Datasets:
Tasks:
Summarization
Sub-tasks:
news-articles-summarization
Languages:
Kazakh
Size:
100K<n<1M
ArXiv:
License:
Upload talgat.py
Browse files
talgat.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
import re, json, sys, subprocess
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
# ===== Параметры =====
|
| 9 |
+
BASE_MODEL = "google/gemma-3-4b-it"
|
| 10 |
+
MODEL_PATH = "talgatzh/gemma-finetuned-model2"
|
| 11 |
+
OUTPUT_FILE = "gemma_inference_results_from_multidomain_fixedzxcs555.jsonl"
|
| 12 |
+
MAX_NEW_TOKENS = 60
|
| 13 |
+
MAX_TEXTS = 20 # увеличь для более стабильной метрики (>=200)
|
| 14 |
+
|
| 15 |
+
# ===== ROUGE (установим при необходимости) =====
|
| 16 |
+
try:
|
| 17 |
+
import evaluate
|
| 18 |
+
except ImportError:
|
| 19 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", "evaluate"])
|
| 20 |
+
import evaluate
|
| 21 |
+
|
| 22 |
+
# ===== Модель и токенизатор =====
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
| 24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
+
MODEL_PATH,
|
| 26 |
+
device_map="auto",
|
| 27 |
+
torch_dtype=torch.float16,
|
| 28 |
+
trust_remote_code=True
|
| 29 |
+
).eval()
|
| 30 |
+
|
| 31 |
+
# pad_token для стабильности (у Gemma pad = eos)
|
| 32 |
+
if tokenizer.pad_token_id is None:
|
| 33 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 34 |
+
|
| 35 |
+
# ===== Утилиты =====
|
| 36 |
+
def is_kazakh(text: str) -> bool:
|
| 37 |
+
return any(c in text.lower() for c in "қәөүңғұһі")
|
| 38 |
+
|
| 39 |
+
_SENT_SPLIT = re.compile(r'(?<=[\.\!\?…])\s+|\n+')
|
| 40 |
+
def lead_n(text: str, n=3) -> str:
|
| 41 |
+
sents = [s.strip() for s in _SENT_SPLIT.split(text.strip()) if s.strip()]
|
| 42 |
+
return " ".join(sents[:n])
|
| 43 |
+
|
| 44 |
+
def build_chat_prompt(text: str) -> str:
|
| 45 |
+
instr = (
|
| 46 |
+
"Мақсат: Экстрактивті қысқаша мазмұн.\n"
|
| 47 |
+
"Ереже: Тек бастапқы мәтіндегі сөйлемдерді көшір. Өз сөзіңмен жазба. Синоним қолданба.\n"
|
| 48 |
+
"Мәтіннен тек 2–3 ең маңызды сөйлемді таңда да, сол күйінде жаз.\n"
|
| 49 |
+
"Формат: тек сөйлемдер, жаңа сөздер қоспа.\n\n"
|
| 50 |
+
"Мәтін:\n"
|
| 51 |
+
f"{text.strip()}\n\n"
|
| 52 |
+
"Қысқаша мазмұн:"
|
| 53 |
+
)
|
| 54 |
+
messages = [{"role": "user", "content": instr}]
|
| 55 |
+
# Правильный chat-template для Gemma-IT
|
| 56 |
+
return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 57 |
+
|
| 58 |
+
# ===== Данные =====
|
| 59 |
+
dataset = load_dataset("kz-transformers/multidomain-kazakh-dataset",
|
| 60 |
+
split="train", streaming=True)
|
| 61 |
+
|
| 62 |
+
INPUT_TEXTS = []
|
| 63 |
+
for ex in dataset:
|
| 64 |
+
txt = (ex.get("text") or "").strip()
|
| 65 |
+
if is_kazakh(txt) and len(txt.split()) > 20:
|
| 66 |
+
INPUT_TEXTS.append(txt)
|
| 67 |
+
if len(INPUT_TEXTS) >= MAX_TEXTS:
|
| 68 |
+
break
|
| 69 |
+
|
| 70 |
+
print(f"✔ Отобрано {len(INPUT_TEXTS)} казахских текстов из multidomain")
|
| 71 |
+
|
| 72 |
+
# ===== Генерация =====
|
| 73 |
+
results, preds, refs = [], [], []
|
| 74 |
+
|
| 75 |
+
for text in tqdm(INPUT_TEXTS, desc="Generating summaries"):
|
| 76 |
+
prompt_text = build_chat_prompt(text)
|
| 77 |
+
|
| 78 |
+
toks = tokenizer(prompt_text, return_tensors="pt", truncation=True, max_length=2048)
|
| 79 |
+
toks = {k: v.to(model.device) for k, v in toks.items()}
|
| 80 |
+
|
| 81 |
+
with torch.no_grad():
|
| 82 |
+
out = model.generate(
|
| 83 |
+
**toks,
|
| 84 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 85 |
+
do_sample=False,
|
| 86 |
+
temperature=0.0,
|
| 87 |
+
repetition_penalty=1.05,
|
| 88 |
+
no_repeat_ngram_size=6,
|
| 89 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 90 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 91 |
+
use_cache=True,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# === Берём ТОЛЬКО новые токены после входа ===
|
| 95 |
+
input_len = toks["input_ids"].shape[1]
|
| 96 |
+
gen_ids = out[0, input_len:]
|
| 97 |
+
generated = tokenizer.decode(gen_ids, skip_special_tokens=True).strip()
|
| 98 |
+
|
| 99 |
+
# Чистим возможные «утечки» ролей/маркеров
|
| 100 |
+
for bad in ("model", "<start_of_turn>", "<end_of_turn>"):
|
| 101 |
+
if generated.lower().startswith(bad):
|
| 102 |
+
generated = generated[len(bad):].lstrip(": ").strip()
|
| 103 |
+
generated = generated.replace(bad, "").strip()
|
| 104 |
+
|
| 105 |
+
# Fallback: если пусто — берём первые 2–3 предложения исходника
|
| 106 |
+
if not generated:
|
| 107 |
+
generated = lead_n(text, n=3)
|
| 108 |
+
|
| 109 |
+
reference = lead_n(text, n=3)
|
| 110 |
+
|
| 111 |
+
results.append({"text": text, "summary": generated, "reference": reference})
|
| 112 |
+
preds.append(generated)
|
| 113 |
+
refs.append(reference)
|
| 114 |
+
|
| 115 |
+
# ===== Сохранение =====
|
| 116 |
+
with open(OUTPUT_FILE, "w", encoding="utf-8") as f:
|
| 117 |
+
for r in results:
|
| 118 |
+
f.write(json.dumps(r, ensure_ascii=False) + "\n")
|
| 119 |
+
|
| 120 |
+
print(f"✅ Сохранено {len(results)} суммаризаций → {OUTPUT_FILE}")
|
| 121 |
+
|
| 122 |
+
# ===== ROUGE к Lead-3 (прокси для быстрой диагностики) =====
|
| 123 |
+
rouge = evaluate.load("rouge")
|
| 124 |
+
scores = rouge.compute(predictions=preds, references=refs, use_stemmer=True)
|
| 125 |
+
scores_pct = {k: round(v * 100, 2) for k, v in scores.items()}
|
| 126 |
+
print("🔎 ROUGE vs Lead-3:")
|
| 127 |
+
for k in ("rouge1", "rouge2", "rougeL", "rougeLsum"):
|
| 128 |
+
print(f"{k.upper()}: {scores_pct.get(k, 0)}%")
|
| 129 |
+
|
| 130 |
+
# ===== Быстрый дебаг первых 3 пар =====
|
| 131 |
+
for i in range(min(3, len(results))):
|
| 132 |
+
print("\n--- SAMPLE", i+1, "---")
|
| 133 |
+
print("PRED:", results[i]["summary"])
|
| 134 |
+
print("REF :", results[i]["reference"])
|