EricR401S commited on
Commit
eb50c8e
·
1 Parent(s): 16340cb

colab is impossible

Browse files
Pill_Ideologies-Post_Titles.py CHANGED
@@ -114,7 +114,6 @@ class SubRedditPosts(datasets.GeneratorBasedBuilder):
114
  "ups": datasets.Value("int32"),
115
  "downs": datasets.Value("int32"),
116
  "upvote_ratio": datasets.Value("float32"),
117
- "num_reports": datasets.Value("string"),
118
  "is_video": datasets.Value("bool"),
119
  # These are the features of your dataset like images, labels ...
120
  }
@@ -135,7 +134,6 @@ class SubRedditPosts(datasets.GeneratorBasedBuilder):
135
  "ups": datasets.Value("int32"),
136
  "downs": datasets.Value("int32"),
137
  "upvote_ratio": datasets.Value("float32"),
138
- "num_reports": datasets.Value("string"),
139
  "is_video": datasets.Value("bool"),
140
  # These are the features of your dataset like images, labels ...
141
  }
@@ -167,23 +165,23 @@ class SubRedditPosts(datasets.GeneratorBasedBuilder):
167
  data_dir = dl_manager.download_and_extract(urls)
168
  data = pd.read_csv(data_dir)
169
 
170
- def clean_data_nans(df):
171
- """This function takes a dataframe and fills all NaNs with a value
172
- This is to appease google colab, because my local machine did not raise errors
173
- ... and it's a windows. That should tell you a lot."""
174
- for col in data.columns:
175
- print(f"Cleaning NaNs in {col}")
176
- if df[col].dtype == "object":
177
- df[col].fillna("NAN -Nothing found", inplace=True)
178
- elif df[col].dtype in ["int64", "float64", "int32", "float32"]:
179
- df[col].fillna(0, inplace=True)
180
- elif df[col].dtype == "bool":
181
- df[col].fillna(False, inplace=True)
182
- else:
183
- df[col].fillna("NAN - problematic {col} found", inplace=True)
184
- return None
185
 
186
- clean_data_nans(data)
187
  print("PAssed the cleaning")
188
  # commented out the splits, due to google colab being uncooperative
189
  # raised too many errors that my local machine did not
@@ -246,7 +244,6 @@ class SubRedditPosts(datasets.GeneratorBasedBuilder):
246
  "ups": row.get("ups"),
247
  "downs": row.get("downs"),
248
  "upvote_ratio": row.get("upvote_ratio"),
249
- "num_reports": row.get("num_reports"),
250
  "is_video": row.get("is_video"),
251
  }
252
 
@@ -265,6 +262,5 @@ class SubRedditPosts(datasets.GeneratorBasedBuilder):
265
  "ups": row.get("ups"),
266
  "downs": row.get("downs"),
267
  "upvote_ratio": row.get("upvote_ratio"),
268
- "num_reports": row.get("num_reports"),
269
  "is_video": row.get("is_video"),
270
  }
 
114
  "ups": datasets.Value("int32"),
115
  "downs": datasets.Value("int32"),
116
  "upvote_ratio": datasets.Value("float32"),
 
117
  "is_video": datasets.Value("bool"),
118
  # These are the features of your dataset like images, labels ...
119
  }
 
134
  "ups": datasets.Value("int32"),
135
  "downs": datasets.Value("int32"),
136
  "upvote_ratio": datasets.Value("float32"),
 
137
  "is_video": datasets.Value("bool"),
138
  # These are the features of your dataset like images, labels ...
139
  }
 
165
  data_dir = dl_manager.download_and_extract(urls)
166
  data = pd.read_csv(data_dir)
167
 
168
+ # def clean_data_nans(df):
169
+ # """This function takes a dataframe and fills all NaNs with a value
170
+ # This is to appease google colab, because my local machine did not raise errors
171
+ # ... and it's a windows. That should tell you a lot."""
172
+ # for col in data.columns:
173
+ # print(f"Cleaning NaNs in {col}")
174
+ # if df[col].dtype == "object":
175
+ # df[col].fillna("NAN -Nothing found", inplace=True)
176
+ # elif df[col].dtype in ["int64", "float64", "int32", "float32"]:
177
+ # df[col].fillna(0, inplace=True)
178
+ # elif df[col].dtype == "bool":
179
+ # df[col].fillna(False, inplace=True)
180
+ # else:
181
+ # df[col].fillna("NAN - problematic {col} found", inplace=True)
182
+ # return None
183
 
184
+ # clean_data_nans(data)
185
  print("PAssed the cleaning")
186
  # commented out the splits, due to google colab being uncooperative
187
  # raised too many errors that my local machine did not
 
244
  "ups": row.get("ups"),
245
  "downs": row.get("downs"),
246
  "upvote_ratio": row.get("upvote_ratio"),
 
247
  "is_video": row.get("is_video"),
248
  }
249
 
 
262
  "ups": row.get("ups"),
263
  "downs": row.get("downs"),
264
  "upvote_ratio": row.get("upvote_ratio"),
 
265
  "is_video": row.get("is_video"),
266
  }
README.md CHANGED
@@ -169,7 +169,7 @@ The main usage of this dataset is to study linguistic patterns. Running models a
169
 
170
  Here is an example analysis notebook showing what can be done with this type of data.
171
 
172
- Example : []
173
 
174
  ### Direct Use
175
 
 
169
 
170
  Here is an example analysis notebook showing what can be done with this type of data.
171
 
172
+ Example : [https://colab.research.google.com/drive/15PL9RsmB6HLBvbI6KInq_Az7QhkrXxqi?usp=sharing]
173
 
174
  ### Direct Use
175
 
reddit_posts_fm.csv CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:73f24e2254fad46d35088c9a214c1b2378e20470846d0ea75ef70627f00b4d6e
3
- size 11252730
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fdfbc4cc7c4d85fb76eeca459c0f05b8b64911e03df2c9d53a204ab6fb0e41f
3
+ size 11241004
redditscraper_fm.py CHANGED
@@ -163,4 +163,25 @@ df = pd.DataFrame(
163
  ],
164
  )
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  df.to_csv("reddit_posts_fm.csv", index=False)
 
163
  ],
164
  )
165
 
166
+ # columns that cannot be empty,so drop rows
167
+ df = df.dropna(subset=["subreddit"])
168
+ df = df.dropna(subset=["title"])
169
+ df = df.drop(columns=["num_reports"]) # drop num_reports, always empty
170
+
171
+ # cleaning to make colab importing the dataset through huggingface work
172
+ values = {
173
+ "id": "",
174
+ "text": "",
175
+ "url": "",
176
+ "score": 0,
177
+ "date": 0.0,
178
+ "subreddit_subscribers": 0,
179
+ "num_comments": 0,
180
+ "ups": 0,
181
+ "downs": 0,
182
+ "upvote_ratio": 0.0,
183
+ "is_video": "False",
184
+ }
185
+ df.fillna(value=values, inplace=True)
186
+
187
  df.to_csv("reddit_posts_fm.csv", index=False)