|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{go2009twitter, |
|
title={Twitter sentiment classification using distant supervision}, |
|
author={Go, Alec and Bhayani, Richa and Huang, Lei}, |
|
journal={CS224N project report, Stanford}, |
|
volume={1}, |
|
number={12}, |
|
pages={2009}, |
|
year={2009} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Sentiment140 consists of Twitter messages with emoticons, which are used as noisy labels for |
|
sentiment classification. For more detailed information please refer to the paper. |
|
""" |
|
_URL = "http://help.sentiment140.com/home" |
|
_DATA_URL = "http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip" |
|
|
|
_TEST_FILE_NAME = "testdata.manual.2009.06.14.csv" |
|
_TRAIN_FILE_NAME = "training.1600000.processed.noemoticon.csv" |
|
|
|
|
|
class Sentiment140Config(datasets.BuilderConfig): |
|
|
|
"""BuilderConfig for Break""" |
|
|
|
def __init__(self, data_url, **kwargs): |
|
"""BuilderConfig for BlogAuthorship |
|
|
|
Args: |
|
data_url: `string`, url to the dataset (word or raw level) |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Sentiment140Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.data_url = data_url |
|
|
|
|
|
class Sentiment140(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("0.1.0") |
|
BUILDER_CONFIGS = [ |
|
Sentiment140Config( |
|
name="sentiment140", |
|
data_url=_DATA_URL, |
|
description="sentiment classification dataset. Twitter messages are classified as either 'positive'=0, 'neutral'=1 or 'negative'=2.", |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"user": datasets.Value("string"), |
|
"sentiment": datasets.Value("int32"), |
|
"query": datasets.Value("string"), |
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_DATA_URL) |
|
|
|
test_csv_file = os.path.join(data_dir, _TEST_FILE_NAME) |
|
train_csv_file = os.path.join(data_dir, _TRAIN_FILE_NAME) |
|
|
|
if self.config.name == "sentiment140": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"file_path": train_csv_file}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"file_path": test_csv_file}, |
|
), |
|
] |
|
else: |
|
raise NotImplementedError(f"{self.config.name} does not exist") |
|
|
|
def _generate_examples(self, file_path): |
|
"""Yields examples.""" |
|
|
|
with open(file_path, encoding="ISO-8859-1") as f: |
|
data = csv.reader(f, delimiter=",", quotechar='"') |
|
for row_id, row in enumerate(data): |
|
sentiment, tweet_id, date, query, user_name, message = row |
|
yield f"{row_id}_{tweet_id}", { |
|
"text": message, |
|
"date": date, |
|
"user": user_name, |
|
"sentiment": int(sentiment), |
|
"query": query, |
|
} |
|
|