taesiri commited on
Commit
3a41686
1 Parent(s): 86a2094

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1119 -1
README.md CHANGED
@@ -17,7 +17,1125 @@ dataset_info:
17
  num_examples: 10980
18
  download_size: 66129324319
19
  dataset_size: 70959420455.86
 
 
 
 
 
 
 
 
 
 
 
 
20
  ---
21
  # Dataset Card for "imagenet-hard-4K"
22
 
23
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  num_examples: 10980
18
  download_size: 66129324319
19
  dataset_size: 70959420455.86
20
+ license: mit
21
+ task_categories:
22
+ - image-classification
23
+ language:
24
+ - en
25
+ tags:
26
+ - OOD
27
+ - ImageNet
28
+ - Out Of Distribution
29
+ pretty_name: ImageNet-Hard-4K
30
+ size_categories:
31
+ - 10K<n<100K
32
  ---
33
  # Dataset Card for "imagenet-hard-4K"
34
 
35
+ [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
36
+
37
+
38
+ ## Dataset Summary
39
+
40
+ [Project Page](https://taesiri.github.io/ZoomIsAllYouNeed/) - [Paper](https://arxiv.org/abs/2304.05538) - [Github](https://github.com/taesiri/ZoomIsAllYouNeed)
41
+
42
+
43
+ **ImageNet-Hard-4K** is 4K version of the original [**ImageNet-Hard**](https://huggingface.co/datasets/taesiri/imagenet-hard) dataset, which is a new benchmark that comprises 10,980 images collected from various existing ImageNet-scale benchmarks (ImageNet, ImageNet-V2, ImageNet-Sketch, ImageNet-C, ImageNet-R, ImageNet-ReaL, ImageNet-A, and ObjectNet). This dataset poses a significant challenge to state-of-the-art vision models as merely zooming in often fails to improve their ability to classify images correctly. As a result, even the most advanced models, such as `CLIP-ViT-L/14@336px`, struggle to perform well on this dataset, achieving a mere `2.02%` accuracy.
44
+
45
+
46
+ ## Upscaling Procedure
47
+
48
+ We employed [GigaGAN](https://mingukkang.github.io/GigaGAN/) to upscale each image from the original ImageNet-Hard dataset to a resolution of 4K.
49
+
50
+
51
+ ### Dataset Distribution
52
+
53
+ ![Dataset Distribution](https://taesiri.github.io/ZoomIsAllYouNeed/static/svg/imagenet_hard_distribution.svg)
54
+
55
+
56
+ ### Classifiers Performance
57
+
58
+
59
+ | Model | Accuracy |
60
+ | ------------------- | -------- |
61
+ | AlexNet | 7.08 |
62
+ | VGG-16 | 11.32 |
63
+ | ResNet-18 | 10.42 |
64
+ | ResNet-50 | 13.93 |
65
+ | ViT-B/32 | 18.12 |
66
+ | EfficientNet-B0 | 12.94 |
67
+ | EfficientNet-B7 | 18.67 |
68
+ | EfficientNet-L2-Ns | 28.42 |
69
+ | CLIP-ViT-L/14@224px | 1.81 |
70
+ | CLIP-ViT-L/14@336px | 1.88 |
71
+ | OpenCLIP-ViT-bigG-14| 14.33 |
72
+ | OpenCLIP-ViT-L-14 | 13.04 |
73
+
74
+
75
+
76
+ **Evaluation Code**
77
+
78
+ * CLIP <a target="_blank" href="https://colab.research.google.com/github/taesiri/ZoomIsAllYouNeed/blob/main/src/ImageNet_Hard/Prompt_Engineering_for_ImageNet_Hard.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a>
79
+ * Other models <a target="_blank" href="https://colab.research.google.com/github/taesiri/ZoomIsAllYouNeed/blob/main/src/ImageNet_Hard/Benchmark_ImageNet_Hard.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a>
80
+
81
+ ## Supported Tasks
82
+
83
+ - `image-classification`: The objective of this task is to classify an image into one or more classes, selected from 1000 ImageNet categories (allowing for multiple ground-truth labels per image).
84
+
85
+ ## Languages
86
+ The `english_label` field in the dataset are in English.
87
+
88
+ ## Dataset Structure
89
+
90
+ Data Instances
91
+
92
+ An example looks like this:
93
+
94
+ ```python
95
+ {
96
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=575x409 at 0x7F09456B53A0>,
97
+ 'label': [0],
98
+ 'origin': 'imagenet_sketch',
99
+ 'english_label': ['tench']
100
+ }
101
+ ```
102
+
103
+ ### Data Fields
104
+ The data instances have the following fields:
105
+
106
+ - image: A PIL.Image.Image object containing the image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0].
107
+ - label: A List[int] collection containing the ground-truth ids.
108
+ - origin: A string containing source dataset.
109
+ - english_label: A List[str] collection containg the english labels for the ground-truth classes.
110
+
111
+
112
+ <details>
113
+ <summary>
114
+ Click here to see the full list of ImageNet class labels mapping:
115
+ </summary>
116
+
117
+ |id|Class|
118
+ |--|-----|
119
+ |0 | tench, Tinca tinca|
120
+ |1 | goldfish, Carassius auratus|
121
+ |2 | great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias|
122
+ |3 | tiger shark, Galeocerdo cuvieri|
123
+ |4 | hammerhead, hammerhead shark|
124
+ |5 | electric ray, crampfish, numbfish, torpedo|
125
+ |6 | stingray|
126
+ |7 | cock|
127
+ |8 | hen|
128
+ |9 | ostrich, Struthio camelus|
129
+ |10 | brambling, Fringilla montifringilla|
130
+ |11 | goldfinch, Carduelis carduelis|
131
+ |12 | house finch, linnet, Carpodacus mexicanus|
132
+ |13 | junco, snowbird|
133
+ |14 | indigo bunting, indigo finch, indigo bird, Passerina cyanea|
134
+ |15 | robin, American robin, Turdus migratorius|
135
+ |16 | bulbul|
136
+ |17 | jay|
137
+ |18 | magpie|
138
+ |19 | chickadee|
139
+ |20 | water ouzel, dipper|
140
+ |21 | kite|
141
+ |22 | bald eagle, American eagle, Haliaeetus leucocephalus|
142
+ |23 | vulture|
143
+ |24 | great grey owl, great gray owl, Strix nebulosa|
144
+ |25 | European fire salamander, Salamandra salamandra|
145
+ |26 | common newt, Triturus vulgaris|
146
+ |27 | eft|
147
+ |28 | spotted salamander, Ambystoma maculatum|
148
+ |29 | axolotl, mud puppy, Ambystoma mexicanum|
149
+ |30 | bullfrog, Rana catesbeiana|
150
+ |31 | tree frog, tree-frog|
151
+ |32 | tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui|
152
+ |33 | loggerhead, loggerhead turtle, Caretta caretta|
153
+ |34 | leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea|
154
+ |35 | mud turtle|
155
+ |36 | terrapin|
156
+ |37 | box turtle, box tortoise|
157
+ |38 | banded gecko|
158
+ |39 | common iguana, iguana, Iguana iguana|
159
+ |40 | American chameleon, anole, Anolis carolinensis|
160
+ |41 | whiptail, whiptail lizard|
161
+ |42 | agama|
162
+ |43 | frilled lizard, Chlamydosaurus kingi|
163
+ |44 | alligator lizard|
164
+ |45 | Gila monster, Heloderma suspectum|
165
+ |46 | green lizard, Lacerta viridis|
166
+ |47 | African chameleon, Chamaeleo chamaeleon|
167
+ |48 | Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis|
168
+ |49 | African crocodile, Nile crocodile, Crocodylus niloticus|
169
+ |50 | American alligator, Alligator mississipiensis|
170
+ |51 | triceratops|
171
+ |52 | thunder snake, worm snake, Carphophis amoenus|
172
+ |53 | ringneck snake, ring-necked snake, ring snake|
173
+ |54 | hognose snake, puff adder, sand viper|
174
+ |55 | green snake, grass snake|
175
+ |56 | king snake, kingsnake|
176
+ |57 | garter snake, grass snake|
177
+ |58 | water snake|
178
+ |59 | vine snake|
179
+ |60 | night snake, Hypsiglena torquata|
180
+ |61 | boa constrictor, Constrictor constrictor|
181
+ |62 | rock python, rock snake, Python sebae|
182
+ |63 | Indian cobra, Naja naja|
183
+ |64 | green mamba|
184
+ |65 | sea snake|
185
+ |66 | horned viper, cerastes, sand viper, horned asp, Cerastes cornutus|
186
+ |67 | diamondback, diamondback rattlesnake, Crotalus adamanteus|
187
+ |68 | sidewinder, horned rattlesnake, Crotalus cerastes|
188
+ |69 | trilobite|
189
+ |70 | harvestman, daddy longlegs, Phalangium opilio|
190
+ |71 | scorpion|
191
+ |72 | black and gold garden spider, Argiope aurantia|
192
+ |73 | barn spider, Araneus cavaticus|
193
+ |74 | garden spider, Aranea diademata|
194
+ |75 | black widow, Latrodectus mactans|
195
+ |76 | tarantula|
196
+ |77 | wolf spider, hunting spider|
197
+ |78 | tick|
198
+ |79 | centipede|
199
+ |80 | black grouse|
200
+ |81 | ptarmigan|
201
+ |82 | ruffed grouse, partridge, Bonasa umbellus|
202
+ |83 | prairie chicken, prairie grouse, prairie fowl|
203
+ |84 | peacock|
204
+ |85 | quail|
205
+ |86 | partridge|
206
+ |87 | African grey, African gray, Psittacus erithacus|
207
+ |88 | macaw|
208
+ |89 | sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita|
209
+ |90 | lorikeet|
210
+ |91 | coucal|
211
+ |92 | bee eater|
212
+ |93 | hornbill|
213
+ |94 | hummingbird|
214
+ |95 | jacamar|
215
+ |96 | toucan|
216
+ |97 | drake|
217
+ |98 | red-breasted merganser, Mergus serrator|
218
+ |99 | goose|
219
+ |100 | black swan, Cygnus atratus|
220
+ |101 | tusker|
221
+ |102 | echidna, spiny anteater, anteater|
222
+ |103 | platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus|
223
+ |104 | wallaby, brush kangaroo|
224
+ |105 | koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus|
225
+ |106 | wombat|
226
+ |107 | jellyfish|
227
+ |108 | sea anemone, anemone|
228
+ |109 | brain coral|
229
+ |110 | flatworm, platyhelminth|
230
+ |111 | nematode, nematode worm, roundworm|
231
+ |112 | conch|
232
+ |113 | snail|
233
+ |114 | slug|
234
+ |115 | sea slug, nudibranch|
235
+ |116 | chiton, coat-of-mail shell, sea cradle, polyplacophore|
236
+ |117 | chambered nautilus, pearly nautilus, nautilus|
237
+ |118 | Dungeness crab, Cancer magister|
238
+ |119 | rock crab, Cancer irroratus|
239
+ |120 | fiddler crab|
240
+ |121 | king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica|
241
+ |122 | American lobster, Northern lobster, Maine lobster, Homarus americanus|
242
+ |123 | spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish|
243
+ |124 | crayfish, crawfish, crawdad, crawdaddy|
244
+ |125 | hermit crab|
245
+ |126 | isopod|
246
+ |127 | white stork, Ciconia ciconia|
247
+ |128 | black stork, Ciconia nigra|
248
+ |129 | spoonbill|
249
+ |130 | flamingo|
250
+ |131 | little blue heron, Egretta caerulea|
251
+ |132 | American egret, great white heron, Egretta albus|
252
+ |133 | bittern|
253
+ |134 | crane|
254
+ |135 | limpkin, Aramus pictus|
255
+ |136 | European gallinule, Porphyrio porphyrio|
256
+ |137 | American coot, marsh hen, mud hen, water hen, Fulica americana|
257
+ |138 | bustard|
258
+ |139 | ruddy turnstone, Arenaria interpres|
259
+ |140 | red-backed sandpiper, dunlin, Erolia alpina|
260
+ |141 | redshank, Tringa totanus|
261
+ |142 | dowitcher|
262
+ |143 | oystercatcher, oyster catcher|
263
+ |144 | pelican|
264
+ |145 | king penguin, Aptenodytes patagonica|
265
+ |146 | albatross, mollymawk|
266
+ |147 | grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus|
267
+ |148 | killer whale, killer, orca, grampus, sea wolf, Orcinus orca|
268
+ |149 | dugong, Dugong dugon|
269
+ |150 | sea lion|
270
+ |151 | Chihuahua|
271
+ |152 | Japanese spaniel|
272
+ |153 | Maltese dog, Maltese terrier, Maltese|
273
+ |154 | Pekinese, Pekingese, Peke|
274
+ |155 | Shih-Tzu|
275
+ |156 | Blenheim spaniel|
276
+ |157 | papillon|
277
+ |158 | toy terrier|
278
+ |159 | Rhodesian ridgeback|
279
+ |160 | Afghan hound, Afghan|
280
+ |161 | basset, basset hound|
281
+ |162 | beagle|
282
+ |163 | bloodhound, sleuthhound|
283
+ |164 | bluetick|
284
+ |165 | black-and-tan coonhound|
285
+ |166 | Walker hound, Walker foxhound|
286
+ |167 | English foxhound|
287
+ |168 | redbone|
288
+ |169 | borzoi, Russian wolfhound|
289
+ |170 | Irish wolfhound|
290
+ |171 | Italian greyhound|
291
+ |172 | whippet|
292
+ |173 | Ibizan hound, Ibizan Podenco|
293
+ |174 | Norwegian elkhound, elkhound|
294
+ |175 | otterhound, otter hound|
295
+ |176 | Saluki, gazelle hound|
296
+ |177 | Scottish deerhound, deerhound|
297
+ |178 | Weimaraner|
298
+ |179 | Staffordshire bullterrier, Staffordshire bull terrier|
299
+ |180 | American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier|
300
+ |181 | Bedlington terrier|
301
+ |182 | Border terrier|
302
+ |183 | Kerry blue terrier|
303
+ |184 | Irish terrier|
304
+ |185 | Norfolk terrier|
305
+ |186 | Norwich terrier|
306
+ |187 | Yorkshire terrier|
307
+ |188 | wire-haired fox terrier|
308
+ |189 | Lakeland terrier|
309
+ |190 | Sealyham terrier, Sealyham|
310
+ |191 | Airedale, Airedale terrier|
311
+ |192 | cairn, cairn terrier|
312
+ |193 | Australian terrier|
313
+ |194 | Dandie Dinmont, Dandie Dinmont terrier|
314
+ |195 | Boston bull, Boston terrier|
315
+ |196 | miniature schnauzer|
316
+ |197 | giant schnauzer|
317
+ |198 | standard schnauzer|
318
+ |199 | Scotch terrier, Scottish terrier, Scottie|
319
+ |200 | Tibetan terrier, chrysanthemum dog|
320
+ |201 | silky terrier, Sydney silky|
321
+ |202 | soft-coated wheaten terrier|
322
+ |203 | West Highland white terrier|
323
+ |204 | Lhasa, Lhasa apso|
324
+ |205 | flat-coated retriever|
325
+ |206 | curly-coated retriever|
326
+ |207 | golden retriever|
327
+ |208 | Labrador retriever|
328
+ |209 | Chesapeake Bay retriever|
329
+ |210 | German short-haired pointer|
330
+ |211 | vizsla, Hungarian pointer|
331
+ |212 | English setter|
332
+ |213 | Irish setter, red setter|
333
+ |214 | Gordon setter|
334
+ |215 | Brittany spaniel|
335
+ |216 | clumber, clumber spaniel|
336
+ |217 | English springer, English springer spaniel|
337
+ |218 | Welsh springer spaniel|
338
+ |219 | cocker spaniel, English cocker spaniel, cocker|
339
+ |220 | Sussex spaniel|
340
+ |221 | Irish water spaniel|
341
+ |222 | kuvasz|
342
+ |223 | schipperke|
343
+ |224 | groenendael|
344
+ |225 | malinois|
345
+ |226 | briard|
346
+ |227 | kelpie|
347
+ |228 | komondor|
348
+ |229 | Old English sheepdog, bobtail|
349
+ |230 | Shetland sheepdog, Shetland sheep dog, Shetland|
350
+ |231 | collie|
351
+ |232 | Border collie|
352
+ |233 | Bouvier des Flandres, Bouviers des Flandres|
353
+ |234 | Rottweiler|
354
+ |235 | German shepherd, German shepherd dog, German police dog, alsatian|
355
+ |236 | Doberman, Doberman pinscher|
356
+ |237 | miniature pinscher|
357
+ |238 | Greater Swiss Mountain dog|
358
+ |239 | Bernese mountain dog|
359
+ |240 | Appenzeller|
360
+ |241 | EntleBucher|
361
+ |242 | boxer|
362
+ |243 | bull mastiff|
363
+ |244 | Tibetan mastiff|
364
+ |245 | French bulldog|
365
+ |246 | Great Dane|
366
+ |247 | Saint Bernard, St Bernard|
367
+ |248 | Eskimo dog, husky|
368
+ |249 | malamute, malemute, Alaskan malamute|
369
+ |250 | Siberian husky|
370
+ |251 | dalmatian, coach dog, carriage dog|
371
+ |252 | affenpinscher, monkey pinscher, monkey dog|
372
+ |253 | basenji|
373
+ |254 | pug, pug-dog|
374
+ |255 | Leonberg|
375
+ |256 | Newfoundland, Newfoundland dog|
376
+ |257 | Great Pyrenees|
377
+ |258 | Samoyed, Samoyede|
378
+ |259 | Pomeranian|
379
+ |260 | chow, chow chow|
380
+ |261 | keeshond|
381
+ |262 | Brabancon griffon|
382
+ |263 | Pembroke, Pembroke Welsh corgi|
383
+ |264 | Cardigan, Cardigan Welsh corgi|
384
+ |265 | toy poodle|
385
+ |266 | miniature poodle|
386
+ |267 | standard poodle|
387
+ |268 | Mexican hairless|
388
+ |269 | timber wolf, grey wolf, gray wolf, Canis lupus|
389
+ |270 | white wolf, Arctic wolf, Canis lupus tundrarum|
390
+ |271 | red wolf, maned wolf, Canis rufus, Canis niger|
391
+ |272 | coyote, prairie wolf, brush wolf, Canis latrans|
392
+ |273 | dingo, warrigal, warragal, Canis dingo|
393
+ |274 | dhole, Cuon alpinus|
394
+ |275 | African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus|
395
+ |276 | hyena, hyaena|
396
+ |277 | red fox, Vulpes vulpes|
397
+ |278 | kit fox, Vulpes macrotis|
398
+ |279 | Arctic fox, white fox, Alopex lagopus|
399
+ |280 | grey fox, gray fox, Urocyon cinereoargenteus|
400
+ |281 | tabby, tabby cat|
401
+ |282 | tiger cat|
402
+ |283 | Persian cat|
403
+ |284 | Siamese cat, Siamese|
404
+ |285 | Egyptian cat|
405
+ |286 | cougar, puma, catamount, mountain lion, painter, panther, Felis concolor|
406
+ |287 | lynx, catamount|
407
+ |288 | leopard, Panthera pardus|
408
+ |289 | snow leopard, ounce, Panthera uncia|
409
+ |290 | jaguar, panther, Panthera onca, Felis onca|
410
+ |291 | lion, king of beasts, Panthera leo|
411
+ |292 | tiger, Panthera tigris|
412
+ |293 | cheetah, chetah, Acinonyx jubatus|
413
+ |294 | brown bear, bruin, Ursus arctos|
414
+ |295 | American black bear, black bear, Ursus americanus, Euarctos americanus|
415
+ |296 | ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus|
416
+ |297 | sloth bear, Melursus ursinus, Ursus ursinus|
417
+ |298 | mongoose|
418
+ |299 | meerkat, mierkat|
419
+ |300 | tiger beetle|
420
+ |301 | ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle|
421
+ |302 | ground beetle, carabid beetle|
422
+ |303 | long-horned beetle, longicorn, longicorn beetle|
423
+ |304 | leaf beetle, chrysomelid|
424
+ |305 | dung beetle|
425
+ |306 | rhinoceros beetle|
426
+ |307 | weevil|
427
+ |308 | fly|
428
+ |309 | bee|
429
+ |310 | ant, emmet, pismire|
430
+ |311 | grasshopper, hopper|
431
+ |312 | cricket|
432
+ |313 | walking stick, walkingstick, stick insect|
433
+ |314 | cockroach, roach|
434
+ |315 | mantis, mantid|
435
+ |316 | cicada, cicala|
436
+ |317 | leafhopper|
437
+ |318 | lacewing, lacewing fly|
438
+ |319 | dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk|
439
+ |320 | damselfly|
440
+ |321 | admiral|
441
+ |322 | ringlet, ringlet butterfly|
442
+ |323 | monarch, monarch butterfly, milkweed butterfly, Danaus plexippus|
443
+ |324 | cabbage butterfly|
444
+ |325 | sulphur butterfly, sulfur butterfly|
445
+ |326 | lycaenid, lycaenid butterfly|
446
+ |327 | starfish, sea star|
447
+ |328 | sea urchin|
448
+ |329 | sea cucumber, holothurian|
449
+ |330 | wood rabbit, cottontail, cottontail rabbit|
450
+ |331 | hare|
451
+ |332 | Angora, Angora rabbit|
452
+ |333 | hamster|
453
+ |334 | porcupine, hedgehog|
454
+ |335 | fox squirrel, eastern fox squirrel, Sciurus niger|
455
+ |336 | marmot|
456
+ |337 | beaver|
457
+ |338 | guinea pig, Cavia cobaya|
458
+ |339 | sorrel|
459
+ |340 | zebra|
460
+ |341 | hog, pig, grunter, squealer, Sus scrofa|
461
+ |342 | wild boar, boar, Sus scrofa|
462
+ |343 | warthog|
463
+ |344 | hippopotamus, hippo, river horse, Hippopotamus amphibius|
464
+ |345 | ox|
465
+ |346 | water buffalo, water ox, Asiatic buffalo, Bubalus bubalis|
466
+ |347 | bison|
467
+ |348 | ram, tup|
468
+ |349 | bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis|
469
+ |350 | ibex, Capra ibex|
470
+ |351 | hartebeest|
471
+ |352 | impala, Aepyceros melampus|
472
+ |353 | gazelle|
473
+ |354 | Arabian camel, dromedary, Camelus dromedarius|
474
+ |355 | llama|
475
+ |356 | weasel|
476
+ |357 | mink|
477
+ |358 | polecat, fitch, foulmart, foumart, Mustela putorius|
478
+ |359 | black-footed ferret, ferret, Mustela nigripes|
479
+ |360 | otter|
480
+ |361 | skunk, polecat, wood pussy|
481
+ |362 | badger|
482
+ |363 | armadillo|
483
+ |364 | three-toed sloth, ai, Bradypus tridactylus|
484
+ |365 | orangutan, orang, orangutang, Pongo pygmaeus|
485
+ |366 | gorilla, Gorilla gorilla|
486
+ |367 | chimpanzee, chimp, Pan troglodytes|
487
+ |368 | gibbon, Hylobates lar|
488
+ |369 | siamang, Hylobates syndactylus, Symphalangus syndactylus|
489
+ |370 | guenon, guenon monkey|
490
+ |371 | patas, hussar monkey, Erythrocebus patas|
491
+ |372 | baboon|
492
+ |373 | macaque|
493
+ |374 | langur|
494
+ |375 | colobus, colobus monkey|
495
+ |376 | proboscis monkey, Nasalis larvatus|
496
+ |377 | marmoset|
497
+ |378 | capuchin, ringtail, Cebus capucinus|
498
+ |379 | howler monkey, howler|
499
+ |380 | titi, titi monkey|
500
+ |381 | spider monkey, Ateles geoffroyi|
501
+ |382 | squirrel monkey, Saimiri sciureus|
502
+ |383 | Madagascar cat, ring-tailed lemur, Lemur catta|
503
+ |384 | indri, indris, Indri indri, Indri brevicaudatus|
504
+ |385 | Indian elephant, Elephas maximus|
505
+ |386 | African elephant, Loxodonta africana|
506
+ |387 | lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens|
507
+ |388 | giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca|
508
+ |389 | barracouta, snoek|
509
+ |390 | eel|
510
+ |391 | coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch|
511
+ |392 | rock beauty, Holocanthus tricolor|
512
+ |393 | anemone fish|
513
+ |394 | sturgeon|
514
+ |395 | gar, garfish, garpike, billfish, Lepisosteus osseus|
515
+ |396 | lionfish|
516
+ |397 | puffer, pufferfish, blowfish, globefish|
517
+ |398 | abacus|
518
+ |399 | abaya|
519
+ |400 | academic gown, academic robe, judge's robe|
520
+ |401 | accordion, piano accordion, squeeze box|
521
+ |402 | acoustic guitar|
522
+ |403 | aircraft carrier, carrier, flattop, attack aircraft carrier|
523
+ |404 | airliner|
524
+ |405 | airship, dirigible|
525
+ |406 | altar|
526
+ |407 | ambulance|
527
+ |408 | amphibian, amphibious vehicle|
528
+ |409 | analog clock|
529
+ |410 | apiary, bee house|
530
+ |411 | apron|
531
+ |412 | ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin|
532
+ |413 | assault rifle, assault gun|
533
+ |414 | backpack, back pack, knapsack, packsack, rucksack, haversack|
534
+ |415 | bakery, bakeshop, bakehouse|
535
+ |416 | balance beam, beam|
536
+ |417 | balloon|
537
+ |418 | ballpoint, ballpoint pen, ballpen, Biro|
538
+ |419 | Band Aid|
539
+ |420 | banjo|
540
+ |421 | bannister, banister, balustrade, balusters, handrail|
541
+ |422 | barbell|
542
+ |423 | barber chair|
543
+ |424 | barbershop|
544
+ |425 | barn|
545
+ |426 | barometer|
546
+ |427 | barrel, cask|
547
+ |428 | barrow, garden cart, lawn cart, wheelbarrow|
548
+ |429 | baseball|
549
+ |430 | basketball|
550
+ |431 | bassinet|
551
+ |432 | bassoon|
552
+ |433 | bathing cap, swimming cap|
553
+ |434 | bath towel|
554
+ |435 | bathtub, bathing tub, bath, tub|
555
+ |436 | beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon|
556
+ |437 | beacon, lighthouse, beacon light, pharos|
557
+ |438 | beaker|
558
+ |439 | bearskin, busby, shako|
559
+ |440 | beer bottle|
560
+ |441 | beer glass|
561
+ |442 | bell cote, bell cot|
562
+ |443 | bib|
563
+ |444 | bicycle-built-for-two, tandem bicycle, tandem|
564
+ |445 | bikini, two-piece|
565
+ |446 | binder, ring-binder|
566
+ |447 | binoculars, field glasses, opera glasses|
567
+ |448 | birdhouse|
568
+ |449 | boathouse|
569
+ |450 | bobsled, bobsleigh, bob|
570
+ |451 | bolo tie, bolo, bola tie, bola|
571
+ |452 | bonnet, poke bonnet|
572
+ |453 | bookcase|
573
+ |454 | bookshop, bookstore, bookstall|
574
+ |455 | bottlecap|
575
+ |456 | bow|
576
+ |457 | bow tie, bow-tie, bowtie|
577
+ |458 | brass, memorial tablet, plaque|
578
+ |459 | brassiere, bra, bandeau|
579
+ |460 | breakwater, groin, groyne, mole, bulwark, seawall, jetty|
580
+ |461 | breastplate, aegis, egis|
581
+ |462 | broom|
582
+ |463 | bucket, pail|
583
+ |464 | buckle|
584
+ |465 | bulletproof vest|
585
+ |466 | bullet train, bullet|
586
+ |467 | butcher shop, meat market|
587
+ |468 | cab, hack, taxi, taxicab|
588
+ |469 | caldron, cauldron|
589
+ |470 | candle, taper, wax light|
590
+ |471 | cannon|
591
+ |472 | canoe|
592
+ |473 | can opener, tin opener|
593
+ |474 | cardigan|
594
+ |475 | car mirror|
595
+ |476 | carousel, carrousel, merry-go-round, roundabout, whirligig|
596
+ |477 | carpenter's kit, tool kit|
597
+ |478 | carton|
598
+ |479 | car wheel|
599
+ |480 | cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM|
600
+ |481 | cassette|
601
+ |482 | cassette player|
602
+ |483 | castle|
603
+ |484 | catamaran|
604
+ |485 | CD player|
605
+ |486 | cello, violoncello|
606
+ |487 | cellular telephone, cellular phone, cellphone, cell, mobile phone|
607
+ |488 | chain|
608
+ |489 | chainlink fence|
609
+ |490 | chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour|
610
+ |491 | chain saw, chainsaw|
611
+ |492 | chest|
612
+ |493 | chiffonier, commode|
613
+ |494 | chime, bell, gong|
614
+ |495 | china cabinet, china closet|
615
+ |496 | Christmas stocking|
616
+ |497 | church, church building|
617
+ |498 | cinema, movie theater, movie theatre, movie house, picture palace|
618
+ |499 | cleaver, meat cleaver, chopper|
619
+ |500 | cliff dwelling|
620
+ |501 | cloak|
621
+ |502 | clog, geta, patten, sabot|
622
+ |503 | cocktail shaker|
623
+ |504 | coffee mug|
624
+ |505 | coffeepot|
625
+ |506 | coil, spiral, volute, whorl, helix|
626
+ |507 | combination lock|
627
+ |508 | computer keyboard, keypad|
628
+ |509 | confectionery, confectionary, candy store|
629
+ |510 | container ship, containership, container vessel|
630
+ |511 | convertible|
631
+ |512 | corkscrew, bottle screw|
632
+ |513 | cornet, horn, trumpet, trump|
633
+ |514 | cowboy boot|
634
+ |515 | cowboy hat, ten-gallon hat|
635
+ |516 | cradle|
636
+ |517 | crane_1|
637
+ |518 | crash helmet|
638
+ |519 | crate|
639
+ |520 | crib, cot|
640
+ |521 | Crock Pot|
641
+ |522 | croquet ball|
642
+ |523 | crutch|
643
+ |524 | cuirass|
644
+ |525 | dam, dike, dyke|
645
+ |526 | desk|
646
+ |527 | desktop computer|
647
+ |528 | dial telephone, dial phone|
648
+ |529 | diaper, nappy, napkin|
649
+ |530 | digital clock|
650
+ |531 | digital watch|
651
+ |532 | dining table, board|
652
+ |533 | dishrag, dishcloth|
653
+ |534 | dishwasher, dish washer, dishwashing machine|
654
+ |535 | disk brake, disc brake|
655
+ |536 | dock, dockage, docking facility|
656
+ |537 | dogsled, dog sled, dog sleigh|
657
+ |538 | dome|
658
+ |539 | doormat, welcome mat|
659
+ |540 | drilling platform, offshore rig|
660
+ |541 | drum, membranophone, tympan|
661
+ |542 | drumstick|
662
+ |543 | dumbbell|
663
+ |544 | Dutch oven|
664
+ |545 | electric fan, blower|
665
+ |546 | electric guitar|
666
+ |547 | electric locomotive|
667
+ |548 | entertainment center|
668
+ |549 | envelope|
669
+ |550 | espresso maker|
670
+ |551 | face powder|
671
+ |552 | feather boa, boa|
672
+ |553 | file, file cabinet, filing cabinet|
673
+ |554 | fireboat|
674
+ |555 | fire engine, fire truck|
675
+ |556 | fire screen, fireguard|
676
+ |557 | flagpole, flagstaff|
677
+ |558 | flute, transverse flute|
678
+ |559 | folding chair|
679
+ |560 | football helmet|
680
+ |561 | forklift|
681
+ |562 | fountain|
682
+ |563 | fountain pen|
683
+ |564 | four-poster|
684
+ |565 | freight car|
685
+ |566 | French horn, horn|
686
+ |567 | frying pan, frypan, skillet|
687
+ |568 | fur coat|
688
+ |569 | garbage truck, dustcart|
689
+ |570 | gasmask, respirator, gas helmet|
690
+ |571 | gas pump, gasoline pump, petrol pump, island dispenser|
691
+ |572 | goblet|
692
+ |573 | go-kart|
693
+ |574 | golf ball|
694
+ |575 | golfcart, golf cart|
695
+ |576 | gondola|
696
+ |577 | gong, tam-tam|
697
+ |578 | gown|
698
+ |579 | grand piano, grand|
699
+ |580 | greenhouse, nursery, glasshouse|
700
+ |581 | grille, radiator grille|
701
+ |582 | grocery store, grocery, food market, market|
702
+ |583 | guillotine|
703
+ |584 | hair slide|
704
+ |585 | hair spray|
705
+ |586 | half track|
706
+ |587 | hammer|
707
+ |588 | hamper|
708
+ |589 | hand blower, blow dryer, blow drier, hair dryer, hair drier|
709
+ |590 | hand-held computer, hand-held microcomputer|
710
+ |591 | handkerchief, hankie, hanky, hankey|
711
+ |592 | hard disc, hard disk, fixed disk|
712
+ |593 | harmonica, mouth organ, harp, mouth harp|
713
+ |594 | harp|
714
+ |595 | harvester, reaper|
715
+ |596 | hatchet|
716
+ |597 | holster|
717
+ |598 | home theater, home theatre|
718
+ |599 | honeycomb|
719
+ |600 | hook, claw|
720
+ |601 | hoopskirt, crinoline|
721
+ |602 | horizontal bar, high bar|
722
+ |603 | horse cart, horse-cart|
723
+ |604 | hourglass|
724
+ |605 | iPod|
725
+ |606 | iron, smoothing iron|
726
+ |607 | jack-o'-lantern|
727
+ |608 | jean, blue jean, denim|
728
+ |609 | jeep, landrover|
729
+ |610 | jersey, T-shirt, tee shirt|
730
+ |611 | jigsaw puzzle|
731
+ |612 | jinrikisha, ricksha, rickshaw|
732
+ |613 | joystick|
733
+ |614 | kimono|
734
+ |615 | knee pad|
735
+ |616 | knot|
736
+ |617 | lab coat, laboratory coat|
737
+ |618 | ladle|
738
+ |619 | lampshade, lamp shade|
739
+ |620 | laptop, laptop computer|
740
+ |621 | lawn mower, mower|
741
+ |622 | lens cap, lens cover|
742
+ |623 | letter opener, paper knife, paperknife|
743
+ |624 | library|
744
+ |625 | lifeboat|
745
+ |626 | lighter, light, igniter, ignitor|
746
+ |627 | limousine, limo|
747
+ |628 | liner, ocean liner|
748
+ |629 | lipstick, lip rouge|
749
+ |630 | Loafer|
750
+ |631 | lotion|
751
+ |632 | loudspeaker, speaker, speaker unit, loudspeaker system, speaker system|
752
+ |633 | loupe, jeweler's loupe|
753
+ |634 | lumbermill, sawmill|
754
+ |635 | magnetic compass|
755
+ |636 | mailbag, postbag|
756
+ |637 | mailbox, letter box|
757
+ |638 | maillot|
758
+ |639 | maillot, tank suit|
759
+ |640 | manhole cover|
760
+ |641 | maraca|
761
+ |642 | marimba, xylophone|
762
+ |643 | mask|
763
+ |644 | matchstick|
764
+ |645 | maypole|
765
+ |646 | maze, labyrinth|
766
+ |647 | measuring cup|
767
+ |648 | medicine chest, medicine cabinet|
768
+ |649 | megalith, megalithic structure|
769
+ |650 | microphone, mike|
770
+ |651 | microwave, microwave oven|
771
+ |652 | military uniform|
772
+ |653 | milk can|
773
+ |654 | minibus|
774
+ |655 | miniskirt, mini|
775
+ |656 | minivan|
776
+ |657 | missile|
777
+ |658 | mitten|
778
+ |659 | mixing bowl|
779
+ |660 | mobile home, manufactured home|
780
+ |661 | Model T|
781
+ |662 | modem|
782
+ |663 | monastery|
783
+ |664 | monitor|
784
+ |665 | moped|
785
+ |666 | mortar|
786
+ |667 | mortarboard|
787
+ |668 | mosque|
788
+ |669 | mosquito net|
789
+ |670 | motor scooter, scooter|
790
+ |671 | mountain bike, all-terrain bike, off-roader|
791
+ |672 | mountain tent|
792
+ |673 | mouse, computer mouse|
793
+ |674 | mousetrap|
794
+ |675 | moving van|
795
+ |676 | muzzle|
796
+ |677 | nail|
797
+ |678 | neck brace|
798
+ |679 | necklace|
799
+ |680 | nipple|
800
+ |681 | notebook, notebook computer|
801
+ |682 | obelisk|
802
+ |683 | oboe, hautboy, hautbois|
803
+ |684 | ocarina, sweet potato|
804
+ |685 | odometer, hodometer, mileometer, milometer|
805
+ |686 | oil filter|
806
+ |687 | organ, pipe organ|
807
+ |688 | oscilloscope, scope, cathode-ray oscilloscope, CRO|
808
+ |689 | overskirt|
809
+ |690 | oxcart|
810
+ |691 | oxygen mask|
811
+ |692 | packet|
812
+ |693 | paddle, boat paddle|
813
+ |694 | paddlewheel, paddle wheel|
814
+ |695 | padlock|
815
+ |696 | paintbrush|
816
+ |697 | pajama, pyjama, pj's, jammies|
817
+ |698 | palace|
818
+ |699 | panpipe, pandean pipe, syrinx|
819
+ |700 | paper towel|
820
+ |701 | parachute, chute|
821
+ |702 | parallel bars, bars|
822
+ |703 | park bench|
823
+ |704 | parking meter|
824
+ |705 | passenger car, coach, carriage|
825
+ |706 | patio, terrace|
826
+ |707 | pay-phone, pay-station|
827
+ |708 | pedestal, plinth, footstall|
828
+ |709 | pencil box, pencil case|
829
+ |710 | pencil sharpener|
830
+ |711 | perfume, essence|
831
+ |712 | Petri dish|
832
+ |713 | photocopier|
833
+ |714 | pick, plectrum, plectron|
834
+ |715 | pickelhaube|
835
+ |716 | picket fence, paling|
836
+ |717 | pickup, pickup truck|
837
+ |718 | pier|
838
+ |719 | piggy bank, penny bank|
839
+ |720 | pill bottle|
840
+ |721 | pillow|
841
+ |722 | ping-pong ball|
842
+ |723 | pinwheel|
843
+ |724 | pirate, pirate ship|
844
+ |725 | pitcher, ewer|
845
+ |726 | plane, carpenter's plane, woodworking plane|
846
+ |727 | planetarium|
847
+ |728 | plastic bag|
848
+ |729 | plate rack|
849
+ |730 | plow, plough|
850
+ |731 | plunger, plumber's helper|
851
+ |732 | Polaroid camera, Polaroid Land camera|
852
+ |733 | pole|
853
+ |734 | police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria|
854
+ |735 | poncho|
855
+ |736 | pool table, billiard table, snooker table|
856
+ |737 | pop bottle, soda bottle|
857
+ |738 | pot, flowerpot|
858
+ |739 | potter's wheel|
859
+ |740 | power drill|
860
+ |741 | prayer rug, prayer mat|
861
+ |742 | printer|
862
+ |743 | prison, prison house|
863
+ |744 | projectile, missile|
864
+ |745 | projector|
865
+ |746 | puck, hockey puck|
866
+ |747 | punching bag, punch bag, punching ball, punchball|
867
+ |748 | purse|
868
+ |749 | quill, quill pen|
869
+ |750 | quilt, comforter, comfort, puff|
870
+ |751 | racer, race car, racing car|
871
+ |752 | racket, racquet|
872
+ |753 | radiator|
873
+ |754 | radio, wireless|
874
+ |755 | radio telescope, radio reflector|
875
+ |756 | rain barrel|
876
+ |757 | recreational vehicle, RV, R.V.|
877
+ |758 | reel|
878
+ |759 | reflex camera|
879
+ |760 | refrigerator, icebox|
880
+ |761 | remote control, remote|
881
+ |762 | restaurant, eating house, eating place, eatery|
882
+ |763 | revolver, six-gun, six-shooter|
883
+ |764 | rifle|
884
+ |765 | rocking chair, rocker|
885
+ |766 | rotisserie|
886
+ |767 | rubber eraser, rubber, pencil eraser|
887
+ |768 | rugby ball|
888
+ |769 | rule, ruler|
889
+ |770 | running shoe|
890
+ |771 | safe|
891
+ |772 | safety pin|
892
+ |773 | saltshaker, salt shaker|
893
+ |774 | sandal|
894
+ |775 | sarong|
895
+ |776 | sax, saxophone|
896
+ |777 | scabbard|
897
+ |778 | scale, weighing machine|
898
+ |779 | school bus|
899
+ |780 | schooner|
900
+ |781 | scoreboard|
901
+ |782 | screen, CRT screen|
902
+ |783 | screw|
903
+ |784 | screwdriver|
904
+ |785 | seat belt, seatbelt|
905
+ |786 | sewing machine|
906
+ |787 | shield, buckler|
907
+ |788 | shoe shop, shoe-shop, shoe store|
908
+ |789 | shoji|
909
+ |790 | shopping basket|
910
+ |791 | shopping cart|
911
+ |792 | shovel|
912
+ |793 | shower cap|
913
+ |794 | shower curtain|
914
+ |795 | ski|
915
+ |796 | ski mask|
916
+ |797 | sleeping bag|
917
+ |798 | slide rule, slipstick|
918
+ |799 | sliding door|
919
+ |800 | slot, one-armed bandit|
920
+ |801 | snorkel|
921
+ |802 | snowmobile|
922
+ |803 | snowplow, snowplough|
923
+ |804 | soap dispenser|
924
+ |805 | soccer ball|
925
+ |806 | sock|
926
+ |807 | solar dish, solar collector, solar furnace|
927
+ |808 | sombrero|
928
+ |809 | soup bowl|
929
+ |810 | space bar|
930
+ |811 | space heater|
931
+ |812 | space shuttle|
932
+ |813 | spatula|
933
+ |814 | speedboat|
934
+ |815 | spider web, spider's web|
935
+ |816 | spindle|
936
+ |817 | sports car, sport car|
937
+ |818 | spotlight, spot|
938
+ |819 | stage|
939
+ |820 | steam locomotive|
940
+ |821 | steel arch bridge|
941
+ |822 | steel drum|
942
+ |823 | stethoscope|
943
+ |824 | stole|
944
+ |825 | stone wall|
945
+ |826 | stopwatch, stop watch|
946
+ |827 | stove|
947
+ |828 | strainer|
948
+ |829 | streetcar, tram, tramcar, trolley, trolley car|
949
+ |830 | stretcher|
950
+ |831 | studio couch, day bed|
951
+ |832 | stupa, tope|
952
+ |833 | submarine, pigboat, sub, U-boat|
953
+ |834 | suit, suit of clothes|
954
+ |835 | sundial|
955
+ |836 | sunglass|
956
+ |837 | sunglasses, dark glasses, shades|
957
+ |838 | sunscreen, sunblock, sun blocker|
958
+ |839 | suspension bridge|
959
+ |840 | swab, swob, mop|
960
+ |841 | sweatshirt|
961
+ |842 | swimming trunks, bathing trunks|
962
+ |843 | swing|
963
+ |844 | switch, electric switch, electrical switch|
964
+ |845 | syringe|
965
+ |846 | table lamp|
966
+ |847 | tank, army tank, armored combat vehicle, armoured combat vehicle|
967
+ |848 | tape player|
968
+ |849 | teapot|
969
+ |850 | teddy, teddy bear|
970
+ |851 | television, television system|
971
+ |852 | tennis ball|
972
+ |853 | thatch, thatched roof|
973
+ |854 | theater curtain, theatre curtain|
974
+ |855 | thimble|
975
+ |856 | thresher, thrasher, threshing machine|
976
+ |857 | throne|
977
+ |858 | tile roof|
978
+ |859 | toaster|
979
+ |860 | tobacco shop, tobacconist shop, tobacconist|
980
+ |861 | toilet seat|
981
+ |862 | torch|
982
+ |863 | totem pole|
983
+ |864 | tow truck, tow car, wrecker|
984
+ |865 | toyshop|
985
+ |866 | tractor|
986
+ |867 | trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi|
987
+ |868 | tray|
988
+ |869 | trench coat|
989
+ |870 | tricycle, trike, velocipede|
990
+ |871 | trimaran|
991
+ |872 | tripod|
992
+ |873 | triumphal arch|
993
+ |874 | trolleybus, trolley coach, trackless trolley|
994
+ |875 | trombone|
995
+ |876 | tub, vat|
996
+ |877 | turnstile|
997
+ |878 | typewriter keyboard|
998
+ |879 | umbrella|
999
+ |880 | unicycle, monocycle|
1000
+ |881 | upright, upright piano|
1001
+ |882 | vacuum, vacuum cleaner|
1002
+ |883 | vase|
1003
+ |884 | vault|
1004
+ |885 | velvet|
1005
+ |886 | vending machine|
1006
+ |887 | vestment|
1007
+ |888 | viaduct|
1008
+ |889 | violin, fiddle|
1009
+ |890 | volleyball|
1010
+ |891 | waffle iron|
1011
+ |892 | wall clock|
1012
+ |893 | wallet, billfold, notecase, pocketbook|
1013
+ |894 | wardrobe, closet, press|
1014
+ |895 | warplane, military plane|
1015
+ |896 | washbasin, handbasin, washbowl, lavabo, wash-hand basin|
1016
+ |897 | washer, automatic washer, washing machine|
1017
+ |898 | water bottle|
1018
+ |899 | water jug|
1019
+ |900 | water tower|
1020
+ |901 | whiskey jug|
1021
+ |902 | whistle|
1022
+ |903 | wig|
1023
+ |904 | window screen|
1024
+ |905 | window shade|
1025
+ |906 | Windsor tie|
1026
+ |907 | wine bottle|
1027
+ |908 | wing|
1028
+ |909 | wok|
1029
+ |910 | wooden spoon|
1030
+ |911 | wool, woolen, woollen|
1031
+ |912 | worm fence, snake fence, snake-rail fence, Virginia fence|
1032
+ |913 | wreck|
1033
+ |914 | yawl|
1034
+ |915 | yurt|
1035
+ |916 | web site, website, internet site, site|
1036
+ |917 | comic book|
1037
+ |918 | crossword puzzle, crossword|
1038
+ |919 | street sign|
1039
+ |920 | traffic light, traffic signal, stoplight|
1040
+ |921 | book jacket, dust cover, dust jacket, dust wrapper|
1041
+ |922 | menu|
1042
+ |923 | plate|
1043
+ |924 | guacamole|
1044
+ |925 | consomme|
1045
+ |926 | hot pot, hotpot|
1046
+ |927 | trifle|
1047
+ |928 | ice cream, icecream|
1048
+ |929 | ice lolly, lolly, lollipop, popsicle|
1049
+ |930 | French loaf|
1050
+ |931 | bagel, beigel|
1051
+ |932 | pretzel|
1052
+ |933 | cheeseburger|
1053
+ |934 | hotdog, hot dog, red hot|
1054
+ |935 | mashed potato|
1055
+ |936 | head cabbage|
1056
+ |937 | broccoli|
1057
+ |938 | cauliflower|
1058
+ |939 | zucchini, courgette|
1059
+ |940 | spaghetti squash|
1060
+ |941 | acorn squash|
1061
+ |942 | butternut squash|
1062
+ |943 | cucumber, cuke|
1063
+ |944 | artichoke, globe artichoke|
1064
+ |945 | bell pepper|
1065
+ |946 | cardoon|
1066
+ |947 | mushroom|
1067
+ |948 | Granny Smith|
1068
+ |949 | strawberry|
1069
+ |950 | orange|
1070
+ |951 | lemon|
1071
+ |952 | fig|
1072
+ |953 | pineapple, ananas|
1073
+ |954 | banana|
1074
+ |955 | jackfruit, jak, jack|
1075
+ |956 | custard apple|
1076
+ |957 | pomegranate|
1077
+ |958 | hay|
1078
+ |959 | carbonara|
1079
+ |960 | chocolate sauce, chocolate syrup|
1080
+ |961 | dough|
1081
+ |962 | meat loaf, meatloaf|
1082
+ |963 | pizza, pizza pie|
1083
+ |964 | potpie|
1084
+ |965 | burrito|
1085
+ |966 | red wine|
1086
+ |967 | espresso|
1087
+ |968 | cup|
1088
+ |969 | eggnog|
1089
+ |970 | alp|
1090
+ |971 | bubble|
1091
+ |972 | cliff, drop, drop-off|
1092
+ |973 | coral reef|
1093
+ |974 | geyser|
1094
+ |975 | lakeside, lakeshore|
1095
+ |976 | promontory, headland, head, foreland|
1096
+ |977 | sandbar, sand bar|
1097
+ |978 | seashore, coast, seacoast, sea-coast|
1098
+ |979 | valley, vale|
1099
+ |980 | volcano|
1100
+ |981 | ballplayer, baseball player|
1101
+ |982 | groom, bridegroom|
1102
+ |983 | scuba diver|
1103
+ |984 | rapeseed|
1104
+ |985 | daisy|
1105
+ |986 | yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum|
1106
+ |987 | corn|
1107
+ |988 | acorn|
1108
+ |989 | hip, rose hip, rosehip|
1109
+ |990 | buckeye, horse chestnut, conker|
1110
+ |991 | coral fungus|
1111
+ |992 | agaric|
1112
+ |993 | gyromitra|
1113
+ |994 | stinkhorn, carrion fungus|
1114
+ |995 | earthstar|
1115
+ |996 | hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa|
1116
+ |997 | bolete|
1117
+ |998 | ear, spike, capitulum|
1118
+ |999 | toilet tissue, toilet paper, bathroom tissue|
1119
+ </details>
1120
+
1121
+ ### Data Splits
1122
+
1123
+ This dataset is a validation-only set.
1124
+
1125
+ ## Dataset Creation
1126
+
1127
+
1128
+ ### Source Data
1129
+
1130
+ This dataset is sourced from ImageNet, ImageNet-ReaL, ImageNet-V2, ImageNet-A, ImageNet-C, ImageNet-R, ImageNet-Sketch, and ObjectNet.
1131
+
1132
+ ## Citation Information
1133
+
1134
+ ```
1135
+ @article{taesiri2023zoom,
1136
+ title={Zoom is what you need: An empirical study of the power of zoom and spatial biases in image classification},
1137
+ author={Taesiri, Mohammad Reza and Nguyen, Giang and Habchi, Sarra and Bezemer, Cor-Paul and Nguyen, Anh},
1138
+ journal={arXiv preprint arXiv:2304.05538},
1139
+ year={2023}
1140
+ }
1141
+ ```