Delete loading script
Browse files- emnist_letters.py +0 -89
emnist_letters.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
import struct
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
import datasets
|
6 |
-
from datasets.tasks import ImageClassification
|
7 |
-
|
8 |
-
|
9 |
-
_URL = "./raw/"
|
10 |
-
_URLS = {
|
11 |
-
"train_images": "emnist-letters-train-images-idx3-ubyte.gz",
|
12 |
-
"train_labels": "emnist-letters-train-labels-idx1-ubyte.gz",
|
13 |
-
"test_images": "emnist-letters-test-images-idx3-ubyte.gz",
|
14 |
-
"test_labels": "emnist-letters-test-labels-idx1-ubyte.gz",
|
15 |
-
}
|
16 |
-
|
17 |
-
|
18 |
-
class EMNIST(datasets.GeneratorBasedBuilder):
|
19 |
-
|
20 |
-
BUILDER_CONFIGS = [
|
21 |
-
datasets.BuilderConfig(
|
22 |
-
name="emnist-letters",
|
23 |
-
version=datasets.Version("1.0.0"),
|
24 |
-
)
|
25 |
-
]
|
26 |
-
|
27 |
-
def _info(self):
|
28 |
-
return datasets.DatasetInfo(
|
29 |
-
features=datasets.Features(
|
30 |
-
{
|
31 |
-
"image": datasets.Image(),
|
32 |
-
"label": datasets.features.ClassLabel(
|
33 |
-
names=list(chr(i) for i in range(65, 91))
|
34 |
-
),
|
35 |
-
}
|
36 |
-
),
|
37 |
-
supervised_keys=("image", "label"),
|
38 |
-
task_templates=[
|
39 |
-
ImageClassification(
|
40 |
-
image_column="image",
|
41 |
-
label_column="label",
|
42 |
-
)
|
43 |
-
],
|
44 |
-
)
|
45 |
-
|
46 |
-
def _split_generators(self, dl_manager):
|
47 |
-
urls_to_download = {key: _URL + fname for key, fname in _URLS.items()}
|
48 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
49 |
-
return [
|
50 |
-
datasets.SplitGenerator(
|
51 |
-
name=datasets.Split.TRAIN,
|
52 |
-
gen_kwargs={
|
53 |
-
"filepath": (
|
54 |
-
downloaded_files["train_images"],
|
55 |
-
downloaded_files["train_labels"],
|
56 |
-
),
|
57 |
-
"split": "train",
|
58 |
-
},
|
59 |
-
),
|
60 |
-
datasets.SplitGenerator(
|
61 |
-
name=datasets.Split.TEST,
|
62 |
-
gen_kwargs={
|
63 |
-
"filepath": (
|
64 |
-
downloaded_files["test_images"],
|
65 |
-
downloaded_files["test_labels"],
|
66 |
-
),
|
67 |
-
"split": "test",
|
68 |
-
},
|
69 |
-
),
|
70 |
-
]
|
71 |
-
|
72 |
-
def _generate_examples(self, filepath, split):
|
73 |
-
"""This function returns the examples in the raw form."""
|
74 |
-
# Images
|
75 |
-
with open(filepath[0], "rb") as f:
|
76 |
-
# First 16 bytes contain some metadata
|
77 |
-
_ = f.read(4)
|
78 |
-
size = struct.unpack(">I", f.read(4))[0]
|
79 |
-
_ = f.read(8)
|
80 |
-
images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28)
|
81 |
-
|
82 |
-
# Labels
|
83 |
-
with open(filepath[1], "rb") as f:
|
84 |
-
# First 8 bytes contain some metadata
|
85 |
-
_ = f.read(8)
|
86 |
-
labels = np.frombuffer(f.read(), dtype=np.uint8) - 1
|
87 |
-
|
88 |
-
for idx in range(size):
|
89 |
-
yield idx, {"image": images[idx], "label": str(labels[idx])}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|