|
import os |
|
|
|
import datasets |
|
from typing import List |
|
import json |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
This is the dataset repository for SDU Dataset from SDU workshop at AAAI22. |
|
The dataset can help build sequence labelling models for the task Abbreviation Detection. |
|
""" |
|
|
|
class SDUtestConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Conll2003""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig forConll2003. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SDUtestConfig, self).__init__(**kwargs) |
|
|
|
|
|
class SDUtestConfig(datasets.GeneratorBasedBuilder): |
|
"""SDU Filtered dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SDUtestConfig(name="SDUtest", version=datasets.Version("0.0.2"), description="SDU test dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"B-O", |
|
"B-AC", |
|
"I-AC", |
|
"B-LF", |
|
"I-LF" |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
_URL = "https://huggingface.co/datasets/surrey-nlp/SDU-test/raw/main/" |
|
_URLS = { |
|
"train+dev": _URL + "sdu_data_trunc.json", |
|
|
|
|
|
} |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls_to_download = self._URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train+dev"]}), |
|
|
|
|
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath) as f: |
|
plod = json.load(f) |
|
for object in plod: |
|
id_ = int(object['id']) |
|
yield id_, { |
|
"id": str(id_), |
|
"tokens": object['tokens'], |
|
|
|
"ner_tags": object['ner_tags'], |
|
} |