geoalgo commited on
Commit
fa6c9cb
·
verified ·
1 Parent(s): 5531e90

Upload blackbox yahpo-iaml_super

Browse files
yahpo-iaml_super/best_params_resnet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"d": 512, "d_hidden_factor": 3.9989508868016372, "hidden_dropout": 0.04468688309244354, "lr": 0.00011999115120321, "mixup": true, "n_layers": 6, "opt_tfms_auc": false, "opt_tfms_f1": false, "opt_tfms_glmnet.alpha": false, "opt_tfms_glmnet.s": true, "opt_tfms_ias": true, "opt_tfms_logloss": false, "opt_tfms_mec": false, "opt_tfms_mmce": true, "opt_tfms_rammodel": false, "opt_tfms_rampredict": false, "opt_tfms_ramtrain": false, "opt_tfms_ranger.min.node.size": true, "opt_tfms_ranger.mtry.ratio": false, "opt_tfms_ranger.num.random.splits": false, "opt_tfms_ranger.num.trees": true, "opt_tfms_ranger.sample.fraction": true, "opt_tfms_rpart.cp": false, "opt_tfms_rpart.maxdepth": false, "opt_tfms_rpart.minbucket": true, "opt_tfms_rpart.minsplit": false, "opt_tfms_timepredict": true, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "opt_tfms_xgboost.alpha": false, "opt_tfms_xgboost.colsample_bylevel": false, "opt_tfms_xgboost.colsample_bytree": false, "opt_tfms_xgboost.eta": true, "opt_tfms_xgboost.gamma": false, "opt_tfms_xgboost.lambda": true, "opt_tfms_xgboost.max_depth": true, "opt_tfms_xgboost.min_child_weight": true, "opt_tfms_xgboost.nrounds": true, "opt_tfms_xgboost.rate_drop": true, "opt_tfms_xgboost.skip_drop": false, "opt_tfms_xgboost.subsample": false, "tfms_glmnet.s": "tlog", "tfms_ias": "tnexp", "tfms_mmce": "tlog", "tfms_ranger.min.node.size": "tnexp", "tfms_ranger.num.trees": "tlog", "tfms_ranger.sample.fraction": "tnexp", "tfms_rpart.minbucket": "tlog", "tfms_timepredict": "tnexp", "tfms_xgboost.eta": "tlog", "tfms_xgboost.lambda": "tlog", "tfms_xgboost.max_depth": "tlog", "tfms_xgboost.min_child_weight": "tnexp", "tfms_xgboost.nrounds": "tlog", "tfms_xgboost.rate_drop": "tlog", "use_residual_dropout": false}
yahpo-iaml_super/config_space.json ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "hyperparameters": [
3
+ {
4
+ "name": "learner",
5
+ "type": "categorical",
6
+ "choices": [
7
+ "ranger",
8
+ "glmnet",
9
+ "xgboost",
10
+ "rpart"
11
+ ],
12
+ "default": "ranger",
13
+ "probabilities": null
14
+ },
15
+ {
16
+ "name": "task_id",
17
+ "type": "categorical",
18
+ "choices": [
19
+ "40981",
20
+ "41146",
21
+ "1489",
22
+ "1067"
23
+ ],
24
+ "default": "40981",
25
+ "probabilities": null
26
+ },
27
+ {
28
+ "name": "trainsize",
29
+ "type": "uniform_float",
30
+ "log": false,
31
+ "lower": 0.03,
32
+ "upper": 1.0,
33
+ "default": 0.525
34
+ },
35
+ {
36
+ "name": "glmnet.alpha",
37
+ "type": "uniform_float",
38
+ "log": false,
39
+ "lower": 0.0,
40
+ "upper": 1.0,
41
+ "default": 0.5
42
+ },
43
+ {
44
+ "name": "glmnet.s",
45
+ "type": "uniform_float",
46
+ "log": true,
47
+ "lower": 0.00010000000000000009,
48
+ "upper": 999.9999999999998,
49
+ "default": 0.316227766
50
+ },
51
+ {
52
+ "name": "ranger.min.node.size",
53
+ "type": "uniform_int",
54
+ "log": false,
55
+ "lower": 1,
56
+ "upper": 100,
57
+ "default": 50
58
+ },
59
+ {
60
+ "name": "ranger.mtry.ratio",
61
+ "type": "uniform_float",
62
+ "log": false,
63
+ "lower": 0.0,
64
+ "upper": 1.0,
65
+ "default": 0.5
66
+ },
67
+ {
68
+ "name": "ranger.num.trees",
69
+ "type": "uniform_int",
70
+ "log": false,
71
+ "lower": 1,
72
+ "upper": 2000,
73
+ "default": 1000
74
+ },
75
+ {
76
+ "name": "ranger.replace",
77
+ "type": "categorical",
78
+ "choices": [
79
+ "TRUE",
80
+ "FALSE"
81
+ ],
82
+ "default": "TRUE",
83
+ "probabilities": null
84
+ },
85
+ {
86
+ "name": "ranger.respect.unordered.factors",
87
+ "type": "categorical",
88
+ "choices": [
89
+ "ignore",
90
+ "order",
91
+ "partition"
92
+ ],
93
+ "default": "ignore",
94
+ "probabilities": null
95
+ },
96
+ {
97
+ "name": "ranger.sample.fraction",
98
+ "type": "uniform_float",
99
+ "log": false,
100
+ "lower": 0.1,
101
+ "upper": 1.0,
102
+ "default": 0.55
103
+ },
104
+ {
105
+ "name": "ranger.splitrule",
106
+ "type": "categorical",
107
+ "choices": [
108
+ "gini",
109
+ "extratrees"
110
+ ],
111
+ "default": "gini",
112
+ "probabilities": null
113
+ },
114
+ {
115
+ "name": "rpart.cp",
116
+ "type": "uniform_float",
117
+ "log": true,
118
+ "lower": 0.00010000000000000009,
119
+ "upper": 1.0,
120
+ "default": 0.01
121
+ },
122
+ {
123
+ "name": "rpart.maxdepth",
124
+ "type": "uniform_int",
125
+ "log": false,
126
+ "lower": 1,
127
+ "upper": 30,
128
+ "default": 16
129
+ },
130
+ {
131
+ "name": "rpart.minbucket",
132
+ "type": "uniform_int",
133
+ "log": false,
134
+ "lower": 1,
135
+ "upper": 100,
136
+ "default": 50
137
+ },
138
+ {
139
+ "name": "rpart.minsplit",
140
+ "type": "uniform_int",
141
+ "log": false,
142
+ "lower": 1,
143
+ "upper": 100,
144
+ "default": 50
145
+ },
146
+ {
147
+ "name": "xgboost.alpha",
148
+ "type": "uniform_float",
149
+ "log": true,
150
+ "lower": 0.00010000000000000009,
151
+ "upper": 999.9999999999998,
152
+ "default": 0.316227766
153
+ },
154
+ {
155
+ "name": "xgboost.booster",
156
+ "type": "categorical",
157
+ "choices": [
158
+ "gblinear",
159
+ "gbtree",
160
+ "dart"
161
+ ],
162
+ "default": "gblinear",
163
+ "probabilities": null
164
+ },
165
+ {
166
+ "name": "xgboost.lambda",
167
+ "type": "uniform_float",
168
+ "log": true,
169
+ "lower": 0.00010000000000000009,
170
+ "upper": 999.9999999999998,
171
+ "default": 0.316227766
172
+ },
173
+ {
174
+ "name": "xgboost.nrounds",
175
+ "type": "uniform_int",
176
+ "log": true,
177
+ "lower": 3,
178
+ "upper": 2000,
179
+ "default": 77
180
+ },
181
+ {
182
+ "name": "xgboost.subsample",
183
+ "type": "uniform_float",
184
+ "log": false,
185
+ "lower": 0.1,
186
+ "upper": 1.0,
187
+ "default": 0.55
188
+ },
189
+ {
190
+ "name": "ranger.num.random.splits",
191
+ "type": "uniform_int",
192
+ "log": false,
193
+ "lower": 1,
194
+ "upper": 100,
195
+ "default": 50
196
+ },
197
+ {
198
+ "name": "xgboost.colsample_bylevel",
199
+ "type": "uniform_float",
200
+ "log": false,
201
+ "lower": 0.01,
202
+ "upper": 1.0,
203
+ "default": 0.505
204
+ },
205
+ {
206
+ "name": "xgboost.colsample_bytree",
207
+ "type": "uniform_float",
208
+ "log": false,
209
+ "lower": 0.01,
210
+ "upper": 1.0,
211
+ "default": 0.505
212
+ },
213
+ {
214
+ "name": "xgboost.eta",
215
+ "type": "uniform_float",
216
+ "log": true,
217
+ "lower": 0.00010000000000000009,
218
+ "upper": 1.0,
219
+ "default": 0.01
220
+ },
221
+ {
222
+ "name": "xgboost.gamma",
223
+ "type": "uniform_float",
224
+ "log": true,
225
+ "lower": 0.00010000000000000009,
226
+ "upper": 6.999999999999999,
227
+ "default": 0.0264575131
228
+ },
229
+ {
230
+ "name": "xgboost.max_depth",
231
+ "type": "uniform_int",
232
+ "log": false,
233
+ "lower": 1,
234
+ "upper": 15,
235
+ "default": 8
236
+ },
237
+ {
238
+ "name": "xgboost.min_child_weight",
239
+ "type": "uniform_float",
240
+ "log": true,
241
+ "lower": 2.718281828459045,
242
+ "upper": 149.99999999999997,
243
+ "default": 20.1926292064
244
+ },
245
+ {
246
+ "name": "xgboost.rate_drop",
247
+ "type": "uniform_float",
248
+ "log": false,
249
+ "lower": 0.0,
250
+ "upper": 1.0,
251
+ "default": 0.5
252
+ },
253
+ {
254
+ "name": "xgboost.skip_drop",
255
+ "type": "uniform_float",
256
+ "log": false,
257
+ "lower": 0.0,
258
+ "upper": 1.0,
259
+ "default": 0.5
260
+ }
261
+ ],
262
+ "conditions": [
263
+ {
264
+ "child": "glmnet.alpha",
265
+ "parent": "learner",
266
+ "type": "EQ",
267
+ "value": "glmnet"
268
+ },
269
+ {
270
+ "child": "glmnet.s",
271
+ "parent": "learner",
272
+ "type": "EQ",
273
+ "value": "glmnet"
274
+ },
275
+ {
276
+ "child": "ranger.min.node.size",
277
+ "parent": "learner",
278
+ "type": "EQ",
279
+ "value": "ranger"
280
+ },
281
+ {
282
+ "child": "ranger.mtry.ratio",
283
+ "parent": "learner",
284
+ "type": "EQ",
285
+ "value": "ranger"
286
+ },
287
+ {
288
+ "child": "ranger.num.trees",
289
+ "parent": "learner",
290
+ "type": "EQ",
291
+ "value": "ranger"
292
+ },
293
+ {
294
+ "child": "ranger.replace",
295
+ "parent": "learner",
296
+ "type": "EQ",
297
+ "value": "ranger"
298
+ },
299
+ {
300
+ "child": "ranger.respect.unordered.factors",
301
+ "parent": "learner",
302
+ "type": "EQ",
303
+ "value": "ranger"
304
+ },
305
+ {
306
+ "child": "ranger.sample.fraction",
307
+ "parent": "learner",
308
+ "type": "EQ",
309
+ "value": "ranger"
310
+ },
311
+ {
312
+ "child": "ranger.splitrule",
313
+ "parent": "learner",
314
+ "type": "EQ",
315
+ "value": "ranger"
316
+ },
317
+ {
318
+ "child": "rpart.cp",
319
+ "parent": "learner",
320
+ "type": "EQ",
321
+ "value": "rpart"
322
+ },
323
+ {
324
+ "child": "rpart.maxdepth",
325
+ "parent": "learner",
326
+ "type": "EQ",
327
+ "value": "rpart"
328
+ },
329
+ {
330
+ "child": "rpart.minbucket",
331
+ "parent": "learner",
332
+ "type": "EQ",
333
+ "value": "rpart"
334
+ },
335
+ {
336
+ "child": "rpart.minsplit",
337
+ "parent": "learner",
338
+ "type": "EQ",
339
+ "value": "rpart"
340
+ },
341
+ {
342
+ "child": "xgboost.alpha",
343
+ "parent": "learner",
344
+ "type": "EQ",
345
+ "value": "xgboost"
346
+ },
347
+ {
348
+ "child": "xgboost.booster",
349
+ "parent": "learner",
350
+ "type": "EQ",
351
+ "value": "xgboost"
352
+ },
353
+ {
354
+ "child": "xgboost.lambda",
355
+ "parent": "learner",
356
+ "type": "EQ",
357
+ "value": "xgboost"
358
+ },
359
+ {
360
+ "child": "xgboost.nrounds",
361
+ "parent": "learner",
362
+ "type": "EQ",
363
+ "value": "xgboost"
364
+ },
365
+ {
366
+ "child": "xgboost.subsample",
367
+ "parent": "learner",
368
+ "type": "EQ",
369
+ "value": "xgboost"
370
+ },
371
+ {
372
+ "child": "ranger.num.random.splits",
373
+ "type": "AND",
374
+ "conditions": [
375
+ {
376
+ "child": "ranger.num.random.splits",
377
+ "parent": "ranger.splitrule",
378
+ "type": "EQ",
379
+ "value": "extratrees"
380
+ },
381
+ {
382
+ "child": "ranger.num.random.splits",
383
+ "parent": "learner",
384
+ "type": "EQ",
385
+ "value": "ranger"
386
+ }
387
+ ]
388
+ },
389
+ {
390
+ "child": "xgboost.colsample_bylevel",
391
+ "type": "AND",
392
+ "conditions": [
393
+ {
394
+ "child": "xgboost.colsample_bylevel",
395
+ "parent": "xgboost.booster",
396
+ "type": "IN",
397
+ "values": [
398
+ "dart",
399
+ "gbtree"
400
+ ]
401
+ },
402
+ {
403
+ "child": "xgboost.colsample_bylevel",
404
+ "parent": "learner",
405
+ "type": "EQ",
406
+ "value": "xgboost"
407
+ }
408
+ ]
409
+ },
410
+ {
411
+ "child": "xgboost.colsample_bytree",
412
+ "type": "AND",
413
+ "conditions": [
414
+ {
415
+ "child": "xgboost.colsample_bytree",
416
+ "parent": "xgboost.booster",
417
+ "type": "IN",
418
+ "values": [
419
+ "dart",
420
+ "gbtree"
421
+ ]
422
+ },
423
+ {
424
+ "child": "xgboost.colsample_bytree",
425
+ "parent": "learner",
426
+ "type": "EQ",
427
+ "value": "xgboost"
428
+ }
429
+ ]
430
+ },
431
+ {
432
+ "child": "xgboost.eta",
433
+ "type": "AND",
434
+ "conditions": [
435
+ {
436
+ "child": "xgboost.eta",
437
+ "parent": "xgboost.booster",
438
+ "type": "IN",
439
+ "values": [
440
+ "dart",
441
+ "gbtree"
442
+ ]
443
+ },
444
+ {
445
+ "child": "xgboost.eta",
446
+ "parent": "learner",
447
+ "type": "EQ",
448
+ "value": "xgboost"
449
+ }
450
+ ]
451
+ },
452
+ {
453
+ "child": "xgboost.gamma",
454
+ "type": "AND",
455
+ "conditions": [
456
+ {
457
+ "child": "xgboost.gamma",
458
+ "parent": "xgboost.booster",
459
+ "type": "IN",
460
+ "values": [
461
+ "dart",
462
+ "gbtree"
463
+ ]
464
+ },
465
+ {
466
+ "child": "xgboost.gamma",
467
+ "parent": "learner",
468
+ "type": "EQ",
469
+ "value": "xgboost"
470
+ }
471
+ ]
472
+ },
473
+ {
474
+ "child": "xgboost.max_depth",
475
+ "type": "AND",
476
+ "conditions": [
477
+ {
478
+ "child": "xgboost.max_depth",
479
+ "parent": "xgboost.booster",
480
+ "type": "IN",
481
+ "values": [
482
+ "dart",
483
+ "gbtree"
484
+ ]
485
+ },
486
+ {
487
+ "child": "xgboost.max_depth",
488
+ "parent": "learner",
489
+ "type": "EQ",
490
+ "value": "xgboost"
491
+ }
492
+ ]
493
+ },
494
+ {
495
+ "child": "xgboost.min_child_weight",
496
+ "type": "AND",
497
+ "conditions": [
498
+ {
499
+ "child": "xgboost.min_child_weight",
500
+ "parent": "xgboost.booster",
501
+ "type": "IN",
502
+ "values": [
503
+ "dart",
504
+ "gbtree"
505
+ ]
506
+ },
507
+ {
508
+ "child": "xgboost.min_child_weight",
509
+ "parent": "learner",
510
+ "type": "EQ",
511
+ "value": "xgboost"
512
+ }
513
+ ]
514
+ },
515
+ {
516
+ "child": "xgboost.rate_drop",
517
+ "type": "AND",
518
+ "conditions": [
519
+ {
520
+ "child": "xgboost.rate_drop",
521
+ "parent": "xgboost.booster",
522
+ "type": "EQ",
523
+ "value": "dart"
524
+ },
525
+ {
526
+ "child": "xgboost.rate_drop",
527
+ "parent": "learner",
528
+ "type": "EQ",
529
+ "value": "xgboost"
530
+ }
531
+ ]
532
+ },
533
+ {
534
+ "child": "xgboost.skip_drop",
535
+ "type": "AND",
536
+ "conditions": [
537
+ {
538
+ "child": "xgboost.skip_drop",
539
+ "parent": "xgboost.booster",
540
+ "type": "EQ",
541
+ "value": "dart"
542
+ },
543
+ {
544
+ "child": "xgboost.skip_drop",
545
+ "parent": "learner",
546
+ "type": "EQ",
547
+ "value": "xgboost"
548
+ }
549
+ ]
550
+ }
551
+ ],
552
+ "forbiddens": [],
553
+ "python_module_version": "0.4.19",
554
+ "json_format_version": 0.2
555
+ }
yahpo-iaml_super/encoding.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"learner": {"#na#": 0, "glmnet": 1, "ranger": 2, "rpart": 3, "xgboost": 4}, "ranger.replace": {"#na#": 0, "FALSE": 1, "TRUE": 2}, "ranger.respect.unordered.factors": {"#na#": 0, "ignore": 1, "order": 2, "partition": 3}, "ranger.splitrule": {"#na#": 0, "extratrees": 1, "gini": 2}, "task_id": {"#na#": 0, "1067": 1, "1489": 2, "40981": 3, "41146": 4}, "xgboost.booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}}
yahpo-iaml_super/metadata.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
yahpo-iaml_super/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9318f8f985dcf068838b55bebe404f1d19b19717d2cc32cf0f6465cebc2eba46
3
+ size 75816168
yahpo-iaml_super/param_set.R ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ search_space = ps(
2
+ learner = p_fct(levels = c("ranger", "glmnet", "xgboost", "rpart")),
3
+ ranger.num.trees = p_int(lower = 1L, upper = 2000L, depends = learner == "ranger"),
4
+ ranger.replace = p_lgl(depends = learner == "ranger"),
5
+ ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1, depends = learner == "ranger"),
6
+ ranger.mtry.ratio = p_dbl(lower = 0, upper = 1, depends = learner == "ranger"),
7
+ ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition"), depends = learner == "ranger"),
8
+ ranger.min.node.size = p_int(lower = 1L, upper = 100L, depends = learner == "ranger"),
9
+ ranger.splitrule = p_fct(levels = c("gini", "extratrees"), depends = learner == "ranger"),
10
+ ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees" && learner == "ranger"),
11
+
12
+ glmnet.alpha = p_dbl(lower = 0, upper = 1, depends = learner == "glmnet"),
13
+ glmnet.s = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "glmnet"),
14
+
15
+ xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart"), depends = learner == "xgboost"),
16
+ xgboost.nrounds = p_dbl(lower = 1, upper = log(2000), tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x))), depends = learner == "xgboost"),
17
+ xgboost.eta = p_dbl(lower = log(1e-4), upper = 0, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
18
+ xgboost.gamma = p_dbl(lower = log(1e-4), upper = log(7), tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
19
+ xgboost.lambda = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "xgboost"),
20
+ xgboost.alpha = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "xgboost"),
21
+ xgboost.subsample = p_dbl(lower = 0.1, upper = 1, depends = learner == "xgboost"),
22
+ xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
23
+ xgboost.min_child_weight = p_dbl(lower = 1, upper = log(150), tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
24
+ xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
25
+ xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
26
+ xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
27
+ xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
28
+
29
+ rpart.cp = p_dbl(lower = log(1e-4), upper = 0, tags = "log", trafo = function(x) exp(x), depends = learner == "rpart"),
30
+ rpart.maxdepth = p_int(lower = 1L, upper = 30L, depends = learner == "rpart"),
31
+ rpart.minbucket = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
32
+ rpart.minsplit = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
33
+
34
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
35
+ task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
36
+ )
37
+
38
+ domain = ps(
39
+ learner = p_fct(levels = c("ranger", "glmnet", "xgboost", "rpart")),
40
+ ranger.num.trees = p_int(lower = 1L, upper = 2000L, depends = learner == "ranger"),
41
+ ranger.replace = p_lgl(depends = learner == "ranger"),
42
+ ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1, depends = learner == "ranger"),
43
+ ranger.mtry.ratio = p_dbl(lower = 0, upper = 1, depends = learner == "ranger"),
44
+ ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition"), depends = learner == "ranger"),
45
+ ranger.min.node.size = p_int(lower = 1L, upper = 100L, depends = learner == "ranger"),
46
+ ranger.splitrule = p_fct(levels = c("gini", "extratrees"), depends = learner == "ranger"),
47
+ ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees" && learner == "ranger"),
48
+
49
+ glmnet.alpha = p_dbl(lower = 0, upper = 1, depends = learner == "glmnet"),
50
+ glmnet.s = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "glmnet"),
51
+
52
+ xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart"), depends = learner == "xgboost"),
53
+ xgboost.nrounds = p_int(lower = 3, upper = 2000, depends = learner == "xgboost"),
54
+ xgboost.eta = p_dbl(lower = 1e-4, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
55
+ xgboost.gamma = p_dbl(lower = 1e-4, upper = 7, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
56
+ xgboost.lambda = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "xgboost"),
57
+ xgboost.alpha = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "xgboost"),
58
+ xgboost.subsample = p_dbl(lower = 0.1, upper = 1, depends = learner == "xgboost"),
59
+ xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
60
+ xgboost.min_child_weight = p_dbl(lower = exp(1), upper = 150, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
61
+ xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
62
+ xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
63
+ xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
64
+ xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
65
+
66
+ rpart.cp = p_dbl(lower = 1e-4, upper = 1, depends = learner == "rpart"),
67
+ rpart.maxdepth = p_int(lower = 1L, upper = 30L, depends = learner == "rpart"),
68
+ rpart.minbucket = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
69
+ rpart.minsplit = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
70
+
71
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
72
+ task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
73
+ )
74
+
75
+ codomain = ps(
76
+ mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"),
77
+ f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
78
+ auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
79
+ logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
80
+ ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
81
+ rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
82
+ rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
83
+ timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
84
+ timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
85
+ mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
86
+ ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
87
+ nf = p_dbl(lower = 0, upper = Inf, tags = "minimize")
88
+ )