Datasets:
Add comprehensive dataset card
Browse files
README.md
CHANGED
|
@@ -1,37 +1,126 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
- name: train
|
| 18 |
-
num_bytes: 164339986
|
| 19 |
-
num_examples: 17158
|
| 20 |
-
- name: validation
|
| 21 |
-
num_bytes: 35359225
|
| 22 |
-
num_examples: 3754
|
| 23 |
-
- name: test
|
| 24 |
-
num_bytes: 35126706
|
| 25 |
-
num_examples: 3683
|
| 26 |
-
download_size: 32988983
|
| 27 |
-
dataset_size: 234825917
|
| 28 |
-
configs:
|
| 29 |
-
- config_name: default
|
| 30 |
-
data_files:
|
| 31 |
-
- split: train
|
| 32 |
-
path: data/train-*
|
| 33 |
-
- split: validation
|
| 34 |
-
path: data/validation-*
|
| 35 |
-
- split: test
|
| 36 |
-
path: data/test-*
|
| 37 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- question-answering
|
| 5 |
+
- multiple-choice
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- medical
|
| 10 |
+
- healthcare
|
| 11 |
+
- ehr
|
| 12 |
+
- diagnosis
|
| 13 |
+
- medication
|
| 14 |
+
- clinical
|
| 15 |
+
size_categories:
|
| 16 |
+
- 10K<n<100K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
---
|
| 18 |
+
|
| 19 |
+
# Medical Question Answering Dataset (QA Pairs MVD 10K)
|
| 20 |
+
|
| 21 |
+
## Dataset Description
|
| 22 |
+
|
| 23 |
+
This dataset contains medical question-answering tasks based on Electronic Health Record (EHR) data. The dataset focuses on three main prediction tasks in clinical settings:
|
| 24 |
+
|
| 25 |
+
1. **Missing Medication MCQ**: Predicting which medication should be added to a patient's current regimen
|
| 26 |
+
2. **Next Diagnosis MCQ**: Predicting the most likely future diagnosis for a patient
|
| 27 |
+
3. **Next Measurement Value MCQ**: Predicting future laboratory or vital sign values
|
| 28 |
+
|
| 29 |
+
## Dataset Structure
|
| 30 |
+
|
| 31 |
+
### Data Splits
|
| 32 |
+
|
| 33 |
+
| Split | Examples |
|
| 34 |
+
|-------|----------|
|
| 35 |
+
| Train | 17,158 |
|
| 36 |
+
| Validation | 3,754 |
|
| 37 |
+
| Test | 3,683 |
|
| 38 |
+
| **Total** | **24,595** |
|
| 39 |
+
|
| 40 |
+
### Data Fields
|
| 41 |
+
|
| 42 |
+
- `prompt`: The full question prompt including patient medical history
|
| 43 |
+
- `prompt_type`: Type of question (missing_medication_mcq, next_diagnosis_mcq, next_measurement_value_mcq)
|
| 44 |
+
- `choices`: List of multiple choice options (typically 5 options A-E)
|
| 45 |
+
- `answer_idx`: Index of the correct answer (0-based)
|
| 46 |
+
- `completion`: The correct answer choice letter (A, B, C, D, or E)
|
| 47 |
+
- `id`: Unique identifier for each example
|
| 48 |
+
|
| 49 |
+
### Example
|
| 50 |
+
|
| 51 |
+
```json
|
| 52 |
+
{
|
| 53 |
+
"prompt": "You are an assistant tasked with analyzing medical histories to determine which medication is missing from the patient's current regimen....",
|
| 54 |
+
"prompt_type": "missing_medication_mcq",
|
| 55 |
+
"choices": ["Cisplatin 50 MG Injection", "Tacrine 10 MG Oral Capsule", ...],
|
| 56 |
+
"answer_idx": 4,
|
| 57 |
+
"completion": "E",
|
| 58 |
+
"id": "2543984390693637980missing_medication_mcq"
|
| 59 |
+
}
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
## Task Types
|
| 63 |
+
|
| 64 |
+
### 1. Missing Medication MCQ
|
| 65 |
+
Analyzes a patient's medical history including demographics, visits, measurements, procedures, and current medications to predict which medication should be added to their regimen.
|
| 66 |
+
|
| 67 |
+
### 2. Next Diagnosis MCQ
|
| 68 |
+
Predicts the most likely future diagnosis based on a patient's medical trajectory and history.
|
| 69 |
+
|
| 70 |
+
### 3. Next Measurement Value MCQ
|
| 71 |
+
Predicts future laboratory values or vital signs based on historical measurement trends.
|
| 72 |
+
|
| 73 |
+
## Patient Data Structure
|
| 74 |
+
|
| 75 |
+
Each prompt includes structured patient data with:
|
| 76 |
+
- **Demographics**: Race, gender, year of birth
|
| 77 |
+
- **Visit History**: Outpatient visits, ER visits with dates
|
| 78 |
+
- **Measurements**: Height, weight, BMI, blood pressure, lab values with timestamps
|
| 79 |
+
- **Procedures**: Medical procedures performed with dates
|
| 80 |
+
- **Medications**: Current and past medications with start/end dates
|
| 81 |
+
- **Diagnoses**: Prior medical conditions with dates
|
| 82 |
+
|
| 83 |
+
## Usage
|
| 84 |
+
|
| 85 |
+
```python
|
| 86 |
+
from datasets import load_dataset
|
| 87 |
+
|
| 88 |
+
# Load the dataset
|
| 89 |
+
dataset = load_dataset("your_username/qa-pairs-mvd-10k")
|
| 90 |
+
|
| 91 |
+
# Access different splits
|
| 92 |
+
train_data = dataset['train']
|
| 93 |
+
val_data = dataset['validation']
|
| 94 |
+
test_data = dataset['test']
|
| 95 |
+
|
| 96 |
+
# Example usage
|
| 97 |
+
example = train_data[0]
|
| 98 |
+
print(f"Question type: {example['prompt_type']}")
|
| 99 |
+
print(f"Prompt: {example['prompt'][:200]}...")
|
| 100 |
+
print(f"Choices: {example['choices']}")
|
| 101 |
+
print(f"Correct answer: {example['completion']}")
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
## Ethical Considerations
|
| 105 |
+
|
| 106 |
+
This dataset contains synthetic or anonymized medical data. Users should:
|
| 107 |
+
- Ensure compliance with healthcare data regulations (HIPAA, etc.)
|
| 108 |
+
- Use the dataset responsibly for research and educational purposes
|
| 109 |
+
- Not use for actual medical diagnosis without proper validation
|
| 110 |
+
- Consider potential biases in the synthetic data generation process
|
| 111 |
+
|
| 112 |
+
## Citation
|
| 113 |
+
|
| 114 |
+
If you use this dataset in your research, please cite:
|
| 115 |
+
|
| 116 |
+
```bibtex
|
| 117 |
+
@dataset{qa_pairs_mvd_10k,
|
| 118 |
+
title={Medical Question Answering Dataset (QA Pairs MVD 10K)},
|
| 119 |
+
year={2024},
|
| 120 |
+
url={https://huggingface.co/datasets/your_username/qa-pairs-mvd-10k}
|
| 121 |
+
}
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
## License
|
| 125 |
+
|
| 126 |
+
This dataset is released under the MIT License.
|