training-scripts / scripts /eval_prompt_test.py
stmasson's picture
Upload scripts/eval_prompt_test.py with huggingface_hub
d66cd5b verified
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"]
# ///
"""
Prompt Comparison Test: Direct vs Reasoning
Tests if "code only" prompt improves fine-tuned model scores on HumanEval subset
"""
import os
import re
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from datasets import load_dataset
from tqdm import tqdm
from huggingface_hub import HfApi
print("=" * 60)
print("PROMPT COMPARISON TEST")
print("Direct Code vs Reasoning Prompt")
print("=" * 60)
# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small"
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 512
NUM_SAMPLES = 50 # Subset for quick test
# GPU
print(f"\nGPU available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
# 4-bit config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
def load_dataset_subset():
print("\nLoading HumanEval...")
ds = load_dataset("openai/openai_humaneval", split="test")
ds = ds.select(range(min(NUM_SAMPLES, len(ds))))
print(f"Using {len(ds)} problems")
return ds
def load_model():
print(f"\nLoading {BASE_MODEL} + {FINETUNED_ADAPTER}...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
model = PeftModel.from_pretrained(model, FINETUNED_ADAPTER)
model = model.merge_and_unload()
model.eval()
print("Model loaded and merged")
return model, tokenizer
def extract_code(text):
"""Extract Python code from output"""
# Try ```python blocks
m = re.findall(r'```python\s*(.*?)\s*```', text, re.DOTALL)
if m:
return m[-1].strip()
# Try ``` blocks
m = re.findall(r'```\s*(.*?)\s*```', text, re.DOTALL)
if m:
return m[-1].strip()
return text.strip()
def extract_body(code):
"""Extract function body if full function returned"""
if code.strip().startswith("def "):
lines = code.split('\n')
body = []
in_func = False
for line in lines:
if line.strip().startswith("def "):
in_func = True
continue
if in_func:
body.append(line)
if body:
return '\n'.join(body)
return code
def generate_direct(model, tokenizer, prompt):
"""Direct code prompt - no reasoning"""
p = f"<s>[INST] Complete this Python function. Output ONLY the code, no explanations:\n\n{prompt}[/INST]"
inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
with torch.no_grad():
out = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
do_sample=TEMPERATURE > 0,
pad_token_id=tokenizer.pad_token_id,
)
raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
code = extract_code(raw)
code = extract_body(code)
# Stop at boundaries
for stop in ["\ndef ", "\nclass ", "\nif __name__"]:
if stop in code:
code = code[:code.index(stop)]
return code
def generate_reasoning(model, tokenizer, prompt):
"""Reasoning prompt - original approach"""
p = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{prompt}[/INST]"
inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
with torch.no_grad():
out = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS * 2,
temperature=TEMPERATURE,
do_sample=TEMPERATURE > 0,
pad_token_id=tokenizer.pad_token_id,
)
raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
code = extract_code(raw)
code = extract_body(code)
return code
def check_syntax(code):
try:
compile(code, '<string>', 'exec')
return True
except:
return False
def evaluate(samples, dataset):
passed = 0
total = len(samples)
ds_dict = {p["task_id"]: p for p in dataset}
for s in samples:
task_id = s["task_id"]
completion = s["completion"]
problem = ds_dict.get(task_id)
if not problem:
continue
full = problem["prompt"] + completion
if not check_syntax(full):
continue
try:
g = {}
exec(full, g)
entry = problem.get("entry_point", task_id.split("/")[-1])
if entry in g:
passed += 1
except:
pass
return {"pass@1": passed / total if total > 0 else 0, "passed": passed, "total": total}
def main():
dataset = load_dataset_subset()
model, tokenizer = load_model()
# Test 1: Direct prompt
print("\n" + "=" * 60)
print("TEST 1: DIRECT CODE PROMPT")
print("=" * 60)
direct = []
for p in tqdm(dataset, desc="Direct"):
try:
c = generate_direct(model, tokenizer, p["prompt"])
except:
c = "# error"
direct.append({"task_id": p["task_id"], "completion": c})
r_direct = evaluate(direct, dataset)
print(f"Direct: {r_direct['pass@1']*100:.1f}% ({r_direct['passed']}/{r_direct['total']})")
# Test 2: Reasoning prompt
print("\n" + "=" * 60)
print("TEST 2: REASONING PROMPT")
print("=" * 60)
reasoning = []
for p in tqdm(dataset, desc="Reasoning"):
try:
c = generate_reasoning(model, tokenizer, p["prompt"])
except:
c = "# error"
reasoning.append({"task_id": p["task_id"], "completion": c})
r_reason = evaluate(reasoning, dataset)
print(f"Reasoning: {r_reason['pass@1']*100:.1f}% ({r_reason['passed']}/{r_reason['total']})")
# Summary
print("\n" + "=" * 60)
print("RESULTS SUMMARY")
print("=" * 60)
print(f"\n{'Prompt':<20} {'pass@1':>10}")
print("-" * 35)
print(f"{'Direct Code':<20} {r_direct['pass@1']*100:>9.1f}%")
print(f"{'Reasoning':<20} {r_reason['pass@1']*100:>9.1f}%")
diff = (r_direct['pass@1'] - r_reason['pass@1']) * 100
print(f"\n{'Improvement:':<20} {'+' if diff >= 0 else ''}{diff:.1f}%")
# Save
results = {
"experiment": "Prompt Comparison",
"samples": NUM_SAMPLES,
"direct": r_direct,
"reasoning": r_reason,
"improvement": diff
}
with open("prompt_comparison.json", "w") as f:
json.dump(results, f, indent=2)
try:
api = HfApi()
api.upload_file(
path_or_fileobj="prompt_comparison.json",
path_in_repo="prompt_comparison.json",
repo_id=OUTPUT_REPO,
repo_type="model",
)
print(f"\nUploaded to {OUTPUT_REPO}")
except Exception as e:
print(f"Upload failed: {e}")
print("\nDONE")
if __name__ == "__main__":
main()