,use_ICU:bool): |
|
"""Combines the MIMIC-IV core/patients table information with either the icu/icustays or core/admissions data. |
|
|
|
Parameters: |
|
mimic4_path: path to mimic-iv folder containing MIMIC-IV data |
|
group_col: patient identifier to group patients (normally subject_id) |
|
visit_col: visit identifier for individual patient visits (normally hadm_id or stay_id) |
|
admit_col: column for visit start date information (normally admittime or intime) |
|
disch_col: column for visit end date information (normally dischtime or outtime) |
|
use_ICU: describes whether to speficially look at ICU visits in icu/icustays OR look at general admissions from core/admissions |
|
""" |
|
|
|
visit = None |
|
if use_ICU: |
|
visit = pd.read_csv(mimic4_path + "icu/icustays.csv.gz", compression='gzip', header=0, index_col=None, parse_dates=[admit_col, disch_col]) |
|
if use_admn: |
|
|
|
|
|
pts = pd.read_csv(mimic4_path + "hosp/patients.csv.gz", compression='gzip', header=0, index_col=None, usecols=['subject_id', 'dod'], parse_dates=['dod']) |
|
visit = visit.merge(pts, how='inner', left_on='subject_id', right_on='subject_id') |
|
visit = visit.loc[(visit.dod.isna()) | (visit.dod >= visit[disch_col])] |
|
if len(disease_label): |
|
hids=disease_cohort.extract_diag_cohort(visit['hadm_id'],disease_label,mimic4_path) |
|
visit=visit[visit['hadm_id'].isin(hids['hadm_id'])] |
|
print("[ READMISSION DUE TO "+disease_label+" ]") |
|
|
|
else: |
|
visit = pd.read_csv(mimic4_path + "hosp/admissions.csv.gz", compression='gzip', header=0, index_col=None, parse_dates=[admit_col, disch_col]) |
|
visit['los']=visit[disch_col]-visit[admit_col] |
|
|
|
visit[admit_col] = pd.to_datetime(visit[admit_col]) |
|
visit[disch_col] = pd.to_datetime(visit[disch_col]) |
|
visit['los']=pd.to_timedelta(visit[disch_col]-visit[admit_col],unit='h') |
|
visit['los']=visit['los'].astype(str) |
|
visit[['days', 'dummy','hours']] = visit['los'].str.split(' ', -1, expand=True) |
|
visit['los']=pd.to_numeric(visit['days']) |
|
visit=visit.drop(columns=['days', 'dummy','hours']) |
|
|
|
|
|
if use_admn: |
|
|
|
visit = visit.loc[visit.hospital_expire_flag == 0] |
|
if len(disease_label): |
|
hids=disease_cohort.extract_diag_cohort(visit['hadm_id'],disease_label,mimic4_path) |
|
visit=visit[visit['hadm_id'].isin(hids['hadm_id'])] |
|
print("[ READMISSION DUE TO "+disease_label+" ]") |
|
|
|
pts = pd.read_csv( |
|
mimic4_path + "hosp/patients.csv.gz", compression='gzip', header=0, index_col = None, usecols=[group_col, 'anchor_year', 'anchor_age', 'anchor_year_group', 'dod','gender'] |
|
) |
|
pts['yob']= pts['anchor_year'] - pts['anchor_age'] |
|
pts['min_valid_year'] = pts['anchor_year'] + (2019 - pts['anchor_year_group'].str.slice(start=-4).astype(int)) |
|
|
|
|
|
|
|
|
|
if use_ICU: |
|
visit_pts = visit[[group_col, visit_col, adm_visit_col, admit_col, disch_col,'los']].merge( |
|
pts[[group_col, 'anchor_year', 'anchor_age', 'yob', 'min_valid_year', 'dod','gender']], how='inner', left_on=group_col, right_on=group_col |
|
) |
|
else: |
|
visit_pts = visit[[group_col, visit_col, admit_col, disch_col,'los']].merge( |
|
pts[[group_col, 'anchor_year', 'anchor_age', 'yob', 'min_valid_year', 'dod','gender']], how='inner', left_on=group_col, right_on=group_col |
|
) |
|
|
|
|
|
|
|
|
|
visit_pts['Age']=visit_pts['anchor_age'] |
|
visit_pts = visit_pts.loc[visit_pts['Age'] >= 18] |
|
|
|
|
|
eth = pd.read_csv(mimic4_path + "hosp/admissions.csv.gz", compression='gzip', header=0, usecols=['hadm_id', 'insurance','race'], index_col=None) |
|
visit_pts= visit_pts.merge(eth, how='inner', left_on='hadm_id', right_on='hadm_id') |
|
|
|
if use_ICU: |
|
return visit_pts[[group_col, visit_col, adm_visit_col, admit_col, disch_col,'los', 'min_valid_year', 'dod','Age','gender','race', 'insurance']] |
|
else: |
|
return visit_pts.dropna(subset=['min_valid_year'])[[group_col, visit_col, admit_col, disch_col,'los', 'min_valid_year', 'dod','Age','gender','race', 'insurance']] |
|
|
|
|
|
def validate_row(row, ctrl, invalid, max_year, disch_col, valid_col, gap): |
|
"""Checks if visit's prediction window potentially extends beyond the dataset range (2008-2019). |
|
An 'invalid row' is NOT guaranteed to be outside the range, only potentially outside due to |
|
de-identification of MIMIC-IV being done through 3-year time ranges. |
|
|
|
To be invalid, the end of the prediction window's year must both extend beyond the maximum seen year |
|
for a patient AND beyond the year that corresponds to the 2017-2019 anchor year range for a patient""" |
|
print("disch_col",row[disch_col]) |
|
print(gap) |
|
pred_year = (row[disch_col] + gap).year |
|
if max_year < pred_year and pred_year > row[valid_col]: |
|
invalid = invalid.append(row) |
|
else: |
|
ctrl = ctrl.append(row) |
|
return ctrl, invalid |
|
|
|
|
|
def partition_by_los(df:pd.DataFrame, los:int, group_col:str, visit_col:str, admit_col:str, disch_col:str, valid_col:str): |
|
|
|
invalid = df.loc[(df[admit_col].isna()) | (df[disch_col].isna()) | (df['los'].isna())] |
|
cohort = df.loc[(~df[admit_col].isna()) & (~df[disch_col].isna()) & (~df['los'].isna())] |
|
|
|
|
|
|
|
pos_cohort=cohort[cohort['los']>los] |
|
neg_cohort=cohort[cohort['los']<=los] |
|
neg_cohort=neg_cohort.fillna(0) |
|
pos_cohort=pos_cohort.fillna(0) |
|
|
|
pos_cohort['label']=1 |
|
neg_cohort['label']=0 |
|
|
|
cohort=pd.concat([pos_cohort,neg_cohort], axis=0) |
|
cohort=cohort.sort_values(by=[group_col,admit_col]) |
|
|
|
print("[ LOS LABELS FINISHED ]") |
|
return cohort, invalid |
|
|
|
|
|
def partition_by_readmit(df:pd.DataFrame, gap:datetime.timedelta, group_col:str, visit_col:str, admit_col:str, disch_col:str, valid_col:str): |
|
"""Applies labels to individual visits according to whether or not a readmission has occurred within the specified `gap` days. |
|
For a given visit, another visit must occur within the gap window for a positive readmission label. |
|
The gap window starts from the disch_col time and the admit_col of subsequent visits are considered.""" |
|
|
|
case = pd.DataFrame() |
|
ctrl = pd.DataFrame() |
|
invalid = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
grouped= df.sort_values(by=[group_col, admit_col]).groupby(group_col) |
|
for subject, group in tqdm(grouped): |
|
max_year = group.max()[disch_col].year |
|
|
|
if group.shape[0] <= 1: |
|
|
|
ctrl = ctrl.append(group.iloc[0]) |
|
else: |
|
for idx in range(group.shape[0]-1): |
|
visit_time = group.iloc[idx][disch_col] |
|
if group.loc[ |
|
(group[admit_col] > visit_time) & |
|
(group[admit_col] - visit_time <= gap) |
|
].shape[0] >= 1: |
|
|
|
case = case.append(group.iloc[idx]) |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
ctrl = ctrl.append(group.iloc[idx]) |
|
|
|
|
|
ctrl = ctrl.append(group.iloc[-1]) |
|
|
|
|
|
print("[ READMISSION LABELS FINISHED ]") |
|
return case, ctrl, invalid |
|
|
|
|
|
def partition_by_mort(df:pd.DataFrame, group_col:str, visit_col:str, admit_col:str, disch_col:str, death_col:str): |
|
"""Applies labels to individual visits according to whether or not a death has occurred within |
|
the times of the specified admit_col and disch_col""" |
|
|
|
invalid = df.loc[(df[admit_col].isna()) | (df[disch_col].isna())] |
|
|
|
cohort = df.loc[(~df[admit_col].isna()) & (~df[disch_col].isna())] |
|
|
|
cohort['label']=0 |
|
pos_cohort=cohort[~cohort[death_col].isna()] |
|
neg_cohort=cohort[cohort[death_col].isna()] |
|
neg_cohort=neg_cohort.fillna(0) |
|
pos_cohort=pos_cohort.fillna(0) |
|
pos_cohort[death_col] = pd.to_datetime(pos_cohort[death_col]) |
|
|
|
pos_cohort['label'] = np.where((pos_cohort[death_col] >= pos_cohort[admit_col]) & (pos_cohort[death_col] <= pos_cohort[disch_col]),1,0) |
|
|
|
pos_cohort['label'] = pos_cohort['label'].astype("Int32") |
|
cohort=pd.concat([pos_cohort,neg_cohort], axis=0) |
|
cohort=cohort.sort_values(by=[group_col,admit_col]) |
|
|
|
print("[ MORTALITY LABELS FINISHED ]") |
|
return cohort, invalid |
|
|
|
|
|
def get_case_ctrls(df:pd.DataFrame, gap:int, group_col:str, visit_col:str, admit_col:str, disch_col:str, valid_col:str, death_col:str, use_mort=False,use_admn=False,use_los=False) -> pd.DataFrame: |
|
"""Handles logic for creating the labelled cohort based on arguments passed to extract(). |
|
|
|
Parameters: |
|
df: dataframe with patient data |
|
gap: specified time interval gap for readmissions |
|
group_col: patient identifier to group patients (normally subject_id) |
|
visit_col: visit identifier for individual patient visits (normally hadm_id or stay_id) |
|
admit_col: column for visit start date information (normally admittime or intime) |
|
disch_col: column for visit end date information (normally dischtime or outtime) |
|
valid_col: generated column containing a patient's year that corresponds to the 2017-2019 anchor time range |
|
dod_col: Date of death column |
|
""" |
|
|
|
case = None |
|
ctrl = None |
|
invalid = None |
|
|
|
if use_mort: |
|
return partition_by_mort(df, group_col, visit_col, admit_col, disch_col, death_col) |
|
elif use_admn: |
|
gap = datetime.timedelta(days=gap) |
|
|
|
case, ctrl, invalid = partition_by_readmit(df, gap, group_col, visit_col, admit_col, disch_col, valid_col) |
|
|
|
|
|
case['label'] = np.ones(case.shape[0]).astype(int) |
|
ctrl['label'] = np.zeros(ctrl.shape[0]).astype(int) |
|
|
|
return pd.concat([case, ctrl], axis=0), invalid |
|
elif use_los: |
|
return partition_by_los(df, gap, group_col, visit_col, admit_col, disch_col, death_col) |
|
|
|
|
|
|
|
|
|
def extract_data(use_ICU:str, label:str, time:int, icd_code:str, root_dir,mimic_path, disease_label, cohort_output=None, summary_output=None): |
|
"""Extracts cohort data and summary from MIMIC-IV data based on provided parameters. |
|
|
|
Parameters: |
|
cohort_output: name of labelled cohort output file |
|
summary_output: name of summary output file |
|
use_ICU: state whether to use ICU patient data or not |
|
label: Can either be '{day} day Readmission' or 'Mortality', decides what binary data label signifies""" |
|
print("===========MIMIC-IV v2============") |
|
if not cohort_output: |
|
cohort_output="cohort_" + use_ICU.lower() + "_" + label.lower().replace(" ", "_") + "_" + str(time) + "_" + disease_label |
|
if not summary_output: |
|
summary_output="summary_" + use_ICU.lower() + "_" + label.lower().replace(" ", "_") + "_" + str(time) + "_" + disease_label |
|
|
|
if icd_code=="No Disease Filter": |
|
if len(disease_label): |
|
print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} DUE TO {disease_label.upper()} | {str(time)} | ") |
|
else: |
|
print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} | {str(time)} |") |
|
else: |
|
if len(disease_label): |
|
print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} DUE TO {disease_label.upper()} | ADMITTED DUE TO {icd_code.upper()} | {str(time)} |") |
|
else: |
|
print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} | ADMITTED DUE TO {icd_code.upper()} | {str(time)} |") |
|
|
|
cohort, invalid = None, None |
|
pts = None |
|
ICU=use_ICU |
|
group_col, visit_col, admit_col, disch_col, death_col, adm_visit_col = "", "", "", "", "", "" |
|
|
|
use_mort = label == "Mortality" |
|
use_admn=label=='Readmission' |
|
los=0 |
|
use_los= label=='Length of Stay' |
|
|
|
|
|
|
|
|
|
if use_los: |
|
los=time |
|
use_ICU = use_ICU == "ICU" |
|
use_disease=icd_code!="No Disease Filter" |
|
|
|
if use_ICU: |
|
group_col='subject_id' |
|
visit_col='stay_id' |
|
admit_col='intime' |
|
disch_col='outtime' |
|
death_col='dod' |
|
adm_visit_col='hadm_id' |
|
else: |
|
group_col='subject_id' |
|
visit_col='hadm_id' |
|
admit_col='admittime' |
|
disch_col='dischtime' |
|
death_col='dod' |
|
|
|
pts = get_visit_pts( |
|
mimic4_path=mimic_path, |
|
group_col=group_col, |
|
visit_col=visit_col, |
|
admit_col=admit_col, |
|
disch_col=disch_col, |
|
adm_visit_col=adm_visit_col, |
|
use_mort=use_mort, |
|
use_los=use_los, |
|
los=los, |
|
use_admn=use_admn, |
|
disease_label=disease_label, |
|
use_ICU=use_ICU |
|
) |
|
|
|
|
|
|
|
cols = [group_col, visit_col, admit_col, disch_col, 'Age','gender','ethnicity','insurance','label'] |
|
|
|
if use_mort: |
|
cols.append(death_col) |
|
cohort, invalid = get_case_ctrls(pts, None, group_col, visit_col, admit_col, disch_col,'min_valid_year', death_col, use_mort=True,use_admn=False,use_los=False) |
|
elif use_admn: |
|
interval = time |
|
cohort, invalid = get_case_ctrls(pts, interval, group_col, visit_col, admit_col, disch_col,'min_valid_year', death_col, use_mort=False,use_admn=True,use_los=False) |
|
elif use_los: |
|
cohort, invalid = get_case_ctrls(pts, los, group_col, visit_col, admit_col, disch_col,'min_valid_year', death_col, use_mort=False,use_admn=False,use_los=True) |
|
|
|
|
|
if use_ICU: |
|
cols.append(adm_visit_col) |
|
|
|
|
|
if use_disease: |
|
hids=disease_cohort.extract_diag_cohort(cohort['hadm_id'],icd_code,mimic_path) |
|
cohort=cohort[cohort['hadm_id'].isin(hids['hadm_id'])] |
|
cohort_output=cohort_output+"_"+icd_code |
|
summary_output=summary_output+"_"+icd_code |
|
|
|
|
|
cohort=cohort.rename(columns={"race":"ethnicity"}) |
|
cohort[cols].to_csv("./data/cohort/"+cohort_output+".csv.gz", index=False, compression='gzip') |
|
print("[ COHORT SUCCESSFULLY SAVED ]") |
|
|
|
summary = "\n".join([ |
|
f"{label} FOR {ICU} DATA", |
|
f"# Admission Records: {cohort.shape[0]}", |
|
f"# Patients: {cohort[group_col].nunique()}", |
|
f"# Positive cases: {cohort[cohort['label']==1].shape[0]}", |
|
f"# Negative cases: {cohort[cohort['label']==0].shape[0]}" |
|
]) |
|
|
|
|
|
with open(f"./data/cohort/{summary_output}.txt", "w") as f: |
|
f.write(summary) |
|
|
|
print("[ SUMMARY SUCCESSFULLY SAVED ]") |
|
print(summary) |
|
|
|
return cohort_output |
|
|
|
|