|
|
|
"""Untitled2.ipynb |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1Jy8fwFO774TM_FTwK-0to2L0qHoUAT-U |
|
""" |
|
|
|
|
|
"""MGB2.ipynb |
|
Automatically generated by Colaboratory. |
|
Original file is located at |
|
https://colab.research.google.com/drive/15ejoy2EWN9bj2s5ORQRZb5aTmFlcgA9d |
|
""" |
|
|
|
import datasets |
|
import os |
|
|
|
|
|
_DESCRIPTION = "MGB2 speech recognition dataset AR" |
|
_HOMEPAGE = "https://arabicspeech.org/mgb2/" |
|
_LICENSE = "MGB-2 License agreement" |
|
_CITATION = """@misc{https://doi.org/10.48550/arxiv.1609.05625, |
|
doi = {10.48550/ARXIV.1609.05625}, |
|
|
|
url = {https://arxiv.org/abs/1609.05625}, |
|
|
|
author = {Ali, Ahmed and Bell, Peter and Glass, James and Messaoui, Yacine and Mubarak, Hamdy and Renals, Steve and Zhang, Yifan}, |
|
|
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
|
|
title = {The MGB-2 Challenge: Arabic Multi-Dialect Broadcast Media Recognition}, |
|
|
|
publisher = {arXiv}, |
|
|
|
year = {2016}, |
|
|
|
copyright = {arXiv.org perpetual, non-exclusive license} |
|
} |
|
""" |
|
_DATA_ARCHIVE_ROOT = "Data/archives/" |
|
_DATA_URL = { |
|
"test": _DATA_ARCHIVE_ROOT + "mgb2_wav.test.zip", |
|
"dev": _DATA_ARCHIVE_ROOT + "mgb2_wav.dev.zip", |
|
|
|
|
|
"train": [_DATA_ARCHIVE_ROOT + f"mgb2_wav.train{x}.zip" for x in range(20)], |
|
} |
|
_TEXT_URL = { |
|
"test": _DATA_ARCHIVE_ROOT + "mgb2_txt.test.zip", |
|
"dev": _DATA_ARCHIVE_ROOT + "mgb2_txt.dev.zip", |
|
"train": _DATA_ARCHIVE_ROOT + "mgb2_txt.train.zip", |
|
} |
|
|
|
|
|
|
|
def absoluteFilePaths(directory): |
|
for dirpath,_,filenames in os.walk(directory): |
|
for f in filenames: |
|
yield os.path.abspath(os.path.join(dirpath, f)) |
|
|
|
|
|
class MGDB2Dataset(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"sentence": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
wav_archive = dl_manager.download(_DATA_URL) |
|
txt_archive = dl_manager.download(_TEXT_URL) |
|
test_dir = "dataset/test" |
|
dev_dir = "dataset/dev" |
|
train_dir = "dataset/train" |
|
|
|
|
|
print("Starting write datasets.........................................................") |
|
|
|
|
|
if dl_manager.is_streaming: |
|
print("from streaming.........................................................") |
|
|
|
|
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"path_to_txt": test_dir + "/txt", |
|
"path_to_wav": test_dir + "/wav", |
|
"wav_files": dl_manager.iter_archive(wav_archive['test']), |
|
"txt_files": dl_manager.iter_archive(txt_archive['test']), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"path_to_txt": dev_dir + "/txt", |
|
"path_to_wav": dev_dir + "/wav", |
|
"wav_files": dl_manager.iter_archive(wav_archive['dev']), |
|
"txt_files": dl_manager.iter_archive(txt_archive['dev']), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"path_to_txt": train_dir + "/txt", |
|
"path_to_wav": train_dir + "/wav", |
|
"wav_files": dl_manager.iter_archive(wav_archive['train']), |
|
"txt_files": dl_manager.iter_archive(txt_archive['train']), |
|
}, |
|
), |
|
] |
|
else: |
|
print("from non streaming.........................................................") |
|
|
|
|
|
dstZipFileName=txt_archive['test'] |
|
|
|
sz=os.path.getsize(dstZipFileName) |
|
|
|
print("file size=",sz) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wav_list = [] |
|
for arc in wav_archive['train']: |
|
for wav_name in absoluteFilePaths(dl_manager.extract(arc)): |
|
wav_list.append(wav_name) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"path_to_txt": test_dir + "/txt", |
|
"path_to_wav": test_dir + "/wav", |
|
"wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['test'])), |
|
"txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['test'])), |
|
"data_type":2, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"path_to_txt": dev_dir + "/txt", |
|
"path_to_wav": dev_dir + "/wav", |
|
"wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['dev'])), |
|
"txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['dev'])), |
|
"data_type":1, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"path_to_txt": train_dir + "/txt", |
|
"path_to_wav": train_dir + "/wav", |
|
"wav_files": wav_list, |
|
"txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['train'])), |
|
"data_type":0, |
|
}, |
|
), |
|
] |
|
print("end of generation.........................................................") |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _generate_examples(self, path_to_txt, path_to_wav, wav_files, txt_files,data_type): |
|
""" |
|
This assumes that the text directory alphabetically precedes the wav dir |
|
The file names for wav and text seem to match and are unique |
|
We can use them for the dictionary matching them |
|
""" |
|
|
|
print("start of generate examples.........................................................") |
|
|
|
print("txt file names............................",txt_files) |
|
print("wav_files names....................................",wav_files) |
|
|
|
examples = {} |
|
id_ = 0 |
|
|
|
for item in txt_files: |
|
|
|
|
|
|
|
|
|
if type(item) is tuple: |
|
|
|
path, f = item |
|
txt = f.read().decode(encoding="utf-8").strip() |
|
else: |
|
|
|
path = item |
|
with open(path, encoding="utf-8") as f: |
|
txt = f.read().strip() |
|
|
|
|
|
|
|
|
|
|
|
|
|
wav_path = os.path.split(path)[1].replace("_utf8", "").replace(".txt", ".wav").strip() |
|
|
|
examples[wav_path] = { |
|
"sentence": txt, |
|
"path": wav_path, |
|
} |
|
|
|
|
|
|
|
for item in wav_files: |
|
|
|
if type(item) is tuple: |
|
path, f = item |
|
wav_data = f.read() |
|
else: |
|
path = item |
|
with open(path, "rb") as f: |
|
wav_data = f.read() |
|
|
|
|
|
|
|
wav_path = os.path.split(path)[1].strip() |
|
if not (wav_path in examples): |
|
print("wav file mismatch:",wav_path) |
|
continue |
|
audio = {"path": path, "bytes": wav_data} |
|
yield id_, {**examples[wav_path], "audio": audio} |
|
id_ += 1 |