geoalgo commited on
Commit
ccdcc3d
·
verified ·
1 Parent(s): 98a22b2

Upload blackbox yahpo-rbv2_xgboost

Browse files
yahpo/rbv2_xgboost/best_params_resnet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"d": 128, "d_hidden_factor": 3.2778673260890114, "hidden_dropout": 0.04797084974229543, "lr": 0.00044845753754503033, "mixup": false, "n_layers": 5, "opt_tfms_acc": true, "opt_tfms_alpha": true, "opt_tfms_auc": true, "opt_tfms_bac": true, "opt_tfms_brier": true, "opt_tfms_colsample_bylevel": false, "opt_tfms_colsample_bytree": false, "opt_tfms_eta": true, "opt_tfms_f1": true, "opt_tfms_gamma": true, "opt_tfms_lambda": true, "opt_tfms_logloss": true, "opt_tfms_max_depth": false, "opt_tfms_memory": false, "opt_tfms_min_child_weight": true, "opt_tfms_nrounds": false, "opt_tfms_rate_drop": true, "opt_tfms_repl": true, "opt_tfms_skip_drop": false, "opt_tfms_subsample": true, "opt_tfms_timepredict": true, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "residual_dropout": 0.14237779501259495, "tfms_acc": "tlog", "tfms_alpha": "tlog", "tfms_auc": "tlog", "tfms_bac": "tnexp", "tfms_brier": "tlog", "tfms_eta": "tnexp", "tfms_f1": "tnexp", "tfms_gamma": "tlog", "tfms_lambda": "tlog", "tfms_logloss": "tnexp", "tfms_min_child_weight": "tlog", "tfms_rate_drop": "tlog", "tfms_repl": "tlog", "tfms_subsample": "tnexp", "tfms_timepredict": "tnexp", "use_residual_dropout": true}
yahpo/rbv2_xgboost/config_space.json ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "hyperparameters": [
3
+ {
4
+ "name": "alpha",
5
+ "type": "uniform_float",
6
+ "log": true,
7
+ "lower": 0.0009118819655545162,
8
+ "upper": 1096.6331584284585,
9
+ "default": 1.0
10
+ },
11
+ {
12
+ "name": "booster",
13
+ "type": "categorical",
14
+ "choices": [
15
+ "gblinear",
16
+ "gbtree",
17
+ "dart"
18
+ ],
19
+ "default": "gblinear",
20
+ "probabilities": null
21
+ },
22
+ {
23
+ "name": "lambda",
24
+ "type": "uniform_float",
25
+ "log": true,
26
+ "lower": 0.0009118819655545162,
27
+ "upper": 1096.6331584284585,
28
+ "default": 1.0
29
+ },
30
+ {
31
+ "name": "nrounds",
32
+ "type": "uniform_int",
33
+ "log": true,
34
+ "lower": 7,
35
+ "upper": 2981,
36
+ "default": 144
37
+ },
38
+ {
39
+ "name": "num.impute.selected.cpo",
40
+ "type": "categorical",
41
+ "choices": [
42
+ "impute.mean",
43
+ "impute.median",
44
+ "impute.hist"
45
+ ],
46
+ "default": "impute.mean",
47
+ "probabilities": null
48
+ },
49
+ {
50
+ "name": "repl",
51
+ "type": "uniform_int",
52
+ "log": false,
53
+ "lower": 1,
54
+ "upper": 10,
55
+ "default": 6
56
+ },
57
+ {
58
+ "name": "subsample",
59
+ "type": "uniform_float",
60
+ "log": false,
61
+ "lower": 0.1,
62
+ "upper": 1.0,
63
+ "default": 0.55
64
+ },
65
+ {
66
+ "name": "task_id",
67
+ "type": "categorical",
68
+ "choices": [
69
+ "16","40923","41143","470","1487","40499","40966","41164","1497","40975","1461","41278","11","54","300","40984","31","1067","1590","40983","41163","41165","182","1220","41159","41169","42","188","1457","1480","6332","181","1479","40670","40536","41138","41166","6","14","29","458","1056","1462","1494","40701","12","1493","44","307","334","40982","41142","38","1050","469","23381","41157","15","4541","23","4134","40927","40981","41156","3","1049","40900","1063","23512","40979","1040","1068","41161","22","1489","41027","24","4135","23517","1053","1468","312","377","1515","18","1476","1510","41162","28","375","1464","40685","40996","41146","41216","40668","41212","32","60","4538","40496","41150","37","46","554","1475","1485","1501","1111","4534","41168","151","4154","40978","40994","50","1478","1486","40498"
70
+ ],
71
+ "default": "1040",
72
+ "probabilities": null
73
+ },
74
+ {
75
+ "name": "trainsize",
76
+ "type": "uniform_float",
77
+ "log": false,
78
+ "lower": 0.03,
79
+ "upper": 1.0,
80
+ "default": 0.525
81
+ },
82
+ {
83
+ "name": "colsample_bylevel",
84
+ "type": "uniform_float",
85
+ "log": false,
86
+ "lower": 0.01,
87
+ "upper": 1.0,
88
+ "default": 0.505
89
+ },
90
+ {
91
+ "name": "colsample_bytree",
92
+ "type": "uniform_float",
93
+ "log": false,
94
+ "lower": 0.01,
95
+ "upper": 1.0,
96
+ "default": 0.505
97
+ },
98
+ {
99
+ "name": "eta",
100
+ "type": "uniform_float",
101
+ "log": true,
102
+ "lower": 0.0009118819655545162,
103
+ "upper": 1.0,
104
+ "default": 0.0301973834
105
+ },
106
+ {
107
+ "name": "gamma",
108
+ "type": "uniform_float",
109
+ "log": true,
110
+ "lower": 4.5399929762484854e-05,
111
+ "upper": 7.38905609893065,
112
+ "default": 0.0183156389
113
+ },
114
+ {
115
+ "name": "max_depth",
116
+ "type": "uniform_int",
117
+ "log": false,
118
+ "lower": 1,
119
+ "upper": 15,
120
+ "default": 8
121
+ },
122
+ {
123
+ "name": "min_child_weight",
124
+ "type": "uniform_float",
125
+ "log": true,
126
+ "lower": 2.718281828459045,
127
+ "upper": 148.4131591025766,
128
+ "default": 20.0855369232
129
+ },
130
+ {
131
+ "name": "rate_drop",
132
+ "type": "uniform_float",
133
+ "log": false,
134
+ "lower": 0.0,
135
+ "upper": 1.0,
136
+ "default": 0.5
137
+ },
138
+ {
139
+ "name": "skip_drop",
140
+ "type": "uniform_float",
141
+ "log": false,
142
+ "lower": 0.0,
143
+ "upper": 1.0,
144
+ "default": 0.5
145
+ }
146
+ ],
147
+ "conditions": [
148
+ {
149
+ "child": "colsample_bylevel",
150
+ "parent": "booster",
151
+ "type": "IN",
152
+ "values": [
153
+ "dart",
154
+ "gbtree"
155
+ ]
156
+ },
157
+ {
158
+ "child": "colsample_bytree",
159
+ "parent": "booster",
160
+ "type": "IN",
161
+ "values": [
162
+ "dart",
163
+ "gbtree"
164
+ ]
165
+ },
166
+ {
167
+ "child": "eta",
168
+ "parent": "booster",
169
+ "type": "IN",
170
+ "values": [
171
+ "dart",
172
+ "gbtree"
173
+ ]
174
+ },
175
+ {
176
+ "child": "gamma",
177
+ "parent": "booster",
178
+ "type": "IN",
179
+ "values": [
180
+ "dart",
181
+ "gbtree"
182
+ ]
183
+ },
184
+ {
185
+ "child": "max_depth",
186
+ "parent": "booster",
187
+ "type": "IN",
188
+ "values": [
189
+ "dart",
190
+ "gbtree"
191
+ ]
192
+ },
193
+ {
194
+ "child": "min_child_weight",
195
+ "parent": "booster",
196
+ "type": "IN",
197
+ "values": [
198
+ "dart",
199
+ "gbtree"
200
+ ]
201
+ },
202
+ {
203
+ "child": "rate_drop",
204
+ "parent": "booster",
205
+ "type": "EQ",
206
+ "value": "dart"
207
+ },
208
+ {
209
+ "child": "skip_drop",
210
+ "parent": "booster",
211
+ "type": "EQ",
212
+ "value": "dart"
213
+ }
214
+ ],
215
+ "forbiddens": [],
216
+ "python_module_version": "0.4.18",
217
+ "json_format_version": 0.2
218
+ }
yahpo/rbv2_xgboost/encoding.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}, "num.impute.selected.cpo": {"#na#": 0, "impute.hist": 1, "impute.mean": 2, "impute.median": 3}, "task_id": {"#na#": 0, "1040": 1, "1049": 2, "1050": 3, "1053": 4, "1056": 5, "1063": 6, "1067": 7, "1068": 8, "11": 9, "1111": 10, "12": 11, "1220": 12, "14": 13, "1457": 14, "1461": 15, "1462": 16, "1464": 17, "1468": 18, "1475": 19, "1476": 20, "1478": 21, "1479": 22, "1480": 23, "1485": 24, "1486": 25, "1487": 26, "1489": 27, "1493": 28, "1494": 29, "1497": 30, "15": 31, "1501": 32, "151": 33, "1510": 34, "1515": 35, "1590": 36, "16": 37, "18": 38, "181": 39, "182": 40, "188": 41, "22": 42, "23": 43, "23381": 44, "23512": 45, "23517": 46, "24": 47, "28": 48, "29": 49, "3": 50, "300": 51, "307": 52, "31": 53, "312": 54, "32": 55, "334": 56, "37": 57, "375": 58, "377": 59, "38": 60, "40496": 61, "40498": 62, "40499": 63, "40536": 64, "40668": 65, "40670": 66, "40685": 67, "40701": 68, "40900": 69, "40923": 70, "40927": 71, "40966": 72, "40975": 73, "40978": 74, "40979": 75, "40981": 76, "40982": 77, "40983": 78, "40984": 79, "40994": 80, "40996": 81, "41027": 82, "41138": 83, "41142": 84, "41143": 85, "41146": 86, "41150": 87, "41156": 88, "41157": 89, "41159": 90, "41161": 91, "41162": 92, "41163": 93, "41164": 94, "41165": 95, "41166": 96, "41168": 97, "41169": 98, "41212": 99, "41216": 100, "41278": 101, "4134": 102, "4135": 103, "4154": 104, "42": 105, "44": 106, "4534": 107, "4538": 108, "4541": 109, "458": 110, "46": 111, "469": 112, "470": 113, "50": 114, "54": 115, "554": 116, "6": 117, "60": 118, "6332": 119}}
yahpo/rbv2_xgboost/metadata.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
yahpo/rbv2_xgboost/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85125b6d97f553d10cd50f9e632e1a3f1ad44bcb00300dd2880d70dfd043d9f3
3
+ size 3335828
yahpo/rbv2_xgboost/param_set.R ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ search_space = ps(
2
+ booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
3
+ nrounds = p_dbl(lower = 2, upper = 8, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
4
+ eta = p_dbl(lower = -7, upper = 0, tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
5
+ gamma = p_dbl(lower = -10, upper = 2, tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
6
+ lambda = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)),
7
+ alpha = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)),
8
+ subsample = p_dbl(lower = 0.1, upper = 1),
9
+ max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")),
10
+ min_child_weight = p_dbl(lower = 1, upper = 5, tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
11
+ colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
12
+ colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
13
+ rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
14
+ skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
15
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
16
+ repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
17
+ num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
18
+ task_id = p_fct(levels = c("16", "40923", "41143", "470", "1487", "40499", "40966", "41164",
19
+ "1497", "40975", "1461", "41278", "11", "54", "300", "40984",
20
+ "31", "1067", "1590", "40983", "41163", "41165", "182", "1220",
21
+ "41159", "41169", "42", "188", "1457", "1480", "6332", "181",
22
+ "1479", "40670", "40536", "41138", "41166", "6", "14", "29",
23
+ "458", "1056", "1462", "1494", "40701", "12", "1493", "44", "307",
24
+ "334", "40982", "41142", "38", "1050", "469", "23381", "41157",
25
+ "15", "4541", "23", "4134", "40927", "40981", "41156", "3", "1049",
26
+ "40900", "1063", "23512", "40979", "1040", "1068", "41161", "22",
27
+ "1489", "41027", "24", "4135", "23517", "1053", "1468", "312",
28
+ "377", "1515", "18", "1476", "1510", "41162", "28", "375", "1464",
29
+ "40685", "40996", "41146", "41216", "40668", "41212", "32", "60",
30
+ "4538", "40496", "41150", "37", "46", "554", "1475", "1485",
31
+ "1501", "1111", "4534", "41168", "151", "4154", "40978", "40994",
32
+ "50", "1478", "1486", "40498"),
33
+ tags = "task_id"
34
+ )
35
+ )
36
+
37
+ domain = ps(
38
+ booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
39
+ nrounds = p_int(lower = 7L, upper = 2981L),
40
+ eta = p_dbl(lower = exp(-7), upper = exp(0),depends = booster %in% c("dart", "gbtree")),
41
+ gamma = p_dbl(lower = exp(-10), upper = exp(2), depends = booster %in% c("dart", "gbtree")),
42
+ lambda = p_dbl(lower = exp(-7), upper = exp(7)),
43
+ alpha = p_dbl(lower = exp(-7), upper = exp(7)),
44
+ subsample = p_dbl(lower = 0.1, upper = 1),
45
+ max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")),
46
+ min_child_weight = p_dbl(lower = exp(1), upper = exp(5), depends = booster %in% c("dart", "gbtree")),
47
+ colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
48
+ colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
49
+ rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
50
+ skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
51
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
52
+ repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
53
+ num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
54
+ task_id = p_fct(levels = c("16", "40923", "41143", "470", "1487", "40499", "40966", "41164",
55
+ "1497", "40975", "1461", "41278", "11", "54", "300", "40984",
56
+ "31", "1067", "1590", "40983", "41163", "41165", "182", "1220",
57
+ "41159", "41169", "42", "188", "1457", "1480", "6332", "181",
58
+ "1479", "40670", "40536", "41138", "41166", "6", "14", "29",
59
+ "458", "1056", "1462", "1494", "40701", "12", "1493", "44", "307",
60
+ "334", "40982", "41142", "38", "1050", "469", "23381", "41157",
61
+ "15", "4541", "23", "4134", "40927", "40981", "41156", "3", "1049",
62
+ "40900", "1063", "23512", "40979", "1040", "1068", "41161", "22",
63
+ "1489", "41027", "24", "4135", "23517", "1053", "1468", "312",
64
+ "377", "1515", "18", "1476", "1510", "41162", "28", "375", "1464",
65
+ "40685", "40996", "41146", "41216", "40668", "41212", "32", "60",
66
+ "4538", "40496", "41150", "37", "46", "554", "1475", "1485",
67
+ "1501", "1111", "4534", "41168", "151", "4154", "40978", "40994",
68
+ "50", "1478", "1486", "40498"),
69
+ tags = "task_id"
70
+ )
71
+ )
72
+
73
+ codomain = ps(
74
+ acc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
75
+ bac = p_dbl(lower = 0, upper = 1, tags = "maximize"),
76
+ f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
77
+ auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
78
+ brier = p_dbl(lower = 0, upper = 1, tags = "minimize"),
79
+ logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
80
+ timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
81
+ timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
82
+ memory = p_dbl(lower = 0, upper = Inf, tags = "minimize")
83
+ )