autotrain-myspacerunner7 / autotrain_llm.py
superlazycoder's picture
Upload folder using huggingface_hub
eef7d29 verified
raw
history blame
4.18 kB
# -*- coding: utf-8 -*-
"""AutoTrain_LLM.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/github/huggingface/autotrain-advanced/blob/main/colabs/AutoTrain_LLM.ipynb
"""
#@title 🤗 AutoTrain LLM
#@markdown In order to use this colab
#@markdown - upload train.csv to a folder named `data/`
#@markdown - train.csv must contain a `text` column
#@markdown - choose a project name if you wish
#@markdown - change model if you wish, you can use most of the text-generation models from Hugging Face Hub
#@markdown - add huggingface information (token) if you wish to push trained model to huggingface hub
#@markdown - update hyperparameters if you wish
#@markdown - click `Runtime > Run all` or run each cell individually
#@markdown - report issues / feature requests here: https://github.com/huggingface/autotrain-advanced/issues
import os
!pip install -U autotrain-advanced > install_logs.txt
!autotrain setup --colab > setup_logs.txt
#@markdown ---
#@markdown #### Project Config
#@markdown Note: if you are using a restricted/private model, you need to enter your Hugging Face token in the next step.
project_name = 'my-autotrain-llm' # @param {type:"string"}
model_name = 'abhishek/llama-2-7b-hf-small-shards' # @param {type:"string"}
#@markdown ---
#@markdown #### Push to Hub?
#@markdown Use these only if you want to push your trained model to a private repo in your Hugging Face Account
#@markdown If you dont use these, the model will be saved in Google Colab and you are required to download it manually.
#@markdown Please enter your Hugging Face write token. The trained model will be saved to your Hugging Face account.
#@markdown You can find your token here: https://huggingface.co/settings/tokens
push_to_hub = False # @param ["False", "True"] {type:"raw"}
hf_token = "hf_XXX" #@param {type:"string"}
hf_username = "abc" #@param {type:"string"}
#@markdown ---
#@markdown #### Hyperparameters
learning_rate = 2e-4 # @param {type:"number"}
num_epochs = 1 #@param {type:"number"}
batch_size = 1 # @param {type:"slider", min:1, max:32, step:1}
block_size = 1024 # @param {type:"number"}
trainer = "sft" # @param ["default", "sft", "orpo"] {type:"raw"}
warmup_ratio = 0.1 # @param {type:"number"}
weight_decay = 0.01 # @param {type:"number"}
gradient_accumulation = 4 # @param {type:"number"}
mixed_precision = "fp16" # @param ["fp16", "bf16", "none"] {type:"raw"}
peft = True # @param ["False", "True"] {type:"raw"}
quantization = "int4" # @param ["int4", "int8", "none"] {type:"raw"}
lora_r = 16 #@param {type:"number"}
lora_alpha = 32 #@param {type:"number"}
lora_dropout = 0.05 #@param {type:"number"}
os.environ["PROJECT_NAME"] = project_name
os.environ["MODEL_NAME"] = model_name
os.environ["PUSH_TO_HUB"] = str(push_to_hub)
os.environ["HF_TOKEN"] = hf_token
os.environ["LEARNING_RATE"] = str(learning_rate)
os.environ["NUM_EPOCHS"] = str(num_epochs)
os.environ["BATCH_SIZE"] = str(batch_size)
os.environ["BLOCK_SIZE"] = str(block_size)
os.environ["WARMUP_RATIO"] = str(warmup_ratio)
os.environ["WEIGHT_DECAY"] = str(weight_decay)
os.environ["GRADIENT_ACCUMULATION"] = str(gradient_accumulation)
os.environ["MIXED_PRECISION"] = str(mixed_precision)
os.environ["PEFT"] = str(peft)
os.environ["QUANTIZATION"] = str(quantization)
os.environ["LORA_R"] = str(lora_r)
os.environ["LORA_ALPHA"] = str(lora_alpha)
os.environ["LORA_DROPOUT"] = str(lora_dropout)
os.environ["HF_USERNAME"] = hf_username
os.environ["TRAINER"] = trainer
!autotrain llm \
--train \
--model ${MODEL_NAME} \
--project-name ${PROJECT_NAME} \
--data-path data/ \
--text-column text \
--lr ${LEARNING_RATE} \
--batch-size ${BATCH_SIZE} \
--epochs ${NUM_EPOCHS} \
--block-size ${BLOCK_SIZE} \
--warmup-ratio ${WARMUP_RATIO} \
--lora-r ${LORA_R} \
--lora-alpha ${LORA_ALPHA} \
--lora-dropout ${LORA_DROPOUT} \
--weight-decay ${WEIGHT_DECAY} \
--gradient-accumulation ${GRADIENT_ACCUMULATION} \
--quantization ${QUANTIZATION} \
--mixed-precision ${MIXED_PRECISION} \
--username ${HF_USERNAME} \
--trainer ${TRAINER} \
$( [[ "$PEFT" == "True" ]] && echo "--peft" ) \
$( [[ "$PUSH_TO_HUB" == "True" ]] && echo "--push-to-hub --token ${HF_TOKEN}" )