|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
import itertools |
|
import math |
|
from sympy.combinatorics.permutations import Permutation |
|
|
|
import datasets |
|
import numpy as np |
|
from copy import copy |
|
|
|
|
|
import sys |
|
major, minor = sys.version_info[:2] |
|
version = major + 0.1*minor |
|
OLD_PY_VERSION = 1 if version < 3.8 else 0 |
|
|
|
_CITATION = """\ |
|
@article{liu2022transformers, |
|
title={Transformers learn shortcuts to automata}, |
|
author={Liu, Bingbin and Ash, Jordan T and Goel, Surbhi and Krishnamurthy, Akshay and Zhang, Cyril}, |
|
journal={arXiv preprint arXiv:2210.10749}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Non-autoregressive automaton simulation datasets. |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "" |
|
|
|
_URLS = {} |
|
|
|
class AutomatonDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
VERSION = datasets.Version("0.0.0") |
|
BUILDER_CONFIGS = [] |
|
|
|
def __init__(self, config={}, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
""" |
|
Set default configs |
|
""" |
|
if 'name' not in config: |
|
config['name'] = 'parity' |
|
|
|
|
|
if 'size' not in config: |
|
config['size'] = -1 |
|
|
|
self.data_config = config |
|
self.automaton = dataset_map[config['name']](config) |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"input_ids": datasets.Sequence(datasets.Value("int32"), length=-1), |
|
"label_ids": datasets.Sequence(datasets.Value("int32"), length=-1) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, split): |
|
for i in itertools.count(start=0): |
|
if i == self.data_config['size']: |
|
break |
|
x, y = self.automaton.sample() |
|
yield i, { |
|
"input_ids": x, |
|
"label_ids": y |
|
} |
|
|
|
class Automaton: |
|
""" |
|
This is a parent class that must be inherited. |
|
""" |
|
def __init__(self, data_config): |
|
self.data_config = data_config |
|
|
|
if 'seed' in self.data_config: |
|
self.np_rng = np.random.default_rng(self.data_config['seed']) |
|
else: |
|
self.np_rng = np.random.default_rng() |
|
|
|
if 'length' not in data_config: |
|
data_config['length'] = 20 |
|
self.T = self.data_config['length'] |
|
|
|
if 'random_length' not in data_config: |
|
data_config['random_length'] = 0 |
|
self.random_length = data_config['random_length'] |
|
|
|
self.__info__ = \ |
|
" - T (int): sequence length.\n" \ |
|
+ " - random_length (int in {0, 1}): whether to randomly sample a length per sample.\n" |
|
|
|
def f(self, x): |
|
""" |
|
Get output sequence given an input seq |
|
""" |
|
raise NotImplementedError() |
|
|
|
def sample(self): |
|
raise NotImplementedError() |
|
|
|
def sample_length(self): |
|
if self.random_length: |
|
return self.np_rng.choice(range(1, self.T+1)) |
|
return self.T |
|
|
|
def help(self): |
|
print(self.__info__) |
|
|
|
class BinaryInputAutomaton(Automaton): |
|
""" |
|
This is a parent class that must be inherited. |
|
Subclasses: ParityAutomaton, GridworldAutomaton, ABABAutomaton |
|
|
|
TODO: sample sequences with a given number of 1s |
|
""" |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
if 'prob1' not in data_config: |
|
data_config['prob1'] = 0.5 |
|
self.prob1 = data_config['prob1'] |
|
self.__info__ = " - prob1 (float in [0,1]): probability of token 1\n" \ |
|
+ self.__info__ |
|
|
|
def f(self, x): |
|
raise NotImplementedError() |
|
|
|
def sample(self): |
|
T = self.sample_length() |
|
x = self.np_rng.binomial(1, self.prob1, size=T) |
|
return x, self.f(x) |
|
|
|
class ParityAutomaton(BinaryInputAutomaton): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
self.name = 'parity' |
|
|
|
self.__info__ = "Parity machine with 2 states: \n" \ |
|
+ "- Inputs: binary strings\n" \ |
|
+ "- Labels: binary strings of the partial parity\n" \ |
|
+ "- Config: \n" \ |
|
+ self.__info__ |
|
|
|
def f(self, x): |
|
return np.cumsum(x) % 2 |
|
|
|
class GridworldAutomaton(BinaryInputAutomaton): |
|
""" |
|
Note: gridworld currently doesn't include a no-op. |
|
""" |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
if 'n' not in data_config: |
|
data_config['n'] = 9 |
|
""" |
|
NOTE: n is the number of states, and S is the id (0-indexing) of the rightmost state. |
|
i.e. the states are 0,1,2,...,S, where S=n-1. |
|
""" |
|
self.n = data_config['n'] |
|
self.S = self.n - 1 |
|
|
|
if 'label_type' not in data_config: |
|
|
|
data_config['label_type'] = 'state' |
|
self.label_type = data_config['label_type'] |
|
|
|
self.name = f'Grid{self.n}' |
|
|
|
self.__info__ = f"1d Gridworld of n={self.n} states:\n" \ |
|
+ "- Inputs: binary strings, i.e. move left(0) or right(1)\n" \ |
|
+ "- Labels: depending on 'label_type'. \n" \ |
|
+ "- Config: \n" \ |
|
+ " - n (int): number of states; i.e. the states are 0,1,2,...,n-1.\n" \ |
|
+ " - label_type (str): choosing from the following options:\n" \ |
|
+ " - 'state' (default): the state id, i.e. 0 to n-1.\n" \ |
|
+ " - 'parity': the state id mod 2.\n" \ |
|
+ " - 'boundary': whether the current state is in {0, n-1} or not.\n" \ |
|
+ self.__info__ |
|
|
|
|
|
def f(self, x): |
|
x = copy(x) |
|
x[x == 0] = -1 |
|
if OLD_PY_VERSION: |
|
|
|
x = np.concatenate([np.array([0]), x]).astype(np.int64) |
|
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0))) |
|
states = states[1:] |
|
else: |
|
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0), initial=0)) |
|
states = states[1:] |
|
return np.array(states).astype(np.int64) |
|
|
|
|
|
class ABABAutomaton(BinaryInputAutomaton): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
self.name = 'abab' |
|
|
|
if 'prob_abab_pos_sample' not in data_config: |
|
|
|
data_config['prob_abab_pos_sample'] = 0.25 |
|
if 'label_type' not in data_config: |
|
|
|
data_config['label_type'] = 'state' |
|
|
|
self.prob_abab_pos_sample = data_config['prob_abab_pos_sample'] |
|
self.label_type = data_config['label_type'] |
|
|
|
self.transition = np.array( |
|
[[4, 1], |
|
[2, 4], |
|
[4, 3], |
|
[0, 4], |
|
[4, 4], |
|
]) |
|
|
|
self.__info__ = "abab: an automaton with 4 states + 1 absorbing state:\n" \ |
|
+ "- Inputs: binary strings\n" \ |
|
+ "- Labels: depending on 'label_type'.\n" \ |
|
+ "- Config:\n" \ |
|
+ " - prob_abab_pos_sample (float in [0,1]): probability of having a 'positive' sequence, i.e. 01010101010...\n" \ |
|
+ " - label_type (str): choosing from the following options:\n" \ |
|
+ " - 'state' (default): the state id.\n" \ |
|
+ " - 'boundary': whether the state is in state 3 (the states are 0,1,2,3).\n" \ |
|
+ self.__info__ |
|
|
|
def f(self, x): |
|
labels = [] |
|
curr_state = 3 |
|
for each in x: |
|
curr_state = self.transition[curr_state, each] |
|
labels += curr_state, |
|
labels = np.array(labels).astype(np.int64) |
|
if self.label_type == 'boundary': |
|
labels = (labels == 3).astype(np.int64) |
|
return labels |
|
|
|
def sample(self): |
|
pos_sample = self.np_rng.random() < self.prob_abab_pos_sample |
|
if pos_sample: |
|
T = self.sample_length() |
|
x = [0,1,0,1] * (T//4) |
|
x += [0,1,0,1][:(T%4)] |
|
x = np.array(x) |
|
return x, self.f(x) |
|
else: |
|
return super().sample() |
|
|
|
|
|
class AdderAutomaton(BinaryInputAutomaton): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
self.name = 'addition' |
|
|
|
if 'n_addends' not in data_config: |
|
data_config['n_addends'] = 2 |
|
self.n_addends = data_config['n_addends'] |
|
self.addend_scales = np.array([2**i for i in range(self.n_addends)]).reshape(-1, 1) |
|
|
|
if 'label_type' not in data_config: |
|
data_config['label_type'] = 'state' |
|
self.label_type = data_config['label_type'] |
|
|
|
self.__info__ = f'Adder of n={self.n_addends} binary numbers:\n' \ |
|
+f"- Inputs: {self.n_addends} binary numbers, encoded as the int for the {self.n_addends}-bit binary number.\n" \ |
|
+ "- Labels: depending on the label_type.\n" \ |
|
+ "- Config:\n" \ |
|
+ " - n_addends (int): number of binary numbers to be added; default as 2.\n" \ |
|
+ " - label_type (str): choosing from the following options: \n" \ |
|
+f" - 'state': the state id, i.e. the int for the base-{self.n_addends} int corresponding to the number (carry, digit). \n" \ |
|
+f" - 'digit': the current output base-{self.n_addends} digit, without the carry. \n" \ |
|
+ " - 'position': the current carry bit.\n" \ |
|
+ self.__info__ |
|
|
|
|
|
def f(self, x): |
|
outputs, carries = [], [] |
|
carry = 0 |
|
T = x.shape[-1] |
|
for i in range(T): |
|
curr_sum = x[:, i].sum() + carry |
|
|
|
output, carry = curr_sum % self.n_addends, curr_sum // self.n_addends |
|
outputs += output, |
|
carries += carry, |
|
outputs = np.array(outputs).astype(np.int64) |
|
carries = np.array(carries).astype(np.int64) |
|
|
|
if self.label_type == 'state': |
|
return outputs + self.n_addends*carries |
|
elif self.label_type == 'digit': |
|
return outputs |
|
elif self.label_type == 'carry': |
|
return carries |
|
|
|
def sample_addend(self, T): |
|
a = self.np_rng.binomial(1, self.prob1, size=T) |
|
return a |
|
|
|
def sample(self): |
|
T = self.sample_length() |
|
x = np.stack([self.sample_addend(T) for _ in range(self.n_addends)]) |
|
|
|
pad = np.zeros((self.n_addends, 1)) |
|
x = np.concatenate([x, pad], 1) |
|
|
|
x_encode = (self.addend_scales * x).sum(0) |
|
return x_encode, self.f(x) |
|
|
|
|
|
class FlipFlopAutomaton(Automaton): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
self.name = 'flipflop' |
|
|
|
if 'n' not in data_config: |
|
data_config['n'] = 2 |
|
|
|
self.n_states = data_config['n'] |
|
self.n_actions = self.n_states + 1 |
|
self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T |
|
|
|
self.__info__ = f"Flipflop with n={self.n_states} states:\n" \ |
|
+f"- Inputs: tokens are either 0 (read) or 1:{self.n} (write).\n" \ |
|
+ "- Labels: the state id.\n" \ |
|
+ "- Config:\n" \ |
|
+ " - n (int): number of write states; i.e. the states are 1,2,...,n, plus a default start state 0.\n" \ |
|
+ self.__info__ |
|
|
|
def f(self, x): |
|
state, states = 0, [] |
|
for action_id in x: |
|
state = self.transition[state, action_id] |
|
states += state, |
|
return np.array(states) |
|
|
|
def sample(self): |
|
T = self.sample_length() |
|
rand = self.np_rng.uniform(size=T) |
|
nonzero_pos = (rand < 0.5).astype(np.int64) |
|
writes = self.np_rng.choice(range(1, self.n_states+1), size=T) |
|
x = writes * nonzero_pos |
|
return x, self.f(x) |
|
|
|
|
|
|
|
|
|
class PermutationAutomaton(Automaton): |
|
""" |
|
This is a parent class that must be inherited. |
|
Subclasses: SymmetricAutomaton, AlternatingAutomaton |
|
""" |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
if 'n' not in data_config: |
|
data_config['n'] = 5 |
|
if 'label_type' not in data_config: |
|
|
|
data_config['label_type'] = 'state' |
|
|
|
self.n = data_config['n'] |
|
self.label_type = data_config['label_type'] |
|
|
|
self.__info__ = \ |
|
" - label_type (str): choosing from the following options:\n" \ |
|
+ " - 'state' (default): the state id.\n" \ |
|
+ " - 'first_chair': the element in the first position of the permutation.\n" \ |
|
+ " e.g. if the current permutation is [2,1,4,3], then 'first_chair' is 2.\n" \ |
|
+ self.__info__ |
|
|
|
def get_state_label(self, state): |
|
enc = self.state_encode(state) |
|
return self.state_label_map[enc] |
|
|
|
def f(self, x): |
|
curr_state = np.arange(self.n) |
|
labels = [] |
|
for action_id in x: |
|
curr_state = self.actions[action_id].dot(curr_state) |
|
|
|
if self.label_type == 'state': |
|
labels += self.get_state_label(curr_state), |
|
elif self.label_type == 'first_chair': |
|
labels += curr_state[0], |
|
|
|
return np.array(labels) |
|
|
|
def sample(self): |
|
T = self.sample_length() |
|
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T) |
|
|
|
return x, self.f(x) |
|
|
|
|
|
class SymmetricAutomaton(PermutationAutomaton): |
|
""" |
|
TODO: add options for labels as functions of states |
|
- parity (whether a state is even): this may need packages (e.g. Permutation from sympy) |
|
- position / toggle: for S3 ~ D6, we can add labels for substructures as in Dihedral groups. |
|
""" |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
self.name = f'S{self.n}' |
|
|
|
""" |
|
Get states |
|
""" |
|
self.state_encode = lambda state: ''.join([str(int(each)) for each in state]) |
|
self.state_label_map = {} |
|
for si, state in enumerate(itertools.permutations(range(self.n))): |
|
enc = self.state_encode(state) |
|
self.state_label_map[enc] = si |
|
|
|
""" |
|
Get actions (3 defaults: id, shift-by-1, swap-first-two) |
|
""" |
|
if 'n_actions' not in data_config: |
|
data_config['n_actions'] = 3 |
|
self.n_actions = data_config['n_actions'] |
|
self.actions = {0: np.eye(self.n)} |
|
|
|
shift_idx = list(range(1, self.n)) + [0] |
|
self.actions[1] = np.eye(self.n)[shift_idx] |
|
|
|
shift_idx = [1, 0] + list(range(2, self.n)) |
|
self.actions[2] = np.eye(self.n)[shift_idx] |
|
|
|
if self.n_actions > 3: |
|
|
|
self.all_permutations = list(itertools.permutations(range(self.n)))[1:] |
|
cnt = 2 |
|
for each in self.all_permutations: |
|
action = np.eye(self.n)[list(each)] |
|
if np.linalg.norm(action - self.actions[0]) == 0: |
|
continue |
|
elif np.linalg.norm(action - self.actions[1]) == 0: |
|
continue |
|
self.actions[cnt] = action |
|
cnt += 1 |
|
if cnt == self.n_actions: break |
|
|
|
self.__info__ = f"Symmetric group on n={self.n} objects:\n" \ |
|
+f"- Inputs: tokens are either 0 (no-op), or 1:{self.n_actions} (corresponding to {self.n_actions} permutations).\n" \ |
|
+ "- Labels: depending on 'label_type'.\n" \ |
|
+ "- Config:\n" \ |
|
+ " - n (int): number of objects, i.e. there are n! states.\n" \ |
|
+ " - n_actions (int): number of permutations to include in the generator set;\n" \ |
|
+ " the ordering is given by itertools.permutations, and the first 'n_actions' permutations will be included.\n" \ |
|
+ self.__info__ |
|
|
|
|
|
class AlternatingAutomaton(PermutationAutomaton): |
|
""" |
|
TODO: other choices of generators (currently using (12x))? |
|
""" |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
self.name = f'A{self.n}' |
|
|
|
""" |
|
Get states |
|
""" |
|
self.state_label_map = {} |
|
self.state_encode = lambda state: ''.join([str(int(each)) for each in state]) |
|
cnt = 0 |
|
for si, state in enumerate(itertools.permutations(range(self.n))): |
|
if not Permutation(state).is_even: |
|
continue |
|
enc = self.state_encode(state) |
|
self.state_label_map[enc] = cnt |
|
cnt += 1 |
|
|
|
""" |
|
Get actions: all 3 cycles of the form (12x) |
|
""" |
|
self.actions = {0: np.eye(self.n)} |
|
for idx in range(2, self.n): |
|
|
|
shift_idx = list(range(self.n)) |
|
shift_idx[0],shift_idx[1], shift_idx[idx] = shift_idx[1], shift_idx[idx], shift_idx[0] |
|
self.actions[idx-1] = np.eye(self.n)[shift_idx] |
|
self.n_actions = len(self.actions) |
|
|
|
self.__info__ = f"Alternating group on n={self.n} objects:\n" \ |
|
+f"- Inputs: tokens from 0 to n-3, corresponding to all 3-cycles of the form (12x).\n" \ |
|
+ "- Labels: depending on 'label_type'.\n" \ |
|
+ "- Config:\n" \ |
|
+ " - n (int): number of objects, i.e. there are n!/2 states.\n" \ |
|
+ self.__info__ |
|
|
|
|
|
|
|
|
|
class CyclicAutomaton(Automaton): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
if 'n' not in data_config: |
|
data_config['n'] = 5 |
|
self.n = data_config['n'] |
|
|
|
""" |
|
Get actions: shift by i positions, for i = 0 to n_actions-1 |
|
""" |
|
if 'n_actions' not in data_config: |
|
data_config['n_actions'] = 2 |
|
self.n_actions = data_config['n_actions'] |
|
shift_idx = list(range(1, self.n)) + [0] |
|
self.actions = {} |
|
for i in range(self.n_actions): |
|
shift_idx = list(range(i, self.n)) + list(range(0, i)) |
|
self.actions[i] = np.eye(self.n)[shift_idx] |
|
|
|
self.__info__ = 'Cyclic group of n={self.n} states:\n' \ |
|
+f"- Inputs: tokens from 0 to n_actions-1\n" \ |
|
+ "- Labels: the current state.\n" \ |
|
+ "- Config:\n" \ |
|
+ " - n (int): number of states.\n" \ |
|
+ " - n_actions (int): number of actions/generators, which are 0, 1, ..., n_actions-1.\n" \ |
|
+ self.__info__ |
|
|
|
def f(self, x): |
|
return np.cumsum(x) % self.n |
|
|
|
def sample(self): |
|
T = self.sample_length() |
|
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T) |
|
|
|
return x, self.f(x) |
|
|
|
|
|
class DihedralAutomaton(Automaton): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
if 'n' not in data_config: |
|
data_config['n'] = 4 |
|
self.n = data_config['n'] |
|
|
|
if 'label_type' not in data_config: |
|
|
|
data_config['label_type'] = 'state' |
|
self.label_type = data_config['label_type'] |
|
|
|
""" |
|
2 actions: toggle, or shift by 1 position (direction determined by the toggle). |
|
""" |
|
self.n_actions = 2 |
|
self.actions = {} |
|
|
|
shift_idx = list(range(1, self.n)) + [0] |
|
self.actions[0] = np.eye(self.n)[shift_idx] |
|
|
|
shift_idx = [self.n-1] + list(range(self.n-1)) |
|
self.actions[1] = np.eye(self.n)[shift_idx] |
|
|
|
self.__info__ = 'Dihedral group of order 2n, where n={self.n}:\n' \ |
|
+f"- Inputs: binary tokens:\n" \ |
|
+ " 0 for toggle, i.e. change direction in the n-cycle;\n" \ |
|
+ " 1 for drive, i.e. move forward 1 step on the n-cycle.\n" \ |
|
+ "- Labels: depending on the label_type.\n" \ |
|
+ "- Config:\n" \ |
|
+ " - n (int): size of the 'cycle'; i.e. there are 2n states considering also the toggle bit.\n" \ |
|
+ " - label_type (str): choosing from the following options: \n" \ |
|
+ " - 'state': the state id, i.e. considering both toggle and position. \n" \ |
|
+ " - 'toggle': the toggle bit (in {0, 1}). \n" \ |
|
+ " - 'position': the position on the n-cycle (in [n]).\n" \ |
|
+ self.__info__ |
|
|
|
def f_sequential(self, x): |
|
|
|
position = np.arange(self.n) |
|
states = [] |
|
toggle = 0 |
|
for action in x: |
|
if action == 0: |
|
|
|
toggle = 1 - toggle |
|
else: |
|
|
|
position = self.actions[toggle].dot(position) |
|
states += (toggle, position[0]), |
|
return states |
|
|
|
def f(self, x): |
|
|
|
|
|
|
|
toggles = (x == 0).astype(np.int64) |
|
toggle_status = np.cumsum(toggles) % 2 |
|
|
|
|
|
directions = (-1)**toggle_status |
|
directed_drives = (x != 0).astype(np.int64) * directions |
|
positions = np.cumsum(directed_drives) % self.n |
|
|
|
if self.label_type == 'state': |
|
labels = [self.get_state_label(each) for each in zip(toggle_status, positions)] |
|
return np.array(labels).astype(np.int64) |
|
elif self.label_type == 'toggle': |
|
return toggle_status |
|
elif self.label_type == 'positions': |
|
return positions |
|
|
|
def get_state_label(self, state): |
|
""" |
|
toggle in {0,1} |
|
position in [k] |
|
""" |
|
toggle, position = state |
|
label = self.n*toggle + position |
|
return label |
|
|
|
def sample(self): |
|
T = self.sample_length() |
|
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T) |
|
|
|
return x, self.f(x) |
|
|
|
|
|
|
|
class QuaternionAutomaton(Automaton): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
self.vocab_size = 8 |
|
self.n_actions = 4 |
|
self.transition_pos = [ |
|
0, 1, 2, 3, |
|
1, 4, 3, 6, |
|
2, 7, 4, 1, |
|
3, 2, 5, 4,] |
|
self.transition_neg = [(each+4)%8 for each in self.transition_pos] |
|
self.transition = np.array(self.transition_pos + self.transition_neg) |
|
self.transition = self.transition.reshape(-1, 4) |
|
|
|
self.__info__ = "Quaternion group:\n" \ |
|
+ "- Inputs: tokens in {0,1,2,3}, corresponding to 1,i,j,k.\n" \ |
|
+ "- Labels: the state id; 8 states in total: 2 signs ({-1,1}) x 4 values ({1,i,j,k}).\n" \ |
|
+ "- Config:\n" \ |
|
+ self.__info__ |
|
|
|
def f(self, x): |
|
curr_state = 0 |
|
states = [] |
|
for action_id in x: |
|
curr_state = self.transition[curr_state, action_id] |
|
states += curr_state, |
|
return np.array(states).astype(np.int64) |
|
|
|
def sample(self): |
|
T = self.sample_length() |
|
x = self.np_rng.choice(range(self.n_actions), size=T) |
|
return x, self.f(x) |
|
|
|
|
|
class PermutationResetAutomaton(Automaton): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
self.n = data_config['n'] |
|
self.generators = data_config['generators'] |
|
self.perm_probs = data_config['perm_probs'] |
|
if type(self.generators[0]) is str: |
|
self.generators = [ np.array(list(map(int, list(g)))) for g in self.generators ] |
|
|
|
self.vocab_size = math.factorial(self.n) |
|
self.n_generators = len(self.generators) |
|
self.n_actions = self.vocab_size + self.n_generators |
|
|
|
self.init_state = np.arange(self.n) |
|
|
|
|
|
self.int2perm = list(map(np.array, itertools.permutations(range(self.n)))) |
|
self.perm2int = {tuple(p):i for i,p in enumerate(self.int2perm)} |
|
|
|
|
|
T = self.sample_length() |
|
self.lags = [1] |
|
while self.lags[-1]*2 < T: |
|
self.lags.append(self.lags[-1]*2) |
|
|
|
def f(self, x): |
|
curr_state = self.init_state |
|
states = [] |
|
for action_id in x: |
|
if action_id >= self.vocab_size: |
|
curr_state = self.generators[action_id - self.vocab_size][curr_state] |
|
else: |
|
curr_state = self.int2perm[action_id] |
|
states.append(self.perm2int[tuple(curr_state)]) |
|
return np.array(states, dtype=np.int64) |
|
|
|
def sample(self): |
|
T = self.sample_length() |
|
x = self.np_rng.choice(range(self.n_generators), p=self.perm_probs, size=T) + self.vocab_size |
|
|
|
i = 0 |
|
while i < T: |
|
x[i] = self.np_rng.choice(range(self.vocab_size)) |
|
i += self.np_rng.choice(self.lags) |
|
|
|
return x, self.f(x) |
|
|
|
|
|
|
|
dataset_map = { |
|
'abab': ABABAutomaton, |
|
'add': AdderAutomaton, |
|
'alternating': AlternatingAutomaton, |
|
'cyclic': CyclicAutomaton, |
|
'dihedral': DihedralAutomaton, |
|
'flipflop': FlipFlopAutomaton, |
|
'gridworld': GridworldAutomaton, |
|
'parity': ParityAutomaton, |
|
'quaternion': QuaternionAutomaton, |
|
'symmetric': SymmetricAutomaton, |
|
'permutation_reset': PermutationResetAutomaton |
|
|
|
} |
|
|