geoalgo commited on
Commit
5e36774
·
verified ·
1 Parent(s): e618d85

Delete yahpo-iaml_super

Browse files
yahpo-iaml_super/best_params_resnet.json DELETED
@@ -1 +0,0 @@
1
- {"d": 512, "d_hidden_factor": 3.9989508868016372, "hidden_dropout": 0.04468688309244354, "lr": 0.00011999115120321, "mixup": true, "n_layers": 6, "opt_tfms_auc": false, "opt_tfms_f1": false, "opt_tfms_glmnet.alpha": false, "opt_tfms_glmnet.s": true, "opt_tfms_ias": true, "opt_tfms_logloss": false, "opt_tfms_mec": false, "opt_tfms_mmce": true, "opt_tfms_rammodel": false, "opt_tfms_rampredict": false, "opt_tfms_ramtrain": false, "opt_tfms_ranger.min.node.size": true, "opt_tfms_ranger.mtry.ratio": false, "opt_tfms_ranger.num.random.splits": false, "opt_tfms_ranger.num.trees": true, "opt_tfms_ranger.sample.fraction": true, "opt_tfms_rpart.cp": false, "opt_tfms_rpart.maxdepth": false, "opt_tfms_rpart.minbucket": true, "opt_tfms_rpart.minsplit": false, "opt_tfms_timepredict": true, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "opt_tfms_xgboost.alpha": false, "opt_tfms_xgboost.colsample_bylevel": false, "opt_tfms_xgboost.colsample_bytree": false, "opt_tfms_xgboost.eta": true, "opt_tfms_xgboost.gamma": false, "opt_tfms_xgboost.lambda": true, "opt_tfms_xgboost.max_depth": true, "opt_tfms_xgboost.min_child_weight": true, "opt_tfms_xgboost.nrounds": true, "opt_tfms_xgboost.rate_drop": true, "opt_tfms_xgboost.skip_drop": false, "opt_tfms_xgboost.subsample": false, "tfms_glmnet.s": "tlog", "tfms_ias": "tnexp", "tfms_mmce": "tlog", "tfms_ranger.min.node.size": "tnexp", "tfms_ranger.num.trees": "tlog", "tfms_ranger.sample.fraction": "tnexp", "tfms_rpart.minbucket": "tlog", "tfms_timepredict": "tnexp", "tfms_xgboost.eta": "tlog", "tfms_xgboost.lambda": "tlog", "tfms_xgboost.max_depth": "tlog", "tfms_xgboost.min_child_weight": "tnexp", "tfms_xgboost.nrounds": "tlog", "tfms_xgboost.rate_drop": "tlog", "use_residual_dropout": false}
 
 
yahpo-iaml_super/config_space.json DELETED
@@ -1,555 +0,0 @@
1
- {
2
- "hyperparameters": [
3
- {
4
- "name": "learner",
5
- "type": "categorical",
6
- "choices": [
7
- "ranger",
8
- "glmnet",
9
- "xgboost",
10
- "rpart"
11
- ],
12
- "default": "ranger",
13
- "probabilities": null
14
- },
15
- {
16
- "name": "task_id",
17
- "type": "categorical",
18
- "choices": [
19
- "40981",
20
- "41146",
21
- "1489",
22
- "1067"
23
- ],
24
- "default": "40981",
25
- "probabilities": null
26
- },
27
- {
28
- "name": "trainsize",
29
- "type": "uniform_float",
30
- "log": false,
31
- "lower": 0.03,
32
- "upper": 1.0,
33
- "default": 0.525
34
- },
35
- {
36
- "name": "glmnet.alpha",
37
- "type": "uniform_float",
38
- "log": false,
39
- "lower": 0.0,
40
- "upper": 1.0,
41
- "default": 0.5
42
- },
43
- {
44
- "name": "glmnet.s",
45
- "type": "uniform_float",
46
- "log": true,
47
- "lower": 0.00010000000000000009,
48
- "upper": 999.9999999999998,
49
- "default": 0.316227766
50
- },
51
- {
52
- "name": "ranger.min.node.size",
53
- "type": "uniform_int",
54
- "log": false,
55
- "lower": 1,
56
- "upper": 100,
57
- "default": 50
58
- },
59
- {
60
- "name": "ranger.mtry.ratio",
61
- "type": "uniform_float",
62
- "log": false,
63
- "lower": 0.0,
64
- "upper": 1.0,
65
- "default": 0.5
66
- },
67
- {
68
- "name": "ranger.num.trees",
69
- "type": "uniform_int",
70
- "log": false,
71
- "lower": 1,
72
- "upper": 2000,
73
- "default": 1000
74
- },
75
- {
76
- "name": "ranger.replace",
77
- "type": "categorical",
78
- "choices": [
79
- "TRUE",
80
- "FALSE"
81
- ],
82
- "default": "TRUE",
83
- "probabilities": null
84
- },
85
- {
86
- "name": "ranger.respect.unordered.factors",
87
- "type": "categorical",
88
- "choices": [
89
- "ignore",
90
- "order",
91
- "partition"
92
- ],
93
- "default": "ignore",
94
- "probabilities": null
95
- },
96
- {
97
- "name": "ranger.sample.fraction",
98
- "type": "uniform_float",
99
- "log": false,
100
- "lower": 0.1,
101
- "upper": 1.0,
102
- "default": 0.55
103
- },
104
- {
105
- "name": "ranger.splitrule",
106
- "type": "categorical",
107
- "choices": [
108
- "gini",
109
- "extratrees"
110
- ],
111
- "default": "gini",
112
- "probabilities": null
113
- },
114
- {
115
- "name": "rpart.cp",
116
- "type": "uniform_float",
117
- "log": true,
118
- "lower": 0.00010000000000000009,
119
- "upper": 1.0,
120
- "default": 0.01
121
- },
122
- {
123
- "name": "rpart.maxdepth",
124
- "type": "uniform_int",
125
- "log": false,
126
- "lower": 1,
127
- "upper": 30,
128
- "default": 16
129
- },
130
- {
131
- "name": "rpart.minbucket",
132
- "type": "uniform_int",
133
- "log": false,
134
- "lower": 1,
135
- "upper": 100,
136
- "default": 50
137
- },
138
- {
139
- "name": "rpart.minsplit",
140
- "type": "uniform_int",
141
- "log": false,
142
- "lower": 1,
143
- "upper": 100,
144
- "default": 50
145
- },
146
- {
147
- "name": "xgboost.alpha",
148
- "type": "uniform_float",
149
- "log": true,
150
- "lower": 0.00010000000000000009,
151
- "upper": 999.9999999999998,
152
- "default": 0.316227766
153
- },
154
- {
155
- "name": "xgboost.booster",
156
- "type": "categorical",
157
- "choices": [
158
- "gblinear",
159
- "gbtree",
160
- "dart"
161
- ],
162
- "default": "gblinear",
163
- "probabilities": null
164
- },
165
- {
166
- "name": "xgboost.lambda",
167
- "type": "uniform_float",
168
- "log": true,
169
- "lower": 0.00010000000000000009,
170
- "upper": 999.9999999999998,
171
- "default": 0.316227766
172
- },
173
- {
174
- "name": "xgboost.nrounds",
175
- "type": "uniform_int",
176
- "log": true,
177
- "lower": 3,
178
- "upper": 2000,
179
- "default": 77
180
- },
181
- {
182
- "name": "xgboost.subsample",
183
- "type": "uniform_float",
184
- "log": false,
185
- "lower": 0.1,
186
- "upper": 1.0,
187
- "default": 0.55
188
- },
189
- {
190
- "name": "ranger.num.random.splits",
191
- "type": "uniform_int",
192
- "log": false,
193
- "lower": 1,
194
- "upper": 100,
195
- "default": 50
196
- },
197
- {
198
- "name": "xgboost.colsample_bylevel",
199
- "type": "uniform_float",
200
- "log": false,
201
- "lower": 0.01,
202
- "upper": 1.0,
203
- "default": 0.505
204
- },
205
- {
206
- "name": "xgboost.colsample_bytree",
207
- "type": "uniform_float",
208
- "log": false,
209
- "lower": 0.01,
210
- "upper": 1.0,
211
- "default": 0.505
212
- },
213
- {
214
- "name": "xgboost.eta",
215
- "type": "uniform_float",
216
- "log": true,
217
- "lower": 0.00010000000000000009,
218
- "upper": 1.0,
219
- "default": 0.01
220
- },
221
- {
222
- "name": "xgboost.gamma",
223
- "type": "uniform_float",
224
- "log": true,
225
- "lower": 0.00010000000000000009,
226
- "upper": 6.999999999999999,
227
- "default": 0.0264575131
228
- },
229
- {
230
- "name": "xgboost.max_depth",
231
- "type": "uniform_int",
232
- "log": false,
233
- "lower": 1,
234
- "upper": 15,
235
- "default": 8
236
- },
237
- {
238
- "name": "xgboost.min_child_weight",
239
- "type": "uniform_float",
240
- "log": true,
241
- "lower": 2.718281828459045,
242
- "upper": 149.99999999999997,
243
- "default": 20.1926292064
244
- },
245
- {
246
- "name": "xgboost.rate_drop",
247
- "type": "uniform_float",
248
- "log": false,
249
- "lower": 0.0,
250
- "upper": 1.0,
251
- "default": 0.5
252
- },
253
- {
254
- "name": "xgboost.skip_drop",
255
- "type": "uniform_float",
256
- "log": false,
257
- "lower": 0.0,
258
- "upper": 1.0,
259
- "default": 0.5
260
- }
261
- ],
262
- "conditions": [
263
- {
264
- "child": "glmnet.alpha",
265
- "parent": "learner",
266
- "type": "EQ",
267
- "value": "glmnet"
268
- },
269
- {
270
- "child": "glmnet.s",
271
- "parent": "learner",
272
- "type": "EQ",
273
- "value": "glmnet"
274
- },
275
- {
276
- "child": "ranger.min.node.size",
277
- "parent": "learner",
278
- "type": "EQ",
279
- "value": "ranger"
280
- },
281
- {
282
- "child": "ranger.mtry.ratio",
283
- "parent": "learner",
284
- "type": "EQ",
285
- "value": "ranger"
286
- },
287
- {
288
- "child": "ranger.num.trees",
289
- "parent": "learner",
290
- "type": "EQ",
291
- "value": "ranger"
292
- },
293
- {
294
- "child": "ranger.replace",
295
- "parent": "learner",
296
- "type": "EQ",
297
- "value": "ranger"
298
- },
299
- {
300
- "child": "ranger.respect.unordered.factors",
301
- "parent": "learner",
302
- "type": "EQ",
303
- "value": "ranger"
304
- },
305
- {
306
- "child": "ranger.sample.fraction",
307
- "parent": "learner",
308
- "type": "EQ",
309
- "value": "ranger"
310
- },
311
- {
312
- "child": "ranger.splitrule",
313
- "parent": "learner",
314
- "type": "EQ",
315
- "value": "ranger"
316
- },
317
- {
318
- "child": "rpart.cp",
319
- "parent": "learner",
320
- "type": "EQ",
321
- "value": "rpart"
322
- },
323
- {
324
- "child": "rpart.maxdepth",
325
- "parent": "learner",
326
- "type": "EQ",
327
- "value": "rpart"
328
- },
329
- {
330
- "child": "rpart.minbucket",
331
- "parent": "learner",
332
- "type": "EQ",
333
- "value": "rpart"
334
- },
335
- {
336
- "child": "rpart.minsplit",
337
- "parent": "learner",
338
- "type": "EQ",
339
- "value": "rpart"
340
- },
341
- {
342
- "child": "xgboost.alpha",
343
- "parent": "learner",
344
- "type": "EQ",
345
- "value": "xgboost"
346
- },
347
- {
348
- "child": "xgboost.booster",
349
- "parent": "learner",
350
- "type": "EQ",
351
- "value": "xgboost"
352
- },
353
- {
354
- "child": "xgboost.lambda",
355
- "parent": "learner",
356
- "type": "EQ",
357
- "value": "xgboost"
358
- },
359
- {
360
- "child": "xgboost.nrounds",
361
- "parent": "learner",
362
- "type": "EQ",
363
- "value": "xgboost"
364
- },
365
- {
366
- "child": "xgboost.subsample",
367
- "parent": "learner",
368
- "type": "EQ",
369
- "value": "xgboost"
370
- },
371
- {
372
- "child": "ranger.num.random.splits",
373
- "type": "AND",
374
- "conditions": [
375
- {
376
- "child": "ranger.num.random.splits",
377
- "parent": "ranger.splitrule",
378
- "type": "EQ",
379
- "value": "extratrees"
380
- },
381
- {
382
- "child": "ranger.num.random.splits",
383
- "parent": "learner",
384
- "type": "EQ",
385
- "value": "ranger"
386
- }
387
- ]
388
- },
389
- {
390
- "child": "xgboost.colsample_bylevel",
391
- "type": "AND",
392
- "conditions": [
393
- {
394
- "child": "xgboost.colsample_bylevel",
395
- "parent": "xgboost.booster",
396
- "type": "IN",
397
- "values": [
398
- "dart",
399
- "gbtree"
400
- ]
401
- },
402
- {
403
- "child": "xgboost.colsample_bylevel",
404
- "parent": "learner",
405
- "type": "EQ",
406
- "value": "xgboost"
407
- }
408
- ]
409
- },
410
- {
411
- "child": "xgboost.colsample_bytree",
412
- "type": "AND",
413
- "conditions": [
414
- {
415
- "child": "xgboost.colsample_bytree",
416
- "parent": "xgboost.booster",
417
- "type": "IN",
418
- "values": [
419
- "dart",
420
- "gbtree"
421
- ]
422
- },
423
- {
424
- "child": "xgboost.colsample_bytree",
425
- "parent": "learner",
426
- "type": "EQ",
427
- "value": "xgboost"
428
- }
429
- ]
430
- },
431
- {
432
- "child": "xgboost.eta",
433
- "type": "AND",
434
- "conditions": [
435
- {
436
- "child": "xgboost.eta",
437
- "parent": "xgboost.booster",
438
- "type": "IN",
439
- "values": [
440
- "dart",
441
- "gbtree"
442
- ]
443
- },
444
- {
445
- "child": "xgboost.eta",
446
- "parent": "learner",
447
- "type": "EQ",
448
- "value": "xgboost"
449
- }
450
- ]
451
- },
452
- {
453
- "child": "xgboost.gamma",
454
- "type": "AND",
455
- "conditions": [
456
- {
457
- "child": "xgboost.gamma",
458
- "parent": "xgboost.booster",
459
- "type": "IN",
460
- "values": [
461
- "dart",
462
- "gbtree"
463
- ]
464
- },
465
- {
466
- "child": "xgboost.gamma",
467
- "parent": "learner",
468
- "type": "EQ",
469
- "value": "xgboost"
470
- }
471
- ]
472
- },
473
- {
474
- "child": "xgboost.max_depth",
475
- "type": "AND",
476
- "conditions": [
477
- {
478
- "child": "xgboost.max_depth",
479
- "parent": "xgboost.booster",
480
- "type": "IN",
481
- "values": [
482
- "dart",
483
- "gbtree"
484
- ]
485
- },
486
- {
487
- "child": "xgboost.max_depth",
488
- "parent": "learner",
489
- "type": "EQ",
490
- "value": "xgboost"
491
- }
492
- ]
493
- },
494
- {
495
- "child": "xgboost.min_child_weight",
496
- "type": "AND",
497
- "conditions": [
498
- {
499
- "child": "xgboost.min_child_weight",
500
- "parent": "xgboost.booster",
501
- "type": "IN",
502
- "values": [
503
- "dart",
504
- "gbtree"
505
- ]
506
- },
507
- {
508
- "child": "xgboost.min_child_weight",
509
- "parent": "learner",
510
- "type": "EQ",
511
- "value": "xgboost"
512
- }
513
- ]
514
- },
515
- {
516
- "child": "xgboost.rate_drop",
517
- "type": "AND",
518
- "conditions": [
519
- {
520
- "child": "xgboost.rate_drop",
521
- "parent": "xgboost.booster",
522
- "type": "EQ",
523
- "value": "dart"
524
- },
525
- {
526
- "child": "xgboost.rate_drop",
527
- "parent": "learner",
528
- "type": "EQ",
529
- "value": "xgboost"
530
- }
531
- ]
532
- },
533
- {
534
- "child": "xgboost.skip_drop",
535
- "type": "AND",
536
- "conditions": [
537
- {
538
- "child": "xgboost.skip_drop",
539
- "parent": "xgboost.booster",
540
- "type": "EQ",
541
- "value": "dart"
542
- },
543
- {
544
- "child": "xgboost.skip_drop",
545
- "parent": "learner",
546
- "type": "EQ",
547
- "value": "xgboost"
548
- }
549
- ]
550
- }
551
- ],
552
- "forbiddens": [],
553
- "python_module_version": "0.4.19",
554
- "json_format_version": 0.2
555
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yahpo-iaml_super/encoding.json DELETED
@@ -1 +0,0 @@
1
- {"learner": {"#na#": 0, "glmnet": 1, "ranger": 2, "rpart": 3, "xgboost": 4}, "ranger.replace": {"#na#": 0, "FALSE": 1, "TRUE": 2}, "ranger.respect.unordered.factors": {"#na#": 0, "ignore": 1, "order": 2, "partition": 3}, "ranger.splitrule": {"#na#": 0, "extratrees": 1, "gini": 2}, "task_id": {"#na#": 0, "1067": 1, "1489": 2, "40981": 3, "41146": 4}, "xgboost.booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}}
 
 
yahpo-iaml_super/metadata.json DELETED
@@ -1 +0,0 @@
1
- {"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
 
 
yahpo-iaml_super/model.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9318f8f985dcf068838b55bebe404f1d19b19717d2cc32cf0f6465cebc2eba46
3
- size 75816168
 
 
 
 
yahpo-iaml_super/param_set.R DELETED
@@ -1,88 +0,0 @@
1
- search_space = ps(
2
- learner = p_fct(levels = c("ranger", "glmnet", "xgboost", "rpart")),
3
- ranger.num.trees = p_int(lower = 1L, upper = 2000L, depends = learner == "ranger"),
4
- ranger.replace = p_lgl(depends = learner == "ranger"),
5
- ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1, depends = learner == "ranger"),
6
- ranger.mtry.ratio = p_dbl(lower = 0, upper = 1, depends = learner == "ranger"),
7
- ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition"), depends = learner == "ranger"),
8
- ranger.min.node.size = p_int(lower = 1L, upper = 100L, depends = learner == "ranger"),
9
- ranger.splitrule = p_fct(levels = c("gini", "extratrees"), depends = learner == "ranger"),
10
- ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees" && learner == "ranger"),
11
-
12
- glmnet.alpha = p_dbl(lower = 0, upper = 1, depends = learner == "glmnet"),
13
- glmnet.s = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "glmnet"),
14
-
15
- xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart"), depends = learner == "xgboost"),
16
- xgboost.nrounds = p_dbl(lower = 1, upper = log(2000), tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x))), depends = learner == "xgboost"),
17
- xgboost.eta = p_dbl(lower = log(1e-4), upper = 0, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
18
- xgboost.gamma = p_dbl(lower = log(1e-4), upper = log(7), tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
19
- xgboost.lambda = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "xgboost"),
20
- xgboost.alpha = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "xgboost"),
21
- xgboost.subsample = p_dbl(lower = 0.1, upper = 1, depends = learner == "xgboost"),
22
- xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
23
- xgboost.min_child_weight = p_dbl(lower = 1, upper = log(150), tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
24
- xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
25
- xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
26
- xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
27
- xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
28
-
29
- rpart.cp = p_dbl(lower = log(1e-4), upper = 0, tags = "log", trafo = function(x) exp(x), depends = learner == "rpart"),
30
- rpart.maxdepth = p_int(lower = 1L, upper = 30L, depends = learner == "rpart"),
31
- rpart.minbucket = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
32
- rpart.minsplit = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
33
-
34
- trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
35
- task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
36
- )
37
-
38
- domain = ps(
39
- learner = p_fct(levels = c("ranger", "glmnet", "xgboost", "rpart")),
40
- ranger.num.trees = p_int(lower = 1L, upper = 2000L, depends = learner == "ranger"),
41
- ranger.replace = p_lgl(depends = learner == "ranger"),
42
- ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1, depends = learner == "ranger"),
43
- ranger.mtry.ratio = p_dbl(lower = 0, upper = 1, depends = learner == "ranger"),
44
- ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition"), depends = learner == "ranger"),
45
- ranger.min.node.size = p_int(lower = 1L, upper = 100L, depends = learner == "ranger"),
46
- ranger.splitrule = p_fct(levels = c("gini", "extratrees"), depends = learner == "ranger"),
47
- ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees" && learner == "ranger"),
48
-
49
- glmnet.alpha = p_dbl(lower = 0, upper = 1, depends = learner == "glmnet"),
50
- glmnet.s = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "glmnet"),
51
-
52
- xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart"), depends = learner == "xgboost"),
53
- xgboost.nrounds = p_int(lower = 3, upper = 2000, depends = learner == "xgboost"),
54
- xgboost.eta = p_dbl(lower = 1e-4, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
55
- xgboost.gamma = p_dbl(lower = 1e-4, upper = 7, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
56
- xgboost.lambda = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "xgboost"),
57
- xgboost.alpha = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "xgboost"),
58
- xgboost.subsample = p_dbl(lower = 0.1, upper = 1, depends = learner == "xgboost"),
59
- xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
60
- xgboost.min_child_weight = p_dbl(lower = exp(1), upper = 150, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
61
- xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
62
- xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
63
- xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
64
- xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
65
-
66
- rpart.cp = p_dbl(lower = 1e-4, upper = 1, depends = learner == "rpart"),
67
- rpart.maxdepth = p_int(lower = 1L, upper = 30L, depends = learner == "rpart"),
68
- rpart.minbucket = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
69
- rpart.minsplit = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
70
-
71
- trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
72
- task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
73
- )
74
-
75
- codomain = ps(
76
- mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"),
77
- f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
78
- auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
79
- logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
80
- ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
81
- rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
82
- rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
83
- timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
84
- timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
85
- mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
86
- ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
87
- nf = p_dbl(lower = 0, upper = Inf, tags = "minimize")
88
- )