Datasets:
EricR401S
commited on
Commit
·
de05476
1
Parent(s):
450c828
check
Browse files- boiler_plate_check_functions.ipynb +330 -0
- reddit_dataset_loader.py +97 -97
boiler_plate_check_functions.ipynb
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"source": [
|
7 |
+
"\"\"\"This script's purpose is to re-define the datset loading functions to better suit this specific\n",
|
8 |
+
"reddit posts dataset.\"\"\"\n",
|
9 |
+
"\n",
|
10 |
+
"import csv\n",
|
11 |
+
"import json\n",
|
12 |
+
"import os"
|
13 |
+
],
|
14 |
+
"outputs": [],
|
15 |
+
"metadata": {}
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 1,
|
20 |
+
"source": [
|
21 |
+
"import csv\n",
|
22 |
+
"import json\n",
|
23 |
+
"import os"
|
24 |
+
],
|
25 |
+
"outputs": [],
|
26 |
+
"metadata": {}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 2,
|
31 |
+
"source": [
|
32 |
+
"from datasets import load_dataset\n",
|
33 |
+
"\n",
|
34 |
+
""
|
35 |
+
],
|
36 |
+
"outputs": [
|
37 |
+
{
|
38 |
+
"output_type": "stream",
|
39 |
+
"name": "stderr",
|
40 |
+
"text": [
|
41 |
+
"c:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
42 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"metadata": {}
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 3,
|
51 |
+
"source": [
|
52 |
+
"ds = load_dataset('rotten_tomatoes')"
|
53 |
+
],
|
54 |
+
"outputs": [
|
55 |
+
{
|
56 |
+
"output_type": "stream",
|
57 |
+
"name": "stderr",
|
58 |
+
"text": [
|
59 |
+
"Downloading data: 100%|██████████| 699k/699k [00:00<00:00, 2.88MB/s]\n",
|
60 |
+
"Downloading data: 100%|██████████| 90.0k/90.0k [00:00<00:00, 90.7kB/s]\n",
|
61 |
+
"Downloading data: 100%|██████████| 92.2k/92.2k [00:00<00:00, 1.56MB/s]\n",
|
62 |
+
"Generating train split: 100%|██████████| 8530/8530 [00:00<00:00, 448827.83 examples/s]\n",
|
63 |
+
"Generating validation split: 100%|██████████| 1066/1066 [00:00<00:00, 94627.05 examples/s]\n",
|
64 |
+
"Generating test split: 100%|██████████| 1066/1066 [00:00<00:00, 127328.15 examples/s]\n"
|
65 |
+
]
|
66 |
+
}
|
67 |
+
],
|
68 |
+
"metadata": {}
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": 4,
|
73 |
+
"source": [
|
74 |
+
"ds"
|
75 |
+
],
|
76 |
+
"outputs": [
|
77 |
+
{
|
78 |
+
"output_type": "execute_result",
|
79 |
+
"data": {
|
80 |
+
"text/plain": [
|
81 |
+
"DatasetDict({\n",
|
82 |
+
" train: Dataset({\n",
|
83 |
+
" features: ['text', 'label'],\n",
|
84 |
+
" num_rows: 8530\n",
|
85 |
+
" })\n",
|
86 |
+
" validation: Dataset({\n",
|
87 |
+
" features: ['text', 'label'],\n",
|
88 |
+
" num_rows: 1066\n",
|
89 |
+
" })\n",
|
90 |
+
" test: Dataset({\n",
|
91 |
+
" features: ['text', 'label'],\n",
|
92 |
+
" num_rows: 1066\n",
|
93 |
+
" })\n",
|
94 |
+
"})"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
"metadata": {},
|
98 |
+
"execution_count": 4
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"metadata": {}
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 5,
|
106 |
+
"source": [
|
107 |
+
"ds.citation"
|
108 |
+
],
|
109 |
+
"outputs": [
|
110 |
+
{
|
111 |
+
"output_type": "error",
|
112 |
+
"ename": "AttributeError",
|
113 |
+
"evalue": "'DatasetDict' object has no attribute 'citation'",
|
114 |
+
"traceback": [
|
115 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
116 |
+
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
117 |
+
"Cell \u001b[1;32mIn[5], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m ds\u001b[39m.\u001b[39;49mcitation\n",
|
118 |
+
"\u001b[1;31mAttributeError\u001b[0m: 'DatasetDict' object has no attribute 'citation'"
|
119 |
+
]
|
120 |
+
}
|
121 |
+
],
|
122 |
+
"metadata": {}
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": 6,
|
127 |
+
"source": [
|
128 |
+
"ds.citation()"
|
129 |
+
],
|
130 |
+
"outputs": [
|
131 |
+
{
|
132 |
+
"output_type": "error",
|
133 |
+
"ename": "AttributeError",
|
134 |
+
"evalue": "'DatasetDict' object has no attribute 'citation'",
|
135 |
+
"traceback": [
|
136 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
137 |
+
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
138 |
+
"Cell \u001b[1;32mIn[6], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m ds\u001b[39m.\u001b[39;49mcitation()\n",
|
139 |
+
"\u001b[1;31mAttributeError\u001b[0m: 'DatasetDict' object has no attribute 'citation'"
|
140 |
+
]
|
141 |
+
}
|
142 |
+
],
|
143 |
+
"metadata": {}
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "code",
|
147 |
+
"execution_count": 7,
|
148 |
+
"source": [
|
149 |
+
"ds.column_names"
|
150 |
+
],
|
151 |
+
"outputs": [
|
152 |
+
{
|
153 |
+
"output_type": "execute_result",
|
154 |
+
"data": {
|
155 |
+
"text/plain": [
|
156 |
+
"{'train': ['text', 'label'],\n",
|
157 |
+
" 'validation': ['text', 'label'],\n",
|
158 |
+
" 'test': ['text', 'label']}"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
"metadata": {},
|
162 |
+
"execution_count": 7
|
163 |
+
}
|
164 |
+
],
|
165 |
+
"metadata": {}
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "code",
|
169 |
+
"execution_count": 8,
|
170 |
+
"source": [
|
171 |
+
"ds['train']"
|
172 |
+
],
|
173 |
+
"outputs": [
|
174 |
+
{
|
175 |
+
"output_type": "execute_result",
|
176 |
+
"data": {
|
177 |
+
"text/plain": [
|
178 |
+
"Dataset({\n",
|
179 |
+
" features: ['text', 'label'],\n",
|
180 |
+
" num_rows: 8530\n",
|
181 |
+
"})"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
"metadata": {},
|
185 |
+
"execution_count": 8
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"metadata": {}
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": 9,
|
193 |
+
"source": [
|
194 |
+
"ds.license"
|
195 |
+
],
|
196 |
+
"outputs": [
|
197 |
+
{
|
198 |
+
"output_type": "error",
|
199 |
+
"ename": "AttributeError",
|
200 |
+
"evalue": "'DatasetDict' object has no attribute 'license'",
|
201 |
+
"traceback": [
|
202 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
203 |
+
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
204 |
+
"Cell \u001b[1;32mIn[9], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m ds\u001b[39m.\u001b[39;49mlicense\n",
|
205 |
+
"\u001b[1;31mAttributeError\u001b[0m: 'DatasetDict' object has no attribute 'license'"
|
206 |
+
]
|
207 |
+
}
|
208 |
+
],
|
209 |
+
"metadata": {}
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": 10,
|
214 |
+
"source": [
|
215 |
+
"ds.dataset_size"
|
216 |
+
],
|
217 |
+
"outputs": [
|
218 |
+
{
|
219 |
+
"output_type": "error",
|
220 |
+
"ename": "AttributeError",
|
221 |
+
"evalue": "'DatasetDict' object has no attribute 'dataset_size'",
|
222 |
+
"traceback": [
|
223 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
224 |
+
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
225 |
+
"Cell \u001b[1;32mIn[10], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m ds\u001b[39m.\u001b[39;49mdataset_size\n",
|
226 |
+
"\u001b[1;31mAttributeError\u001b[0m: 'DatasetDict' object has no attribute 'dataset_size'"
|
227 |
+
]
|
228 |
+
}
|
229 |
+
],
|
230 |
+
"metadata": {}
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": 11,
|
235 |
+
"source": [
|
236 |
+
"ds._info"
|
237 |
+
],
|
238 |
+
"outputs": [
|
239 |
+
{
|
240 |
+
"output_type": "error",
|
241 |
+
"ename": "AttributeError",
|
242 |
+
"evalue": "'DatasetDict' object has no attribute '_info'",
|
243 |
+
"traceback": [
|
244 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
245 |
+
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
246 |
+
"Cell \u001b[1;32mIn[11], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m ds\u001b[39m.\u001b[39;49m_info\n",
|
247 |
+
"\u001b[1;31mAttributeError\u001b[0m: 'DatasetDict' object has no attribute '_info'"
|
248 |
+
]
|
249 |
+
}
|
250 |
+
],
|
251 |
+
"metadata": {}
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": 12,
|
256 |
+
"source": [
|
257 |
+
"ds['train']._info"
|
258 |
+
],
|
259 |
+
"outputs": [
|
260 |
+
{
|
261 |
+
"output_type": "execute_result",
|
262 |
+
"data": {
|
263 |
+
"text/plain": [
|
264 |
+
"DatasetInfo(description=\"Movie Review Dataset.\\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\\nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo\\nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for\\nsentiment categorization with respect to rating scales.'', Proceedings of the\\nACL, 2005.\\n\", citation='@InProceedings{Pang+Lee:05a,\\n author = {Bo Pang and Lillian Lee},\\n title = {Seeing stars: Exploiting class relationships for sentiment\\n categorization with respect to rating scales},\\n booktitle = {Proceedings of the ACL},\\n year = 2005\\n}\\n', homepage='http://www.cs.cornell.edu/people/pabo/movie-review-data/', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(names=['neg', 'pos'], id=None)}, post_processed=None, supervised_keys=SupervisedKeysData(input='', output=''), task_templates=[TextClassification(task='text-classification', text_column='text', label_column='label')], builder_name='parquet', dataset_name='rotten_tomatoes', config_name='default', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=1075873, num_examples=8530, shard_lengths=None, dataset_name='rotten_tomatoes'), 'validation': SplitInfo(name='validation', num_bytes=134809, num_examples=1066, shard_lengths=None, dataset_name='rotten_tomatoes'), 'test': SplitInfo(name='test', num_bytes=136102, num_examples=1066, shard_lengths=None, dataset_name='rotten_tomatoes')}, download_checksums={'hf://datasets/rotten_tomatoes@cab0f883b39cfb510c34e41db874679b3e2bafa3/default/train/0000.parquet': {'num_bytes': 698845, 'checksum': None}, 'hf://datasets/rotten_tomatoes@cab0f883b39cfb510c34e41db874679b3e2bafa3/default/validation/0000.parquet': {'num_bytes': 90001, 'checksum': None}, 'hf://datasets/rotten_tomatoes@cab0f883b39cfb510c34e41db874679b3e2bafa3/default/test/0000.parquet': {'num_bytes': 92206, 'checksum': None}}, download_size=881052, post_processing_size=None, dataset_size=1346784, size_in_bytes=2227836)"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
"metadata": {},
|
268 |
+
"execution_count": 12
|
269 |
+
}
|
270 |
+
],
|
271 |
+
"metadata": {}
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "code",
|
275 |
+
"execution_count": 13,
|
276 |
+
"source": [
|
277 |
+
"print(ds['train']._info)"
|
278 |
+
],
|
279 |
+
"outputs": [
|
280 |
+
{
|
281 |
+
"output_type": "stream",
|
282 |
+
"name": "stdout",
|
283 |
+
"text": [
|
284 |
+
"DatasetInfo(description=\"Movie Review Dataset.\\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\\nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo\\nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for\\nsentiment categorization with respect to rating scales.'', Proceedings of the\\nACL, 2005.\\n\", citation='@InProceedings{Pang+Lee:05a,\\n author = {Bo Pang and Lillian Lee},\\n title = {Seeing stars: Exploiting class relationships for sentiment\\n categorization with respect to rating scales},\\n booktitle = {Proceedings of the ACL},\\n year = 2005\\n}\\n', homepage='http://www.cs.cornell.edu/people/pabo/movie-review-data/', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(names=['neg', 'pos'], id=None)}, post_processed=None, supervised_keys=SupervisedKeysData(input='', output=''), task_templates=[TextClassification(task='text-classification', text_column='text', label_column='label')], builder_name='parquet', dataset_name='rotten_tomatoes', config_name='default', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=1075873, num_examples=8530, shard_lengths=None, dataset_name='rotten_tomatoes'), 'validation': SplitInfo(name='validation', num_bytes=134809, num_examples=1066, shard_lengths=None, dataset_name='rotten_tomatoes'), 'test': SplitInfo(name='test', num_bytes=136102, num_examples=1066, shard_lengths=None, dataset_name='rotten_tomatoes')}, download_checksums={'hf://datasets/rotten_tomatoes@cab0f883b39cfb510c34e41db874679b3e2bafa3/default/train/0000.parquet': {'num_bytes': 698845, 'checksum': None}, 'hf://datasets/rotten_tomatoes@cab0f883b39cfb510c34e41db874679b3e2bafa3/default/validation/0000.parquet': {'num_bytes': 90001, 'checksum': None}, 'hf://datasets/rotten_tomatoes@cab0f883b39cfb510c34e41db874679b3e2bafa3/default/test/0000.parquet': {'num_bytes': 92206, 'checksum': None}}, download_size=881052, post_processing_size=None, dataset_size=1346784, size_in_bytes=2227836)\n"
|
285 |
+
]
|
286 |
+
}
|
287 |
+
],
|
288 |
+
"metadata": {}
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": 14,
|
293 |
+
"source": [
|
294 |
+
"print(ds['train']._info.description)"
|
295 |
+
],
|
296 |
+
"outputs": [
|
297 |
+
{
|
298 |
+
"output_type": "stream",
|
299 |
+
"name": "stdout",
|
300 |
+
"text": [
|
301 |
+
"Movie Review Dataset.\n",
|
302 |
+
"This is a dataset of containing 5,331 positive and 5,331 negative processed\n",
|
303 |
+
"sentences from Rotten Tomatoes movie reviews. This data was first used in Bo\n",
|
304 |
+
"Pang and Lillian Lee, ``Seeing stars: Exploiting class relationships for\n",
|
305 |
+
"sentiment categorization with respect to rating scales.'', Proceedings of the\n",
|
306 |
+
"ACL, 2005.\n",
|
307 |
+
"\n"
|
308 |
+
]
|
309 |
+
}
|
310 |
+
],
|
311 |
+
"metadata": {}
|
312 |
+
}
|
313 |
+
],
|
314 |
+
"nbformat": 4,
|
315 |
+
"nbformat_minor": 2,
|
316 |
+
"metadata": {
|
317 |
+
"language_info": {
|
318 |
+
"codemirror_mode": {
|
319 |
+
"name": "ipython",
|
320 |
+
"version": 3
|
321 |
+
},
|
322 |
+
"file_extension": ".py",
|
323 |
+
"mimetype": "text/x-python",
|
324 |
+
"name": "python",
|
325 |
+
"nbconvert_exporter": "python",
|
326 |
+
"pygments_lexer": "ipython3",
|
327 |
+
"version": 3
|
328 |
+
}
|
329 |
+
}
|
330 |
+
}
|
reddit_dataset_loader.py
CHANGED
@@ -47,7 +47,7 @@ which have risen in response to the clashes between traditional gender roles and
|
|
47 |
_HOMEPAGE = "https://huggingface.co/datasets/steamcyclone/Pill_Ideologies-Post_Titles"
|
48 |
|
49 |
# TODO: Add the licence for the dataset here if you can find it
|
50 |
-
_LICENSE = "Creative Commons"
|
51 |
|
52 |
# TODO: Add link to the official dataset URLs here
|
53 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
@@ -94,99 +94,99 @@ class SubRedditPosts(datasets.GeneratorBasedBuilder):
|
|
94 |
|
95 |
DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
96 |
|
97 |
-
def _info(self):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
def _split_generators(self, dl_manager):
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
172 |
-
def _generate_examples(self, filepath, split):
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
47 |
_HOMEPAGE = "https://huggingface.co/datasets/steamcyclone/Pill_Ideologies-Post_Titles"
|
48 |
|
49 |
# TODO: Add the licence for the dataset here if you can find it
|
50 |
+
_LICENSE = "Creative Commons" # cc
|
51 |
|
52 |
# TODO: Add link to the official dataset URLs here
|
53 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
|
|
94 |
|
95 |
DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
96 |
|
97 |
+
# def _info(self):
|
98 |
+
# # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
99 |
+
# if (
|
100 |
+
# self.config.name == "first_domain"
|
101 |
+
# ): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
102 |
+
# features = datasets.Features(
|
103 |
+
# {
|
104 |
+
# "sentence": datasets.Value("string"),
|
105 |
+
# "option1": datasets.Value("string"),
|
106 |
+
# "answer": datasets.Value("string"),
|
107 |
+
# # These are the features of your dataset like images, labels ...
|
108 |
+
# }
|
109 |
+
# )
|
110 |
+
# else: # This is an example to show how to have different features for "first_domain" and "second_domain"
|
111 |
+
# features = datasets.Features(
|
112 |
+
# {
|
113 |
+
# "sentence": datasets.Value("string"),
|
114 |
+
# "option2": datasets.Value("string"),
|
115 |
+
# "second_domain_answer": datasets.Value("string"),
|
116 |
+
# # These are the features of your dataset like images, labels ...
|
117 |
+
# }
|
118 |
+
# )
|
119 |
+
# return datasets.DatasetInfo(
|
120 |
+
# # This is the description that will appear on the datasets page.
|
121 |
+
# description=_DESCRIPTION,
|
122 |
+
# # This defines the different columns of the dataset and their types
|
123 |
+
# features=features, # Here we define them above because they are different between the two configurations
|
124 |
+
# # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
125 |
+
# # specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
126 |
+
# # supervised_keys=("sentence", "label"),
|
127 |
+
# # Homepage of the dataset for documentation
|
128 |
+
# homepage=_HOMEPAGE,
|
129 |
+
# # License for the dataset if available
|
130 |
+
# license=_LICENSE,
|
131 |
+
# # Citation for the dataset
|
132 |
+
# citation=_CITATION,
|
133 |
+
# )
|
134 |
+
|
135 |
+
# def _split_generators(self, dl_manager):
|
136 |
+
# # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
137 |
+
# # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
138 |
+
|
139 |
+
# # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
140 |
+
# # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
141 |
+
# # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
142 |
+
# urls = _URLS[self.config.name]
|
143 |
+
# data_dir = dl_manager.download_and_extract(urls)
|
144 |
+
# return [
|
145 |
+
# datasets.SplitGenerator(
|
146 |
+
# name=datasets.Split.TRAIN,
|
147 |
+
# # These kwargs will be passed to _generate_examples
|
148 |
+
# gen_kwargs={
|
149 |
+
# "filepath": os.path.join(data_dir, "train.jsonl"),
|
150 |
+
# "split": "train",
|
151 |
+
# },
|
152 |
+
# ),
|
153 |
+
# datasets.SplitGenerator(
|
154 |
+
# name=datasets.Split.VALIDATION,
|
155 |
+
# # These kwargs will be passed to _generate_examples
|
156 |
+
# gen_kwargs={
|
157 |
+
# "filepath": os.path.join(data_dir, "dev.jsonl"),
|
158 |
+
# "split": "dev",
|
159 |
+
# },
|
160 |
+
# ),
|
161 |
+
# datasets.SplitGenerator(
|
162 |
+
# name=datasets.Split.TEST,
|
163 |
+
# # These kwargs will be passed to _generate_examples
|
164 |
+
# gen_kwargs={
|
165 |
+
# "filepath": os.path.join(data_dir, "test.jsonl"),
|
166 |
+
# "split": "test",
|
167 |
+
# },
|
168 |
+
# ),
|
169 |
+
# ]
|
170 |
+
|
171 |
+
# # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
172 |
+
# def _generate_examples(self, filepath, split):
|
173 |
+
# # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
174 |
+
# # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
175 |
+
# with open(filepath, encoding="utf-8") as f:
|
176 |
+
# for key, row in enumerate(f):
|
177 |
+
# data = json.loads(row)
|
178 |
+
# if self.config.name == "first_domain":
|
179 |
+
# # Yields examples as (key, example) tuples
|
180 |
+
# yield key, {
|
181 |
+
# "sentence": data["sentence"],
|
182 |
+
# "option1": data["option1"],
|
183 |
+
# "answer": "" if split == "test" else data["answer"],
|
184 |
+
# }
|
185 |
+
# else:
|
186 |
+
# yield key, {
|
187 |
+
# "sentence": data["sentence"],
|
188 |
+
# "option2": data["option2"],
|
189 |
+
# "second_domain_answer": (
|
190 |
+
# "" if split == "test" else data["second_domain_answer"]
|
191 |
+
# ),
|
192 |
+
# }
|