|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import datasets |
|
import itertools |
|
from llama_recipes.inference.prompt_format_utils import LLAMA_GUARD_3_CATEGORY |
|
import ast |
|
import fire |
|
|
|
def tokenize_prompt_and_labels(full_prompt, tokenizer): |
|
prompt_tokens = tokenizer.encode(full_prompt) |
|
combined_tokens = { |
|
"input_ids": list(prompt_tokens), |
|
"labels": list(prompt_tokens) |
|
} |
|
return dict(combined_tokens, attention_mask=[1]*len(combined_tokens["input_ids"])) |
|
|
|
|
|
from llama_recipes.data.llama_guard.finetuning_data_formatter import TrainingExample, Guidelines, Category, LlamaGuardPromptConfigs, LlamaGuardGenerationConfigs, ExplanationPosition, AugmentationConfigs, FormatterConfigs, create_formatted_finetuning_examples |
|
from datasets import Dataset, DatasetInfo |
|
|
|
def mapTcCategoriesToLGCategories(TcCategoriesString): |
|
TcCategories = ast.literal_eval(TcCategoriesString) |
|
if(len(TcCategories)==0): |
|
return None |
|
ranked = sorted(TcCategories, key=lambda x: x[1], reverse=True) |
|
primary = ranked[0][0] if len(ranked) else None |
|
TcMapping = { |
|
"S12":"012", |
|
"violence":"01", |
|
"sexual/minors":"04", |
|
"self-harm/intent":"011", |
|
"hate":"010", |
|
"harassment":"010", |
|
"self-harm":"011", |
|
"self-harm/instructions":"011", |
|
"violence/graphic":"01", |
|
"harassment/threatening":"010", |
|
"hate/threatening":"010" |
|
} |
|
return TcMapping[primary] |
|
|
|
def get_llamaguard_toxicchat_dataset(dataset_config, tokenizer, split, return_jsonl=False): |
|
dataset = datasets.load_dataset('json', data_files="/root/autodl-tmp/transformed_data.json", split='train') |
|
|
|
|
|
if return_jsonl: |
|
jsonl_data = []; |
|
for x in dataset.to_iterable_dataset(): |
|
jsonl_data.append({ |
|
"prompt":x['prompt'], |
|
"generation":x['response'], |
|
"label":("good" if x['label'] == "safe" else "bad"), |
|
"unsafe_content": [] if x["label"]=="safe" else ["012"] |
|
}) |
|
return jsonl_data |
|
|
|
guidelines = Guidelines( |
|
categories=LLAMA_GUARD_3_CATEGORY, |
|
category_code_prefix="O") |
|
|
|
|
|
llama_guard_prompt_configs = LlamaGuardPromptConfigs( |
|
instructions_format_string="""<|begin_of_text|><|start_header_id|>user<|end_header_id|> Task: Check if there is unsafe content in 'User' messages in conversations according our safety policy with the below categories. |
|
|
|
<BEGIN UNSAFE CONTENT CATEGORIES> |
|
{guidelines} |
|
<END UNSAFE CONTENT CATEGORIES> |
|
|
|
<BEGIN CONVERSATION> |
|
|
|
{conversation} |
|
|
|
<END CONVERSATION> |
|
|
|
Provide your safety assessment for $agent_type in the above conversation: |
|
- First line must read 'safe' or 'unsafe'. |
|
- If unsafe, a second line must include a comma-separated list of violated categories. <|eot_id|><|start_header_id|>assistant<|end_header_id|>""", |
|
should_include_category_descriptions=False, |
|
should_shuffle_category_codes=False |
|
) |
|
|
|
llama_guard_generation_configs = LlamaGuardGenerationConfigs( |
|
should_list_violated_codes=True, |
|
explanation_position=None |
|
) |
|
|
|
augmentation_configs = AugmentationConfigs( |
|
should_add_examples_with_dropped_nonviolated_prompt_categories=False, |
|
should_add_examples_with_dropped_violated_and_nonviolated_prompt_categories=False, |
|
explanation_for_augmentation_with_dropped_violated_and_nonviolated_prompt_categories="Response is safe because any riskiness in it is related to categories we're not trying to detect." |
|
) |
|
|
|
formatter_configs = FormatterConfigs( |
|
guidelines=guidelines, |
|
llama_guard_prompt_configs=llama_guard_prompt_configs, |
|
llama_guard_generation_configs=llama_guard_generation_configs, |
|
augmentation_configs=augmentation_configs, |
|
random_seed=42 |
|
) |
|
|
|
dataset = dataset.map(lambda x: {"full_prompt": create_formatted_finetuning_examples( |
|
[TrainingExample( |
|
prompt=x["prompt"], |
|
response=None, |
|
violated_category_codes = [] if x["label"]=="safe" else ["012"], |
|
label=x["label"], |
|
explanation=x["explanation"] |
|
)], |
|
formatter_configs)[0]}, |
|
remove_columns=list(dataset.features)) |
|
|
|
dataset = dataset.map(lambda x: tokenize_prompt_and_labels(x["full_prompt"], tokenizer), remove_columns=list(dataset.features)) |
|
return dataset |
|
|
|
def main(return_jsonl = False): |
|
from transformers import AutoTokenizer |
|
model_id: str = "/home/ubuntu/LG3-interim-hf-weights" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
if return_jsonl: |
|
dataset = get_llamaguard_toxicchat_dataset(None, tokenizer, "train", return_jsonl = True) |
|
print(dataset[0:50]) |
|
else: |
|
dataset = get_llamaguard_toxicchat_dataset(None, tokenizer, "train") |
|
print(dataset[0]) |
|
|
|
if __name__ == '__main__': |
|
fire.Fire(main) |
|
|