Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
syedkhalid076
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- sentiment-analysis-dataset
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
task_categories:
|
7 |
+
- text-classification
|
8 |
+
task_ids:
|
9 |
+
- sentiment-classification
|
10 |
+
tags:
|
11 |
+
- sentiment-analysis
|
12 |
+
- text-classification
|
13 |
+
- balanced-dataset
|
14 |
+
- oversampling
|
15 |
+
- csv
|
16 |
+
pretty_name: Sentiment Analysis Dataset (Unbalanced)
|
17 |
+
dataset_info:
|
18 |
+
features:
|
19 |
+
- name: text
|
20 |
+
dtype: string
|
21 |
+
- name: label
|
22 |
+
dtype: int64
|
23 |
+
splits:
|
24 |
+
- name: train
|
25 |
+
num_examples: 83989
|
26 |
+
- name: validation
|
27 |
+
num_examples: 10499
|
28 |
+
- name: test
|
29 |
+
num_examples: 10499
|
30 |
+
format: csv
|
31 |
+
---
|
32 |
+
|
33 |
+
|
34 |
+
# Sentiment Analysis Dataset
|
35 |
+
|
36 |
+
## Overview
|
37 |
+
|
38 |
+
This dataset is designed for sentiment analysis tasks, providing labeled examples across three sentiment categories:
|
39 |
+
- **0**: Negative
|
40 |
+
- **1**: Neutral
|
41 |
+
- **2**: Positive
|
42 |
+
|
43 |
+
It is suitable for training, validating, and testing text classification models in tasks such as social media sentiment analysis, customer feedback evaluation, and opinion mining.
|
44 |
+
|
45 |
+
---
|
46 |
+
|
47 |
+
## Dataset Details
|
48 |
+
|
49 |
+
### Key Features
|
50 |
+
|
51 |
+
- **Type**: CSV
|
52 |
+
- **Language**: English
|
53 |
+
- **Labels**:
|
54 |
+
- `0`: Negative
|
55 |
+
- `1`: Neutral
|
56 |
+
- `2`: Positive
|
57 |
+
- **Pre-processing**:
|
58 |
+
- Duplicates removed
|
59 |
+
- Null values removed
|
60 |
+
- Cleaned for consistency
|
61 |
+
|
62 |
+
### Dataset Split
|
63 |
+
|
64 |
+
| Split | Rows |
|
65 |
+
|--------------|--------|
|
66 |
+
| **Train** | 83,989 |
|
67 |
+
| **Validation** | 10,499 |
|
68 |
+
| **Test** | 10,499 |
|
69 |
+
|
70 |
+
### Format
|
71 |
+
|
72 |
+
Each row in the dataset consists of the following columns:
|
73 |
+
- `text`: The input text data (e.g., sentences, comments, or tweets).
|
74 |
+
- `label`: The corresponding sentiment label (`0`, `1`, or `2`).
|
75 |
+
|
76 |
+
---
|
77 |
+
|
78 |
+
## Usage
|
79 |
+
|
80 |
+
### Installation
|
81 |
+
|
82 |
+
Download the dataset from the [Hugging Face Hub](https://huggingface.co/datasets/your-dataset-path) or your preferred storage location.
|
83 |
+
|
84 |
+
### Loading the Dataset
|
85 |
+
|
86 |
+
#### Using Pandas
|
87 |
+
|
88 |
+
```python
|
89 |
+
import pandas as pd
|
90 |
+
|
91 |
+
# Load the train dataset
|
92 |
+
train_df = pd.read_csv("path_to_train.csv")
|
93 |
+
print(train_df.head())
|
94 |
+
|
95 |
+
# Columns: text, label
|
96 |
+
```
|
97 |
+
|
98 |
+
#### Using Hugging Face's `datasets` Library
|
99 |
+
|
100 |
+
```python
|
101 |
+
from datasets import load_dataset
|
102 |
+
|
103 |
+
# Load the dataset
|
104 |
+
dataset = load_dataset("your-dataset-path")
|
105 |
+
|
106 |
+
# Access splits
|
107 |
+
train_data = dataset["train"]
|
108 |
+
validation_data = dataset["validation"]
|
109 |
+
test_data = dataset["test"]
|
110 |
+
|
111 |
+
# Example: Printing a sample
|
112 |
+
print(train_data[0])
|
113 |
+
```
|
114 |
+
|
115 |
+
---
|
116 |
+
|
117 |
+
## Example Usage
|
118 |
+
|
119 |
+
Here’s an example of using the dataset to fine-tune a sentiment analysis model with the [Hugging Face Transformers](https://huggingface.co/transformers) library:
|
120 |
+
|
121 |
+
```python
|
122 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
123 |
+
from datasets import load_dataset
|
124 |
+
|
125 |
+
# Load dataset
|
126 |
+
dataset = load_dataset("your-dataset-path")
|
127 |
+
|
128 |
+
# Load model and tokenizer
|
129 |
+
model_name = "bert-base-uncased"
|
130 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
131 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
|
132 |
+
|
133 |
+
# Tokenize dataset
|
134 |
+
def tokenize_function(examples):
|
135 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
136 |
+
|
137 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
138 |
+
|
139 |
+
# Prepare training arguments
|
140 |
+
training_args = TrainingArguments(
|
141 |
+
output_dir="./results",
|
142 |
+
evaluation_strategy="epoch",
|
143 |
+
save_strategy="epoch",
|
144 |
+
learning_rate=2e-5,
|
145 |
+
per_device_train_batch_size=16,
|
146 |
+
num_train_epochs=3,
|
147 |
+
weight_decay=0.01,
|
148 |
+
load_best_model_at_end=True,
|
149 |
+
)
|
150 |
+
|
151 |
+
# Initialize Trainer
|
152 |
+
trainer = Trainer(
|
153 |
+
model=model,
|
154 |
+
args=training_args,
|
155 |
+
train_dataset=tokenized_datasets["train"],
|
156 |
+
eval_dataset=tokenized_datasets["validation"],
|
157 |
+
)
|
158 |
+
|
159 |
+
# Train model
|
160 |
+
trainer.train()
|
161 |
+
```
|
162 |
+
|
163 |
+
---
|
164 |
+
|
165 |
+
## Applications
|
166 |
+
|
167 |
+
This dataset can be used for:
|
168 |
+
1. **Social Media Sentiment Analysis**: Understand the sentiment of posts or tweets.
|
169 |
+
2. **Customer Feedback Analysis**: Evaluate reviews or feedback.
|
170 |
+
3. **Product Sentiment Trends**: Monitor public sentiment about products or services.
|
171 |
+
|
172 |
+
---
|
173 |
+
|
174 |
+
## License
|
175 |
+
|
176 |
+
This dataset is released under the **[Insert Your Chosen License Here]**. Ensure proper attribution if used in academic or commercial projects.
|
177 |
+
|
178 |
+
---
|
179 |
+
|
180 |
+
## Citation
|
181 |
+
|
182 |
+
If you use this dataset, please cite it as follows:
|
183 |
+
|
184 |
+
```
|
185 |
+
@dataset{your_name_2024,
|
186 |
+
title = {Sentiment Analysis Dataset},
|
187 |
+
author = {Syed Khalid Hussain},
|
188 |
+
year = {2024},
|
189 |
+
url = {https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis}
|
190 |
+
}
|
191 |
+
```
|
192 |
+
|
193 |
+
---
|
194 |
+
|
195 |
+
## Acknowledgments
|
196 |
+
|
197 |
+
This dataset was curated and processed by **Syed Khalid Hussain**. The author takes care to ensure high-quality data, enabling better model performance and reproducibility.
|
198 |
+
|
199 |
+
---
|
200 |
+
|
201 |
+
**Author**: Syed Khalid Hussain
|