Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
leondz commited on
Commit
46637c4
1 Parent(s): 6a5b9e3

add metadata

Browse files
Files changed (2) hide show
  1. README.md +216 -0
  2. dataset_infos.json +1 -0
README.md ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - ar
8
+ - da
9
+ - en
10
+ - gr
11
+ - tr
12
+ licenses:
13
+ - cc-by-4.0
14
+ multilinguality:
15
+ - multilingual
16
+ pretty_name: OffensEval 2020
17
+ size_categories:
18
+ - 10K<n<100K
19
+ source_datasets:
20
+ - original
21
+ task_categories:
22
+ - text-classification
23
+ task_ids:
24
+ - hate-speech-detection
25
+ extra_gated_prompt: "Warning: this repository contains harmful content (abusive language, hate speech)."
26
+ ---
27
+
28
+ # Dataset Card for "offenseval_2020"
29
+
30
+ ## Table of Contents
31
+ - [Dataset Description](#dataset-description)
32
+ - [Dataset Summary](#dataset-summary)
33
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
34
+ - [Languages](#languages)
35
+ - [Dataset Structure](#dataset-structure)
36
+ - [Data Instances](#data-instances)
37
+ - [Data Fields](#data-fields)
38
+ - [Data Splits](#data-splits)
39
+ - [Dataset Creation](#dataset-creation)
40
+ - [Curation Rationale](#curation-rationale)
41
+ - [Source Data](#source-data)
42
+ - [Annotations](#annotations)
43
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
44
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
45
+ - [Social Impact of Dataset](#social-impact-of-dataset)
46
+ - [Discussion of Biases](#discussion-of-biases)
47
+ - [Other Known Limitations](#other-known-limitations)
48
+ - [Additional Information](#additional-information)
49
+ - [Dataset Curators](#dataset-curators)
50
+ - [Licensing Information](#licensing-information)
51
+ - [Citation Information](#citation-information)
52
+ - [Contributions](#contributions)
53
+
54
+ ## Dataset Description
55
+
56
+ - **Homepage:** https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission
57
+ - **Repository:**
58
+ - **Paper:** [https://aclanthology.org/2020.semeval-1.188/](https://aclanthology.org/2020.semeval-1.188/)
59
+ - **Point of Contact:** [Leon Derczynski](https://github.com/leondz)
60
+ - **Size of downloaded dataset files:** 769.21 KiB
61
+ - **Size of the generated dataset:** 1.06 MiB
62
+ - **Total amount of disk used:** 1.85 MiB
63
+
64
+ ### Dataset Summary
65
+
66
+ This is an abusive/offensive language detection dataset for Albanian. The data is formatted
67
+ following the OffensEval convention, with three tasks:
68
+
69
+ * Subtask A: Offensive (OFF) or not (NOT)
70
+ * Subtask B: Untargeted (UNT) or targeted insult (TIN)
71
+ * Subtask C: Type of target: individual (IND), group (GRP), or other (OTH)
72
+
73
+ Notes on the above:
74
+
75
+ * The subtask A field should always be filled.
76
+ * The subtask B field should only be filled if there's "offensive" (OFF) in A.
77
+ * The subtask C field should only be filled if there's "targeted" (TIN) in B.
78
+
79
+ The dataset name is a backronym, also standing for "Spoken Hate in the Albanian Jargon"
80
+
81
+ See the paper [https://arxiv.org/abs/2107.13592](https://arxiv.org/abs/2107.13592) for full details.
82
+
83
+ ### Supported Tasks and Leaderboards
84
+
85
+ * [OffensEval 2020](https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission)
86
+
87
+ ### Languages
88
+
89
+ Albanian (`bcp47:sq-AL`)
90
+
91
+ ## Dataset Structure
92
+
93
+ There are five named configs, one per language:
94
+
95
+ * `ar` Arabic
96
+ * `da` Danish
97
+ * `en` English
98
+ * `gr` Greek
99
+ * `tr` Turkish
100
+
101
+ The training data for English is absent - this is 9M tweets that need to be rehydrated on their own. See [https://zenodo.org/record/3950379#.XxZ-aFVKipp](https://zenodo.org/record/3950379#.XxZ-aFVKipp)
102
+
103
+ ### Data Instances
104
+
105
+
106
+ An example of 'train' looks as follows.
107
+
108
+ ```
109
+ {
110
+ 'id': '0',
111
+ 'text': 'PLACEHOLDER TEXT',
112
+ 'subtask_a': 1,
113
+ }
114
+ ```
115
+
116
+
117
+ ### Data Fields
118
+
119
+ - `id`: a `string` feature.
120
+ - `text`: a `string`.
121
+ - `subtask_a`: whether or not the instance is offensive; `0: NOT, 1: OFF`
122
+
123
+
124
+ ### Data Splits
125
+
126
+ | name |train|test|
127
+ |---------|----:|---:|
128
+ |ar|7839|1827|
129
+ |da|2961|329|
130
+ |en|0|3887|
131
+ |gr|8743|1544|
132
+ |tr|31277|3515|
133
+
134
+ ## Dataset Creation
135
+
136
+ ### Curation Rationale
137
+
138
+ Collecting data for abusive language classification. Different rational for each dataset.
139
+
140
+ ### Source Data
141
+
142
+ #### Initial Data Collection and Normalization
143
+
144
+ Varies per language dataset
145
+
146
+ #### Who are the source language producers?
147
+
148
+ Social media users
149
+
150
+ ### Annotations
151
+
152
+ #### Annotation process
153
+
154
+ Varies per language dataset
155
+
156
+ #### Who are the annotators?
157
+
158
+ Varies per language dataset; native speakers
159
+
160
+ ### Personal and Sensitive Information
161
+
162
+ The data was public at the time of collection. No PII removal has been performed.
163
+
164
+ ## Considerations for Using the Data
165
+
166
+ ### Social Impact of Dataset
167
+
168
+ The data definitely contains abusive language. The data could be used to develop and propagate offensive language against every target group involved, i.e. ableism, racism, sexism, ageism, and so on.
169
+
170
+ ### Discussion of Biases
171
+
172
+
173
+ ### Other Known Limitations
174
+
175
+
176
+ ## Additional Information
177
+
178
+ ### Dataset Curators
179
+
180
+ The datasets is curated by each sub-part's paper authors.
181
+
182
+ ### Licensing Information
183
+
184
+ This data is available and distributed under Creative Commons attribution license, CC-BY 4.0.
185
+
186
+ ### Citation Information
187
+
188
+ ```
189
+ @inproceedings{zampieri-etal-2020-semeval,
190
+ title = "{S}em{E}val-2020 Task 12: Multilingual Offensive Language Identification in Social Media ({O}ffens{E}val 2020)",
191
+ author = {Zampieri, Marcos and
192
+ Nakov, Preslav and
193
+ Rosenthal, Sara and
194
+ Atanasova, Pepa and
195
+ Karadzhov, Georgi and
196
+ Mubarak, Hamdy and
197
+ Derczynski, Leon and
198
+ Pitenis, Zeses and
199
+ {\c{C}}{\"o}ltekin, {\c{C}}a{\u{g}}r{\i}},
200
+ booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
201
+ month = dec,
202
+ year = "2020",
203
+ address = "Barcelona (online)",
204
+ publisher = "International Committee for Computational Linguistics",
205
+ url = "https://aclanthology.org/2020.semeval-1.188",
206
+ doi = "10.18653/v1/2020.semeval-1.188",
207
+ pages = "1425--1447",
208
+ abstract = "We present the results and the main findings of SemEval-2020 Task 12 on Multilingual Offensive Language Identification in Social Media (OffensEval-2020). The task included three subtasks corresponding to the hierarchical taxonomy of the OLID schema from OffensEval-2019, and it was offered in five languages: Arabic, Danish, English, Greek, and Turkish. OffensEval-2020 was one of the most popular tasks at SemEval-2020, attracting a large number of participants across all subtasks and languages: a total of 528 teams signed up to participate in the task, 145 teams submitted official runs on the test data, and 70 teams submitted system description papers.",
209
+ }
210
+
211
+ ```
212
+
213
+
214
+ ### Contributions
215
+
216
+ Author-added dataset [@leondz](https://github.com/leondz)
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ar": {"description": "OffensEval 2020 features a multilingual dataset with five languages. The languages included in OffensEval 2020 are:\n\n* Arabic\n* Danish\n* English\n* Greek\n* Turkish\n\nThe annotation follows the hierarchical tagset proposed in the Offensive Language Identification Dataset (OLID) and used in OffensEval 2019. \nIn this taxonomy we break down offensive content into the following three sub-tasks taking the type and target of offensive content into account. \nThe following sub-tasks were organized:\n\n* Sub-task A - Offensive language identification;\n* Sub-task B - Automatic categorization of offense types;\n* Sub-task C - Offense target identification.\n\nThe English training data isn't included here (the text isn't available and needs rehydration of 9 million tweets; \nsee [https://zenodo.org/record/3950379#.XxZ-aFVKipp](https://zenodo.org/record/3950379#.XxZ-aFVKipp))\n", "citation": "@inproceedings{zampieri-etal-2020-semeval,\n title = \"{S}em{E}val-2020 Task 12: Multilingual Offensive Language Identification in Social Media ({O}ffens{E}val 2020)\",\n author = {Zampieri, Marcos and\n Nakov, Preslav and\n Rosenthal, Sara and\n Atanasova, Pepa and\n Karadzhov, Georgi and\n Mubarak, Hamdy and\n Derczynski, Leon and\n Pitenis, Zeses and\n Coltekin, Cagri,\n booktitle = \"Proceedings of the Fourteenth Workshop on Semantic Evaluation\",\n month = dec,\n year = \"2020\",\n address = \"Barcelona (online)\",\n publisher = \"International Committee for Computational Linguistics\",\n url = \"https://aclanthology.org/2020.semeval-1.188\",\n doi = \"10.18653/v1/2020.semeval-1.188\",\n pages = \"1425--1447\",\n}\n", "homepage": "https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "original_id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "subtask_a": {"num_classes": 2, "names": ["OFF", "NOT"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "offens_eval2020", "config_name": "ar", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1651115, "num_examples": 7839, "dataset_name": "offens_eval2020"}, "test": {"name": "test", "num_bytes": 411693, "num_examples": 1827, "dataset_name": "offens_eval2020"}}, "download_checksums": {"offenseval-ar-training-v1.tsv": {"num_bytes": 1511224, "checksum": "85508d9048ecd096f74a3cb44256191b5174b938a6b81b89a420bc35d8947f8b"}, "offenseval-ar-labela-v1.csv": {"num_bytes": 18001, "checksum": "a6bdef49799f4578343cf081ce324cb27a6c4aaa98e5dc0f3c73421be416b278"}, "offenseval-ar-test-v1.tsv": {"num_bytes": 372636, "checksum": "7111d80e3c0b2b54110de0388720652e2ccb3ecfcc45621c8d75fce6d49d0c8b"}}, "download_size": 1901861, "post_processing_size": null, "dataset_size": 2062808, "size_in_bytes": 3964669}, "da": {"description": "OffensEval 2020 features a multilingual dataset with five languages. The languages included in OffensEval 2020 are:\n\n* Arabic\n* Danish\n* English\n* Greek\n* Turkish\n\nThe annotation follows the hierarchical tagset proposed in the Offensive Language Identification Dataset (OLID) and used in OffensEval 2019. \nIn this taxonomy we break down offensive content into the following three sub-tasks taking the type and target of offensive content into account. \nThe following sub-tasks were organized:\n\n* Sub-task A - Offensive language identification;\n* Sub-task B - Automatic categorization of offense types;\n* Sub-task C - Offense target identification.\n\nThe English training data isn't included here (the text isn't available and needs rehydration of 9 million tweets; \nsee [https://zenodo.org/record/3950379#.XxZ-aFVKipp](https://zenodo.org/record/3950379#.XxZ-aFVKipp))\n", "citation": "@inproceedings{zampieri-etal-2020-semeval,\n title = \"{S}em{E}val-2020 Task 12: Multilingual Offensive Language Identification in Social Media ({O}ffens{E}val 2020)\",\n author = {Zampieri, Marcos and\n Nakov, Preslav and\n Rosenthal, Sara and\n Atanasova, Pepa and\n Karadzhov, Georgi and\n Mubarak, Hamdy and\n Derczynski, Leon and\n Pitenis, Zeses and\n Coltekin, Cagri,\n booktitle = \"Proceedings of the Fourteenth Workshop on Semantic Evaluation\",\n month = dec,\n year = \"2020\",\n address = \"Barcelona (online)\",\n publisher = \"International Committee for Computational Linguistics\",\n url = \"https://aclanthology.org/2020.semeval-1.188\",\n doi = \"10.18653/v1/2020.semeval-1.188\",\n pages = \"1425--1447\",\n}\n", "homepage": "https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "original_id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "subtask_a": {"num_classes": 2, "names": ["OFF", "NOT"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "offens_eval2020", "config_name": "da", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 398697, "num_examples": 2961, "dataset_name": "offens_eval2020"}, "test": {"name": "test", "num_bytes": 38372, "num_examples": 329, "dataset_name": "offens_eval2020"}}, "download_checksums": {"offenseval-da-training-v1.tsv": {"num_bytes": 345829, "checksum": "4701ddcccf3b438dce370a4467f6e37ae489822a22eeeeffe27ad4f2020c63c3"}, "offenseval-da-labela-v1.csv": {"num_bytes": 2829, "checksum": "132212843033d68136bfe4f6621fed72d1848d3f500201ff3f8670e15ba81de8"}, "offenseval-da-test-v1.tsv": {"num_bytes": 31588, "checksum": "f96deeeb2df72d079145934681ccd20dff6453663fdc8d410a0bdd5a83493232"}}, "download_size": 380246, "post_processing_size": null, "dataset_size": 437069, "size_in_bytes": 817315}, "en": {"description": "OffensEval 2020 features a multilingual dataset with five languages. The languages included in OffensEval 2020 are:\n\n* Arabic\n* Danish\n* English\n* Greek\n* Turkish\n\nThe annotation follows the hierarchical tagset proposed in the Offensive Language Identification Dataset (OLID) and used in OffensEval 2019. \nIn this taxonomy we break down offensive content into the following three sub-tasks taking the type and target of offensive content into account. \nThe following sub-tasks were organized:\n\n* Sub-task A - Offensive language identification;\n* Sub-task B - Automatic categorization of offense types;\n* Sub-task C - Offense target identification.\n\nThe English training data isn't included here (the text isn't available and needs rehydration of 9 million tweets; \nsee [https://zenodo.org/record/3950379#.XxZ-aFVKipp](https://zenodo.org/record/3950379#.XxZ-aFVKipp))\n", "citation": "@inproceedings{zampieri-etal-2020-semeval,\n title = \"{S}em{E}val-2020 Task 12: Multilingual Offensive Language Identification in Social Media ({O}ffens{E}val 2020)\",\n author = {Zampieri, Marcos and\n Nakov, Preslav and\n Rosenthal, Sara and\n Atanasova, Pepa and\n Karadzhov, Georgi and\n Mubarak, Hamdy and\n Derczynski, Leon and\n Pitenis, Zeses and\n Coltekin, Cagri,\n booktitle = \"Proceedings of the Fourteenth Workshop on Semantic Evaluation\",\n month = dec,\n year = \"2020\",\n address = \"Barcelona (online)\",\n publisher = \"International Committee for Computational Linguistics\",\n url = \"https://aclanthology.org/2020.semeval-1.188\",\n doi = \"10.18653/v1/2020.semeval-1.188\",\n pages = \"1425--1447\",\n}\n", "homepage": "https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "original_id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "subtask_a": {"num_classes": 2, "names": ["OFF", "NOT"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "offens_eval2020", "config_name": "en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 0, "num_examples": 0, "dataset_name": "offens_eval2020"}, "test": {"name": "test", "num_bytes": 421743, "num_examples": 3887, "dataset_name": "offens_eval2020"}}, "download_checksums": {"offenseval-en-training-v1.tsv": {"num_bytes": 23, "checksum": "2f49126e616d2d2c2e4d859f91be555e0b06b8c09b2cbe9112c24030f1ef1c99"}, "offenseval-en-labela-v1.csv": {"num_bytes": 37760, "checksum": "1c5de13022a8ff6dff2c513efe144f7267ce9df9cf6edef1ef62dcd138f23658"}, "offenseval-en-test-v1.tsv": {"num_bytes": 337449, "checksum": "ae60a2a7d493fb27271b462b472d6ef60d61551aa89ce5dcff41258bd45823ea"}}, "download_size": 375232, "post_processing_size": null, "dataset_size": 421743, "size_in_bytes": 796975}, "gr": {"description": "OffensEval 2020 features a multilingual dataset with five languages. The languages included in OffensEval 2020 are:\n\n* Arabic\n* Danish\n* English\n* Greek\n* Turkish\n\nThe annotation follows the hierarchical tagset proposed in the Offensive Language Identification Dataset (OLID) and used in OffensEval 2019. \nIn this taxonomy we break down offensive content into the following three sub-tasks taking the type and target of offensive content into account. \nThe following sub-tasks were organized:\n\n* Sub-task A - Offensive language identification;\n* Sub-task B - Automatic categorization of offense types;\n* Sub-task C - Offense target identification.\n\nThe English training data isn't included here (the text isn't available and needs rehydration of 9 million tweets; \nsee [https://zenodo.org/record/3950379#.XxZ-aFVKipp](https://zenodo.org/record/3950379#.XxZ-aFVKipp))\n", "citation": "@inproceedings{zampieri-etal-2020-semeval,\n title = \"{S}em{E}val-2020 Task 12: Multilingual Offensive Language Identification in Social Media ({O}ffens{E}val 2020)\",\n author = {Zampieri, Marcos and\n Nakov, Preslav and\n Rosenthal, Sara and\n Atanasova, Pepa and\n Karadzhov, Georgi and\n Mubarak, Hamdy and\n Derczynski, Leon and\n Pitenis, Zeses and\n Coltekin, Cagri,\n booktitle = \"Proceedings of the Fourteenth Workshop on Semantic Evaluation\",\n month = dec,\n year = \"2020\",\n address = \"Barcelona (online)\",\n publisher = \"International Committee for Computational Linguistics\",\n url = \"https://aclanthology.org/2020.semeval-1.188\",\n doi = \"10.18653/v1/2020.semeval-1.188\",\n pages = \"1425--1447\",\n}\n", "homepage": "https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "original_id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "subtask_a": {"num_classes": 2, "names": ["OFF", "NOT"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "offens_eval2020", "config_name": "gr", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1864006, "num_examples": 8743, "dataset_name": "offens_eval2020"}, "test": {"name": "test", "num_bytes": 333232, "num_examples": 1544, "dataset_name": "offens_eval2020"}}, "download_checksums": {"offenseval-gr-training-v1.tsv": {"num_bytes": 1718398, "checksum": "ced53064ea556009f8725c5c6ab5ad246579420a2ad2a8502d74a16f7ef8cf0d"}, "offenseval-gr-labela-v1.csv": {"num_bytes": 13757, "checksum": "78ccbe32fae6938200c61a62df1abd8aa3b438e5e53b3f7ea63dbc83b89e238b"}, "offenseval-gr-test-v1.tsv": {"num_bytes": 300740, "checksum": "b69b3f98feb0fbde0f8070462f2eab96db5a435959c9b83c1c3526dd8d82e1b8"}}, "download_size": 2032895, "post_processing_size": null, "dataset_size": 2197238, "size_in_bytes": 4230133}, "tr": {"description": "OffensEval 2020 features a multilingual dataset with five languages. The languages included in OffensEval 2020 are:\n\n* Arabic\n* Danish\n* English\n* Greek\n* Turkish\n\nThe annotation follows the hierarchical tagset proposed in the Offensive Language Identification Dataset (OLID) and used in OffensEval 2019. \nIn this taxonomy we break down offensive content into the following three sub-tasks taking the type and target of offensive content into account. \nThe following sub-tasks were organized:\n\n* Sub-task A - Offensive language identification;\n* Sub-task B - Automatic categorization of offense types;\n* Sub-task C - Offense target identification.\n\nThe English training data isn't included here (the text isn't available and needs rehydration of 9 million tweets; \nsee [https://zenodo.org/record/3950379#.XxZ-aFVKipp](https://zenodo.org/record/3950379#.XxZ-aFVKipp))\n", "citation": "@inproceedings{zampieri-etal-2020-semeval,\n title = \"{S}em{E}val-2020 Task 12: Multilingual Offensive Language Identification in Social Media ({O}ffens{E}val 2020)\",\n author = {Zampieri, Marcos and\n Nakov, Preslav and\n Rosenthal, Sara and\n Atanasova, Pepa and\n Karadzhov, Georgi and\n Mubarak, Hamdy and\n Derczynski, Leon and\n Pitenis, Zeses and\n Coltekin, Cagri,\n booktitle = \"Proceedings of the Fourteenth Workshop on Semantic Evaluation\",\n month = dec,\n year = \"2020\",\n address = \"Barcelona (online)\",\n publisher = \"International Committee for Computational Linguistics\",\n url = \"https://aclanthology.org/2020.semeval-1.188\",\n doi = \"10.18653/v1/2020.semeval-1.188\",\n pages = \"1425--1447\",\n}\n", "homepage": "https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "original_id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "subtask_a": {"num_classes": 2, "names": ["OFF", "NOT"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "offens_eval2020", "config_name": "tr", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4684302, "num_examples": 31277, "dataset_name": "offens_eval2020"}, "test": {"name": "test", "num_bytes": 525706, "num_examples": 3515, "dataset_name": "offens_eval2020"}}, "download_checksums": {"offenseval-tr-training-v1.tsv": {"num_bytes": 4101728, "checksum": "8509c01c4bf387d9e387c4637829585431cc045adaf7d0413c0022bf2bcd4baa"}, "offenseval-tr-labela-v1.csv": {"num_bytes": 35280, "checksum": "ae9b0837e948c3d9c3a147d2a415989a4940a7756d5821b3289276574941c9e3"}, "offenseval-tr-test-v1.tsv": {"num_bytes": 449553, "checksum": "9052784e13248e58658e34a4f86a3463ef8b2594d2feb289e4b29bba2866b437"}}, "download_size": 4586561, "post_processing_size": null, "dataset_size": 5210008, "size_in_bytes": 9796569}}