Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
French
Size:
100K - 1M
License:
"""Allocine Dataset: A Large-Scale French Movie Reviews Dataset.""" | |
import json | |
import os | |
import datasets | |
from datasets.tasks import TextClassification | |
_CITATION = """\ | |
@misc{blard2019allocine, | |
author = {Blard, Theophile}, | |
title = {french-sentiment-analysis-with-bert}, | |
year = {2020}, | |
publisher = {GitHub}, | |
journal = {GitHub repository}, | |
howpublished={\\url{https://github.com/TheophileBlard/french-sentiment-analysis-with-bert}}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
Allocine Dataset: A Large-Scale French Movie Reviews Dataset. | |
This is a dataset for binary sentiment classification, made of user reviews scraped from Allocine.fr. | |
It contains 100k positive and 100k negative reviews divided into 3 balanced splits: train (160k reviews), val (20k) and test (20k). | |
""" | |
class AllocineConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Allocine.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for Allocine. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(AllocineConfig, self).__init__(**kwargs) | |
class AllocineDataset(datasets.GeneratorBasedBuilder): | |
"""Allocine Dataset: A Large-Scale French Movie Reviews Dataset.""" | |
_DOWNLOAD_URL = "https://github.com/TheophileBlard/french-sentiment-analysis-with-bert/raw/master/allocine_dataset/data.tar.bz2" | |
_TRAIN_FILE = "train.jsonl" | |
_VAL_FILE = "val.jsonl" | |
_TEST_FILE = "test.jsonl" | |
BUILDER_CONFIGS = [ | |
AllocineConfig( | |
name="allocine", | |
version=datasets.Version("1.0.0"), | |
description="Allocine Dataset: A Large-Scale French Movie Reviews Dataset", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"review": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(names=["neg", "pos"]), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/TheophileBlard/french-sentiment-analysis-with-bert", | |
citation=_CITATION, | |
task_templates=[TextClassification(text_column="review", label_column="label")], | |
) | |
def _split_generators(self, dl_manager): | |
arch_path = dl_manager.download_and_extract(self._DOWNLOAD_URL) | |
data_dir = os.path.join(arch_path, "data") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, self._TRAIN_FILE)} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, self._VAL_FILE)} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, self._TEST_FILE)} | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Generate Allocine examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
review = data["review"] | |
label = "neg" if data["polarity"] == 0 else "pos" | |
yield id_, {"review": review, "label": label} | |