Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
French
Size:
100K - 1M
License:
Commit
•
56ded24
1
Parent(s):
489fda2
Delete loading script
Browse files- allocine.py +0 -106
allocine.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
"""Allocine Dataset: A Large-Scale French Movie Reviews Dataset."""
|
2 |
-
|
3 |
-
|
4 |
-
import json
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
from datasets.tasks import TextClassification
|
8 |
-
|
9 |
-
|
10 |
-
_CITATION = """\
|
11 |
-
@misc{blard2019allocine,
|
12 |
-
author = {Blard, Theophile},
|
13 |
-
title = {french-sentiment-analysis-with-bert},
|
14 |
-
year = {2020},
|
15 |
-
publisher = {GitHub},
|
16 |
-
journal = {GitHub repository},
|
17 |
-
howpublished={\\url{https://github.com/TheophileBlard/french-sentiment-analysis-with-bert}},
|
18 |
-
}
|
19 |
-
"""
|
20 |
-
|
21 |
-
_DESCRIPTION = """\
|
22 |
-
Allocine Dataset: A Large-Scale French Movie Reviews Dataset.
|
23 |
-
This is a dataset for binary sentiment classification, made of user reviews scraped from Allocine.fr.
|
24 |
-
It contains 100k positive and 100k negative reviews divided into 3 balanced splits: train (160k reviews), val (20k) and test (20k).
|
25 |
-
"""
|
26 |
-
|
27 |
-
|
28 |
-
class AllocineConfig(datasets.BuilderConfig):
|
29 |
-
"""BuilderConfig for Allocine."""
|
30 |
-
|
31 |
-
def __init__(self, **kwargs):
|
32 |
-
"""BuilderConfig for Allocine.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
**kwargs: keyword arguments forwarded to super.
|
36 |
-
"""
|
37 |
-
super(AllocineConfig, self).__init__(**kwargs)
|
38 |
-
|
39 |
-
|
40 |
-
class AllocineDataset(datasets.GeneratorBasedBuilder):
|
41 |
-
"""Allocine Dataset: A Large-Scale French Movie Reviews Dataset."""
|
42 |
-
|
43 |
-
_DOWNLOAD_URL = "https://github.com/TheophileBlard/french-sentiment-analysis-with-bert/raw/master/allocine_dataset/data.tar.bz2"
|
44 |
-
_TRAIN_FILE = "train.jsonl"
|
45 |
-
_VAL_FILE = "val.jsonl"
|
46 |
-
_TEST_FILE = "test.jsonl"
|
47 |
-
|
48 |
-
BUILDER_CONFIGS = [
|
49 |
-
AllocineConfig(
|
50 |
-
name="allocine",
|
51 |
-
version=datasets.Version("1.0.0"),
|
52 |
-
description="Allocine Dataset: A Large-Scale French Movie Reviews Dataset",
|
53 |
-
),
|
54 |
-
]
|
55 |
-
|
56 |
-
def _info(self):
|
57 |
-
return datasets.DatasetInfo(
|
58 |
-
description=_DESCRIPTION,
|
59 |
-
features=datasets.Features(
|
60 |
-
{
|
61 |
-
"review": datasets.Value("string"),
|
62 |
-
"label": datasets.features.ClassLabel(names=["neg", "pos"]),
|
63 |
-
}
|
64 |
-
),
|
65 |
-
supervised_keys=None,
|
66 |
-
homepage="https://github.com/TheophileBlard/french-sentiment-analysis-with-bert",
|
67 |
-
citation=_CITATION,
|
68 |
-
task_templates=[TextClassification(text_column="review", label_column="label")],
|
69 |
-
)
|
70 |
-
|
71 |
-
def _split_generators(self, dl_manager):
|
72 |
-
archive_path = dl_manager.download(self._DOWNLOAD_URL)
|
73 |
-
data_dir = "data"
|
74 |
-
return [
|
75 |
-
datasets.SplitGenerator(
|
76 |
-
name=datasets.Split.TRAIN,
|
77 |
-
gen_kwargs={
|
78 |
-
"filepath": f"{data_dir}/{self._TRAIN_FILE}",
|
79 |
-
"files": dl_manager.iter_archive(archive_path),
|
80 |
-
},
|
81 |
-
),
|
82 |
-
datasets.SplitGenerator(
|
83 |
-
name=datasets.Split.VALIDATION,
|
84 |
-
gen_kwargs={
|
85 |
-
"filepath": f"{data_dir}/{self._VAL_FILE}",
|
86 |
-
"files": dl_manager.iter_archive(archive_path),
|
87 |
-
},
|
88 |
-
),
|
89 |
-
datasets.SplitGenerator(
|
90 |
-
name=datasets.Split.TEST,
|
91 |
-
gen_kwargs={
|
92 |
-
"filepath": f"{data_dir}/{self._TEST_FILE}",
|
93 |
-
"files": dl_manager.iter_archive(archive_path),
|
94 |
-
},
|
95 |
-
),
|
96 |
-
]
|
97 |
-
|
98 |
-
def _generate_examples(self, filepath, files):
|
99 |
-
"""Generate Allocine examples."""
|
100 |
-
for path, file in files:
|
101 |
-
if path == filepath:
|
102 |
-
for id_, row in enumerate(file):
|
103 |
-
data = json.loads(row.decode("utf-8"))
|
104 |
-
review = data["review"]
|
105 |
-
label = "neg" if data["polarity"] == 0 else "pos"
|
106 |
-
yield id_, {"review": review, "label": label}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|