Datasets:
tau
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
39d3baf
·
1 Parent(s): 04646bb

Delete legacy dataset_infos.json

Browse files
Files changed (1) hide show
  1. dataset_infos.json +0 -71
dataset_infos.json DELETED
@@ -1,71 +0,0 @@
1
- {
2
- "default": {
3
- "description": "CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge\nto predict the correct answers . It contains 12,102 questions with one correct answer and four distractor answers.\nThe dataset is provided in two major training/validation/testing set splits: \"Random split\" which is the main evaluation\nsplit, and \"Question token split\", see paper for details.\n",
4
- "citation": "@inproceedings{talmor-etal-2019-commonsenseqa,\n title = \"{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge\",\n author = \"Talmor, Alon and\n Herzig, Jonathan and\n Lourie, Nicholas and\n Berant, Jonathan\",\n booktitle = \"Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)\",\n month = jun,\n year = \"2019\",\n address = \"Minneapolis, Minnesota\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/N19-1421\",\n doi = \"10.18653/v1/N19-1421\",\n pages = \"4149--4158\",\n archivePrefix = \"arXiv\",\n eprint = \"1811.00937\",\n primaryClass = \"cs\",\n}\n",
5
- "homepage": "https://www.tau-nlp.org/commonsenseqa",
6
- "license": "",
7
- "features": {
8
- "id": {
9
- "dtype": "string",
10
- "_type": "Value"
11
- },
12
- "question": {
13
- "dtype": "string",
14
- "_type": "Value"
15
- },
16
- "question_concept": {
17
- "dtype": "string",
18
- "_type": "Value"
19
- },
20
- "choices": {
21
- "feature": {
22
- "label": {
23
- "dtype": "string",
24
- "_type": "Value"
25
- },
26
- "text": {
27
- "dtype": "string",
28
- "_type": "Value"
29
- }
30
- },
31
- "_type": "Sequence"
32
- },
33
- "answerKey": {
34
- "dtype": "string",
35
- "_type": "Value"
36
- }
37
- },
38
- "builder_name": "commonsense_qa",
39
- "dataset_name": "commonsense_qa",
40
- "config_name": "default",
41
- "version": {
42
- "version_str": "1.0.0",
43
- "major": 1,
44
- "minor": 0,
45
- "patch": 0
46
- },
47
- "splits": {
48
- "train": {
49
- "name": "train",
50
- "num_bytes": 2207794,
51
- "num_examples": 9741,
52
- "dataset_name": null
53
- },
54
- "validation": {
55
- "name": "validation",
56
- "num_bytes": 273848,
57
- "num_examples": 1221,
58
- "dataset_name": null
59
- },
60
- "test": {
61
- "name": "test",
62
- "num_bytes": 257842,
63
- "num_examples": 1140,
64
- "dataset_name": null
65
- }
66
- },
67
- "download_size": 1558570,
68
- "dataset_size": 2739484,
69
- "size_in_bytes": 4298054
70
- }
71
- }