swj0419 commited on
Commit
5387ec6
·
verified ·
1 Parent(s): 97a3114

Add comprehensive dataset card

Browse files
Files changed (1) hide show
  1. README.md +124 -35
README.md CHANGED
@@ -1,37 +1,126 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: prompt
5
- dtype: string
6
- - name: prompt_type
7
- dtype: string
8
- - name: choices
9
- sequence: string
10
- - name: answer_idx
11
- dtype: int64
12
- - name: completion
13
- dtype: string
14
- - name: id
15
- dtype: string
16
- splits:
17
- - name: train
18
- num_bytes: 164339986
19
- num_examples: 17158
20
- - name: validation
21
- num_bytes: 35359225
22
- num_examples: 3754
23
- - name: test
24
- num_bytes: 35126706
25
- num_examples: 3683
26
- download_size: 32988983
27
- dataset_size: 234825917
28
- configs:
29
- - config_name: default
30
- data_files:
31
- - split: train
32
- path: data/train-*
33
- - split: validation
34
- path: data/validation-*
35
- - split: test
36
- path: data/test-*
37
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ task_categories:
4
+ - question-answering
5
+ - multiple-choice
6
+ language:
7
+ - en
8
+ tags:
9
+ - medical
10
+ - healthcare
11
+ - ehr
12
+ - diagnosis
13
+ - medication
14
+ - clinical
15
+ size_categories:
16
+ - 10K<n<100K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
+
19
+ # Medical Question Answering Dataset (QA Pairs MVD 10K)
20
+
21
+ ## Dataset Description
22
+
23
+ This dataset contains medical question-answering tasks based on Electronic Health Record (EHR) data. The dataset focuses on three main prediction tasks in clinical settings:
24
+
25
+ 1. **Missing Medication MCQ**: Predicting which medication should be added to a patient's current regimen
26
+ 2. **Next Diagnosis MCQ**: Predicting the most likely future diagnosis for a patient
27
+ 3. **Next Measurement Value MCQ**: Predicting future laboratory or vital sign values
28
+
29
+ ## Dataset Structure
30
+
31
+ ### Data Splits
32
+
33
+ | Split | Examples |
34
+ |-------|----------|
35
+ | Train | 17,158 |
36
+ | Validation | 3,754 |
37
+ | Test | 3,683 |
38
+ | **Total** | **24,595** |
39
+
40
+ ### Data Fields
41
+
42
+ - `prompt`: The full question prompt including patient medical history
43
+ - `prompt_type`: Type of question (missing_medication_mcq, next_diagnosis_mcq, next_measurement_value_mcq)
44
+ - `choices`: List of multiple choice options (typically 5 options A-E)
45
+ - `answer_idx`: Index of the correct answer (0-based)
46
+ - `completion`: The correct answer choice letter (A, B, C, D, or E)
47
+ - `id`: Unique identifier for each example
48
+
49
+ ### Example
50
+
51
+ ```json
52
+ {
53
+ "prompt": "You are an assistant tasked with analyzing medical histories to determine which medication is missing from the patient's current regimen....",
54
+ "prompt_type": "missing_medication_mcq",
55
+ "choices": ["Cisplatin 50 MG Injection", "Tacrine 10 MG Oral Capsule", ...],
56
+ "answer_idx": 4,
57
+ "completion": "E",
58
+ "id": "2543984390693637980missing_medication_mcq"
59
+ }
60
+ ```
61
+
62
+ ## Task Types
63
+
64
+ ### 1. Missing Medication MCQ
65
+ Analyzes a patient's medical history including demographics, visits, measurements, procedures, and current medications to predict which medication should be added to their regimen.
66
+
67
+ ### 2. Next Diagnosis MCQ
68
+ Predicts the most likely future diagnosis based on a patient's medical trajectory and history.
69
+
70
+ ### 3. Next Measurement Value MCQ
71
+ Predicts future laboratory values or vital signs based on historical measurement trends.
72
+
73
+ ## Patient Data Structure
74
+
75
+ Each prompt includes structured patient data with:
76
+ - **Demographics**: Race, gender, year of birth
77
+ - **Visit History**: Outpatient visits, ER visits with dates
78
+ - **Measurements**: Height, weight, BMI, blood pressure, lab values with timestamps
79
+ - **Procedures**: Medical procedures performed with dates
80
+ - **Medications**: Current and past medications with start/end dates
81
+ - **Diagnoses**: Prior medical conditions with dates
82
+
83
+ ## Usage
84
+
85
+ ```python
86
+ from datasets import load_dataset
87
+
88
+ # Load the dataset
89
+ dataset = load_dataset("your_username/qa-pairs-mvd-10k")
90
+
91
+ # Access different splits
92
+ train_data = dataset['train']
93
+ val_data = dataset['validation']
94
+ test_data = dataset['test']
95
+
96
+ # Example usage
97
+ example = train_data[0]
98
+ print(f"Question type: {example['prompt_type']}")
99
+ print(f"Prompt: {example['prompt'][:200]}...")
100
+ print(f"Choices: {example['choices']}")
101
+ print(f"Correct answer: {example['completion']}")
102
+ ```
103
+
104
+ ## Ethical Considerations
105
+
106
+ This dataset contains synthetic or anonymized medical data. Users should:
107
+ - Ensure compliance with healthcare data regulations (HIPAA, etc.)
108
+ - Use the dataset responsibly for research and educational purposes
109
+ - Not use for actual medical diagnosis without proper validation
110
+ - Consider potential biases in the synthetic data generation process
111
+
112
+ ## Citation
113
+
114
+ If you use this dataset in your research, please cite:
115
+
116
+ ```bibtex
117
+ @dataset{qa_pairs_mvd_10k,
118
+ title={Medical Question Answering Dataset (QA Pairs MVD 10K)},
119
+ year={2024},
120
+ url={https://huggingface.co/datasets/your_username/qa-pairs-mvd-10k}
121
+ }
122
+ ```
123
+
124
+ ## License
125
+
126
+ This dataset is released under the MIT License.