Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
fact-checking
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
stance-detection
License:
more split stuff
Browse files- rumoureval2019_val.csv +0 -0
- rumoureval_2019.py +26 -64
rumoureval2019_val.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rumoureval_2019.py
CHANGED
@@ -45,95 +45,57 @@ _HOMEPAGE = ""
|
|
45 |
# TODO: Add the licence for the dataset here if you can find it
|
46 |
_LICENSE = ""
|
47 |
|
48 |
-
# TODO: Add link to the official dataset URLs here
|
49 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
50 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
51 |
-
_URLS = {
|
52 |
-
"train": "rumoureval2019_train.csv",
|
53 |
-
"validation": "NA",
|
54 |
-
}
|
55 |
-
|
56 |
-
|
57 |
-
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
58 |
class RumourEval2019(datasets.GeneratorBasedBuilder):
|
59 |
"""TODO: Short description of my dataset."""
|
60 |
|
61 |
-
VERSION = datasets.Version("
|
62 |
-
|
63 |
-
# This is an example of a dataset with multiple configurations.
|
64 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
65 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
66 |
-
|
67 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
68 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
69 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
70 |
|
71 |
-
# You will be able to load one or the other configurations in the following list with
|
72 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
73 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
74 |
BUILDER_CONFIGS = [
|
75 |
-
datasets.BuilderConfig(name="train", version=VERSION, description="Training"),
|
76 |
-
datasets.BuilderConfig(name="validation", version=VERSION, description="Validation")
|
|
|
77 |
]
|
78 |
-
|
79 |
-
DEFAULT_CONFIG_NAME = "train" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
80 |
-
|
81 |
def _info(self):
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
# These are the features of your dataset like images, labels ...
|
98 |
-
}
|
99 |
-
)
|
100 |
|
101 |
return datasets.DatasetInfo(
|
102 |
-
# This is the description that will appear on the datasets page.
|
103 |
description=_DESCRIPTION,
|
104 |
-
|
105 |
-
features=features, # Here we define them above because they are different between the two configurations
|
106 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
107 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
108 |
-
# supervised_keys=("sentence", "label"),
|
109 |
-
# Homepage of the dataset for documentation
|
110 |
homepage=_HOMEPAGE,
|
111 |
-
# License for the dataset if available
|
112 |
license=_LICENSE,
|
113 |
-
# Citation for the dataset
|
114 |
citation=_CITATION,
|
115 |
)
|
116 |
|
117 |
def _split_generators(self, dl_manager):
|
118 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
119 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
120 |
-
|
121 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
122 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
123 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
124 |
-
urls = _URLS[self.config.name]
|
125 |
train_text = dl_manager.download_and_extract("rumoureval2019_train.csv")
|
|
|
126 |
return [
|
127 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": "train"})
|
|
|
128 |
]
|
129 |
|
130 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
131 |
def _generate_examples(self, filepath, split):
|
132 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
133 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
134 |
-
if split == "train":
|
135 |
with open(filepath, encoding="utf-8") as f:
|
136 |
-
reader = csv.DictReader(f, delimiter=","
|
137 |
guid = 0
|
138 |
for instance in reader:
|
139 |
instance["source_text"] = instance.pop("source_text")
|
|
|
45 |
# TODO: Add the licence for the dataset here if you can find it
|
46 |
_LICENSE = ""
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
class RumourEval2019(datasets.GeneratorBasedBuilder):
|
49 |
"""TODO: Short description of my dataset."""
|
50 |
|
51 |
+
VERSION = datasets.Version("0.9.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
53 |
BUILDER_CONFIGS = [
|
54 |
+
datasets.BuilderConfig(name="train", version=VERSION, description="Training data for RumourEval 2019"),
|
55 |
+
datasets.BuilderConfig(name="validation", version=VERSION, description="Validation data for RumourEval 2019"),
|
56 |
+
datasets.BuilderConfig(name="test", version=VERSION, description="Testing data for RumourEval 2019")
|
57 |
]
|
58 |
+
|
|
|
|
|
59 |
def _info(self):
|
60 |
+
features = datasets.Features(
|
61 |
+
{
|
62 |
+
"id": datasets.Value("string"),
|
63 |
+
"source_text": datasets.Value("string"),
|
64 |
+
"reply_text": datasets.Value("string"),
|
65 |
+
"label": datasets.features.ClassLabel(
|
66 |
+
names=[
|
67 |
+
"support",
|
68 |
+
"query",
|
69 |
+
"deny",
|
70 |
+
"comment"
|
71 |
+
]
|
72 |
+
)
|
73 |
+
}
|
74 |
+
)
|
|
|
|
|
|
|
75 |
|
76 |
return datasets.DatasetInfo(
|
|
|
77 |
description=_DESCRIPTION,
|
78 |
+
features=features,
|
|
|
|
|
|
|
|
|
|
|
79 |
homepage=_HOMEPAGE,
|
|
|
80 |
license=_LICENSE,
|
|
|
81 |
citation=_CITATION,
|
82 |
)
|
83 |
|
84 |
def _split_generators(self, dl_manager):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
train_text = dl_manager.download_and_extract("rumoureval2019_train.csv")
|
86 |
+
validation_text = dl_manager.download_and_extract("rumoureval2019_val.csv")
|
87 |
return [
|
88 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": "train"}),
|
89 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_text, "split": "validation"})
|
90 |
]
|
91 |
|
92 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
93 |
def _generate_examples(self, filepath, split):
|
94 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
95 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
96 |
+
if split == "train" or split == "validation":
|
97 |
with open(filepath, encoding="utf-8") as f:
|
98 |
+
reader = csv.DictReader(f, delimiter=",")
|
99 |
guid = 0
|
100 |
for instance in reader:
|
101 |
instance["source_text"] = instance.pop("source_text")
|