|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {Ko-LIMA: Korean LIMA Dataset}, |
|
author={Hahn, Taeseung}, |
|
year={2023} |
|
} |
|
""" |
|
_DESCRIPTION = """\ |
|
A high-quality korean dataset for efficient instruction tuning. |
|
""" |
|
_HOMEPAGE = "" |
|
_LICENSE = "" |
|
_URLS = { |
|
"plain": "koLIMA-plain.zip", |
|
"vicuna": "koLIMA-vicuna.zip", |
|
} |
|
|
|
|
|
class KoLima(datasets.GeneratorBasedBuilder): |
|
"""A high-quality korean dataset for efficient instruction tuning.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="plain", version=VERSION, description="Korean LIMA dataset in a plain format"), |
|
datasets.BuilderConfig(name="vicuna", version=VERSION, description="Korean LIMA dataset in Vicuna format"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "plain" |
|
|
|
def _info(self): |
|
if self.config.name == "vicuna": |
|
features = datasets.Features( |
|
{ |
|
'id': datasets.Value(dtype='string', id=None), |
|
'conversations': [ |
|
{ |
|
'from': datasets.Value(dtype='string', id=None), |
|
'value': datasets.Value(dtype='string', id=None) |
|
} |
|
] |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
'conversations': datasets.Sequence(feature=datasets.Value(dtype='string', id=None), length=-1, id=None), |
|
'source': datasets.Value(dtype='string', id=None) |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train.jsonl"), |
|
"split": "train", |
|
}, |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "test.jsonl"), |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
instance = json.loads(row) |
|
if self.config.name == "vicuna": |
|
yield key, instance |
|
else: |
|
yield key, instance |