AnasPwnapple commited on
Commit
7bb1125
·
1 Parent(s): a677fd5
Files changed (3) hide show
  1. README.md +209 -0
  2. dataset_infos.json +1 -0
  3. quranqa.py +131 -0
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language:
5
+ - ar
6
+ language_creators:
7
+ - expert-generated
8
+ license:
9
+ - cc-by-nd-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: Qur'anic Reading Comprehension Dataset
13
+ size_categories:
14
+ - n<1K
15
+ - 1K<n<10K
16
+ source_datasets:
17
+ - original
18
+ tags:
19
+ - quran
20
+ - qa
21
+ task_categories:
22
+ - question-answering
23
+ task_ids:
24
+ - extractive-qa
25
+ ---
26
+
27
+ # Dataset Card for [Dataset Name]
28
+
29
+ ## Table of Contents
30
+ - [Table of Contents](#table-of-contents)
31
+ - [Dataset Description](#dataset-description)
32
+ - [Dataset Summary](#dataset-summary)
33
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
34
+ - [Languages](#languages)
35
+ - [Dataset Structure](#dataset-structure)
36
+ - [Data Instances](#data-instances)
37
+ - [Data Fields](#data-fields)
38
+ - [Data Splits](#data-splits)
39
+ - [Dataset Creation](#dataset-creation)
40
+ - [Curation Rationale](#curation-rationale)
41
+ - [Source Data](#source-data)
42
+ - [Annotations](#annotations)
43
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
44
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
45
+ - [Social Impact of Dataset](#social-impact-of-dataset)
46
+ - [Discussion of Biases](#discussion-of-biases)
47
+ - [Other Known Limitations](#other-known-limitations)
48
+ - [Additional Information](#additional-information)
49
+ - [Dataset Curators](#dataset-curators)
50
+ - [Licensing Information](#licensing-information)
51
+ - [Citation Information](#citation-information)
52
+ - [Contributions](#contributions)
53
+
54
+ ## Dataset Description
55
+
56
+ - **Homepage:** https://sites.google.com/view/quran-qa-2022/home
57
+ - **Repository:** https://gitlab.com/bigirqu/quranqa/-/tree/main/
58
+ - **Paper:** https://dl.acm.org/doi/10.1145/3400396
59
+ - **Leaderboard:**
60
+ - **Point of Contact:** @piraka9011
61
+
62
+ ### Dataset Summary
63
+
64
+ The QRCD (Qur'anic Reading Comprehension Dataset) is composed of 1,093 tuples of question-passage pairs that are
65
+ coupled with their extracted answers to constitute 1,337 question-passage-answer triplets.
66
+
67
+ The distribution of the dataset into training, development and test sets is shown below.
68
+
69
+ | **Dataset** | **%** | **# Question-Passage Pairs** | **# Question-Passage-Answer Triplets** |
70
+ |-------------|:-----:|:-----------------------------:|:---------------------------------------:|
71
+ | Training | 65% | 710 | 861 |
72
+ | Development | 10% | 109 | 128 |
73
+ | Test | 25% | 274 | 348 |
74
+ | All | 100% | 1,093 | 1,337 |
75
+
76
+ ### Supported Tasks and Leaderboards
77
+
78
+ [More Information Needed]
79
+
80
+ ### Languages
81
+
82
+ * Arabic
83
+
84
+ ## Dataset Structure
85
+
86
+ ### Data Instances
87
+
88
+ To simplify the structure of the dataset, each tuple contains one passage, one question and a list that may contain
89
+ one or more answers to that question, as shown below:
90
+
91
+ ```json
92
+ {
93
+ "pq_id": "38:41-44_105",
94
+ "passage": "واذكر عبدنا أيوب إذ نادى ربه أني مسني الشيطان بنصب وعذاب. اركض برجلك هذا مغتسل بارد وشراب. ووهبنا له أهله ومثلهم معهم رحمة منا وذكرى لأولي الألباب. وخذ بيدك ضغثا فاضرب به ولا تحنث إنا وجدناه صابرا نعم العبد إنه أواب.",
95
+ "surah": 38,
96
+ "verses": "41-44",
97
+ "question": "من هو النبي المعروف بالصبر؟",
98
+ "answers": [
99
+ {
100
+ "text": "أيوب",
101
+ "start_char": 12
102
+ }
103
+ ]
104
+ }
105
+ ```
106
+
107
+ Each Qur’anic passage in QRCD may have more than one occurrence; and each passage occurrence is paired with a different
108
+ question.
109
+ Likewise, each question in QRCD may have more than one occurrence; and each question occurrence is paired with a
110
+ different Qur’anic passage.
111
+ The source of the Qur'anic text in QRCD is the Tanzil project download page, which provides verified versions of the
112
+ Holy Qur'an in several scripting styles.
113
+ We have chosen the simple-clean text style of Tanzil version 1.0.2.
114
+
115
+ ### Data Fields
116
+
117
+ * `pq_id`: Sample ID
118
+ * `passage`: Context text
119
+ * `surah`: Surah number
120
+ * `verses`: Verse range
121
+ * `question`: Question text
122
+ * `answers`: List of answers and their start character
123
+
124
+ ### Data Splits
125
+
126
+ * Training (65%)
127
+ * Development (10%)
128
+ * Test (25%)
129
+
130
+ ## Dataset Creation
131
+
132
+ ### Curation Rationale
133
+
134
+ [More Information Needed]
135
+
136
+ ### Source Data
137
+
138
+ #### Initial Data Collection and Normalization
139
+
140
+ [More Information Needed]
141
+
142
+ #### Who are the source language producers?
143
+
144
+ [More Information Needed]
145
+
146
+ ### Annotations
147
+
148
+ #### Annotation process
149
+
150
+ [More Information Needed]
151
+
152
+ #### Who are the annotators?
153
+
154
+ [More Information Needed]
155
+
156
+ ### Personal and Sensitive Information
157
+
158
+ [More Information Needed]
159
+
160
+ ## Considerations for Using the Data
161
+
162
+ ### Social Impact of Dataset
163
+
164
+ [More Information Needed]
165
+
166
+ ### Discussion of Biases
167
+
168
+ [More Information Needed]
169
+
170
+ ### Other Known Limitations
171
+
172
+ [More Information Needed]
173
+
174
+ ## Additional Information
175
+
176
+ ### Dataset Curators
177
+
178
+ [More Information Needed]
179
+
180
+ ### Licensing Information
181
+
182
+ The QRCD v1.1 dataset is distributed under the CC-BY-ND 4.0 License https://creativecommons.org/licenses/by-nd/4.0/legalcode
183
+ For a human-readable summary of (and not a substitute for) the above CC-BY-ND 4.0 License, please refer to https://creativecommons.org/licenses/by-nd/4.0/
184
+
185
+ ### Citation Information
186
+
187
+ ```
188
+ @article{malhas2020ayatec,
189
+ author = {Malhas, Rana and Elsayed, Tamer},
190
+ title = {AyaTEC: Building a Reusable Verse-Based Test Collection for Arabic Question Answering on the Holy Qur’an},
191
+ year = {2020},
192
+ issue_date = {November 2020},
193
+ publisher = {Association for Computing Machinery},
194
+ address = {New York, NY, USA},
195
+ volume = {19},
196
+ number = {6},
197
+ issn = {2375-4699},
198
+ url = {https://doi.org/10.1145/3400396},
199
+ doi = {10.1145/3400396},
200
+ journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
201
+ month = {oct},
202
+ articleno = {78},
203
+ numpages = {21},
204
+ keywords = {evaluation, Classical Arabic}
205
+ }
206
+ ```
207
+ ### Contributions
208
+
209
+ Thanks to [@piraka9011](https://github.com/piraka9011) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"shared_task": {"description": "The absence of publicly available reusable test collections for Arabic question answering on the Holy Qur\u2019an has impeded the possibility of fairly comparing the performance of systems in that domain. In this article, we introduce AyaTEC, a reusable test collection for verse-based question answering on the Holy Qur\u2019an, which serves as a common experimental testbed for this task. AyaTEC includes 207 questions (with their corresponding 1,762 answers) covering 11 topic categories of the Holy Qur\u2019an that target the information needs of both curious and skeptical users. To the best of our effort, the answers to the questions (each represented as a sequence of verses) in AyaTEC were exhaustive\u2014that is, all qur\u2019anic verses that directly answered the questions were exhaustively extracted and annotated. To facilitate the use of AyaTEC in evaluating the systems designed for that task, we propose several evaluation measures to support the different types of questions and the nature of verse-based answers while integrating the concept of partial matching of answers in the evaluation.\n", "citation": "@article{malhas2020ayatec,\n author = {Malhas, Rana and Elsayed, Tamer},\n title = {AyaTEC: Building a Reusable Verse-Based Test Collection for Arabic Question Answering on the Holy Qur\u2019an},\n year = {2020},\n issue_date = {November 2020},\n publisher = {Association for Computing Machinery},\n address = {New York, NY, USA},\n volume = {19},\n number = {6},\n issn = {2375-4699},\n url = {https://doi.org/10.1145/3400396},\n doi = {10.1145/3400396},\n journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},\n month = {oct},\n articleno = {78},\n numpages = {21},\n keywords = {evaluation, Classical Arabic}\n}\n", "homepage": "https://sites.google.com/view/quran-qa-2022/home", "license": "CC-BY-ND 4.0", "features": {"pq_id": {"dtype": "string", "id": null, "_type": "Value"}, "passage": {"dtype": "string", "id": null, "_type": "Value"}, "surah": {"dtype": "int8", "id": null, "_type": "Value"}, "verses": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "start_char": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "passage", "answers_column": "answers"}], "builder_name": "quranqa", "config_name": "shared_task", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 692719, "num_examples": 710, "dataset_name": "quranqa"}, "validation": {"name": "validation", "num_bytes": 107785, "num_examples": 109, "dataset_name": "quranqa"}, "test": {"name": "test", "num_bytes": 216975, "num_examples": 238, "dataset_name": "quranqa"}, "test_noAnswers": {"name": "test_noAnswers", "num_bytes": 227799, "num_examples": 274, "dataset_name": "quranqa"}}, "download_checksums": {"https://gitlab.com/bigirqu/quranqa/-/raw/main/datasets/qrcd_v1.1_train.jsonl": {"num_bytes": 756171, "checksum": "3e867fb2c999cdb2bbbbbd5fd1f9f11141106993256bb991b07a524c3e63be83"}, "https://gitlab.com/bigirqu/quranqa/-/raw/main/datasets/qrcd_v1.1_dev.jsonl": {"num_bytes": 117412, "checksum": "20709f850d9eb42e94ffba7190607f43ced485057c73df705a20fd0a71a34dcd"}, "https://gitlab.com/bigirqu/quranqa/-/raw/main/datasets/qrcd_v1.1_test_gold.jsonl": {"num_bytes": 238439, "checksum": "c84cda2227d2f90fb25c91fc6a0611b26b4d02ba6d2c07b7b86f86be90846049"}, "https://gitlab.com/bigirqu/quranqa/-/raw/main/datasets/qrcd_v1.1_test_noAnswers.jsonl": {"num_bytes": 244683, "checksum": "f461e9eee7281edf411566c6322a62f7722ef153fe59d4ee269c783c4ae70e87"}}, "download_size": 1356705, "post_processing_size": null, "dataset_size": 1245278, "size_in_bytes": 2601983}}
quranqa.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ import datasets
4
+ from datasets.tasks import QuestionAnsweringExtractive
5
+
6
+
7
+ _CITATION = """\
8
+ @article{malhas2020ayatec,
9
+ author = {Malhas, Rana and Elsayed, Tamer},
10
+ title = {AyaTEC: Building a Reusable Verse-Based Test Collection for Arabic Question Answering on the Holy Qur’an},
11
+ year = {2020},
12
+ issue_date = {November 2020},
13
+ publisher = {Association for Computing Machinery},
14
+ address = {New York, NY, USA},
15
+ volume = {19},
16
+ number = {6},
17
+ issn = {2375-4699},
18
+ url = {https://doi.org/10.1145/3400396},
19
+ doi = {10.1145/3400396},
20
+ journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
21
+ month = {oct},
22
+ articleno = {78},
23
+ numpages = {21},
24
+ keywords = {evaluation, Classical Arabic}
25
+ }
26
+ """
27
+
28
+ _DESCRIPTION = """\
29
+ The absence of publicly available reusable test collections for Arabic question answering on the Holy Qur’an has \
30
+ impeded the possibility of fairly comparing the performance of systems in that domain. In this article, we introduce \
31
+ AyaTEC, a reusable test collection for verse-based question answering on the Holy Qur’an, which serves as a common \
32
+ experimental testbed for this task. AyaTEC includes 207 questions (with their corresponding 1,762 answers) covering 11 \
33
+ topic categories of the Holy Qur’an that target the information needs of both curious and skeptical users. To the best \
34
+ of our effort, the answers to the questions (each represented as a sequence of verses) in AyaTEC were exhaustive—that \
35
+ is, all qur’anic verses that directly answered the questions were exhaustively extracted and annotated. To facilitate \
36
+ the use of AyaTEC in evaluating the systems designed for that task, we propose several evaluation measures to support \
37
+ the different types of questions and the nature of verse-based answers while integrating the concept of partial \
38
+ matching of answers in the evaluation.
39
+ """
40
+
41
+ _HOMEPAGE = "https://sites.google.com/view/quran-qa-2022/home"
42
+
43
+ _LICENSE = "CC-BY-ND 4.0"
44
+
45
+ _URL = "https://gitlab.com/bigirqu/quranqa/-/raw/main/datasets/"
46
+ _URLS = {
47
+ "train": _URL + "qrcd_v1.1_train.jsonl",
48
+ "dev": _URL + "qrcd_v1.1_dev.jsonl",
49
+ "test": _URL + "qrcd_v1.1_test_gold.jsonl",
50
+ "test_noAnswers": _URL + "qrcd_v1.1_test_noAnswers.jsonl",
51
+ }
52
+
53
+
54
+ class QuranQAConfig(datasets.BuilderConfig):
55
+ """BuilderConfig for QuranQA."""
56
+
57
+ def __init__(self, **kwargs):
58
+ """BuilderConfig for QuranQA.
59
+ Args:
60
+ **kwargs: keyword arguments forwarded to super.
61
+ """
62
+ super(QuranQAConfig, self).__init__(**kwargs)
63
+
64
+
65
+ class QuranQA(datasets.GeneratorBasedBuilder):
66
+ """QuranQA: Qur'anic Reading Comprehension Dataset. Version 1.1.0"""
67
+
68
+ VERSION = datasets.Version("1.1.0")
69
+
70
+ BUILDER_CONFIGS = [
71
+ QuranQAConfig(name="shared_task", version=VERSION, description="Shared task (LREC 2022)"),
72
+ ]
73
+
74
+ def _info(self):
75
+ return datasets.DatasetInfo(
76
+ description=_DESCRIPTION,
77
+ features=datasets.Features(
78
+ {
79
+ "pq_id": datasets.Value("string"),
80
+ "passage": datasets.Value("string"),
81
+ "surah": datasets.Value("int8"),
82
+ "verses": datasets.Value("string"),
83
+ "question": datasets.Value("string"),
84
+ "answers": datasets.features.Sequence(
85
+ {
86
+ "text": datasets.Value("string"),
87
+ "start_char": datasets.Value("int32"),
88
+ }
89
+ ),
90
+ }
91
+ ),
92
+ homepage=_HOMEPAGE,
93
+ license=_LICENSE,
94
+ citation=_CITATION,
95
+ task_templates=[
96
+ QuestionAnsweringExtractive(
97
+ question_column="question", context_column="passage", answers_column="answers"
98
+ )
99
+ ],
100
+ )
101
+
102
+ def _split_generators(self, dl_manager):
103
+ downloaded_files = dl_manager.download(_URLS)
104
+
105
+ return [
106
+ datasets.SplitGenerator(
107
+ name=datasets.Split.TRAIN,
108
+ gen_kwargs={"filepath": downloaded_files["train"]},
109
+ ),
110
+ datasets.SplitGenerator(
111
+ name=datasets.Split.VALIDATION,
112
+ gen_kwargs={"filepath": downloaded_files["dev"]},
113
+ ),
114
+ datasets.SplitGenerator(
115
+ name=datasets.Split.TEST,
116
+ gen_kwargs={"filepath": downloaded_files["test"]},
117
+ ),
118
+ datasets.SplitGenerator(
119
+ name="test_noAnswers",
120
+ gen_kwargs={"filepath": downloaded_files["test_noAnswers"]},
121
+ ),
122
+ ]
123
+
124
+ def _generate_examples(self, filepath):
125
+ key = 0
126
+ with open(filepath, encoding="utf-8") as f:
127
+ samples = f.readlines()
128
+ samples = [json.loads(s) for s in samples]
129
+ for sample in samples:
130
+ yield key, sample
131
+ key += 1