Upload blackbox yahpo-iaml_super
Browse files
yahpo-iaml_super/best_params_resnet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"d": 512, "d_hidden_factor": 3.9989508868016372, "hidden_dropout": 0.04468688309244354, "lr": 0.00011999115120321, "mixup": true, "n_layers": 6, "opt_tfms_auc": false, "opt_tfms_f1": false, "opt_tfms_glmnet.alpha": false, "opt_tfms_glmnet.s": true, "opt_tfms_ias": true, "opt_tfms_logloss": false, "opt_tfms_mec": false, "opt_tfms_mmce": true, "opt_tfms_rammodel": false, "opt_tfms_rampredict": false, "opt_tfms_ramtrain": false, "opt_tfms_ranger.min.node.size": true, "opt_tfms_ranger.mtry.ratio": false, "opt_tfms_ranger.num.random.splits": false, "opt_tfms_ranger.num.trees": true, "opt_tfms_ranger.sample.fraction": true, "opt_tfms_rpart.cp": false, "opt_tfms_rpart.maxdepth": false, "opt_tfms_rpart.minbucket": true, "opt_tfms_rpart.minsplit": false, "opt_tfms_timepredict": true, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "opt_tfms_xgboost.alpha": false, "opt_tfms_xgboost.colsample_bylevel": false, "opt_tfms_xgboost.colsample_bytree": false, "opt_tfms_xgboost.eta": true, "opt_tfms_xgboost.gamma": false, "opt_tfms_xgboost.lambda": true, "opt_tfms_xgboost.max_depth": true, "opt_tfms_xgboost.min_child_weight": true, "opt_tfms_xgboost.nrounds": true, "opt_tfms_xgboost.rate_drop": true, "opt_tfms_xgboost.skip_drop": false, "opt_tfms_xgboost.subsample": false, "tfms_glmnet.s": "tlog", "tfms_ias": "tnexp", "tfms_mmce": "tlog", "tfms_ranger.min.node.size": "tnexp", "tfms_ranger.num.trees": "tlog", "tfms_ranger.sample.fraction": "tnexp", "tfms_rpart.minbucket": "tlog", "tfms_timepredict": "tnexp", "tfms_xgboost.eta": "tlog", "tfms_xgboost.lambda": "tlog", "tfms_xgboost.max_depth": "tlog", "tfms_xgboost.min_child_weight": "tnexp", "tfms_xgboost.nrounds": "tlog", "tfms_xgboost.rate_drop": "tlog", "use_residual_dropout": false}
|
yahpo-iaml_super/config_space.json
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"hyperparameters": [
|
3 |
+
{
|
4 |
+
"name": "learner",
|
5 |
+
"type": "categorical",
|
6 |
+
"choices": [
|
7 |
+
"ranger",
|
8 |
+
"glmnet",
|
9 |
+
"xgboost",
|
10 |
+
"rpart"
|
11 |
+
],
|
12 |
+
"default": "ranger",
|
13 |
+
"probabilities": null
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"name": "task_id",
|
17 |
+
"type": "categorical",
|
18 |
+
"choices": [
|
19 |
+
"40981",
|
20 |
+
"41146",
|
21 |
+
"1489",
|
22 |
+
"1067"
|
23 |
+
],
|
24 |
+
"default": "40981",
|
25 |
+
"probabilities": null
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"name": "trainsize",
|
29 |
+
"type": "uniform_float",
|
30 |
+
"log": false,
|
31 |
+
"lower": 0.03,
|
32 |
+
"upper": 1.0,
|
33 |
+
"default": 0.525
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"name": "glmnet.alpha",
|
37 |
+
"type": "uniform_float",
|
38 |
+
"log": false,
|
39 |
+
"lower": 0.0,
|
40 |
+
"upper": 1.0,
|
41 |
+
"default": 0.5
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"name": "glmnet.s",
|
45 |
+
"type": "uniform_float",
|
46 |
+
"log": true,
|
47 |
+
"lower": 0.00010000000000000009,
|
48 |
+
"upper": 999.9999999999998,
|
49 |
+
"default": 0.316227766
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"name": "ranger.min.node.size",
|
53 |
+
"type": "uniform_int",
|
54 |
+
"log": false,
|
55 |
+
"lower": 1,
|
56 |
+
"upper": 100,
|
57 |
+
"default": 50
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"name": "ranger.mtry.ratio",
|
61 |
+
"type": "uniform_float",
|
62 |
+
"log": false,
|
63 |
+
"lower": 0.0,
|
64 |
+
"upper": 1.0,
|
65 |
+
"default": 0.5
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"name": "ranger.num.trees",
|
69 |
+
"type": "uniform_int",
|
70 |
+
"log": false,
|
71 |
+
"lower": 1,
|
72 |
+
"upper": 2000,
|
73 |
+
"default": 1000
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"name": "ranger.replace",
|
77 |
+
"type": "categorical",
|
78 |
+
"choices": [
|
79 |
+
"TRUE",
|
80 |
+
"FALSE"
|
81 |
+
],
|
82 |
+
"default": "TRUE",
|
83 |
+
"probabilities": null
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"name": "ranger.respect.unordered.factors",
|
87 |
+
"type": "categorical",
|
88 |
+
"choices": [
|
89 |
+
"ignore",
|
90 |
+
"order",
|
91 |
+
"partition"
|
92 |
+
],
|
93 |
+
"default": "ignore",
|
94 |
+
"probabilities": null
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"name": "ranger.sample.fraction",
|
98 |
+
"type": "uniform_float",
|
99 |
+
"log": false,
|
100 |
+
"lower": 0.1,
|
101 |
+
"upper": 1.0,
|
102 |
+
"default": 0.55
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"name": "ranger.splitrule",
|
106 |
+
"type": "categorical",
|
107 |
+
"choices": [
|
108 |
+
"gini",
|
109 |
+
"extratrees"
|
110 |
+
],
|
111 |
+
"default": "gini",
|
112 |
+
"probabilities": null
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"name": "rpart.cp",
|
116 |
+
"type": "uniform_float",
|
117 |
+
"log": true,
|
118 |
+
"lower": 0.00010000000000000009,
|
119 |
+
"upper": 1.0,
|
120 |
+
"default": 0.01
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"name": "rpart.maxdepth",
|
124 |
+
"type": "uniform_int",
|
125 |
+
"log": false,
|
126 |
+
"lower": 1,
|
127 |
+
"upper": 30,
|
128 |
+
"default": 16
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"name": "rpart.minbucket",
|
132 |
+
"type": "uniform_int",
|
133 |
+
"log": false,
|
134 |
+
"lower": 1,
|
135 |
+
"upper": 100,
|
136 |
+
"default": 50
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"name": "rpart.minsplit",
|
140 |
+
"type": "uniform_int",
|
141 |
+
"log": false,
|
142 |
+
"lower": 1,
|
143 |
+
"upper": 100,
|
144 |
+
"default": 50
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"name": "xgboost.alpha",
|
148 |
+
"type": "uniform_float",
|
149 |
+
"log": true,
|
150 |
+
"lower": 0.00010000000000000009,
|
151 |
+
"upper": 999.9999999999998,
|
152 |
+
"default": 0.316227766
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"name": "xgboost.booster",
|
156 |
+
"type": "categorical",
|
157 |
+
"choices": [
|
158 |
+
"gblinear",
|
159 |
+
"gbtree",
|
160 |
+
"dart"
|
161 |
+
],
|
162 |
+
"default": "gblinear",
|
163 |
+
"probabilities": null
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"name": "xgboost.lambda",
|
167 |
+
"type": "uniform_float",
|
168 |
+
"log": true,
|
169 |
+
"lower": 0.00010000000000000009,
|
170 |
+
"upper": 999.9999999999998,
|
171 |
+
"default": 0.316227766
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"name": "xgboost.nrounds",
|
175 |
+
"type": "uniform_int",
|
176 |
+
"log": true,
|
177 |
+
"lower": 3,
|
178 |
+
"upper": 2000,
|
179 |
+
"default": 77
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"name": "xgboost.subsample",
|
183 |
+
"type": "uniform_float",
|
184 |
+
"log": false,
|
185 |
+
"lower": 0.1,
|
186 |
+
"upper": 1.0,
|
187 |
+
"default": 0.55
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"name": "ranger.num.random.splits",
|
191 |
+
"type": "uniform_int",
|
192 |
+
"log": false,
|
193 |
+
"lower": 1,
|
194 |
+
"upper": 100,
|
195 |
+
"default": 50
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"name": "xgboost.colsample_bylevel",
|
199 |
+
"type": "uniform_float",
|
200 |
+
"log": false,
|
201 |
+
"lower": 0.01,
|
202 |
+
"upper": 1.0,
|
203 |
+
"default": 0.505
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"name": "xgboost.colsample_bytree",
|
207 |
+
"type": "uniform_float",
|
208 |
+
"log": false,
|
209 |
+
"lower": 0.01,
|
210 |
+
"upper": 1.0,
|
211 |
+
"default": 0.505
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"name": "xgboost.eta",
|
215 |
+
"type": "uniform_float",
|
216 |
+
"log": true,
|
217 |
+
"lower": 0.00010000000000000009,
|
218 |
+
"upper": 1.0,
|
219 |
+
"default": 0.01
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"name": "xgboost.gamma",
|
223 |
+
"type": "uniform_float",
|
224 |
+
"log": true,
|
225 |
+
"lower": 0.00010000000000000009,
|
226 |
+
"upper": 6.999999999999999,
|
227 |
+
"default": 0.0264575131
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"name": "xgboost.max_depth",
|
231 |
+
"type": "uniform_int",
|
232 |
+
"log": false,
|
233 |
+
"lower": 1,
|
234 |
+
"upper": 15,
|
235 |
+
"default": 8
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"name": "xgboost.min_child_weight",
|
239 |
+
"type": "uniform_float",
|
240 |
+
"log": true,
|
241 |
+
"lower": 2.718281828459045,
|
242 |
+
"upper": 149.99999999999997,
|
243 |
+
"default": 20.1926292064
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"name": "xgboost.rate_drop",
|
247 |
+
"type": "uniform_float",
|
248 |
+
"log": false,
|
249 |
+
"lower": 0.0,
|
250 |
+
"upper": 1.0,
|
251 |
+
"default": 0.5
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"name": "xgboost.skip_drop",
|
255 |
+
"type": "uniform_float",
|
256 |
+
"log": false,
|
257 |
+
"lower": 0.0,
|
258 |
+
"upper": 1.0,
|
259 |
+
"default": 0.5
|
260 |
+
}
|
261 |
+
],
|
262 |
+
"conditions": [
|
263 |
+
{
|
264 |
+
"child": "glmnet.alpha",
|
265 |
+
"parent": "learner",
|
266 |
+
"type": "EQ",
|
267 |
+
"value": "glmnet"
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"child": "glmnet.s",
|
271 |
+
"parent": "learner",
|
272 |
+
"type": "EQ",
|
273 |
+
"value": "glmnet"
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"child": "ranger.min.node.size",
|
277 |
+
"parent": "learner",
|
278 |
+
"type": "EQ",
|
279 |
+
"value": "ranger"
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"child": "ranger.mtry.ratio",
|
283 |
+
"parent": "learner",
|
284 |
+
"type": "EQ",
|
285 |
+
"value": "ranger"
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"child": "ranger.num.trees",
|
289 |
+
"parent": "learner",
|
290 |
+
"type": "EQ",
|
291 |
+
"value": "ranger"
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"child": "ranger.replace",
|
295 |
+
"parent": "learner",
|
296 |
+
"type": "EQ",
|
297 |
+
"value": "ranger"
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"child": "ranger.respect.unordered.factors",
|
301 |
+
"parent": "learner",
|
302 |
+
"type": "EQ",
|
303 |
+
"value": "ranger"
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"child": "ranger.sample.fraction",
|
307 |
+
"parent": "learner",
|
308 |
+
"type": "EQ",
|
309 |
+
"value": "ranger"
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"child": "ranger.splitrule",
|
313 |
+
"parent": "learner",
|
314 |
+
"type": "EQ",
|
315 |
+
"value": "ranger"
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"child": "rpart.cp",
|
319 |
+
"parent": "learner",
|
320 |
+
"type": "EQ",
|
321 |
+
"value": "rpart"
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"child": "rpart.maxdepth",
|
325 |
+
"parent": "learner",
|
326 |
+
"type": "EQ",
|
327 |
+
"value": "rpart"
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"child": "rpart.minbucket",
|
331 |
+
"parent": "learner",
|
332 |
+
"type": "EQ",
|
333 |
+
"value": "rpart"
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"child": "rpart.minsplit",
|
337 |
+
"parent": "learner",
|
338 |
+
"type": "EQ",
|
339 |
+
"value": "rpart"
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"child": "xgboost.alpha",
|
343 |
+
"parent": "learner",
|
344 |
+
"type": "EQ",
|
345 |
+
"value": "xgboost"
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"child": "xgboost.booster",
|
349 |
+
"parent": "learner",
|
350 |
+
"type": "EQ",
|
351 |
+
"value": "xgboost"
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"child": "xgboost.lambda",
|
355 |
+
"parent": "learner",
|
356 |
+
"type": "EQ",
|
357 |
+
"value": "xgboost"
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"child": "xgboost.nrounds",
|
361 |
+
"parent": "learner",
|
362 |
+
"type": "EQ",
|
363 |
+
"value": "xgboost"
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"child": "xgboost.subsample",
|
367 |
+
"parent": "learner",
|
368 |
+
"type": "EQ",
|
369 |
+
"value": "xgboost"
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"child": "ranger.num.random.splits",
|
373 |
+
"type": "AND",
|
374 |
+
"conditions": [
|
375 |
+
{
|
376 |
+
"child": "ranger.num.random.splits",
|
377 |
+
"parent": "ranger.splitrule",
|
378 |
+
"type": "EQ",
|
379 |
+
"value": "extratrees"
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"child": "ranger.num.random.splits",
|
383 |
+
"parent": "learner",
|
384 |
+
"type": "EQ",
|
385 |
+
"value": "ranger"
|
386 |
+
}
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"child": "xgboost.colsample_bylevel",
|
391 |
+
"type": "AND",
|
392 |
+
"conditions": [
|
393 |
+
{
|
394 |
+
"child": "xgboost.colsample_bylevel",
|
395 |
+
"parent": "xgboost.booster",
|
396 |
+
"type": "IN",
|
397 |
+
"values": [
|
398 |
+
"dart",
|
399 |
+
"gbtree"
|
400 |
+
]
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"child": "xgboost.colsample_bylevel",
|
404 |
+
"parent": "learner",
|
405 |
+
"type": "EQ",
|
406 |
+
"value": "xgboost"
|
407 |
+
}
|
408 |
+
]
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"child": "xgboost.colsample_bytree",
|
412 |
+
"type": "AND",
|
413 |
+
"conditions": [
|
414 |
+
{
|
415 |
+
"child": "xgboost.colsample_bytree",
|
416 |
+
"parent": "xgboost.booster",
|
417 |
+
"type": "IN",
|
418 |
+
"values": [
|
419 |
+
"dart",
|
420 |
+
"gbtree"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"child": "xgboost.colsample_bytree",
|
425 |
+
"parent": "learner",
|
426 |
+
"type": "EQ",
|
427 |
+
"value": "xgboost"
|
428 |
+
}
|
429 |
+
]
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"child": "xgboost.eta",
|
433 |
+
"type": "AND",
|
434 |
+
"conditions": [
|
435 |
+
{
|
436 |
+
"child": "xgboost.eta",
|
437 |
+
"parent": "xgboost.booster",
|
438 |
+
"type": "IN",
|
439 |
+
"values": [
|
440 |
+
"dart",
|
441 |
+
"gbtree"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"child": "xgboost.eta",
|
446 |
+
"parent": "learner",
|
447 |
+
"type": "EQ",
|
448 |
+
"value": "xgboost"
|
449 |
+
}
|
450 |
+
]
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"child": "xgboost.gamma",
|
454 |
+
"type": "AND",
|
455 |
+
"conditions": [
|
456 |
+
{
|
457 |
+
"child": "xgboost.gamma",
|
458 |
+
"parent": "xgboost.booster",
|
459 |
+
"type": "IN",
|
460 |
+
"values": [
|
461 |
+
"dart",
|
462 |
+
"gbtree"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"child": "xgboost.gamma",
|
467 |
+
"parent": "learner",
|
468 |
+
"type": "EQ",
|
469 |
+
"value": "xgboost"
|
470 |
+
}
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"child": "xgboost.max_depth",
|
475 |
+
"type": "AND",
|
476 |
+
"conditions": [
|
477 |
+
{
|
478 |
+
"child": "xgboost.max_depth",
|
479 |
+
"parent": "xgboost.booster",
|
480 |
+
"type": "IN",
|
481 |
+
"values": [
|
482 |
+
"dart",
|
483 |
+
"gbtree"
|
484 |
+
]
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"child": "xgboost.max_depth",
|
488 |
+
"parent": "learner",
|
489 |
+
"type": "EQ",
|
490 |
+
"value": "xgboost"
|
491 |
+
}
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"child": "xgboost.min_child_weight",
|
496 |
+
"type": "AND",
|
497 |
+
"conditions": [
|
498 |
+
{
|
499 |
+
"child": "xgboost.min_child_weight",
|
500 |
+
"parent": "xgboost.booster",
|
501 |
+
"type": "IN",
|
502 |
+
"values": [
|
503 |
+
"dart",
|
504 |
+
"gbtree"
|
505 |
+
]
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"child": "xgboost.min_child_weight",
|
509 |
+
"parent": "learner",
|
510 |
+
"type": "EQ",
|
511 |
+
"value": "xgboost"
|
512 |
+
}
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"child": "xgboost.rate_drop",
|
517 |
+
"type": "AND",
|
518 |
+
"conditions": [
|
519 |
+
{
|
520 |
+
"child": "xgboost.rate_drop",
|
521 |
+
"parent": "xgboost.booster",
|
522 |
+
"type": "EQ",
|
523 |
+
"value": "dart"
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"child": "xgboost.rate_drop",
|
527 |
+
"parent": "learner",
|
528 |
+
"type": "EQ",
|
529 |
+
"value": "xgboost"
|
530 |
+
}
|
531 |
+
]
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"child": "xgboost.skip_drop",
|
535 |
+
"type": "AND",
|
536 |
+
"conditions": [
|
537 |
+
{
|
538 |
+
"child": "xgboost.skip_drop",
|
539 |
+
"parent": "xgboost.booster",
|
540 |
+
"type": "EQ",
|
541 |
+
"value": "dart"
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"child": "xgboost.skip_drop",
|
545 |
+
"parent": "learner",
|
546 |
+
"type": "EQ",
|
547 |
+
"value": "xgboost"
|
548 |
+
}
|
549 |
+
]
|
550 |
+
}
|
551 |
+
],
|
552 |
+
"forbiddens": [],
|
553 |
+
"python_module_version": "0.4.19",
|
554 |
+
"json_format_version": 0.2
|
555 |
+
}
|
yahpo-iaml_super/encoding.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"learner": {"#na#": 0, "glmnet": 1, "ranger": 2, "rpart": 3, "xgboost": 4}, "ranger.replace": {"#na#": 0, "FALSE": 1, "TRUE": 2}, "ranger.respect.unordered.factors": {"#na#": 0, "ignore": 1, "order": 2, "partition": 3}, "ranger.splitrule": {"#na#": 0, "extratrees": 1, "gini": 2}, "task_id": {"#na#": 0, "1067": 1, "1489": 2, "40981": 3, "41146": 4}, "xgboost.booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}}
|
yahpo-iaml_super/metadata.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
|
yahpo-iaml_super/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9318f8f985dcf068838b55bebe404f1d19b19717d2cc32cf0f6465cebc2eba46
|
3 |
+
size 75816168
|
yahpo-iaml_super/param_set.R
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
search_space = ps(
|
2 |
+
learner = p_fct(levels = c("ranger", "glmnet", "xgboost", "rpart")),
|
3 |
+
ranger.num.trees = p_int(lower = 1L, upper = 2000L, depends = learner == "ranger"),
|
4 |
+
ranger.replace = p_lgl(depends = learner == "ranger"),
|
5 |
+
ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1, depends = learner == "ranger"),
|
6 |
+
ranger.mtry.ratio = p_dbl(lower = 0, upper = 1, depends = learner == "ranger"),
|
7 |
+
ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition"), depends = learner == "ranger"),
|
8 |
+
ranger.min.node.size = p_int(lower = 1L, upper = 100L, depends = learner == "ranger"),
|
9 |
+
ranger.splitrule = p_fct(levels = c("gini", "extratrees"), depends = learner == "ranger"),
|
10 |
+
ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees" && learner == "ranger"),
|
11 |
+
|
12 |
+
glmnet.alpha = p_dbl(lower = 0, upper = 1, depends = learner == "glmnet"),
|
13 |
+
glmnet.s = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "glmnet"),
|
14 |
+
|
15 |
+
xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart"), depends = learner == "xgboost"),
|
16 |
+
xgboost.nrounds = p_dbl(lower = 1, upper = log(2000), tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x))), depends = learner == "xgboost"),
|
17 |
+
xgboost.eta = p_dbl(lower = log(1e-4), upper = 0, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
18 |
+
xgboost.gamma = p_dbl(lower = log(1e-4), upper = log(7), tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
19 |
+
xgboost.lambda = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "xgboost"),
|
20 |
+
xgboost.alpha = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "xgboost"),
|
21 |
+
xgboost.subsample = p_dbl(lower = 0.1, upper = 1, depends = learner == "xgboost"),
|
22 |
+
xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
23 |
+
xgboost.min_child_weight = p_dbl(lower = 1, upper = log(150), tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
24 |
+
xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
25 |
+
xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
26 |
+
xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
|
27 |
+
xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
|
28 |
+
|
29 |
+
rpart.cp = p_dbl(lower = log(1e-4), upper = 0, tags = "log", trafo = function(x) exp(x), depends = learner == "rpart"),
|
30 |
+
rpart.maxdepth = p_int(lower = 1L, upper = 30L, depends = learner == "rpart"),
|
31 |
+
rpart.minbucket = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
|
32 |
+
rpart.minsplit = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
|
33 |
+
|
34 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
35 |
+
task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
|
36 |
+
)
|
37 |
+
|
38 |
+
domain = ps(
|
39 |
+
learner = p_fct(levels = c("ranger", "glmnet", "xgboost", "rpart")),
|
40 |
+
ranger.num.trees = p_int(lower = 1L, upper = 2000L, depends = learner == "ranger"),
|
41 |
+
ranger.replace = p_lgl(depends = learner == "ranger"),
|
42 |
+
ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1, depends = learner == "ranger"),
|
43 |
+
ranger.mtry.ratio = p_dbl(lower = 0, upper = 1, depends = learner == "ranger"),
|
44 |
+
ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition"), depends = learner == "ranger"),
|
45 |
+
ranger.min.node.size = p_int(lower = 1L, upper = 100L, depends = learner == "ranger"),
|
46 |
+
ranger.splitrule = p_fct(levels = c("gini", "extratrees"), depends = learner == "ranger"),
|
47 |
+
ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees" && learner == "ranger"),
|
48 |
+
|
49 |
+
glmnet.alpha = p_dbl(lower = 0, upper = 1, depends = learner == "glmnet"),
|
50 |
+
glmnet.s = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "glmnet"),
|
51 |
+
|
52 |
+
xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart"), depends = learner == "xgboost"),
|
53 |
+
xgboost.nrounds = p_int(lower = 3, upper = 2000, depends = learner == "xgboost"),
|
54 |
+
xgboost.eta = p_dbl(lower = 1e-4, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
55 |
+
xgboost.gamma = p_dbl(lower = 1e-4, upper = 7, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
56 |
+
xgboost.lambda = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "xgboost"),
|
57 |
+
xgboost.alpha = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "xgboost"),
|
58 |
+
xgboost.subsample = p_dbl(lower = 0.1, upper = 1, depends = learner == "xgboost"),
|
59 |
+
xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
60 |
+
xgboost.min_child_weight = p_dbl(lower = exp(1), upper = 150, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
61 |
+
xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
62 |
+
xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
63 |
+
xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
|
64 |
+
xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
|
65 |
+
|
66 |
+
rpart.cp = p_dbl(lower = 1e-4, upper = 1, depends = learner == "rpart"),
|
67 |
+
rpart.maxdepth = p_int(lower = 1L, upper = 30L, depends = learner == "rpart"),
|
68 |
+
rpart.minbucket = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
|
69 |
+
rpart.minsplit = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
|
70 |
+
|
71 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
72 |
+
task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
|
73 |
+
)
|
74 |
+
|
75 |
+
codomain = ps(
|
76 |
+
mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"),
|
77 |
+
f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
78 |
+
auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
79 |
+
logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
80 |
+
ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
81 |
+
rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
82 |
+
rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
83 |
+
timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
84 |
+
timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
85 |
+
mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
86 |
+
ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
87 |
+
nf = p_dbl(lower = 0, upper = Inf, tags = "minimize")
|
88 |
+
)
|