repo_name
stringlengths 7
81
| path
stringlengths 4
224
| copies
stringclasses 221
values | size
stringlengths 4
7
| content
stringlengths 975
1.04M
| license
stringclasses 15
values |
---|---|---|---|---|---|
QEF/q-e | PP/src/punch_plot.f90 | 2 | 11211 | !
! Copyright (C) 2001-2009 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
SUBROUTINE punch_plot (filplot, plot_num, sample_bias, z, dz, &
emin, emax, kpoint, kband, spin_component, lsign)
!-----------------------------------------------------------------------
!
! This subroutine writes on output several quantities
! in a real space 3D mesh for subsequent processing or plotting
! The integer variable plot_num is used to choose the output quantity
! See file Doc/INPUT_PP.* for a description of plotted quantities
!
! The output quantity is written (formatted) on file filplot.
!
USE kinds, ONLY : DP
USE constants, ONLY : rytoev
USE cell_base, ONLY : at, bg, omega, alat, celldm, ibrav
USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, atm
USE run_info, ONLY : title
USE extfield, ONLY : tefield, dipfield
USE fft_base, ONLY : dfftp
USE scatter_mod, ONLY : gather_grid
USE fft_interfaces, ONLY : fwfft, invfft
USE gvect, ONLY : gcutm
USE gvecs, ONLY : dual
USE klist, ONLY : nks, nkstot, xk
USE lsda_mod, ONLY : nspin, lsda
USE ener, ONLY : ehart
USE io_global, ONLY : stdout, ionode
USE scf, ONLY : rho, vltot, v
USE wvfct, ONLY : nbnd, wg
USE gvecw, ONLY : ecutwfc
USE noncollin_module, ONLY : noncolin
USE adduscore, ONLY : US_make_ae_charge
USE paw_postproc, ONLY : PAW_make_ae_charge
IMPLICIT NONE
CHARACTER(len=*), INTENT(IN) :: filplot
INTEGER, INTENT(IN) :: plot_num, kpoint, kband, spin_component
LOGICAL, INTENT(IN) :: lsign
REAL(DP), INTENT(IN) :: sample_bias, z, dz, &
emin, emax
REAL(DP) :: dummy, charge
INTEGER :: is, ipol, istates
#if defined(__MPI)
! auxiliary vector (parallel case)
REAL(DP), ALLOCATABLE :: raux1 (:)
#endif
! auxiliary vector
REAL(DP), ALLOCATABLE :: raux (:), raux2(:,:)
IF (filplot == ' ') RETURN
#if defined(__MPI)
ALLOCATE (raux1( dfftp%nr1x * dfftp%nr2x * dfftp%nr3x))
#endif
WRITE( stdout, '(/5x,"Calling punch_plot, plot_num = ",i3)') plot_num
IF (plot_num == 3 ) &
WRITE(stdout, '(/5x,"Energy =", f10.5, " eV, broadening =", f10.5, "eV" )') &
emin * rytoev, emax * rytoev
IF (plot_num == 7) &
WRITE( stdout, '(/5x,"Plotting k_point = ",i3," band =", i3 )') &
kpoint, kband
IF ((plot_num == 7) .and. noncolin .and. spin_component /= 0 ) &
WRITE( stdout, '(/5x,"Plotting spin magnetization ipol = ",i3)') &
spin_component
!
ALLOCATE (raux(dfftp%nnr))
!IF
! Here we decide which quantity to plot
!
IF (plot_num == 0) THEN
!
! plot of the charge density - total rho
!
raux(:) = rho%of_r(:,1)
!
! plot of the charge density - up and down rho
!
IF ( lsda ) THEN
IF ( spin_component == 1 ) THEN
raux(:) = (raux(:) + rho%of_r(:,nspin))/2.0_dp
ELSE IF ( spin_component == 2 ) THEN
raux(:) = (raux(:) - rho%of_r(:,nspin))/2.0_dp
END IF
ENDIF
!
ELSEIF (plot_num == 1) THEN
!
! The total self-consistent potential V_loc+V_H+V_xc
!
IF ( lsda ) THEN
IF ( spin_component == 0 ) THEN
raux(:) = (v%of_r(:,1) + v%of_r(:,2))/2.0_dp + vltot(:)
ELSE
raux(:) = v%of_r(:,spin_component) + vltot(:)
END IF
ELSE
raux(:) = v%of_r(:,1) + vltot(:)
END IF
!
ELSEIF (plot_num == 2) THEN
!
! The local pseudopotential on output
!
raux(:) = vltot(:)
!
ELSEIF (plot_num == 3) THEN
!
! The local density of states at emin, with broadening emax
!
WRITE (title, '(" Energy = ",f8.4," eV, ", "broadening = ",f8.4," eV")') &
emin * rytoev, emax * rytoev
IF (noncolin) CALL errore('punch_plot','not implemented yet',1)
CALL local_dos(1, lsign, kpoint, kband, spin_component, emin, emax, raux)
ELSEIF (plot_num == 4) THEN
!
! The local density of electronic entropy on output
!
IF (noncolin) CALL errore('punch_plot','not implemented yet',1)
CALL local_dos (2, lsign, kpoint, kband, spin_component, emin, emax, raux)
ELSEIF (plot_num == 5) THEN
IF (noncolin) CALL errore('punch_plot','not implemented yet',1)
#if defined(__MPI)
CALL stm (sample_bias, raux1, istates)
#else
CALL stm (sample_bias, raux, istates)
#endif
WRITE (title, '(" Bias in eV = ",f10.4," # states",i4)') &
sample_bias * rytoev, istates
ELSEIF (plot_num == 6) THEN
!
! plot of the spin polarisation
!
IF ( lsda ) THEN
raux(:) = rho%of_r (:,nspin)
ELSE
raux(:) = 0.d0
ENDIF
ELSEIF (plot_num == 7) THEN
WRITE (title, '("k_point ",i4,", band ",i4)') kpoint ,kband
IF (noncolin) THEN
IF (spin_component==0) THEN
CALL local_dos (0, lsign, kpoint, kband, spin_component, emin, emax, raux)
ELSE
CALL local_dos_mag (spin_component, kpoint, kband, raux)
ENDIF
ELSE
CALL local_dos (0, lsign, kpoint, kband, spin_component, emin, emax, raux)
ENDIF
ELSEIF (plot_num == 8) THEN
IF (noncolin) &
CALL errore('punch_plot','elf+noncolin not yet implemented',1)
CALL do_elf (raux)
ELSEIF (plot_num == 9) THEN
!
! plot of the charge density minus the atomic rho
!
allocate (raux2(dfftp%nnr,nspin))
raux2 = 0.d0
call atomic_rho(raux2, nspin)
rho%of_r(:,:) = rho%of_r(:,:) - raux2(:,:)
deallocate (raux2)
raux(:) = rho%of_r(:,1) ! total rho
IF ( lsda ) THEN
IF ( spin_component == 1 ) THEN
raux(:) = (raux(:) + rho%of_r(:,nspin))/2.0_dp
ELSE IF ( spin_component == 2 ) THEN
raux(:) = (raux(:) - rho%of_r(:,nspin))/2.0_dp
END IF
ENDIF
ELSEIF (plot_num == 10) THEN
CALL local_dos (3, lsign, kpoint, kband, spin_component, emin, emax, raux)
ELSEIF (plot_num == 11) THEN
ALLOCATE( raux2(dfftp%nnr,nspin) )
raux2(:,1) = vltot(:)
CALL v_h( rho%of_g(:,1), ehart, charge, raux2 )
raux(:) = raux2(:,1)
IF (tefield.and.dipfield) CALL add_efield(raux, dummy, rho%of_r(:,1),.true.)
DEALLOCATE( raux2 )
ELSEIF (plot_num == 12) THEN
raux=0.d0
IF (tefield) THEN
CALL add_efield(raux,dummy,rho%of_r(:,1),.true.)
ELSE
CALL infomsg ('punch_plot','e_field is not calculated')
ENDIF
ELSEIF (plot_num == 13) THEN
IF (noncolin) THEN
IF (spin_component==0) THEN
raux(:) = sqrt(rho%of_r(:,2)**2 + rho%of_r(:,3)**2 + rho%of_r(:,4)**2 )
ELSEIF (spin_component >= 1 .or. spin_component <=3) THEN
raux(:) = rho%of_r(:,spin_component+1)
ELSE
CALL errore('punch_plot','spin_component not allowed',2)
ENDIF
ELSE
CALL errore('punch_plot','noncollinear spin required',1)
ENDIF
ELSEIF (plot_num == 14 .or. plot_num == 15 .or. plot_num == 16 ) THEN
CALL errore('punch_plot','polarization no longer implemented',1)
! ipol = plot_num - 13
! CALL polarization ( spin_component, ipol, epsilon, raux )
ELSEIF (plot_num == 17 .or. plot_num == 21) THEN
WRITE(stdout, '(7x,a)') "Reconstructing all-electron valence charge."
! code partially duplicate from plot_num=0, should be unified
!
CALL PAW_make_ae_charge(rho,(plot_num==21))
!
raux(:) = rho%of_r(:, 1)
IF ( lsda ) THEN
IF ( spin_component==1 ) THEN
raux(:) = ( raux(:) + rho%of_r(:,nspin) )/2.0_dp
ELSE IF ( spin_component==2 ) THEN
raux(:) = ( raux(:) - rho%of_r(:,nspin) )/2.0_dp
ENDIF
END IF
!
ELSEIF (plot_num == 18) THEN
IF (noncolin) THEN
IF (spin_component==0) THEN
raux(:) = sqrt(v%of_r(:,2)**2 + v%of_r(:,3)**2 + v%of_r(:,4)**2 )
ELSEIF (spin_component >= 1 .or. spin_component <=3) THEN
raux(:) = v%of_r(:,spin_component+1)
ELSE
CALL errore('punch_plot','spin_component not allowed',4)
ENDIF
ELSE
CALL errore('punch_plot','B_xc available only when noncolin=.true.',1)
ENDIF
ELSEIF (plot_num == 19) THEN
!
! Reduced density gradient
!
IF (noncolin) CALL errore('punch_plot','rdg+noncolin not yet implemented',1)
CALL do_rdg (raux) ! in elf.f90
ELSEIF (plot_num == 20) THEN
!
! Density * second eigenvalue of Hessian of density (for coloring RDG plots)
!
IF (noncolin) CALL errore('punch_plot','rdg+noncolin not yet implemented',1)
CALL do_sl2rho (raux) ! in elf.f90
ELSEIF (plot_num == 22) THEN
!
! plot of the kinetic energy density
!
IF ( lsda ) THEN
IF (spin_component == 0) THEN
raux(:) = rho%kin_r(:,1)+rho%kin_r(:,2)
ELSE
raux(:) = rho%kin_r(:, spin_component)
ENDIF
ELSE
raux(:) = rho%kin_r(:,1)
ENDIF
ELSEIF (plot_num == 23) THEN
!
! plot of the charge density of states between emin & emax
!
WRITE (title, '("Density for spins between",f8.4, " eV and ",f8.4," eV")') emin*rytoev, emax*rytoev
CALL local_dos (4, lsign, kpoint, kband, spin_component, emin, emax, raux)
ELSEIF (plot_num == 24) THEN
WRITE(stdout, '(7x,a)') "Reconstructing all-electron charge."
! code partially duplicate from plot_num=21 (so 0)
CALL US_make_ae_charge(rho)
raux(:) = rho%of_r(:, 1)
IF ( lsda ) THEN
IF ( spin_component==1 ) THEN
raux(:) = ( raux(:) + rho%of_r(:,nspin) )/2.0_dp
ELSE IF ( spin_component==2 ) THEN
raux(:) = ( raux(:) - rho%of_r(:,nspin) )/2.0_dp
ENDIF
ENDIF
!
ELSEIF (plot_num == 123) THEN
!
! Density Overlap Regions Indicator
!
IF (noncolin) CALL errore('punch_plot','dori+noncolin not yet implemented',1)
CALL do_dori (raux) ! in elf.f90
ELSE
CALL infomsg ('punch_plot', 'plot_num not implemented')
ENDIF
#if defined(__MPI)
IF (.not. (plot_num == 5 ) ) CALL gather_grid (dfftp, raux, raux1)
IF ( ionode ) &
CALL plot_io (filplot, title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, &
dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp, ibrav, celldm, at, &
gcutm, dual, ecutwfc, plot_num, atm, ityp, zv, tau, raux1, + 1)
DEALLOCATE (raux1)
#else
CALL plot_io (filplot, title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, &
dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp, ibrav, celldm, at,&
gcutm, dual, ecutwfc, plot_num, atm, ityp, zv, tau, raux, + 1)
#endif
DEALLOCATE (raux)
RETURN
END SUBROUTINE punch_plot
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/LIN/ddrvrf4.f | 32 | 11010 | *> \brief \b DDRVRF4
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DDRVRF4( NOUT, NN, NVAL, THRESH, C1, C2, LDC, CRF, A,
* + LDA, D_WORK_DLANGE )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDC, NN, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* INTEGER NVAL( NN )
* DOUBLE PRECISION A( LDA, * ), C1( LDC, * ), C2( LDC, *),
* + CRF( * ), D_WORK_DLANGE( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DDRVRF4 tests the LAPACK RFP routines:
*> DSFRK
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To
*> have every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[out] C1
*> \verbatim
*> C1 is DOUBLE PRECISION array,
*> dimension (LDC,NMAX)
*> \endverbatim
*>
*> \param[out] C2
*> \verbatim
*> C2 is DOUBLE PRECISION array,
*> dimension (LDC,NMAX)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array A.
*> LDA >= max(1,NMAX).
*> \endverbatim
*>
*> \param[out] CRF
*> \verbatim
*> CRF is DOUBLE PRECISION array,
*> dimension ((NMAX*(NMAX+1))/2).
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array,
*> dimension (LDA,NMAX)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,NMAX).
*> \endverbatim
*>
*> \param[out] D_WORK_DLANGE
*> \verbatim
*> D_WORK_DLANGE is DOUBLE PRECISION array, dimension (NMAX)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DDRVRF4( NOUT, NN, NVAL, THRESH, C1, C2, LDC, CRF, A,
+ LDA, D_WORK_DLANGE )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDC, NN, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
INTEGER NVAL( NN )
DOUBLE PRECISION A( LDA, * ), C1( LDC, * ), C2( LDC, *),
+ CRF( * ), D_WORK_DLANGE( * )
* ..
*
* =====================================================================
* ..
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
INTEGER NTESTS
PARAMETER ( NTESTS = 1 )
* ..
* .. Local Scalars ..
CHARACTER UPLO, CFORM, TRANS
INTEGER I, IFORM, IIK, IIN, INFO, IUPLO, J, K, N,
+ NFAIL, NRUN, IALPHA, ITRANS
DOUBLE PRECISION ALPHA, BETA, EPS, NORMA, NORMC
* ..
* .. Local Arrays ..
CHARACTER UPLOS( 2 ), FORMS( 2 ), TRANSS( 2 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLARND, DLANGE
EXTERNAL DLAMCH, DLARND, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DSYRK, DSFRK, DTFTTR, DTRTTF
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / 'U', 'L' /
DATA FORMS / 'N', 'T' /
DATA TRANSS / 'N', 'T' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
NRUN = 0
NFAIL = 0
INFO = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
EPS = DLAMCH( 'Precision' )
*
DO 150 IIN = 1, NN
*
N = NVAL( IIN )
*
DO 140 IIK = 1, NN
*
K = NVAL( IIN )
*
DO 130 IFORM = 1, 2
*
CFORM = FORMS( IFORM )
*
DO 120 IUPLO = 1, 2
*
UPLO = UPLOS( IUPLO )
*
DO 110 ITRANS = 1, 2
*
TRANS = TRANSS( ITRANS )
*
DO 100 IALPHA = 1, 4
*
IF ( IALPHA.EQ. 1) THEN
ALPHA = ZERO
BETA = ZERO
ELSE IF ( IALPHA.EQ. 2) THEN
ALPHA = ONE
BETA = ZERO
ELSE IF ( IALPHA.EQ. 3) THEN
ALPHA = ZERO
BETA = ONE
ELSE
ALPHA = DLARND( 2, ISEED )
BETA = DLARND( 2, ISEED )
END IF
*
* All the parameters are set:
* CFORM, UPLO, TRANS, M, N,
* ALPHA, and BETA
* READY TO TEST!
*
NRUN = NRUN + 1
*
IF ( ITRANS.EQ.1 ) THEN
*
* In this case we are NOTRANS, so A is N-by-K
*
DO J = 1, K
DO I = 1, N
A( I, J) = DLARND( 2, ISEED )
END DO
END DO
*
NORMA = DLANGE( 'I', N, K, A, LDA,
+ D_WORK_DLANGE )
*
ELSE
*
* In this case we are TRANS, so A is K-by-N
*
DO J = 1,N
DO I = 1, K
A( I, J) = DLARND( 2, ISEED )
END DO
END DO
*
NORMA = DLANGE( 'I', K, N, A, LDA,
+ D_WORK_DLANGE )
*
END IF
*
* Generate C1 our N--by--N symmetric matrix.
* Make sure C2 has the same upper/lower part,
* (the one that we do not touch), so
* copy the initial C1 in C2 in it.
*
DO J = 1, N
DO I = 1, N
C1( I, J) = DLARND( 2, ISEED )
C2(I,J) = C1(I,J)
END DO
END DO
*
* (See comment later on for why we use DLANGE and
* not DLANSY for C1.)
*
NORMC = DLANGE( 'I', N, N, C1, LDC,
+ D_WORK_DLANGE )
*
SRNAMT = 'DTRTTF'
CALL DTRTTF( CFORM, UPLO, N, C1, LDC, CRF,
+ INFO )
*
* call dsyrk the BLAS routine -> gives C1
*
SRNAMT = 'DSYRK '
CALL DSYRK( UPLO, TRANS, N, K, ALPHA, A, LDA,
+ BETA, C1, LDC )
*
* call dsfrk the RFP routine -> gives CRF
*
SRNAMT = 'DSFRK '
CALL DSFRK( CFORM, UPLO, TRANS, N, K, ALPHA, A,
+ LDA, BETA, CRF )
*
* convert CRF in full format -> gives C2
*
SRNAMT = 'DTFTTR'
CALL DTFTTR( CFORM, UPLO, N, CRF, C2, LDC,
+ INFO )
*
* compare C1 and C2
*
DO J = 1, N
DO I = 1, N
C1(I,J) = C1(I,J)-C2(I,J)
END DO
END DO
*
* Yes, C1 is symmetric so we could call DLANSY,
* but we want to check the upper part that is
* supposed to be unchanged and the diagonal that
* is supposed to be real -> DLANGE
*
RESULT(1) = DLANGE( 'I', N, N, C1, LDC,
+ D_WORK_DLANGE )
RESULT(1) = RESULT(1)
+ / MAX( ABS( ALPHA ) * NORMA
+ + ABS( BETA ) , ONE )
+ / MAX( N , 1 ) / EPS
*
IF( RESULT(1).GE.THRESH ) THEN
IF( NFAIL.EQ.0 ) THEN
WRITE( NOUT, * )
WRITE( NOUT, FMT = 9999 )
END IF
WRITE( NOUT, FMT = 9997 ) 'DSFRK',
+ CFORM, UPLO, TRANS, N, K, RESULT(1)
NFAIL = NFAIL + 1
END IF
*
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
*
* Print a summary of the results.
*
IF ( NFAIL.EQ.0 ) THEN
WRITE( NOUT, FMT = 9996 ) 'DSFRK', NRUN
ELSE
WRITE( NOUT, FMT = 9995 ) 'DSFRK', NFAIL, NRUN
END IF
*
9999 FORMAT( 1X, ' *** Error(s) or Failure(s) while testing DSFRK
+ ***')
9997 FORMAT( 1X, ' Failure in ',A5,', CFORM=''',A1,''',',
+ ' UPLO=''',A1,''',',' TRANS=''',A1,''',', ' N=',I3,', K =', I3,
+ ', test=',G12.5)
9996 FORMAT( 1X, 'All tests for ',A5,' auxiliary routine passed the ',
+ 'threshold ( ',I5,' tests run)')
9995 FORMAT( 1X, A6, ' auxiliary routine: ',I5,' out of ',I5,
+ ' tests failed to pass the threshold')
*
RETURN
*
* End of DDRVRF4
*
END
| gpl-2.0 |
omni-compiler/omni-compiler | tests/XMP/others/F/add_decl-block.F90 | 2 | 2373 | !$xmp nodes p(2)
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
integer :: ary1(6) = (/1,2,3,4,5,6/)
integer :: ary2(10) = (/1,2,3,4,5,6,7,8,9,10/)
!print *, 'line 01 : ', ary1
!print *, 'line 02 : ', ary2
blkname1 : block
integer :: ary1(10)
integer :: ary2(10)
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p
!$xmp align ary1(i) with t(i)
!$xmp loop on t(i)
do i=1,10
ary1(i)=i**2
end do
!print *, 'line 03 : ', ary1
blkname2 : block
integer :: ary1(10)
integer :: ary2(10)
!$xmp nodes p(2)
!$xmp template t(12)
!$xmp distribute t(block) onto p
!$xmp align ary1(i) with t(i)
!$xmp loop on t(i)
do i=1,10
ary1(i)=i**3
end do
!print *, 'line 04 : ', ary1
!$xmp task on p(1)
if (ary1(6).eq.216) then
print *, 'PASS 1'
else
print *, 'ERROR 1'
call exit(1)
end if
!$xmp end task
!$xmp gmove
ary2(:)=ary1(:)
!print *, 'line 05 : ', ary2
!!$xmp task on p(2)
if (ary2(6).eq.216) then
print *, 'PASS 2'
else
print *, 'ERROR 2'
call exit(1)
end if
!!$xmp end task
end block blkname2
!$xmp gmove
ary2(:)=ary1(:)
!print *, 'line 06 : ', ary2
blkname3 : block
integer :: ary1(10)
integer :: ary2(10)
!$xmp nodes p(2)
!$xmp template t(14)
!$xmp distribute t(block) onto p
!$xmp align ary1(i) with t(i)
!$xmp loop on t(i)
do i=1,10
ary1(i)=i**4
end do
!print *, 'line 07 : ', ary1
!$xmp task on p(1)
if (ary1(7).eq.2401) then
print *, 'PASS 3'
else
print *, 'ERROR 3'
call exit(1)
end if
!$xmp end task
!$xmp gmove
ary2(:)=ary1(:)
!print *, 'line 08 : ', ary2
!$xmp task on p(2)
if (ary2(7).eq.2401) then
print *, 'PASS 4'
else
print *, 'ERROR 4'
call exit(1)
end if
!$xmp end task
end block blkname3
!print *, 'line 09 : ', ary1
!print *, 'line 10 : ', ary2
!$xmp task on p(1)
if (ary1(5).eq.25) then
print *, 'PASS 5'
else
print *, 'ERROR 5'
call exit(1)
end if
!$xmp end task
!$xmp task on p(2)
if (ary2(5).eq.25) then
print *, 'PASS 6'
else
print *, 'ERROR 6'
call exit(1)
end if
!$xmp end task
end block blkname1
!print *, 'line 11 : ', ary1
!print *, 'line 12 : ', ary2
!$xmp task on p(1)
if (ary1(6).eq.6.and.ary2(10).eq.10) then
print *, 'PASS 7'
else
print *, 'ERROR 7'
call exit(1)
end if
!$xmp end task
#else
!$xmp task on p(1)
print *, 'SKIPPED'
!$xmp end task
#endif
end
| lgpl-3.0 |
RBigData/pbdSLAP | src/ScaLAPACK/pdlaqsy.f | 4 | 13375 | SUBROUTINE PDLAQSY( UPLO, N, A, IA, JA, DESCA, SR, SC, SCOND,
$ AMAX, EQUED )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER EQUED, UPLO
INTEGER IA, JA, N
DOUBLE PRECISION AMAX, SCOND
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION A( * ), SC( * ), SR( * )
* ..
*
* Purpose
* =======
*
* PDLAQSY equilibrates a symmetric distributed matrix
* sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the
* vectors SR and SC.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER
* Specifies whether the upper or lower triangular part of the
* symmetric distributed matrix sub( A ) is to be referenced:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* A (input/output) DOUBLE PRECISION pointer into the local
* memory to an array of local dimension (LLD_A,LOCc(JA+N-1)).
* On entry, the local pieces of the distributed symmetric
* matrix sub( A ). If UPLO = 'U', the leading N-by-N upper
* triangular part of sub( A ) contains the upper triangular
* part of the matrix, and the strictly lower triangular part
* of sub( A ) is not referenced. If UPLO = 'L', the leading
* N-by-N lower triangular part of sub( A ) contains the lower
* triangular part of the matrix, and the strictly upper trian-
* gular part of sub( A ) is not referenced.
* On exit, if EQUED = 'Y', the equilibrated matrix:
* diag(SR(IA:IA+N-1)) * sub( A ) * diag(SC(JA:JA+N-1)).
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* SR (local input) DOUBLE PRECISION array, dimension LOCr(M_A)
* The scale factors for A(IA:IA+M-1,JA:JA+N-1). SR is aligned
* with the distributed matrix A, and replicated across every
* process column. SR is tied to the distributed matrix A.
*
* SC (local input) DOUBLE PRECISION array, dimension LOCc(N_A)
* The scale factors for sub( A ). SC is aligned with the dis-
* tributed matrix A, and replicated down every process row.
* SC is tied to the distributed matrix A.
*
* SCOND (global input) DOUBLE PRECISION
* Ratio of the smallest SR(i) (respectively SC(j)) to the
* largest SR(i) (respectively SC(j)), with IA <= i <= IA+N-1
* and JA <= j <= JA+N-1.
*
* AMAX (global input) DOUBLE PRECISION
* Absolute value of the largest distributed submatrix entry.
*
* EQUED (output) CHARACTER*1
* Specifies whether or not equilibration was done.
* = 'N': No equilibration.
* = 'Y': Equilibration was done, i.e., sub( A ) has been re-
* placed by:
* diag(SR(IA:IA+N-1)) * sub( A ) * diag(SC(JA:JA+N-1)).
*
* Internal Parameters
* ===================
*
* THRESH is a threshold value used to decide if scaling should be done
* based on the ratio of the scaling factors. If SCOND < THRESH,
* scaling is done.
*
* LARGE and SMALL are threshold values used to decide if scaling should
* be done based on the absolute size of the largest matrix element.
* If AMAX > LARGE or AMAX < SMALL, scaling is done.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE, THRESH
PARAMETER ( ONE = 1.0D+0, THRESH = 0.1D+0 )
* ..
* .. Local Scalars ..
INTEGER IACOL, IAROW, ICTXT, II, IIA, IOFFA, IROFF, J,
$ JB, JJ, JJA, JN, KK, LDA, LL, MYCOL, MYROW, NP,
$ NPCOL, NPROW
DOUBLE PRECISION CJ, LARGE, SMALL
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG2L
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, NUMROC
DOUBLE PRECISION PDLAMCH
EXTERNAL ICEIL, LSAME, NUMROC, PDLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MOD
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
EQUED = 'N'
RETURN
END IF
*
* Get grid parameters and compute local indexes
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
LDA = DESCA( LLD_ )
*
* Initialize LARGE and SMALL.
*
SMALL = PDLAMCH( ICTXT, 'Safe minimum' ) /
$ PDLAMCH( ICTXT, 'Precision' )
LARGE = ONE / SMALL
*
IF( SCOND.GE.THRESH .AND. AMAX.GE.SMALL .AND. AMAX.LE.LARGE ) THEN
*
* No equilibration
*
EQUED = 'N'
*
ELSE
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
* Replace A by diag(S) * A * diag(S).
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Upper triangle of A(IA:IA+N-1,JA:JA+N-1) is stored.
* Handle first block separately
*
IOFFA = (JJ-1)*LDA
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 20 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 10 KK = IIA, II+LL-JJ+1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
10 CONTINUE
IOFFA = IOFFA + LDA
20 CONTINUE
ELSE
IOFFA = IOFFA + JB*LDA
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 70 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 40 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 30 KK = IIA, II+LL-JJ+1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
30 CONTINUE
IOFFA = IOFFA + LDA
40 CONTINUE
ELSE
DO 60 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 50 KK = IIA, II-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
50 CONTINUE
IOFFA = IOFFA + LDA
60 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
70 CONTINUE
*
ELSE
*
* Lower triangle of A(IA:IA+N-1,JA:JA+N-1) is stored.
* Handle first block separately
*
IROFF = MOD( IA-1, DESCA( MB_ ) )
NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
IF( MYROW.EQ.IAROW )
$ NP = NP-IROFF
*
IOFFA = (JJ-1)*LDA
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 90 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 80 KK = II+LL-JJ, IIA+NP-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
80 CONTINUE
IOFFA = IOFFA + LDA
90 CONTINUE
ELSE
DO 110 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 100 KK = II, IIA+NP-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
100 CONTINUE
IOFFA = IOFFA + LDA
110 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 160 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 130 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 120 KK = II+LL-JJ, IIA+NP-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
120 CONTINUE
IOFFA = IOFFA + LDA
130 CONTINUE
ELSE
DO 150 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 140 KK = II, IIA+NP-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
140 CONTINUE
IOFFA = IOFFA + LDA
150 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
160 CONTINUE
*
END IF
*
EQUED = 'Y'
*
END IF
*
RETURN
*
* End of PDLAQSY
*
END
| mpl-2.0 |
QEF/q-e | PHonon/PH/matdyn.f90 | 1 | 91050 | ! Copyright (C) 2001-2012 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
Module ifconstants
!
!! All variables read from file that need dynamical allocation.
!
USE kinds, ONLY: DP
!
REAL(DP), ALLOCATABLE :: frc(:,:,:,:,:,:,:)
!! interatomic force constants in real space
REAL(DP), ALLOCATABLE :: tau_blk(:,:)
!! atomic positions for the original cell
REAL(DP), ALLOCATABLE :: zeu(:,:,:)
!! effective charges for the original cell
REAL(DP), ALLOCATABLE :: m_loc(:,:)
!! the magnetic moments of each atom
INTEGER, ALLOCATABLE :: ityp_blk(:)
!! atomic types for each atom of the original cell
!
CHARACTER(LEN=3), ALLOCATABLE :: atm(:)
!
end Module ifconstants
!
!
!---------------------------------------------------------------------
PROGRAM matdyn
!-----------------------------------------------------------------------
!! This program calculates the phonon frequencies for a list of generic
!! q vectors starting from the interatomic force constants generated
!! from the dynamical matrices as written by DFPT phonon code through
!! the companion program \(\texttt{q2r}\).
!
!! \(\texttt{matdyn}\) can generate a supercell of the original cell for
!! mass approximation calculation. If supercell data are not specified
!! in input, the unit cell, lattice vectors, atom types and positions
!! are read from the force constant file.
!
! Input cards: namelist &input
! flfrc file produced by q2r containing force constants (needed)
! It is the same as in the input of q2r.x (+ the .xml extension
! if the dynamical matrices produced by ph.x were in xml
! format). No default value: must be specified.
! asr (character) indicates the type of Acoustic Sum Rule imposed
! - 'no': no Acoustic Sum Rules imposed (default)
! - 'simple': previous implementation of the asr used
! (3 translational asr imposed by correction of
! the diagonal elements of the force constants matrix)
! - 'crystal': 3 translational asr imposed by optimized
! correction of the force constants (projection).
! - 'one-dim': 3 translational asr + 1 rotational asr
! imposed by optimized correction of the force constants
! (the rotation axis is the direction of periodicity;
! it will work only if this axis considered is one of
! the cartesian axis).
! - 'zero-dim': 3 translational asr + 3 rotational asr
! imposed by optimized correction of the force constants
! Note that in certain cases, not all the rotational asr
! can be applied (e.g. if there are only 2 atoms in a
! molecule or if all the atoms are aligned, etc.).
! In these cases the supplementary asr are cancelled
! during the orthonormalization procedure (see below).
! dos if .true. calculate phonon Density of States (DOS)
! using tetrahedra and a uniform q-point grid (see below)
! NB: may not work properly in noncubic materials
! if .false. calculate phonon bands from the list of q-points
! supplied in input (default)
! nk1,nk2,nk3 uniform q-point grid for DOS calculation (includes q=0)
! (must be specified if dos=.true., ignored otherwise)
! deltaE energy step, in cm^(-1), for DOS calculation: from min
! to max phonon energy (default: 1 cm^(-1) if ndos, see
! below, is not specified)
! ndos number of energy steps for DOS calculations
! (default: calculated from deltaE if not specified)
! degauss DOS broadening (in cm^-1). Default 0 - meaning use tetrahedra
! fldos output file for dos (default: 'matdyn.dos')
! the dos is in states/cm(-1) plotted vs omega in cm(-1)
! and is normalised to 3*nat, i.e. the number of phonons
! flfrq output file for frequencies (default: 'matdyn.freq')
! flvec output file for normalized phonon displacements
! (default: 'matdyn.modes'). The normalized phonon displacements
! are the eigenvectors divided by the square root of the mass,
! then normalized. As such they are not orthogonal.
! fleig output file for phonon eigenvectors (default: 'matdyn.eig')
! The phonon eigenvectors are the eigenvectors of the dynamical
! matrix. They are orthogonal.
! fldyn output file for dynamical matrix (default: ' ' i.e. not written)
! at supercell lattice vectors - must form a superlattice of the
! original lattice (default: use original cell)
! l1,l2,l3 supercell lattice vectors are original cell vectors times
! l1, l2, l3 respectively (default: 1, ignored if at specified)
! ntyp number of atom types in the supercell (default: ntyp of the
! original cell)
! amass masses of atoms in the supercell (a.m.u.), one per atom type
! (default: use masses read from file flfrc)
! readtau read atomic positions of the supercell from input
! (used to specify different masses) (default: .false.)
! fltau write atomic positions of the supercell to file "fltau"
! (default: fltau=' ', do not write)
! la2F if .true. interpolates also the el-ph coefficients.
! q_in_band_form if .true. the q points are given in band form:
! Only the first and last point of one or more lines
! are given. See below. (default: .false.).
! q_in_cryst_coord if .true. input q points are in crystalline
! coordinates (default: .false.)
! eigen_similarity: use similarity of the displacements to order
! frequencies (default: .false.)
! NB: You cannot use this option with the symmetry
! analysis of the modes.
! fd (logical) if .t. the ifc come from the finite displacement calculation
! na_ifc (logical) add non analitic contributions to the interatomic force
! constants if finite displacement method is used (as in Wang et al.
! Phys. Rev. B 85, 224303 (2012)) [to be used in conjunction with fd.x]
! nosym if .true., no symmetry and no time reversal are imposed
! loto_2d set to .true. to activate two-dimensional treatment of LO-TO splitting.
! loto_disable (logical) if .true. do not apply LO-TO splitting for q=0
! (default: .false.)
!
! if (readtau) atom types and positions in the supercell follow:
! (tau(i,na),i=1,3), ityp(na)
! IF (q_in_band_form.and..not.dos) THEN
! nq ! number of q points
! (q(i,n),i=1,3), nptq nptq is the number of points between this point
! and the next. These points are automatically
! generated. the q points are given in Cartesian
! coordinates, 2pi/a units (a=lattice parameters)
! ELSE, if (.not.dos) :
! nq number of q-points
! (q(i,n), i=1,3) nq q-points in cartesian coordinates, 2pi/a units
! If q = 0, the direction qhat (q=>0) for the non-analytic part
! is extracted from the sequence of q-points as follows:
! qhat = q(n) - q(n-1) or qhat = q(n) - q(n+1)
! depending on which one is available and nonzero.
! For low-symmetry crystals, specify twice q = 0 in the list
! if you want to have q = 0 results for two different directions
!
USE kinds, ONLY : DP
USE mp, ONLY : mp_bcast
USE mp_world, ONLY : world_comm
USE mp_global, ONLY : mp_startup, mp_global_end
USE environment, ONLY : environment_start, environment_end
USE io_global, ONLY : ionode, ionode_id, stdout
USE io_dyn_mat, ONLY : read_dyn_mat_param, read_dyn_mat_header, &
read_ifc_param, read_ifc
USE cell_base, ONLY : at, bg, celldm
USE constants, ONLY : RY_TO_THZ, RY_TO_CMM1, amu_ry
USE symm_base, ONLY : set_sym
USE rap_point_group, ONLY : code_group
USE bz_form, ONLY : transform_label_coord
USE parser, ONLY : read_line
USE rigid, ONLY : dyndiag, nonanal, nonanal_ifc
USE el_phon, ONLY : el_ph_nsigma
USE ifconstants, ONLY : frc, atm, zeu, tau_blk, ityp_blk, m_loc
!
IMPLICIT NONE
!
INTEGER :: gid
!
! variables *_blk refer to the original cell, other variables
! to the (super)cell (which may coincide with the original cell)
!
INTEGER:: nax, nax_blk
INTEGER, PARAMETER:: ntypx=10, nrwsx=200
REAL(DP), PARAMETER :: eps=1.0d-6
INTEGER :: nr1, nr2, nr3, nsc, nk1, nk2, nk3, ibrav
CHARACTER(LEN=256) :: flfrc, flfrq, flvec, fltau, fldos, filename, fldyn, &
fleig, fildyn, fildyn_prefix
CHARACTER(LEN=10) :: asr
LOGICAL :: dos, has_zstar, q_in_cryst_coord, eigen_similarity, loto_disable
COMPLEX(DP), ALLOCATABLE :: dyn(:,:,:,:), dyn_blk(:,:,:,:), frc_ifc(:,:,:,:)
COMPLEX(DP), ALLOCATABLE :: z(:,:)
REAL(DP), ALLOCATABLE:: tau(:,:), q(:,:), w2(:,:), freq(:,:), wq(:), &
dynq(:,:,:), DOSofE(:), zq(:, :, :)
INTEGER, ALLOCATABLE:: ityp(:), itau_blk(:)
REAL(DP) :: omega,alat, &! cell parameters and volume
at_blk(3,3), bg_blk(3,3), &! original cell
omega_blk, &! original cell volume
epsil(3,3), &! dielectric tensor
amass(ntypx), &! atomic masses
amass_blk(ntypx), &! original atomic masses
atws(3,3), &! lattice vector for WS initialization
rws(0:3,nrwsx) ! nearest neighbor list, rws(0,*) = norm^2
!
INTEGER :: nat, nat_blk, ntyp, ntyp_blk, &
l1, l2, l3, &! supercell dimensions
nrws, &! number of nearest neighbor
code_group_old
INTEGER :: nspin_mag, nqs, ios, ipol
!
LOGICAL :: readtau, la2F, xmlifc, lo_to_split, na_ifc, fd, nosym, loto_2d
!
REAL(DP) :: qhat(3), qh, DeltaE, Emin=0._dp, Emax, E, qq, degauss
REAL(DP) :: delta, pathL
REAL(DP), ALLOCATABLE :: xqaux(:,:)
INTEGER, ALLOCATABLE :: nqb(:)
INTEGER :: n, i, j, it, nq, nqx, na, nb, ndos, iout, nqtot, iout_dyn, iout_eig
LOGICAL, EXTERNAL :: has_xml
INTEGER, ALLOCATABLE :: num_rap_mode(:,:)
LOGICAL, ALLOCATABLE :: high_sym(:)
LOGICAL :: q_in_band_form
! .... variables for band plotting based on similarity of eigenvalues
COMPLEX(DP), ALLOCATABLE :: tmp_z(:,:)
REAL(DP), ALLOCATABLE :: abs_similarity(:,:), tmp_w2(:)
COMPLEX(DP), ALLOCATABLE :: f_of_q(:,:,:,:)
INTEGER :: location(1), isig
CHARACTER(LEN=6) :: int_to_char
LOGICAL, ALLOCATABLE :: mask(:)
INTEGER :: npk_label, nch
CHARACTER(LEN=3), ALLOCATABLE :: letter(:)
INTEGER, ALLOCATABLE :: label_list(:)
LOGICAL :: tend, terr
CHARACTER(LEN=256) :: input_line, buffer
CHARACTER(LEN=10) :: point_label_type
CHARACTER(len=80) :: k_points = 'tpiba'
!
REAL(DP), external :: dos_broad, dos_gam
!
NAMELIST /input/ flfrc, amass, asr, flfrq, flvec, fleig, at, dos, &
& fldos, nk1, nk2, nk3, l1, l2, l3, ntyp, readtau, fltau, &
& la2F, ndos, DeltaE, degauss, q_in_band_form, q_in_cryst_coord, &
& eigen_similarity, fldyn, na_ifc, fd, point_label_type, &
& nosym, loto_2d, fildyn, fildyn_prefix, el_ph_nsigma, &
& loto_disable
!
CALL mp_startup()
CALL environment_start('MATDYN')
!
IF (ionode) CALL input_from_file ( )
!
! ... all calculations are done by the first cpu
!
! set namelist default
!
dos = .FALSE.
deltaE = 1.0d0
degauss = 0
ndos = 1
nk1 = 0
nk2 = 0
nk3 = 0
asr ='no'
readtau=.FALSE.
flfrc=' '
fldos='matdyn.dos'
flfrq='matdyn.freq'
flvec='matdyn.modes'
fleig=' '
fldyn=' '
fltau=' '
fildyn = ' '
fildyn_prefix = ' '
amass(:) =0.d0
amass_blk(:) =0.d0
at(:,:) = 0.d0
ntyp = 0
l1=1
l2=1
l3=1
la2F=.false.
q_in_band_form=.FALSE.
eigen_similarity=.FALSE.
q_in_cryst_coord = .FALSE.
na_ifc=.FALSE.
fd=.FALSE.
point_label_type='SC'
nosym = .false.
loto_2d=.false.
el_ph_nsigma=10
loto_disable = .false.
!
!
IF (ionode) READ (5,input,IOSTAT=ios)
CALL mp_bcast(ios, ionode_id, world_comm)
CALL errore('matdyn', 'reading input namelist', ABS(ios))
CALL mp_bcast(dos,ionode_id, world_comm)
CALL mp_bcast(deltae,ionode_id, world_comm)
CALL mp_bcast(ndos,ionode_id, world_comm)
CALL mp_bcast(degauss,ionode_id, world_comm)
CALL mp_bcast(nk1,ionode_id, world_comm)
CALL mp_bcast(nk2,ionode_id, world_comm)
CALL mp_bcast(nk3,ionode_id, world_comm)
CALL mp_bcast(asr,ionode_id, world_comm)
CALL mp_bcast(readtau,ionode_id, world_comm)
CALL mp_bcast(flfrc,ionode_id, world_comm)
CALL mp_bcast(fldos,ionode_id, world_comm)
CALL mp_bcast(flfrq,ionode_id, world_comm)
CALL mp_bcast(flvec,ionode_id, world_comm)
CALL mp_bcast(fleig,ionode_id, world_comm)
CALL mp_bcast(fldyn,ionode_id, world_comm)
CALL mp_bcast(fltau,ionode_id, world_comm)
CALL mp_bcast(fildyn,ionode_id, world_comm)
CALL mp_bcast(fildyn_prefix,ionode_id, world_comm)
CALL mp_bcast(amass,ionode_id, world_comm)
CALL mp_bcast(amass_blk,ionode_id, world_comm)
CALL mp_bcast(at,ionode_id, world_comm)
CALL mp_bcast(ntyp,ionode_id, world_comm)
CALL mp_bcast(l1,ionode_id, world_comm)
CALL mp_bcast(l2,ionode_id, world_comm)
CALL mp_bcast(l3,ionode_id, world_comm)
CALL mp_bcast(na_ifc,ionode_id, world_comm)
CALL mp_bcast(fd,ionode_id, world_comm)
CALL mp_bcast(la2F,ionode_id, world_comm)
CALL mp_bcast(q_in_band_form,ionode_id, world_comm)
CALL mp_bcast(eigen_similarity,ionode_id, world_comm)
CALL mp_bcast(q_in_cryst_coord,ionode_id, world_comm)
CALL mp_bcast(point_label_type,ionode_id, world_comm)
CALL mp_bcast(loto_2d,ionode_id, world_comm)
CALL mp_bcast(loto_disable,ionode_id, world_comm)
CALL mp_bcast(el_ph_nsigma,ionode_id, world_comm)
!
IF (loto_2d .AND. loto_disable) CALL errore('matdyn', &
'loto_2d and loto_disable cannot be both true', 1)
!
! read force constants
!
IF ( trim( fildyn ) /= ' ' ) THEN
IF (ionode) THEN
WRITE(stdout, *)
WRITE(stdout, '(4x,a)') ' fildyn has been provided, running q2r...'
END IF
CALL do_q2r(fildyn, flfrc, fildyn_prefix, asr, la2F, loto_2d)
END IF
!
ntyp_blk = ntypx ! avoids fake out-of-bound error
xmlifc=has_xml(flfrc)
IF (xmlifc) THEN
CALL read_dyn_mat_param(flfrc,ntyp_blk,nat_blk)
ALLOCATE (m_loc(3,nat_blk))
ALLOCATE (tau_blk(3,nat_blk))
ALLOCATE (ityp_blk(nat_blk))
ALLOCATE (atm(ntyp_blk))
ALLOCATE (zeu(3,3,nat_blk))
CALL read_dyn_mat_header(ntyp_blk, nat_blk, ibrav, nspin_mag, &
celldm, at_blk, bg_blk, omega_blk, atm, amass_blk, &
tau_blk, ityp_blk, m_loc, nqs, has_zstar, epsil, zeu )
alat=celldm(1)
call volume(alat,at_blk(1,1),at_blk(1,2),at_blk(1,3),omega_blk)
CALL read_ifc_param(nr1,nr2,nr3)
ALLOCATE(frc(nr1,nr2,nr3,3,3,nat_blk,nat_blk))
CALL read_ifc(nr1,nr2,nr3,nat_blk,frc)
ELSE
CALL readfc ( flfrc, nr1, nr2, nr3, epsil, nat_blk, &
ibrav, alat, at_blk, ntyp_blk, &
amass_blk, omega_blk, has_zstar)
ENDIF
!
CALL recips ( at_blk(1,1),at_blk(1,2),at_blk(1,3), &
bg_blk(1,1),bg_blk(1,2),bg_blk(1,3) )
!
! set up (super)cell
!
if (ntyp < 0) then
call errore ('matdyn','wrong ntyp ', abs(ntyp))
else if (ntyp == 0) then
ntyp=ntyp_blk
end if
!
! masses (for mass approximation)
!
DO it=1,ntyp
IF (amass(it) < 0.d0) THEN
CALL errore ('matdyn','wrong mass in the namelist',it)
ELSE IF (amass(it) == 0.d0) THEN
IF (it.LE.ntyp_blk) THEN
WRITE (stdout,'(a,i3,a,a)') ' mass for atomic type ',it, &
& ' not given; uses mass from file ',flfrc
amass(it) = amass_blk(it)
ELSE
CALL errore ('matdyn','missing mass in the namelist',it)
END IF
END IF
END DO
!
! lattice vectors
!
IF (SUM(ABS(at(:,:))) == 0.d0) THEN
IF (l1.LE.0 .OR. l2.LE.0 .OR. l3.LE.0) CALL &
& errore ('matdyn',' wrong l1,l2 or l3',1)
at(:,1) = at_blk(:,1)*DBLE(l1)
at(:,2) = at_blk(:,2)*DBLE(l2)
at(:,3) = at_blk(:,3)*DBLE(l3)
END IF
!
CALL check_at(at,bg_blk,alat,omega)
!
! the supercell contains "nsc" times the original unit cell
!
nsc = NINT(omega/omega_blk)
IF (ABS(omega/omega_blk-nsc) > eps) &
CALL errore ('matdyn', 'volume ratio not integer', 1)
!
! read/generate atomic positions of the (super)cell
!
nat = nat_blk * nsc
nax = nat
nax_blk = nat_blk
!
ALLOCATE ( tau (3, nat), ityp(nat), itau_blk(nat) )
!
IF (readtau) THEN
CALL read_tau &
(nat, nat_blk, ntyp, bg_blk, tau, tau_blk, ityp, itau_blk)
ELSE
CALL set_tau &
(nat, nat_blk, at, at_blk, tau, tau_blk, ityp, ityp_blk, itau_blk)
ENDIF
!
IF (fltau.NE.' ') CALL write_tau (fltau, nat, tau, ityp)
!
! reciprocal lattice vectors
!
CALL recips (at(1,1),at(1,2),at(1,3),bg(1,1),bg(1,2),bg(1,3))
!
! build the WS cell corresponding to the force constant grid
!
atws(:,1) = at_blk(:,1)*DBLE(nr1)
atws(:,2) = at_blk(:,2)*DBLE(nr2)
atws(:,3) = at_blk(:,3)*DBLE(nr3)
! initialize WS r-vectors
CALL wsinit(rws,nrwsx,nrws,atws)
!
! end of (super)cell setup
!
IF (dos) THEN
IF (nk1 < 1 .OR. nk2 < 1 .OR. nk3 < 1) &
CALL errore ('matdyn','specify correct q-point grid!',1)
nqx = nk1*nk2*nk3
ALLOCATE ( q(3,nqx), wq(nqx) )
CALL gen_qpoints (ibrav, at, bg, nat, tau, ityp, nk1, nk2, nk3, &
nqx, nq, q, nosym, wq)
ELSE
!
! read q-point list
!
IF (ionode) READ (5,*) nq
CALL mp_bcast(nq, ionode_id, world_comm)
ALLOCATE ( q(3,nq) )
IF (.NOT.q_in_band_form) THEN
ALLOCATE(wq(nq))
DO n = 1,nq
IF (ionode) READ (5,*) (q(i,n),i=1,3)
END DO
CALL mp_bcast(q, ionode_id, world_comm)
!
IF (q_in_cryst_coord) CALL cryst_to_cart(nq,q,bg,+1)
ELSE
ALLOCATE( nqb(nq) )
ALLOCATE( xqaux(3,nq) )
ALLOCATE( letter(nq) )
ALLOCATE( label_list(nq) )
npk_label=0
DO n = 1, nq
CALL read_line( input_line, end_of_file = tend, error = terr )
IF (tend) CALL errore('matdyn','Missing lines',1)
IF (terr) CALL errore('matdyn','Error reading q points',1)
DO j=1,256 ! loop over all characters of input_line
IF ( (ICHAR(input_line(j:j)) < 58 .AND. & ! a digit
ICHAR(input_line(j:j)) > 47) &
.OR.ICHAR(input_line(j:j)) == 43 .OR. & ! the + sign
ICHAR(input_line(j:j)) == 45 .OR. & ! the - sign
ICHAR(input_line(j:j)) == 46 ) THEN ! a dot .
!
! This is a digit, therefore this line contains the coordinates of the
! k point. We read it and exit from the loop on characters
!
READ(input_line,*) xqaux(1,n), xqaux(2,n), xqaux(3,n), &
nqb(n)
EXIT
ELSEIF ((ICHAR(input_line(j:j)) < 123 .AND. &
ICHAR(input_line(j:j)) > 64)) THEN
!
! This is a letter, not a space character. We read the next three
! characters and save them in the letter array, save also which k point
! it is
!
npk_label=npk_label+1
READ(input_line(j:),'(a3)') letter(npk_label)
label_list(npk_label)=n
!
! now we remove the letters from input_line and read the number of points
! of the line. The next two line should account for the case in which
! there is only one space between the letter and the number of points.
!
nch=3
IF ( ICHAR(input_line(j+1:j+1))==32 .OR. &
ICHAR(input_line(j+2:j+2))==32 ) nch=2
buffer=input_line(j+nch:)
READ(buffer,*,err=20,iostat=ios) nqb(n)
20 IF (ios /=0) CALL errore('matdyn',&
'problem reading number of points',1)
EXIT
ENDIF
ENDDO
ENDDO
IF (q_in_cryst_coord) k_points='crystal'
IF ( npk_label > 0 ) &
CALL transform_label_coord(ibrav, celldm, xqaux, letter, &
label_list, npk_label, nq, k_points, point_label_type )
DEALLOCATE(letter)
DEALLOCATE(label_list)
CALL mp_bcast(xqaux, ionode_id, world_comm)
CALL mp_bcast(nqb, ionode_id, world_comm)
IF (q_in_cryst_coord) CALL cryst_to_cart(nq,xqaux,bg,+1)
nqtot=SUM(nqb(1:nq-1))+1
DO i=1,nq-1
IF (nqb(i)==0) nqtot=nqtot+1
ENDDO
DEALLOCATE(q)
ALLOCATE(q(3,nqtot))
ALLOCATE(wq(nqtot))
CALL generate_k_along_lines(nq, xqaux, nqb, q, wq, nqtot)
nq=nqtot
DEALLOCATE(xqaux)
DEALLOCATE(nqb)
END IF
!
END IF
!
IF (asr /= 'no') THEN
CALL set_asr (asr, nr1, nr2, nr3, frc, zeu, &
nat_blk, ibrav, tau_blk)
END IF
!
IF (flvec.EQ.' ') THEN
iout=0
ELSE
iout=4
IF (ionode) OPEN (unit=iout,file=flvec,status='unknown',form='formatted')
END IF
IF (fldyn.EQ.' ') THEN
iout_dyn=0
ELSE
iout_dyn=44
OPEN (unit=iout_dyn,file=fldyn,status='unknown',form='formatted')
END IF
IF (fleig.EQ.' ') THEN
iout_eig=0
ELSE
iout_eig=313
IF (ionode) OPEN (unit=iout_eig,file=fleig,status='unknown',form='formatted')
END IF
ALLOCATE ( dyn(3,3,nat,nat), dyn_blk(3,3,nat_blk,nat_blk) )
ALLOCATE ( z(3*nat,3*nat), w2(3*nat,nq), f_of_q(3,3,nat,nat), &
dynq(3*nat,nq,nat), DOSofE(nat), zq(nq, 3*nat, 3*nat) )
ALLOCATE ( tmp_w2(3*nat), abs_similarity(3*nat,3*nat), mask(3*nat) )
if(la2F.and.ionode) open(unit=300,file='dyna2F',status='unknown')
IF (xmlifc) CALL set_sym(nat, tau, ityp, nspin_mag, m_loc )
ALLOCATE(num_rap_mode(3*nat,nq))
ALLOCATE(high_sym(nq))
num_rap_mode=-1
high_sym=.TRUE.
zq(:, :, :) = (0.d0, 0.d0)
DO n=1, nq
dyn(:,:,:,:) = (0.d0, 0.d0)
lo_to_split=.FALSE.
f_of_q(:,:,:,:) = (0.d0,0.d0)
IF(na_ifc) THEN
qq=sqrt(q(1,n)**2+q(2,n)**2+q(3,n)**2)
if(abs(qq) < 1d-8) qq=1.0
qhat(1)=q(1,n)/qq
qhat(2)=q(2,n)/qq
qhat(3)=q(3,n)/qq
CALL nonanal_ifc (nat,nat_blk,itau_blk,epsil,qhat,zeu,omega,dyn, &
nr1, nr2, nr3,f_of_q)
END IF
CALL setupmat (q(1,n), dyn, nat, at, bg, tau, itau_blk, nsc, alat, &
dyn_blk, nat_blk, at_blk, bg_blk, tau_blk, omega_blk, &
loto_2d, &
epsil, zeu, frc, nr1,nr2,nr3, has_zstar, rws, nrws, na_ifc,f_of_q,fd)
IF (.not.loto_2d) THEN
qhat(1) = q(1,n)*at(1,1)+q(2,n)*at(2,1)+q(3,n)*at(3,1)
qhat(2) = q(1,n)*at(1,2)+q(2,n)*at(2,2)+q(3,n)*at(3,2)
qhat(3) = q(1,n)*at(1,3)+q(2,n)*at(2,3)+q(3,n)*at(3,3)
IF ( ABS( qhat(1) - NINT (qhat(1) ) ) <= eps .AND. &
ABS( qhat(2) - NINT (qhat(2) ) ) <= eps .AND. &
ABS( qhat(3) - NINT (qhat(3) ) ) <= eps ) THEN
!
! q = 0 : we need the direction q => 0 for the non-analytic part
!
IF ( n == 1 ) THEN
! if q is the first point in the list
IF ( nq > 1 ) THEN
! one more point
qhat(:) = q(:,n) - q(:,n+1)
ELSE
! no more points
qhat(:) = 0.d0
END IF
ELSE IF ( n > 1 ) THEN
! if q is not the first point in the list
IF ( q(1,n-1)==0.d0 .AND. &
q(2,n-1)==0.d0 .AND. &
q(3,n-1)==0.d0 .AND. n < nq ) THEN
! if the preceding q is also 0 :
qhat(:) = q(:,n) - q(:,n+1)
ELSE
! if the preceding q is npt 0 :
qhat(:) = q(:,n) - q(:,n-1)
END IF
END IF
qh = SQRT(qhat(1)**2+qhat(2)**2+qhat(3)**2)
! write(*,*) ' qh, has_zstar ',qh, has_zstar
IF (qh /= 0.d0) qhat(:) = qhat(:) / qh
IF (qh /= 0.d0 .AND. .NOT. has_zstar) THEN
CALL infomsg &
('matdyn','Z* not found in file '//TRIM(flfrc)// &
', TO-LO splitting at q=0 will be absent!')
ELSEIF (loto_disable) THEN
CALL infomsg('matdyn', &
'loto_disable is true. Disable LO-TO splitting at q=0.')
ELSE
lo_to_split=.TRUE.
ENDIF
!
IF (lo_to_split) CALL nonanal (nat, nat_blk, itau_blk, epsil, qhat, zeu, omega, dyn)
!
END IF
!
END IF
if(iout_dyn.ne.0) THEN
call write_dyn_on_file(q(1,n),dyn,nat, iout_dyn)
if(sum(abs(q(:,n)))==0._dp) call write_epsilon_and_zeu (zeu, epsil, nat, iout_dyn)
endif
CALL dyndiag(nat,ntyp,amass,ityp,dyn,w2(1,n),z)
!
! Convert from displacements to eigenvectors (see rigid.f90 :: dyndiag)
do i = 1, 3*nat
do na = 1, nat
do ipol = 1,3
zq(n, (na-1)*3+ipol,i) = z((na-1)*3+ipol,i) * sqrt(amu_ry * amass(ityp(na)))
end do
end do
end do
!
! Atom projection of dynamical matrix
DO i = 1, 3*nat
DO na = 1, nat
dynq(i, n, na) = DOT_PRODUCT(z(3*(na-1)+1:3*na, i), &
& z(3*(na-1)+1:3*na, i) ) &
& * amu_ry * amass(ityp(na))
END DO
END DO
IF (ionode.and.iout_eig.ne.0) &
& CALL write_eigenvectors(nat,ntyp,amass,ityp,q(1,n),w2(1,n),z,iout_eig)
!
! Cannot use the small group of \Gamma to analize the symmetry
! of the mode if there is an electric field.
!
IF (xmlifc.AND..NOT.lo_to_split) THEN
WRITE(stdout,'(10x,"xq=",3F8.4)') q(:,n)
CALL find_representations_mode_q(nat,ntyp,q(:,n), &
w2(:,n),z,tau,ityp,amass, num_rap_mode(:,n), nspin_mag)
IF (code_group==code_group_old.OR.high_sym(n-1)) high_sym(n)=.FALSE.
code_group_old=code_group
ENDIF
IF (eigen_similarity) THEN
! ... order phonon dispersions using similarity of eigenvalues
! ... Courtesy of Takeshi Nishimatsu, IMR, Tohoku University
IF (.NOT.ALLOCATED(tmp_z)) THEN
ALLOCATE(tmp_z(3*nat,3*nat))
ELSE
abs_similarity = ABS ( MATMUL ( CONJG( TRANSPOSE(z)), tmp_z ) )
mask(:) = .true.
DO na=1,3*nat
location = maxloc( abs_similarity(:,na), mask(:) )
mask(location(1)) = .false.
tmp_w2(na) = w2(location(1),n)
tmp_z(:,na) = z(:,location(1))
END DO
w2(:,n) = tmp_w2(:)
z(:,:) = tmp_z(:,:)
END IF
tmp_z(:,:) = z(:,:)
ENDIF
!
if(la2F.and.ionode) then
write(300,*) n
do na=1,3*nat
write(300,*) (z(na,nb),nb=1,3*nat)
end do ! na
endif
!
IF (ionode.and.iout.ne.0) CALL writemodes(nat,q(1,n),w2(1,n),z,iout)
!
END DO !nq
DEALLOCATE (tmp_w2, abs_similarity, mask)
IF (eigen_similarity) DEALLOCATE(tmp_z)
if(la2F.and.ionode) close(300)
!
IF(iout .NE. 0.and.ionode) CLOSE(unit=iout)
IF(iout_dyn .NE. 0) CLOSE(unit=iout_dyn)
IF(iout_eig .NE. 0) CLOSE(unit=iout_eig)
!
ALLOCATE (freq(3*nat, nq))
DO n=1,nq
! freq(i,n) = frequencies in cm^(-1), with negative sign if omega^2 is negative
DO i=1,3*nat
freq(i,n)= SQRT(ABS(w2(i,n))) * RY_TO_CMM1
IF (w2(i,n) < 0.0d0) freq(i,n) = -freq(i,n)
END DO
END DO
!
IF(flfrq.NE.' '.and.ionode) THEN
OPEN (unit=2,file=flfrq ,status='unknown',form='formatted')
WRITE(2, '(" &plot nbnd=",i4,", nks=",i4," /")') 3*nat, nq
DO n=1, nq
WRITE(2, '(10x,3f10.6)') q(1,n), q(2,n), q(3,n)
WRITE(2,'(6f10.4)') (freq(i,n), i=1,3*nat)
END DO
CLOSE(unit=2)
OPEN (unit=2,file=trim(flfrq)//'.gp' ,status='unknown',form='formatted')
pathL = 0._dp
WRITE(2, '(f10.6,3x,999f10.4)') pathL, (freq(i,1), i=1,3*nat)
DO n=2, nq
pathL=pathL+(SQRT(SUM( (q(:,n)-q(:,n-1))**2 )))
WRITE(2, '(f10.6,3x,999f10.4)') pathL, (freq(i,n), i=1,3*nat)
END DO
CLOSE(unit=2)
END IF
!
! If the force constants are in the xml format we write also
! the file with the representations of each mode
!
IF (flfrq.NE.' '.AND.xmlifc.AND.ionode) THEN
filename=TRIM(flfrq)//'.rap'
OPEN (unit=2,file=filename ,status='unknown',form='formatted')
WRITE(2, '(" &plot_rap nbnd_rap=",i4,", nks_rap=",i4," /")') 3*nat, nq
DO n=1, nq
WRITE(2,'(10x,3f10.6,l6)') q(1,n), q(2,n), q(3,n), high_sym(n)
WRITE(2,'(6i10)') (num_rap_mode(i,n), i=1,3*nat)
END DO
CLOSE(unit=2)
END IF
!
IF (dos) THEN
Emin = 0.0d0
Emax = 0.0d0
DO n=1,nq
DO i=1, 3*nat
Emin = MIN (Emin, freq(i,n))
Emax = MAX (Emax, freq(i,n))
END DO
END DO
!
if (ndos > 1) then
DeltaE = (Emax - Emin)/(ndos-1)
else
ndos = NINT ( (Emax - Emin) / DeltaE + 1.51d0 )
end if
IF (ionode) OPEN (unit=2,file=fldos,status='unknown',form='formatted')
IF (ionode) WRITE (2, *) "# Frequency[cm^-1] DOS PDOS"
!
IF (degauss .EQ. 0) THEN
! Use tetrahedra
DO na = 1, nat
dynq(1:3*nat,1:nq,na) = dynq(1:3*nat,1:nq,na) * freq(1:3*nat,1:nq)
END DO
END IF
!
DO n= 1, ndos
E = Emin + (n - 1) * DeltaE
DO na = 1, nat
DOSofE(na) = 0d0
!
IF (degauss .EQ. 0) THEN
! Use tetrahedra
DO i = 1, 3*nat
DOSofE(na) = DOSofE(na) &
& + dos_gam(3*nat, nq, i, dynq(1:3*nat,1:nq,na), freq, E)
END DO
ELSE
! Use broadening
DOSofE(na) = DOSofE(na) &
& + dos_broad(na, 3*nat, nq, freq, zq, wq, E, degauss)
END IF
!
END DO
!
IF (ionode) WRITE (2, '(2ES18.10,1000ES12.4)') E, SUM(DOSofE(1:nat)), DOSofE(1:nat)
END DO
IF (ionode) CLOSE(unit=2)
END IF !dos
DEALLOCATE (z, zq, w2, dyn, dyn_blk)
!
! for a2F
!
IF(la2F) THEN
!
IF (.NOT. dos) THEN
DO isig=1,el_ph_nsigma
OPEN (unit=200+isig,file='elph.gamma.'//&
TRIM(int_to_char(isig)), status='unknown',form='formatted')
WRITE(200+isig, '(" &plot nbnd=",i4,", nks=",i4," /")') 3*nat, nq
END DO
END IF
!
! convert frequencies to Ry
!
freq(:,:)= freq(:,:) / RY_TO_CMM1
Emin = Emin / RY_TO_CMM1
DeltaE=DeltaE/ RY_TO_CMM1
!
call a2Fdos (nat, nq, nr1, nr2, nr3, ibrav, at, bg, tau, alat, &
nsc, nat_blk, at_blk, bg_blk, itau_blk, omega_blk, &
rws, nrws, dos, Emin, DeltaE, ndos, &
asr, q, freq,fd, wq)
!
IF (.NOT.dos) THEN
DO isig=1,el_ph_nsigma
CLOSE(UNIT=200+isig)
ENDDO
ENDIF
END IF
DEALLOCATE ( freq)
DEALLOCATE(num_rap_mode)
DEALLOCATE(high_sym)
!
CALL environment_end('MATDYN')
!
CALL mp_global_end()
!
STOP
!
END PROGRAM matdyn
!
!-----------------------------------------------------------------------
SUBROUTINE readfc ( flfrc, nr1, nr2, nr3, epsil, nat, &
ibrav, alat, at, ntyp, amass, omega, has_zstar )
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE ifconstants,ONLY : tau => tau_blk, ityp => ityp_blk, frc, zeu
USE cell_base, ONLY : celldm
USE io_global, ONLY : ionode, ionode_id, stdout
USE mp, ONLY : mp_bcast
USE mp_world, ONLY : world_comm
USE constants, ONLY : amu_ry
!
IMPLICIT NONE
! I/O variable
CHARACTER(LEN=256) :: flfrc
INTEGER :: ibrav, nr1,nr2,nr3,nat, ntyp
REAL(DP) :: alat, at(3,3), epsil(3,3)
LOGICAL :: has_zstar
! local variables
INTEGER :: i, j, na, nb, m1,m2,m3
INTEGER :: ibid, jbid, nabid, nbbid, m1bid,m2bid,m3bid
REAL(DP) :: amass(ntyp), amass_from_file, omega
INTEGER :: nt
CHARACTER(LEN=3) :: atm
!
!
IF (ionode) OPEN (unit=1,file=flfrc,status='old',form='formatted')
!
! read cell data
!
IF (ionode)THEN
READ(1,*) ntyp,nat,ibrav,(celldm(i),i=1,6)
if (ibrav==0) then
read(1,*) ((at(i,j),i=1,3),j=1,3)
end if
ENDIF
CALL mp_bcast(ntyp, ionode_id, world_comm)
CALL mp_bcast(nat, ionode_id, world_comm)
CALL mp_bcast(ibrav, ionode_id, world_comm)
CALL mp_bcast(celldm, ionode_id, world_comm)
IF (ibrav==0) THEN
CALL mp_bcast(at, ionode_id, world_comm)
ENDIF
!
CALL latgen(ibrav,celldm,at(1,1),at(1,2),at(1,3),omega)
alat = celldm(1)
at = at / alat ! bring at in units of alat
CALL volume(alat,at(1,1),at(1,2),at(1,3),omega)
!
! read atomic types, positions and masses
!
DO nt = 1,ntyp
IF (ionode) READ(1,*) i,atm,amass_from_file
CALL mp_bcast(i,ionode_id, world_comm)
CALL mp_bcast(atm,ionode_id, world_comm)
CALL mp_bcast(amass_from_file,ionode_id, world_comm)
IF (i.NE.nt) CALL errore ('readfc','wrong data read',nt)
IF (amass(nt).EQ.0.d0) THEN
amass(nt) = amass_from_file/amu_ry
ELSE
WRITE(stdout,*) 'for atomic type',nt,' mass from file not used'
END IF
END DO
!
ALLOCATE (tau(3,nat), ityp(nat), zeu(3,3,nat))
!
DO na=1,nat
IF (ionode) READ(1,*) i,ityp(na),(tau(j,na),j=1,3)
CALL mp_bcast(i,ionode_id, world_comm)
IF (i.NE.na) CALL errore ('readfc','wrong data read',na)
END DO
CALL mp_bcast(ityp,ionode_id, world_comm)
CALL mp_bcast(tau,ionode_id, world_comm)
!
! read macroscopic variable
!
IF (ionode) READ (1,*) has_zstar
CALL mp_bcast(has_zstar,ionode_id, world_comm)
IF (has_zstar) THEN
IF (ionode) READ(1,*) ((epsil(i,j),j=1,3),i=1,3)
CALL mp_bcast(epsil,ionode_id, world_comm)
IF (ionode) THEN
DO na=1,nat
READ(1,*)
READ(1,*) ((zeu(i,j,na),j=1,3),i=1,3)
END DO
ENDIF
CALL mp_bcast(zeu,ionode_id, world_comm)
ELSE
zeu (:,:,:) = 0.d0
epsil(:,:) = 0.d0
END IF
!
IF (ionode) READ (1,*) nr1,nr2,nr3
CALL mp_bcast(nr1,ionode_id, world_comm)
CALL mp_bcast(nr2,ionode_id, world_comm)
CALL mp_bcast(nr3,ionode_id, world_comm)
!
! read real-space interatomic force constants
!
ALLOCATE ( frc(nr1,nr2,nr3,3,3,nat,nat) )
frc(:,:,:,:,:,:,:) = 0.d0
DO i=1,3
DO j=1,3
DO na=1,nat
DO nb=1,nat
IF (ionode) READ (1,*) ibid, jbid, nabid, nbbid
CALL mp_bcast(ibid,ionode_id, world_comm)
CALL mp_bcast(jbid,ionode_id, world_comm)
CALL mp_bcast(nabid,ionode_id, world_comm)
CALL mp_bcast(nbbid,ionode_id, world_comm)
IF(i .NE.ibid .OR. j .NE.jbid .OR. &
na.NE.nabid .OR. nb.NE.nbbid) &
CALL errore ('readfc','error in reading',1)
IF (ionode) READ (1,*) (((m1bid, m2bid, m3bid, &
frc(m1,m2,m3,i,j,na,nb), &
m1=1,nr1),m2=1,nr2),m3=1,nr3)
CALL mp_bcast(frc(:,:,:,i,j,na,nb),ionode_id, world_comm)
END DO
END DO
END DO
END DO
!
IF (ionode) CLOSE(unit=1)
!
RETURN
END SUBROUTINE readfc
!
!-----------------------------------------------------------------------
SUBROUTINE frc_blk(dyn,q,tau,nat,nr1,nr2,nr3,frc,at,bg,rws,nrws,f_of_q,fd)
!-----------------------------------------------------------------------
! calculates the dynamical matrix at q from the (short-range part of the)
! force constants
!
USE kinds, ONLY : DP
USE constants, ONLY : tpi
USE io_global, ONLY : stdout
!
IMPLICIT NONE
INTEGER nr1, nr2, nr3, nat, n1, n2, n3, nr1_, nr2_, nr3_, &
ipol, jpol, na, nb, m1, m2, m3, nint, i,j, nrws, nax
COMPLEX(DP) dyn(3,3,nat,nat), f_of_q(3,3,nat,nat)
REAL(DP) frc(nr1,nr2,nr3,3,3,nat,nat), tau(3,nat), q(3), arg, &
at(3,3), bg(3,3), r(3), weight, r_ws(3), &
total_weight, rws(0:3,nrws), alat
REAL(DP), EXTERNAL :: wsweight
REAL(DP),SAVE,ALLOCATABLE :: wscache(:,:,:,:,:)
REAL(DP), ALLOCATABLE :: ttt(:,:,:,:,:), tttx(:,:)
LOGICAL,SAVE :: first=.true.
LOGICAL :: fd
!
nr1_=2*nr1
nr2_=2*nr2
nr3_=2*nr3
FIRST_TIME : IF (first) THEN
first=.false.
ALLOCATE( wscache(-nr3_:nr3_, -nr2_:nr2_, -nr1_:nr1_, nat,nat) )
DO na=1, nat
DO nb=1, nat
total_weight=0.0d0
!
! SUM OVER R VECTORS IN THE SUPERCELL - VERY VERY VERY SAFE RANGE!
!
DO n1=-nr1_,nr1_
DO n2=-nr2_,nr2_
DO n3=-nr3_,nr3_
DO i=1, 3
r(i) = n1*at(i,1)+n2*at(i,2)+n3*at(i,3)
r_ws(i) = r(i) + tau(i,na)-tau(i,nb)
if (fd) r_ws(i) = r(i) + tau(i,nb)-tau(i,na)
END DO
wscache(n3,n2,n1,nb,na) = wsweight(r_ws,rws,nrws)
total_weight=total_weight + wscache(n3,n2,n1,nb,na)
ENDDO
ENDDO
ENDDO
IF (ABS(total_weight-nr1*nr2*nr3).GT.1.0d-8) THEN
WRITE(stdout,*) na,nb,total_weight
CALL errore ('frc_blk','wrong total_weight',1)
END IF
ENDDO
ENDDO
ENDIF FIRST_TIME
!
ALLOCATE(ttt(3,nat,nr1,nr2,nr3))
ALLOCATE(tttx(3,nat*nr1*nr2*nr3))
ttt(:,:,:,:,:)=0.d0
DO na=1, nat
DO nb=1, nat
DO n1=-nr1_,nr1_
DO n2=-nr2_,nr2_
DO n3=-nr3_,nr3_
!
! SUM OVER R VECTORS IN THE SUPERCELL - VERY VERY SAFE RANGE!
!
DO i=1, 3
r(i) = n1*at(i,1)+n2*at(i,2)+n3*at(i,3)
END DO
weight = wscache(n3,n2,n1,nb,na)
IF (weight .GT. 0.0d0) THEN
!
! FIND THE VECTOR CORRESPONDING TO R IN THE ORIGINAL CELL
!
m1 = MOD(n1+1,nr1)
IF(m1.LE.0) m1=m1+nr1
m2 = MOD(n2+1,nr2)
IF(m2.LE.0) m2=m2+nr2
m3 = MOD(n3+1,nr3)
IF(m3.LE.0) m3=m3+nr3
! write(*,'(6i4)') n1,n2,n3,m1,m2,m3
!
! FOURIER TRANSFORM
!
do i=1,3
ttt(i,na,m1,m2,m3)=tau(i,na)+m1*at(i,1)+m2*at(i,2)+m3*at(i,3)
ttt(i,nb,m1,m2,m3)=tau(i,nb)+m1*at(i,1)+m2*at(i,2)+m3*at(i,3)
end do
arg = tpi*(q(1)*r(1) + q(2)*r(2) + q(3)*r(3))
DO ipol=1, 3
DO jpol=1, 3
dyn(ipol,jpol,na,nb) = dyn(ipol,jpol,na,nb) + &
(frc(m1,m2,m3,ipol,jpol,na,nb)+f_of_q(ipol,jpol,na,nb)) &
*CMPLX(COS(arg),-SIN(arg),kind=DP)*weight
END DO
END DO
END IF
END DO
END DO
END DO
END DO
END DO
!
RETURN
END SUBROUTINE frc_blk
!
!-----------------------------------------------------------------------
SUBROUTINE setupmat (q,dyn,nat,at,bg,tau,itau_blk,nsc,alat, &
& dyn_blk,nat_blk,at_blk,bg_blk,tau_blk,omega_blk, &
& loto_2d, &
& epsil,zeu,frc,nr1,nr2,nr3,has_zstar,rws,nrws,na_ifc,f_of_q,fd)
!-----------------------------------------------------------------------
! compute the dynamical matrix (the analytic part only)
!
USE kinds, ONLY : DP
USE constants, ONLY : tpi
USE cell_base, ONLY : celldm
USE rigid, ONLY : rgd_blk
!
IMPLICIT NONE
!
! I/O variables
!
INTEGER:: nr1, nr2, nr3, nat, nat_blk, nsc, nrws, itau_blk(nat)
REAL(DP) :: q(3), tau(3,nat), at(3,3), bg(3,3), alat, &
epsil(3,3), zeu(3,3,nat_blk), rws(0:3,nrws), &
frc(nr1,nr2,nr3,3,3,nat_blk,nat_blk)
REAL(DP) :: tau_blk(3,nat_blk), at_blk(3,3), bg_blk(3,3), omega_blk
COMPLEX(DP) dyn_blk(3,3,nat_blk,nat_blk), f_of_q(3,3,nat,nat)
COMPLEX(DP) :: dyn(3,3,nat,nat)
LOGICAL :: has_zstar, na_ifc, fd, loto_2d
!
! local variables
!
REAL(DP) :: arg
COMPLEX(DP) :: cfac(nat)
INTEGER :: i,j,k, na,nb, na_blk, nb_blk, iq
REAL(DP) :: qp(3), qbid(3,nsc) ! automatic array
!
!
CALL q_gen(nsc,qbid,at_blk,bg_blk,at,bg)
!
DO iq=1,nsc
!
DO k=1,3
qp(k)= q(k) + qbid(k,iq)
END DO
!
dyn_blk(:,:,:,:) = (0.d0,0.d0)
CALL frc_blk (dyn_blk,qp,tau_blk,nat_blk, &
& nr1,nr2,nr3,frc,at_blk,bg_blk,rws,nrws,f_of_q,fd)
IF (has_zstar .and. .not.na_ifc) &
CALL rgd_blk(nr1,nr2,nr3,nat_blk,dyn_blk,qp,tau_blk, &
epsil,zeu,bg_blk,omega_blk,celldm(1), loto_2d,+1.d0)
! LOTO 2D added celldm(1)=alat to passed arguments
!
DO na=1,nat
na_blk = itau_blk(na)
DO nb=1,nat
nb_blk = itau_blk(nb)
!
arg=tpi* ( qp(1) * ( (tau(1,na)-tau_blk(1,na_blk)) - &
(tau(1,nb)-tau_blk(1,nb_blk)) ) + &
qp(2) * ( (tau(2,na)-tau_blk(2,na_blk)) - &
(tau(2,nb)-tau_blk(2,nb_blk)) ) + &
qp(3) * ( (tau(3,na)-tau_blk(3,na_blk)) - &
(tau(3,nb)-tau_blk(3,nb_blk)) ) )
!
cfac(nb) = CMPLX(COS(arg),SIN(arg),kind=DP)/nsc
!
END DO ! nb
!
DO i=1,3
DO j=1,3
!
DO nb=1,nat
nb_blk = itau_blk(nb)
dyn(i,j,na,nb) = dyn(i,j,na,nb) + cfac(nb) * &
dyn_blk(i,j,na_blk,nb_blk)
END DO ! nb
!
END DO ! j
END DO ! i
END DO ! na
!
END DO ! iq
!
RETURN
END SUBROUTINE setupmat
!
!
!----------------------------------------------------------------------
SUBROUTINE set_asr (asr, nr1, nr2, nr3, frc, zeu, nat, ibrav, tau)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE io_global, ONLY : stdout
!
IMPLICIT NONE
CHARACTER (LEN=10), intent(in) :: asr
INTEGER, intent(in) :: nr1, nr2, nr3, nat, ibrav
REAL(DP), intent(in) :: tau(3,nat)
REAL(DP), intent(inout) :: frc(nr1,nr2,nr3,3,3,nat,nat), zeu(3,3,nat)
!
INTEGER :: axis, n, i, j, na, nb, n1,n2,n3, m,p,k,l,q,r, i1,j1,na1
REAL(DP) :: zeu_new(3,3,nat)
REAL(DP), ALLOCATABLE :: frc_new(:,:,:,:,:,:,:)
type vector
real(DP),pointer :: vec(:,:,:,:,:,:,:)
end type vector
!
type (vector) u(6*3*nat)
! These are the "vectors" associated with the sum rules on force-constants
!
integer :: u_less(6*3*nat),n_less,i_less
! indices of the vectors u that are not independent to the preceding ones,
! n_less = number of such vectors, i_less = temporary parameter
!
integer, allocatable :: ind_v(:,:,:)
real(DP), allocatable :: v(:,:)
! These are the "vectors" associated with symmetry conditions, coded by
! indicating the positions (i.e. the seven indices) of the non-zero elements (there
! should be only 2 of them) and the value of that element. We do so in order
! to limit the amount of memory used.
!
real(DP), allocatable :: w(:,:,:,:,:,:,:), x(:,:,:,:,:,:,:)
! temporary vectors and parameters
real(DP) :: scal,norm2, sum
!
real(DP) :: zeu_u(6*3,3,3,nat)
! These are the "vectors" associated with the sum rules on effective charges
!
integer :: zeu_less(6*3),nzeu_less,izeu_less
! indices of the vectors zeu_u that are not independent to the preceding ones,
! nzeu_less = number of such vectors, izeu_less = temporary parameter
!
real(DP) :: zeu_w(3,3,nat), zeu_x(3,3,nat)
! temporary vectors
! Initialization. n is the number of sum rules to be considered (if asr.ne.'simple')
! and 'axis' is the rotation axis in the case of a 1D system
! (i.e. the rotation axis is (Ox) if axis='1', (Oy) if axis='2' and (Oz) if axis='3')
!
if((asr.ne.'simple').and.(asr.ne.'crystal').and.(asr.ne.'one-dim') &
.and.(asr.ne.'zero-dim')) then
call errore('set_asr','invalid Acoustic Sum Rule:' // asr, 1)
endif
!
if(asr.eq.'simple') then
!
! Simple Acoustic Sum Rule on effective charges
!
do i=1,3
do j=1,3
sum=0.0d0
do na=1,nat
sum = sum + zeu(i,j,na)
end do
do na=1,nat
zeu(i,j,na) = zeu(i,j,na) - sum/nat
end do
end do
end do
!
! Simple Acoustic Sum Rule on force constants in real space
!
do i=1,3
do j=1,3
do na=1,nat
sum=0.0d0
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
sum=sum+frc(n1,n2,n3,i,j,na,nb)
end do
end do
end do
end do
frc(1,1,1,i,j,na,na) = frc(1,1,1,i,j,na,na) - sum
! write(6,*) ' na, i, j, sum = ',na,i,j,sum
end do
end do
end do
!
return
!
end if
if(asr.eq.'crystal') n=3
if(asr.eq.'one-dim') then
! the direction of periodicity is the rotation axis
! It will work only if the crystal axis considered is one of
! the cartesian axis (typically, ibrav=1, 6 or 8, or 4 along the
! z-direction)
if (nr1*nr2*nr3.eq.1) axis=3
if ((nr1.ne.1).and.(nr2*nr3.eq.1)) axis=1
if ((nr2.ne.1).and.(nr1*nr3.eq.1)) axis=2
if ((nr3.ne.1).and.(nr1*nr2.eq.1)) axis=3
if (((nr1.ne.1).and.(nr2.ne.1)).or.((nr2.ne.1).and. &
(nr3.ne.1)).or.((nr1.ne.1).and.(nr3.ne.1))) then
call errore('set_asr','too many directions of &
& periodicity in 1D system',axis)
endif
if ((ibrav.ne.1).and.(ibrav.ne.6).and.(ibrav.ne.8).and. &
((ibrav.ne.4).or.(axis.ne.3)) ) then
write(stdout,*) 'asr: rotational axis may be wrong'
endif
write(stdout,'("asr rotation axis in 1D system= ",I4)') axis
n=4
endif
if(asr.eq.'zero-dim') n=6
!
! Acoustic Sum Rule on effective charges
!
! generating the vectors of the orthogonal of the subspace to project
! the effective charges matrix on
!
zeu_u(:,:,:,:)=0.0d0
do i=1,3
do j=1,3
do na=1,nat
zeu_new(i,j,na)=zeu(i,j,na)
enddo
enddo
enddo
!
p=0
do i=1,3
do j=1,3
! These are the 3*3 vectors associated with the
! translational acoustic sum rules
p=p+1
zeu_u(p,i,j,:)=1.0d0
!
enddo
enddo
!
if (n.eq.4) then
do i=1,3
! These are the 3 vectors associated with the
! single rotational sum rule (1D system)
p=p+1
do na=1,nat
zeu_u(p,i,MOD(axis,3)+1,na)=-tau(MOD(axis+1,3)+1,na)
zeu_u(p,i,MOD(axis+1,3)+1,na)=tau(MOD(axis,3)+1,na)
enddo
!
enddo
endif
!
if (n.eq.6) then
do i=1,3
do j=1,3
! These are the 3*3 vectors associated with the
! three rotational sum rules (0D system - typ. molecule)
p=p+1
do na=1,nat
zeu_u(p,i,MOD(j,3)+1,na)=-tau(MOD(j+1,3)+1,na)
zeu_u(p,i,MOD(j+1,3)+1,na)=tau(MOD(j,3)+1,na)
enddo
!
enddo
enddo
endif
!
! Gram-Schmidt orthonormalization of the set of vectors created.
!
nzeu_less=0
do k=1,p
zeu_w(:,:,:)=zeu_u(k,:,:,:)
zeu_x(:,:,:)=zeu_u(k,:,:,:)
do q=1,k-1
r=1
do izeu_less=1,nzeu_less
if (zeu_less(izeu_less).eq.q) r=0
enddo
if (r.ne.0) then
call sp_zeu(zeu_x,zeu_u(q,:,:,:),nat,scal)
zeu_w(:,:,:) = zeu_w(:,:,:) - scal* zeu_u(q,:,:,:)
endif
enddo
call sp_zeu(zeu_w,zeu_w,nat,norm2)
if (norm2.gt.1.0d-16) then
zeu_u(k,:,:,:) = zeu_w(:,:,:) / DSQRT(norm2)
else
nzeu_less=nzeu_less+1
zeu_less(nzeu_less)=k
endif
enddo
!
! Projection of the effective charge "vector" on the orthogonal of the
! subspace of the vectors verifying the sum rules
!
zeu_w(:,:,:)=0.0d0
do k=1,p
r=1
do izeu_less=1,nzeu_less
if (zeu_less(izeu_less).eq.k) r=0
enddo
if (r.ne.0) then
zeu_x(:,:,:)=zeu_u(k,:,:,:)
call sp_zeu(zeu_x,zeu_new,nat,scal)
zeu_w(:,:,:) = zeu_w(:,:,:) + scal*zeu_u(k,:,:,:)
endif
enddo
!
! Final substraction of the former projection to the initial zeu, to get
! the new "projected" zeu
!
zeu_new(:,:,:)=zeu_new(:,:,:) - zeu_w(:,:,:)
call sp_zeu(zeu_w,zeu_w,nat,norm2)
write(stdout,'("Norm of the difference between old and new effective ", &
& "charges: ",F25.20)') SQRT(norm2)
!
! Check projection
!
!write(6,'("Check projection of zeu")')
!do k=1,p
! zeu_x(:,:,:)=zeu_u(k,:,:,:)
! call sp_zeu(zeu_x,zeu_new,nat,scal)
! if (DABS(scal).gt.1d-10) write(6,'("k= ",I8," zeu_new|zeu_u(k)= ",F15.10)') k,scal
!enddo
!
do i=1,3
do j=1,3
do na=1,nat
zeu(i,j,na)=zeu_new(i,j,na)
enddo
enddo
enddo
!
! Acoustic Sum Rule on force constants
!
!
! generating the vectors of the orthogonal of the subspace to project
! the force-constants matrix on
!
do k=1,18*nat
allocate(u(k) % vec(nr1,nr2,nr3,3,3,nat,nat))
u(k) % vec (:,:,:,:,:,:,:)=0.0d0
enddo
ALLOCATE (frc_new(nr1,nr2,nr3,3,3,nat,nat))
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
frc_new(n1,n2,n3,i,j,na,nb)=frc(n1,n2,n3,i,j,na,nb)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
!
p=0
do i=1,3
do j=1,3
do na=1,nat
! These are the 3*3*nat vectors associated with the
! translational acoustic sum rules
p=p+1
u(p) % vec (:,:,:,i,j,na,:)=1.0d0
!
enddo
enddo
enddo
!
if (n.eq.4) then
do i=1,3
do na=1,nat
! These are the 3*nat vectors associated with the
! single rotational sum rule (1D system)
p=p+1
do nb=1,nat
u(p) % vec (:,:,:,i,MOD(axis,3)+1,na,nb)=-tau(MOD(axis+1,3)+1,nb)
u(p) % vec (:,:,:,i,MOD(axis+1,3)+1,na,nb)=tau(MOD(axis,3)+1,nb)
enddo
!
enddo
enddo
endif
!
if (n.eq.6) then
do i=1,3
do j=1,3
do na=1,nat
! These are the 3*3*nat vectors associated with the
! three rotational sum rules (0D system - typ. molecule)
p=p+1
do nb=1,nat
u(p) % vec (:,:,:,i,MOD(j,3)+1,na,nb)=-tau(MOD(j+1,3)+1,nb)
u(p) % vec (:,:,:,i,MOD(j+1,3)+1,na,nb)=tau(MOD(j,3)+1,nb)
enddo
!
enddo
enddo
enddo
endif
!
allocate (ind_v(9*nat*nat*nr1*nr2*nr3,2,7), v(9*nat*nat*nr1*nr2*nr3,2) )
m=0
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
! These are the vectors associated with the symmetry constraints
q=1
l=1
do while((l.le.m).and.(q.ne.0))
if ((ind_v(l,1,1).eq.n1).and.(ind_v(l,1,2).eq.n2).and. &
(ind_v(l,1,3).eq.n3).and.(ind_v(l,1,4).eq.i).and. &
(ind_v(l,1,5).eq.j).and.(ind_v(l,1,6).eq.na).and. &
(ind_v(l,1,7).eq.nb)) q=0
if ((ind_v(l,2,1).eq.n1).and.(ind_v(l,2,2).eq.n2).and. &
(ind_v(l,2,3).eq.n3).and.(ind_v(l,2,4).eq.i).and. &
(ind_v(l,2,5).eq.j).and.(ind_v(l,2,6).eq.na).and. &
(ind_v(l,2,7).eq.nb)) q=0
l=l+1
enddo
if ((n1.eq.MOD(nr1+1-n1,nr1)+1).and.(n2.eq.MOD(nr2+1-n2,nr2)+1) &
.and.(n3.eq.MOD(nr3+1-n3,nr3)+1).and.(i.eq.j).and.(na.eq.nb)) q=0
if (q.ne.0) then
m=m+1
ind_v(m,1,1)=n1
ind_v(m,1,2)=n2
ind_v(m,1,3)=n3
ind_v(m,1,4)=i
ind_v(m,1,5)=j
ind_v(m,1,6)=na
ind_v(m,1,7)=nb
v(m,1)=1.0d0/DSQRT(2.0d0)
ind_v(m,2,1)=MOD(nr1+1-n1,nr1)+1
ind_v(m,2,2)=MOD(nr2+1-n2,nr2)+1
ind_v(m,2,3)=MOD(nr3+1-n3,nr3)+1
ind_v(m,2,4)=j
ind_v(m,2,5)=i
ind_v(m,2,6)=nb
ind_v(m,2,7)=na
v(m,2)=-1.0d0/DSQRT(2.0d0)
endif
enddo
enddo
enddo
enddo
enddo
enddo
enddo
!
! Gram-Schmidt orthonormalization of the set of vectors created.
! Note that the vectors corresponding to symmetry constraints are already
! orthonormalized by construction.
!
n_less=0
allocate (w(nr1,nr2,nr3,3,3,nat,nat), x(nr1,nr2,nr3,3,3,nat,nat))
do k=1,p
w(:,:,:,:,:,:,:)=u(k) % vec (:,:,:,:,:,:,:)
x(:,:,:,:,:,:,:)=u(k) % vec (:,:,:,:,:,:,:)
do l=1,m
!
call sp2(x,v(l,:),ind_v(l,:,:),nr1,nr2,nr3,nat,scal)
do r=1,2
n1=ind_v(l,r,1)
n2=ind_v(l,r,2)
n3=ind_v(l,r,3)
i=ind_v(l,r,4)
j=ind_v(l,r,5)
na=ind_v(l,r,6)
nb=ind_v(l,r,7)
w(n1,n2,n3,i,j,na,nb)=w(n1,n2,n3,i,j,na,nb)-scal*v(l,r)
enddo
enddo
if (k.le.(9*nat)) then
na1=MOD(k,nat)
if (na1.eq.0) na1=nat
j1=MOD((k-na1)/nat,3)+1
i1=MOD((((k-na1)/nat)-j1+1)/3,3)+1
else
q=k-9*nat
if (n.eq.4) then
na1=MOD(q,nat)
if (na1.eq.0) na1=nat
i1=MOD((q-na1)/nat,3)+1
else
na1=MOD(q,nat)
if (na1.eq.0) na1=nat
j1=MOD((q-na1)/nat,3)+1
i1=MOD((((q-na1)/nat)-j1+1)/3,3)+1
endif
endif
do q=1,k-1
r=1
do i_less=1,n_less
if (u_less(i_less).eq.q) r=0
enddo
if (r.ne.0) then
call sp3(x,u(q) % vec (:,:,:,:,:,:,:), i1,na1,nr1,nr2,nr3,nat,scal)
w(:,:,:,:,:,:,:) = w(:,:,:,:,:,:,:) - scal* u(q) % vec (:,:,:,:,:,:,:)
endif
enddo
call sp1(w,w,nr1,nr2,nr3,nat,norm2)
if (norm2.gt.1.0d-16) then
u(k) % vec (:,:,:,:,:,:,:) = w(:,:,:,:,:,:,:) / DSQRT(norm2)
else
n_less=n_less+1
u_less(n_less)=k
endif
enddo
!
! Projection of the force-constants "vector" on the orthogonal of the
! subspace of the vectors verifying the sum rules and symmetry contraints
!
w(:,:,:,:,:,:,:)=0.0d0
do l=1,m
call sp2(frc_new,v(l,:),ind_v(l,:,:),nr1,nr2,nr3,nat,scal)
do r=1,2
n1=ind_v(l,r,1)
n2=ind_v(l,r,2)
n3=ind_v(l,r,3)
i=ind_v(l,r,4)
j=ind_v(l,r,5)
na=ind_v(l,r,6)
nb=ind_v(l,r,7)
w(n1,n2,n3,i,j,na,nb)=w(n1,n2,n3,i,j,na,nb)+scal*v(l,r)
enddo
enddo
do k=1,p
r=1
do i_less=1,n_less
if (u_less(i_less).eq.k) r=0
enddo
if (r.ne.0) then
x(:,:,:,:,:,:,:)=u(k) % vec (:,:,:,:,:,:,:)
call sp1(x,frc_new,nr1,nr2,nr3,nat,scal)
w(:,:,:,:,:,:,:) = w(:,:,:,:,:,:,:) + scal*u(k)%vec(:,:,:,:,:,:,:)
endif
deallocate(u(k) % vec)
enddo
!
! Final substraction of the former projection to the initial frc, to get
! the new "projected" frc
!
frc_new(:,:,:,:,:,:,:)=frc_new(:,:,:,:,:,:,:) - w(:,:,:,:,:,:,:)
call sp1(w,w,nr1,nr2,nr3,nat,norm2)
write(stdout,'("Norm of the difference between old and new force-constants:",&
& F25.20)') SQRT(norm2)
!
! Check projection
!
!write(6,'("Check projection IFC")')
!do l=1,m
! call sp2(frc_new,v(l,:),ind_v(l,:,:),nr1,nr2,nr3,nat,scal)
! if (DABS(scal).gt.1d-10) write(6,'("l= ",I8," frc_new|v(l)= ",F15.10)') l,scal
!enddo
!do k=1,p
! x(:,:,:,:,:,:,:)=u(k) % vec (:,:,:,:,:,:,:)
! call sp1(x,frc_new,nr1,nr2,nr3,nat,scal)
! if (DABS(scal).gt.1d-10) write(6,'("k= ",I8," frc_new|u(k)= ",F15.10)') k,scal
! deallocate(u(k) % vec)
!enddo
!
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
frc(n1,n2,n3,i,j,na,nb)=frc_new(n1,n2,n3,i,j,na,nb)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
deallocate (x, w)
deallocate (v, ind_v)
deallocate (frc_new)
!
return
end subroutine set_asr
!
!----------------------------------------------------------------------
subroutine sp_zeu(zeu_u,zeu_v,nat,scal)
!-----------------------------------------------------------------------
!
! does the scalar product of two effective charges matrices zeu_u and zeu_v
! (considered as vectors in the R^(3*3*nat) space, and coded in the usual way)
!
USE kinds, ONLY: DP
implicit none
integer i,j,na,nat
real(DP) zeu_u(3,3,nat)
real(DP) zeu_v(3,3,nat)
real(DP) scal
!
!
scal=0.0d0
do i=1,3
do j=1,3
do na=1,nat
scal=scal+zeu_u(i,j,na)*zeu_v(i,j,na)
enddo
enddo
enddo
!
return
!
end subroutine sp_zeu
!
!
!----------------------------------------------------------------------
subroutine sp1(u,v,nr1,nr2,nr3,nat,scal)
!-----------------------------------------------------------------------
!
! does the scalar product of two force-constants matrices u and v (considered as
! vectors in the R^(3*3*nat*nat*nr1*nr2*nr3) space, and coded in the usual way)
!
USE kinds, ONLY: DP
implicit none
integer nr1,nr2,nr3,i,j,na,nb,n1,n2,n3,nat
real(DP) u(nr1,nr2,nr3,3,3,nat,nat)
real(DP) v(nr1,nr2,nr3,3,3,nat,nat)
real(DP) scal
!
!
scal=0.0d0
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
scal=scal+u(n1,n2,n3,i,j,na,nb)*v(n1,n2,n3,i,j,na,nb)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
!
return
!
end subroutine sp1
!
!----------------------------------------------------------------------
subroutine sp2(u,v,ind_v,nr1,nr2,nr3,nat,scal)
!-----------------------------------------------------------------------
!
! does the scalar product of two force-constants matrices u and v (considered as
! vectors in the R^(3*3*nat*nat*nr1*nr2*nr3) space). u is coded in the usual way
! but v is coded as explained when defining the vectors corresponding to the
! symmetry constraints
!
USE kinds, ONLY: DP
implicit none
integer nr1,nr2,nr3,i,nat
real(DP) u(nr1,nr2,nr3,3,3,nat,nat)
integer ind_v(2,7)
real(DP) v(2)
real(DP) scal
!
!
scal=0.0d0
do i=1,2
scal=scal+u(ind_v(i,1),ind_v(i,2),ind_v(i,3),ind_v(i,4),ind_v(i,5),ind_v(i,6), &
ind_v(i,7))*v(i)
enddo
!
return
!
end subroutine sp2
!
!----------------------------------------------------------------------
subroutine sp3(u,v,i,na,nr1,nr2,nr3,nat,scal)
!-----------------------------------------------------------------------
!
! like sp1, but in the particular case when u is one of the u(k)%vec
! defined in set_asr (before orthonormalization). In this case most of the
! terms are zero (the ones that are not are characterized by i and na), so
! that a lot of computer time can be saved (during Gram-Schmidt).
!
USE kinds, ONLY: DP
implicit none
integer nr1,nr2,nr3,i,j,na,nb,n1,n2,n3,nat
real(DP) u(nr1,nr2,nr3,3,3,nat,nat)
real(DP) v(nr1,nr2,nr3,3,3,nat,nat)
real(DP) scal
!
!
scal=0.0d0
do j=1,3
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
scal=scal+u(n1,n2,n3,i,j,na,nb)*v(n1,n2,n3,i,j,na,nb)
enddo
enddo
enddo
enddo
enddo
!
return
!
end subroutine sp3
!
!-----------------------------------------------------------------------
SUBROUTINE q_gen(nsc,qbid,at_blk,bg_blk,at,bg)
!-----------------------------------------------------------------------
! generate list of q (qbid) that are G-vectors of the supercell
! but not of the bulk
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
INTEGER :: nsc
REAL(DP) qbid(3,nsc), at_blk(3,3), bg_blk(3,3), at(3,3), bg(3,3)
!
INTEGER, PARAMETER:: nr1=4, nr2=4, nr3=4, &
nrm=(2*nr1+1)*(2*nr2+1)*(2*nr3+1)
REAL(DP), PARAMETER:: eps=1.0d-7
INTEGER :: i, j, k,i1, i2, i3, idum(nrm), iq
REAL(DP) :: qnorm(nrm), qbd(3,nrm) ,qwork(3), delta
LOGICAL lbho
!
i = 0
DO i1=-nr1,nr1
DO i2=-nr2,nr2
DO i3=-nr3,nr3
i = i + 1
DO j=1,3
qwork(j) = i1*bg(j,1) + i2*bg(j,2) + i3*bg(j,3)
END DO ! j
!
qnorm(i) = qwork(1)**2 + qwork(2)**2 + qwork(3)**2
!
DO j=1,3
!
qbd(j,i) = at_blk(1,j)*qwork(1) + &
at_blk(2,j)*qwork(2) + &
at_blk(3,j)*qwork(3)
END DO ! j
!
idum(i) = 1
!
END DO ! i3
END DO ! i2
END DO ! i1
!
DO i=1,nrm-1
IF (idum(i).EQ.1) THEN
DO j=i+1,nrm
IF (idum(j).EQ.1) THEN
lbho=.TRUE.
DO k=1,3
delta = qbd(k,i)-qbd(k,j)
lbho = lbho.AND. (ABS(NINT(delta)-delta).LT.eps)
END DO ! k
IF (lbho) THEN
IF(qnorm(i).GT.qnorm(j)) THEN
qbd(1,i) = qbd(1,j)
qbd(2,i) = qbd(2,j)
qbd(3,i) = qbd(3,j)
qnorm(i) = qnorm(j)
END IF
idum(j) = 0
END IF
END IF
END DO ! j
END IF
END DO ! i
!
iq = 0
DO i=1,nrm
IF (idum(i).EQ.1) THEN
iq=iq+1
qbid(1,iq)= bg_blk(1,1)*qbd(1,i) + &
bg_blk(1,2)*qbd(2,i) + &
bg_blk(1,3)*qbd(3,i)
qbid(2,iq)= bg_blk(2,1)*qbd(1,i) + &
bg_blk(2,2)*qbd(2,i) + &
bg_blk(2,3)*qbd(3,i)
qbid(3,iq)= bg_blk(3,1)*qbd(1,i) + &
bg_blk(3,2)*qbd(2,i) + &
bg_blk(3,3)*qbd(3,i)
END IF
END DO ! i
!
IF (iq.NE.nsc) CALL errore('q_gen',' probably nr1,nr2,nr3 too small ', iq)
RETURN
END SUBROUTINE q_gen
!
!-----------------------------------------------------------------------
SUBROUTINE check_at(at,bg_blk,alat,omega)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE io_global, ONLY : stdout
!
IMPLICIT NONE
!
REAL(DP) :: at(3,3), bg_blk(3,3), alat, omega
REAL(DP) :: work(3,3)
INTEGER :: i,j
REAL(DP), PARAMETER :: small=1.d-6
!
work(:,:) = at(:,:)
CALL cryst_to_cart(3,work,bg_blk,-1)
!
DO j=1,3
DO i =1,3
IF ( ABS(work(i,j)-NINT(work(i,j))) > small) THEN
WRITE (stdout,'(3f9.4)') work(:,:)
CALL errore ('check_at','at not multiple of at_blk',1)
END IF
END DO
END DO
!
omega =alat**3 * ABS(at(1,1)*(at(2,2)*at(3,3)-at(3,2)*at(2,3))- &
at(1,2)*(at(2,1)*at(3,3)-at(2,3)*at(3,1))+ &
at(1,3)*(at(2,1)*at(3,2)-at(2,2)*at(3,1)))
!
RETURN
END SUBROUTINE check_at
!
!-----------------------------------------------------------------------
SUBROUTINE set_tau (nat, nat_blk, at, at_blk, tau, tau_blk, &
ityp, ityp_blk, itau_blk)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
INTEGER nat, nat_blk,ityp(nat),ityp_blk(nat_blk), itau_blk(nat)
REAL(DP) at(3,3),at_blk(3,3),tau(3,nat),tau_blk(3,nat_blk)
!
REAL(DP) bg(3,3), r(3) ! work vectors
INTEGER i,i1,i2,i3,na,na_blk
REAL(DP) small
INTEGER NN1,NN2,NN3
PARAMETER (NN1=8, NN2=8, NN3=8, small=1.d-8)
!
CALL recips (at(1,1),at(1,2),at(1,3),bg(1,1),bg(1,2),bg(1,3))
!
na = 0
!
DO i1 = -NN1,NN1
DO i2 = -NN2,NN2
DO i3 = -NN3,NN3
r(1) = i1*at_blk(1,1) + i2*at_blk(1,2) + i3*at_blk(1,3)
r(2) = i1*at_blk(2,1) + i2*at_blk(2,2) + i3*at_blk(2,3)
r(3) = i1*at_blk(3,1) + i2*at_blk(3,2) + i3*at_blk(3,3)
CALL cryst_to_cart(1,r,bg,-1)
!
IF ( r(1).GT.-small .AND. r(1).LT.1.d0-small .AND. &
r(2).GT.-small .AND. r(2).LT.1.d0-small .AND. &
r(3).GT.-small .AND. r(3).LT.1.d0-small ) THEN
CALL cryst_to_cart(1,r,at,+1)
!
DO na_blk=1, nat_blk
na = na + 1
IF (na.GT.nat) CALL errore('set_tau','too many atoms',na)
tau(1,na) = tau_blk(1,na_blk) + r(1)
tau(2,na) = tau_blk(2,na_blk) + r(2)
tau(3,na) = tau_blk(3,na_blk) + r(3)
ityp(na) = ityp_blk(na_blk)
itau_blk(na) = na_blk
END DO
!
END IF
!
END DO
END DO
END DO
!
IF (na.NE.nat) CALL errore('set_tau','too few atoms: increase NNs',na)
!
RETURN
END SUBROUTINE set_tau
!
!-----------------------------------------------------------------------
SUBROUTINE read_tau &
(nat, nat_blk, ntyp, bg_blk, tau, tau_blk, ityp, itau_blk)
!---------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE io_global, ONLY : ionode_id, ionode
USE mp, ONLY : mp_bcast
USE mp_world, ONLY : world_comm
!
IMPLICIT NONE
!
INTEGER nat, nat_blk, ntyp, ityp(nat),itau_blk(nat)
REAL(DP) bg_blk(3,3),tau(3,nat),tau_blk(3,nat_blk)
!
REAL(DP) r(3) ! work vectors
INTEGER i,na,na_blk
!
REAL(DP) small
PARAMETER ( small = 1.d-6 )
!
DO na=1,nat
IF (ionode) READ(5,*) (tau(i,na),i=1,3), ityp(na)
CALL mp_bcast(tau(:,na),ionode_id, world_comm)
CALL mp_bcast(ityp(na),ionode_id, world_comm)
IF (ityp(na).LE.0 .OR. ityp(na) .GT. ntyp) &
CALL errore('read_tau',' wrong atomic type', na)
DO na_blk=1,nat_blk
r(1) = tau(1,na) - tau_blk(1,na_blk)
r(2) = tau(2,na) - tau_blk(2,na_blk)
r(3) = tau(3,na) - tau_blk(3,na_blk)
CALL cryst_to_cart(1,r,bg_blk,-1)
IF (ABS( r(1)-NINT(r(1)) ) .LT. small .AND. &
ABS( r(2)-NINT(r(2)) ) .LT. small .AND. &
ABS( r(3)-NINT(r(3)) ) .LT. small ) THEN
itau_blk(na) = na_blk
go to 999
END IF
END DO
CALL errore ('read_tau',' wrong atomic position ', na)
999 CONTINUE
END DO
!
RETURN
END SUBROUTINE read_tau
!
!-----------------------------------------------------------------------
SUBROUTINE write_tau(fltau,nat,tau,ityp)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE io_global, ONLY : ionode
!
IMPLICIT NONE
!
INTEGER nat, ityp(nat)
REAL(DP) tau(3,nat)
CHARACTER(LEN=*) fltau
!
INTEGER i,na
!
IF (.NOT.ionode) RETURN
OPEN (unit=4,file=fltau, status='new')
DO na=1,nat
WRITE(4,'(3(f12.6),i3)') (tau(i,na),i=1,3), ityp(na)
END DO
CLOSE (4)
!
RETURN
END SUBROUTINE write_tau
!
!-----------------------------------------------------------------------
SUBROUTINE gen_qpoints (ibrav, at_, bg_, nat, tau, ityp, nk1, nk2, nk3, &
nqx, nq, q, nosym, wk)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE cell_base, ONLY : at, bg
USE symm_base, ONLY : set_sym_bl, find_sym, s, irt, nsym, &
nrot, t_rev, time_reversal, sname
USE ktetra, ONLY : tetra_init
!
IMPLICIT NONE
! input
INTEGER :: ibrav, nat, nk1, nk2, nk3, ityp(*)
REAL(DP) :: at_(3,3), bg_(3,3), tau(3,nat)
LOGICAL :: nosym
! output
INTEGER :: nqx, nq
REAL(DP) :: q(3,nqx), wk(nqx)
! local
REAL(DP) :: xqq(3), mdum(3,nat)
LOGICAL :: magnetic_sym=.FALSE., skip_equivalence=.FALSE.
!
time_reversal = .true.
if (nosym) time_reversal = .false.
t_rev(:) = 0
xqq (:) =0.d0
at = at_
bg = bg_
CALL set_sym_bl ( )
!
if (nosym) then
nrot = 1
nsym = 1
endif
CALL kpoint_grid ( nrot, time_reversal, skip_equivalence, s, t_rev, bg, nqx, &
0,0,0, nk1,nk2,nk3, nq, q, wk)
!
CALL find_sym ( nat, tau, ityp, .not.time_reversal, mdum )
!
CALL irreducible_BZ (nrot, s, nsym, time_reversal, magnetic_sym, &
at, bg, nqx, nq, q, wk, t_rev)
!
CALL tetra_init (nsym, s, time_reversal, t_rev, at, bg, nqx, 0, 0, 0, &
nk1, nk2, nk3, nq, q)
!
RETURN
END SUBROUTINE gen_qpoints
!
!---------------------------------------------------------------------
SUBROUTINE a2Fdos &
(nat, nq, nr1, nr2, nr3, ibrav, at, bg, tau, alat, &
nsc, nat_blk, at_blk, bg_blk, itau_blk, omega_blk, rws, nrws, &
dos, Emin, DeltaE, ndos, asr, q, freq,fd, wq )
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE io_global, ONLY : ionode, ionode_id
USE mp, ONLY : mp_bcast
USE mp_world, ONLY : world_comm
USE mp_images, ONLY : intra_image_comm
USE ifconstants, ONLY : zeu, tau_blk
USE constants, ONLY : pi, RY_TO_THZ
USE constants, ONLY : K_BOLTZMANN_RY
USE el_phon, ONLY : el_ph_nsigma
!
IMPLICIT NONE
!
INTEGER, INTENT(in) :: nat, nq, nr1, nr2, nr3, ibrav, ndos
LOGICAL, INTENT(in) :: dos,fd
CHARACTER(LEN=*), INTENT(IN) :: asr
REAL(DP), INTENT(in) :: freq(3*nat,nq), q(3,nq), wq(nq), at(3,3), bg(3,3), &
tau(3,nat), alat, Emin, DeltaE
!
INTEGER, INTENT(in) :: nsc, nat_blk, itau_blk(nat), nrws
REAL(DP), INTENT(in) :: rws(0:3,nrws), at_blk(3,3), bg_blk(3,3), omega_blk
!
REAL(DP), ALLOCATABLE :: gamma(:,:), frcg(:,:,:,:,:,:,:)
COMPLEX(DP), ALLOCATABLE :: gam(:,:,:,:), gam_blk(:,:,:,:), z(:,:)
real(DP) :: lambda, dos_a2F(3*nat), temp, dos_ee(el_ph_nsigma), dos_tot, &
deg(el_ph_nsigma), fermi(el_ph_nsigma), E
real(DP), parameter :: eps_w2 = 0.0000001d0
integer :: isig, ifn, n, m, na, nb, nc, nu, nmodes, &
i,j,k, ngauss, jsig, p1, p2, p3, filea2F, ios
character(len=256) :: name
real(DP), external :: dos_gam
CHARACTER(LEN=6) :: int_to_char
!
!
nmodes = 3*nat
do isig=1,el_ph_nsigma
filea2F = 60 + isig
name= 'elph_dir/a2Fmatdyn.' // TRIM(int_to_char(filea2F))
IF (ionode) open(unit=filea2F, file=TRIM(name), &
STATUS = 'unknown', IOSTAT=ios)
CALL mp_bcast(ios, ionode_id, intra_image_comm)
IF (ios /= 0) CALL errore('a2Fdos','problem opening file'//TRIM(name),1)
IF (ionode) &
READ(filea2F,*) deg(isig), fermi(isig), dos_ee(isig)
ENDDO
call mp_bcast(deg, ionode_id, intra_image_comm)
call mp_bcast(fermi, ionode_id, intra_image_comm)
call mp_bcast(dos_ee, ionode_id, intra_image_comm)
!
IF (ionode) THEN
IF(dos) then
open(unit=400,file='lambda',status='unknown')
write(400,*)
write(400,*) ' Electron-phonon coupling constant, lambda '
write(400,*)
ELSE
open (unit=20,file='gam.lines' ,status='unknown')
write(20,*)
write(20,*) ' Gamma lines for all modes [THz] '
write(20,*)
write(6,*)
write(6,*) ' Gamma lines for all modes [Rydberg] '
write(6,*)
ENDIF
ENDIF
!
ALLOCATE ( frcg(nr1,nr2,nr3,3,3,nat,nat) )
ALLOCATE ( gamma(3*nat,nq), gam(3,3,nat,nat), gam_blk(3,3,nat_blk,nat_blk) )
ALLOCATE ( z(3*nat,3*nat) )
!
frcg(:,:,:,:,:,:,:) = 0.d0
DO isig = 1, el_ph_nsigma
filea2F = 60 + isig
CALL readfg ( filea2F, nr1, nr2, nr3, nat, frcg )
!
if ( asr /= 'no') then
CALL set_asr (asr, nr1, nr2, nr3, frcg, zeu, nat_blk, ibrav, tau_blk)
endif
!
IF (ionode) open(unit=300,file='dyna2F',status='old')
!
do n = 1 ,nq
gam(:,:,:,:) = (0.d0, 0.d0)
IF (ionode) THEN
read(300,*)
do na=1,nmodes
read(300,*) (z(na,m),m=1,nmodes)
end do ! na
ENDIF
CALL mp_bcast(z, ionode_id, world_comm)
!
CALL setgam (q(1,n), gam, nat, at, bg, tau, itau_blk, nsc, alat, &
gam_blk, nat_blk, at_blk,bg_blk,tau_blk, omega_blk, &
frcg, nr1,nr2,nr3, rws, nrws, fd)
!
! here multiply dyn*gam*dyn for gamma and divide by w2 for lambda at given q
!
do nc = 1, nat
do k =1, 3
p1 = (nc-1)*3+k
nu = p1
gamma(nu,n) = 0.0d0
do i=1,3
do na=1,nat
p2 = (na-1)*3+i
do j=1,3
do nb=1,nat
p3 = (nb-1)*3+j
gamma(nu,n) = gamma(nu,n) + DBLE(conjg(z(p2,p1)) * &
gam(i,j,na,nb) * z(p3,p1))
enddo ! nb
enddo ! j
enddo ! na
enddo !i
gamma(nu,n) = gamma(nu,n) * pi / 2.0d0
enddo ! k
enddo !nc
!
!
EndDo !nq all points in BZ
IF (ionode) close(300) ! file with dyn vectors
!
! after we know gamma(q) and lambda(q) calculate DOS(omega) for spectrum a2F
!
if(dos.and.ionode) then
!
name='a2F.dos'//int_to_char(isig)
ifn = 200 + isig
open (ifn,file=TRIM(name),status='unknown',form='formatted')
write(ifn,*)
write(ifn,*) '# Eliashberg function a2F (per both spin)'
write(ifn,*) '# frequencies in Rydberg '
write(ifn,*) '# DOS normalized to E in Rydberg: a2F_total, a2F(mode) '
write(ifn,*)
!
! correction for small frequencies
!
do n = 1, nq
do i = 1, nmodes
if (freq(i,n).LE.eps_w2) then
gamma(i,n) = 0.0d0
endif
enddo
enddo
!
lambda = 0.0d0
do n= 1, ndos
!
E = Emin + (n-1)*DeltaE + 0.5d0*DeltaE
dos_tot = 0.0d0
do j=1,nmodes
!
dos_a2F(j) = dos_gam(nmodes, nq, j, gamma, freq, E)
dos_a2F(j) = dos_a2F(j) / dos_ee(isig) / 2.d0 / pi
dos_tot = dos_tot + dos_a2F(j)
!
enddo
lambda = lambda + 2.d0 * dos_tot/E * DeltaE
write (ifn, '(3X,1000E16.6)') E, dos_tot, dos_a2F(1:nmodes)
enddo !ndos
write(ifn,*) " lambda =",lambda,' Delta = ',DeltaE
close (ifn)
!
! lambda from alternative way, simple sum.
! Also Omega_ln is computed
!
lambda = 0.0_dp
E = 0.0_dp
do n = 1, nq
lambda = lambda &
& + sum(gamma(1:nmodes,n)/freq(1:nmodes,n)**2, &
& freq(1:nmodes,n) > 1.0e-5_dp) * wq(n)
E = E &
& + sum(log(freq(1:nmodes,n)) * gamma(1:nmodes,n)/freq(1:nmodes,n)**2, &
& freq(1:nmodes,n) > 1.0e-5_dp) * wq(n)
end do
E = exp(E / lambda) / K_BOLTZMANN_RY
lambda = lambda / (dos_ee(isig) * pi)
write(400,'(" Broadening ",F8.4," lambda ",F12.4," dos(Ef)",F8.4," omega_ln [K]",F12.4)') &
deg(isig),lambda, dos_ee(isig), E
!
endif !dos
!
! OUTPUT
!
if(.not.dos.and.ionode) then
write(20,'(" Broadening ",F8.4)') deg(isig)
write( 6,'(" Broadening ",F8.4)') deg(isig)
do n=1, nq
write(20,'(3x,i5)') n
write( 6,'(3x,i5)') n
write(20,'(9F8.4)') (gamma(i,n)*RY_TO_THZ,i=1,3*nat)
write( 6,'(6F12.9)') (gamma(i,n),i=1,3*nat)
!
! write also in a format that can be read by plotband
!
WRITE(200+isig, '(10x,3f10.6)') q(1,n), q(2,n), q(3,n)
!
! output in GHz
!
WRITE(200+isig, '(6f10.4)') (gamma(nu,n)*RY_TO_THZ*1000.0_DP, &
nu=1,3*nat)
end do
endif
!
ENDDO !isig
!
DEALLOCATE (z, frcg, gamma, gam, gam_blk )
!
IF (ionode) THEN
close(400) !lambda
close(20)
ENDIF
!
!
RETURN
END SUBROUTINE a2Fdos
!
!-----------------------------------------------------------------------
subroutine setgam (q, gam, nat, at,bg,tau,itau_blk,nsc,alat, &
& gam_blk, nat_blk, at_blk,bg_blk,tau_blk,omega_blk, &
& frcg, nr1,nr2,nr3, rws,nrws, fd)
!-----------------------------------------------------------------------
! compute the dynamical matrix (the analytic part only)
!
USE kinds, ONLY : DP
USE constants, ONLY : tpi
implicit none
!
! I/O variables
!
integer :: nr1, nr2, nr3, nat, nat_blk, &
nsc, nrws, itau_blk(nat)
real(DP) :: q(3), tau(3,nat), at(3,3), bg(3,3), alat, rws(0:3,nrws)
real(DP) :: tau_blk(3,nat_blk), at_blk(3,3), bg_blk(3,3), omega_blk, &
frcg(nr1,nr2,nr3,3,3,nat_blk,nat_blk)
COMPLEX(DP) :: gam_blk(3,3,nat_blk,nat_blk),f_of_q(3,3,nat,nat)
COMPLEX(DP) :: gam(3,3,nat,nat)
LOGICAL :: fd
!
! local variables
!
real(DP) :: arg
complex(DP) :: cfac(nat)
integer :: i,j,k, na,nb, na_blk, nb_blk, iq
real(DP) :: qp(3), qbid(3,nsc) ! automatic array
!
!
call q_gen(nsc,qbid,at_blk,bg_blk,at,bg)
!
f_of_q=(0.0_DP,0.0_DP)
do iq=1,nsc
!
do k=1,3
qp(k)= q(k) + qbid(k,iq)
end do
!
gam_blk(:,:,:,:) = (0.d0,0.d0)
CALL frc_blk (gam_blk,qp,tau_blk,nat_blk, &
nr1,nr2,nr3,frcg,at_blk,bg_blk,rws,nrws,f_of_q,fd)
!
do na=1,nat
na_blk = itau_blk(na)
do nb=1,nat
nb_blk = itau_blk(nb)
!
arg = tpi * ( qp(1) * ( (tau(1,na)-tau_blk(1,na_blk)) - &
(tau(1,nb)-tau_blk(1,nb_blk)) ) + &
qp(2) * ( (tau(2,na)-tau_blk(2,na_blk)) - &
(tau(2,nb)-tau_blk(2,nb_blk)) ) + &
qp(3) * ( (tau(3,na)-tau_blk(3,na_blk)) - &
(tau(3,nb)-tau_blk(3,nb_blk)) ) )
!
cfac(nb) = CMPLX(cos(arg),sin(arg), kind=dp)/nsc
!
end do ! nb
do nb=1,nat
do i=1,3
do j=1,3
nb_blk = itau_blk(nb)
gam(i,j,na,nb) = gam(i,j,na,nb) + cfac(nb) * &
gam_blk(i,j,na_blk,nb_blk)
end do ! j
end do ! i
end do ! nb
end do ! na
!
end do ! iq
!
return
end subroutine setgam
!
!--------------------------------------------------------------------
function dos_gam (nbndx, nq, jbnd, gamma, et, ef)
!--------------------------------------------------------------------
! calculates weights with the tetrahedron method (Bloechl version)
! this subroutine is based on tweights.f90 belonging to PW
! it calculates a2F on the surface of given frequency <=> histogram
! Band index means the frequency mode here
! and "et" means the frequency(mode,q-point)
!
USE kinds, ONLY: DP
USE parameters
USE ktetra, ONLY : ntetra, tetra
implicit none
!
integer :: nq, nbndx, jbnd
real(DP) :: et(nbndx,nq), gamma(nbndx,nq), func
real(DP) :: ef
real(DP) :: e1, e2, e3, e4, c1, c2, c3, c4, etetra(4)
integer :: ik, ibnd, nt, nk, ns, i, ik1, ik2, ik3, ik4, itetra(4)
real(DP) :: f12,f13,f14,f23,f24,f34, f21,f31,f41,f42,f32,f43
real(DP) :: P1,P2,P3,P4, G, o13, Y1,Y2,Y3,Y4, eps,vol, Tint
real(DP) :: dos_gam
Tint = 0.0d0
o13 = 1.0_dp/3.0_dp
eps = 1.0d-14
vol = 1.0d0/ntetra
P1 = 0.0_dp
P2 = 0.0_dp
P3 = 0.0_dp
P4 = 0.0_dp
do nt = 1, ntetra
ibnd = jbnd
!
! etetra are the energies at the vertexes of the nt-th tetrahedron
!
do i = 1, 4
etetra(i) = et(ibnd, tetra(i,nt))
enddo
itetra(1) = 0
call hpsort (4,etetra,itetra)
!
! ...sort in ascending order: e1 < e2 < e3 < e4
!
e1 = etetra (1)
e2 = etetra (2)
e3 = etetra (3)
e4 = etetra (4)
!
! kp1-kp4 are the irreducible k-points corresponding to e1-e4
!
ik1 = tetra(itetra(1),nt)
ik2 = tetra(itetra(2),nt)
ik3 = tetra(itetra(3),nt)
ik4 = tetra(itetra(4),nt)
Y1 = gamma(ibnd,ik1)/et(ibnd,ik1)
Y2 = gamma(ibnd,ik2)/et(ibnd,ik2)
Y3 = gamma(ibnd,ik3)/et(ibnd,ik3)
Y4 = gamma(ibnd,ik4)/et(ibnd,ik4)
IF ( e3 < ef .and. ef < e4) THEN
f14 = (ef-e4)/(e1-e4)
f24 = (ef-e4)/(e2-e4)
f34 = (ef-e4)/(e3-e4)
G = 3.0_dp * f14 * f24 * f34 / (e4-ef)
P1 = f14 * o13
P2 = f24 * o13
P3 = f34 * o13
P4 = (3.0_dp - f14 - f24 - f34 ) * o13
ELSE IF ( e2 < ef .and. ef < e3 ) THEN
f13 = (ef-e3)/(e1-e3)
f31 = 1.0_dp - f13
f14 = (ef-e4)/(e1-e4)
f41 = 1.0_dp-f14
f23 = (ef-e3)/(e2-e3)
f32 = 1.0_dp - f23
f24 = (ef-e4)/(e2-e4)
f42 = 1.0_dp - f24
G = 3.0_dp * (f23*f31 + f32*f24)
P1 = f14 * o13 + f13*f31*f23 / G
P2 = f23 * o13 + f24*f24*f32 / G
P3 = f32 * o13 + f31*f31*f23 / G
P4 = f41 * o13 + f42*f24*f32 / G
G = G / (e4-e1)
ELSE IF ( e1 < ef .and. ef < e2 ) THEN
f12 = (ef-e2)/(e1-e2)
f21 = 1.0_dp - f12
f13 = (ef-e3)/(e1-e3)
f31 = 1.0_dp - f13
f14 = (ef-e4)/(e1-e4)
f41 = 1.0_dp - f14
G = 3.0_dp * f21 * f31 * f41 / (ef-e1)
P1 = o13 * (f12 + f13 + f14)
P2 = o13 * f21
P3 = o13 * f31
P4 = o13 * f41
ELSE
G = 0.0_dp
END IF
Tint = Tint + G * (Y1*P1 + Y2*P2 + Y3*P3 + Y4*P4) * vol
enddo ! ntetra
dos_gam = Tint !2 because DOS_ee is per 1 spin
return
end function dos_gam
!
!
!------------------------------------------------------------------------------
function dos_broad(iatom, nbndx, nq, et, zq, wq, Ef, degauss)
!------------------------------------------------------------------------------
!
! Get atom projected ph DOS using Gaussian broadening. Inspired by
! thermo_pw/src/generalized_phdos.f90 (GPL)
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
INTEGER, INTENT(IN) :: iatom, nq, nbndx
REAL(DP), INTENT(IN) :: et(nbndx, nq), zq(nq, nbndx, nbndx), wq(nq), Ef, degauss
REAL(DP) :: ufact, weight
INTEGER :: n, ik, ngauss, ipol, indi, jpol, indj
COMPLEX(DP) :: u1, u2
REAL(DP), EXTERNAL :: w0gauss
REAL(DP) :: dos_broad
!
dos_broad = 0.0_DP
!
ngauss = 0
!
DO ik = 1, nq
DO n = 1, nbndx
weight = w0gauss ( (Ef - et(n,ik) ) / degauss, ngauss)
!
DO ipol=1, 3
indi = 3 * (iatom - 1) + ipol
DO jpol = ipol, 3
indj = 3 * (iatom - 1) + jpol
u1=zq(ik, indi, n)
u2=zq(ik, indj, n)
ufact = DBLE(u1*CONJG(u2))
dos_broad = dos_broad + wq(ik) * ufact * weight
ENDDO
ENDDO
!
ENDDO
ENDDO
!
dos_broad = dos_broad / degauss
!
RETURN
end function dos_broad
!
!
!-----------------------------------------------------------------------
subroutine readfg ( ifn, nr1, nr2, nr3, nat, frcg )
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE io_global, ONLY : ionode, ionode_id, stdout
USE mp, ONLY : mp_bcast
USE mp_world, ONLY : world_comm
implicit none
! I/O variable
integer, intent(in) :: nr1,nr2,nr3, nat
real(DP), intent(out) :: frcg(nr1,nr2,nr3,3,3,nat,nat)
! local variables
integer i, j, na, nb, m1,m2,m3, ifn
integer ibid, jbid, nabid, nbbid, m1bid,m2bid,m3bid
!
!
IF (ionode) READ (ifn,*) m1, m2, m3
CALL mp_bcast(m1, ionode_id, world_comm)
CALL mp_bcast(m2, ionode_id, world_comm)
CALL mp_bcast(m3, ionode_id, world_comm)
if ( m1 /= nr1 .or. m2 /= nr2 .or. m3 /= nr3) &
call errore('readfg','inconsistent nr1, nr2, nr3 read',1)
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
IF (ionode) read (ifn,*) ibid, jbid, nabid, nbbid
CALL mp_bcast(ibid, ionode_id, world_comm)
CALL mp_bcast(jbid, ionode_id, world_comm)
CALL mp_bcast(nabid, ionode_id, world_comm)
CALL mp_bcast(nbbid, ionode_id, world_comm)
if(i.ne.ibid.or.j.ne.jbid.or.na.ne.nabid.or.nb.ne.nbbid) then
write(stdout,*) i,j,na,nb,' <> ', ibid, jbid, nabid, nbbid
call errore ('readfG','error in reading',1)
else
IF (ionode) read (ifn,*) (((m1bid, m2bid, m3bid, &
frcg(m1,m2,m3,i,j,na,nb), &
m1=1,nr1),m2=1,nr2),m3=1,nr3)
endif
CALL mp_bcast(frcg(:,:,:,i,j,na,nb), ionode_id, world_comm)
end do
end do
end do
end do
!
IF (ionode) close(ifn)
!
return
end subroutine readfg
!
!
SUBROUTINE find_representations_mode_q ( nat, ntyp, xq, w2, u, tau, ityp, &
amass, num_rap_mode, nspin_mag )
USE kinds, ONLY : DP
USE cell_base, ONLY : at, bg
USE symm_base, ONLY : s, sr, ft, irt, nsym, nrot, t_rev, time_reversal,&
sname, copy_sym, s_axis_to_cart
IMPLICIT NONE
INTEGER, INTENT(IN) :: nat, ntyp, nspin_mag
REAL(DP), INTENT(IN) :: xq(3), amass(ntyp), tau(3,nat)
REAL(DP), INTENT(IN) :: w2(3*nat)
INTEGER, INTENT(IN) :: ityp(nat)
COMPLEX(DP), INTENT(IN) :: u(3*nat,3*nat)
INTEGER, INTENT(OUT) :: num_rap_mode(3*nat)
REAL(DP) :: gi (3, 48), gimq (3), sr_is(3,3,48), rtau(3,48,nat)
INTEGER :: irotmq, nsymq, nsym_is, isym, i, ierr
LOGICAL :: minus_q, search_sym, sym(48), magnetic_sym
!
! find the small group of q
!
time_reversal=.TRUE.
IF (.NOT.time_reversal) minus_q=.FALSE.
sym(1:nsym)=.true.
call smallg_q (xq, 0, at, bg, nsym, s, sym, minus_q)
nsymq=copy_sym(nsym,sym )
call s_axis_to_cart ()
CALL set_giq (xq,s,nsymq,nsym,irotmq,minus_q,gi,gimq)
!
! if the small group of q is non symmorphic,
! search the symmetries only if there are no G such that Sq -> q+G
!
search_sym=.TRUE.
IF ( ANY ( ABS(ft(:,1:nsymq)) > 1.0d-8 ) ) THEN
DO isym=1,nsymq
search_sym=( search_sym.and.(abs(gi(1,isym))<1.d-8).and. &
(abs(gi(2,isym))<1.d-8).and. &
(abs(gi(3,isym))<1.d-8) )
END DO
END IF
!
! Set the representations tables of the small group of q and
! find the mode symmetry
!
IF (search_sym) THEN
magnetic_sym=(nspin_mag==4)
CALL prepare_sym_analysis(nsymq,sr,t_rev,magnetic_sym)
sym (1:nsym) = .TRUE.
CALL sgam_lr (at, bg, nsym, s, irt, tau, rtau, nat)
CALL find_mode_sym_new (u, w2, tau, nat, nsymq, s, sr, irt, xq, &
rtau, amass, ntyp, ityp, 1, .FALSE., .FALSE., num_rap_mode, ierr)
ENDIF
RETURN
END SUBROUTINE find_representations_mode_q
| gpl-2.0 |
omni-compiler/omni-compiler | tests/XMP/others/F/block_tasks.F90 | 2 | 2051 | program tasks
!$xmp nodes p(8)
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
blkname1 : block
#endif
!$xmp tasks
!$xmp task on p(1:4)
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
blkname2 : block
#endif
!$xmp barrier on p
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
end block blkname2
#endif
!$xmp end task
!$xmp task on p(5:8)
!$xmp barrier on p
!$xmp end task
!$xmp end tasks
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
end block blkname1
#endif
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
blkname3 : block
#endif
!$xmp tasks
!$xmp task on p(1:5)
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
blkname4 : block
#endif
!$xmp barrier on p
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
end block blkname4
#endif
!$xmp end task
!$xmp task on p(6:8)
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
blkname5 : block
#endif
!$xmp barrier on p
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
end block blkname5
#endif
!$xmp end task
!$xmp end tasks
#if defined(__GNUC__) && (4 < __GNUC__ || 4 == __GNUC__ && 7 < __GNUC_MINOR__) \
|| defined(__INTEL_COMPILER) && (1600 < __INTEL_COMPILER)
end block blkname3
#endif
!$xmp task on p(1)
write(*,*) "PASS"
!$xmp end task
end program tasks
| lgpl-3.0 |
QEF/q-e | GWW/gww/do_contour.f90 | 12 | 2077 | !
! Copyright (C) 2001-2013 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!this subroutine add to the integral part of the self-energy the poles part
SUBROUTINE do_contour(sr,wp,options)
!NOT_TO_BE_INCLUDED_START
USE contour, ONLY : w_poles, w_poles_value
USE kinds, ONLY : DP
USE self_energy_storage, ONLY : self_on_real
USE basic_structures, ONLY : wannier_u,free_memory, initialize_memory
USE input_gw, ONLY : input_options
implicit none
TYPE(self_on_real), INTENT(inout) :: sr
TYPE(w_poles), INTENT(in) :: wp
TYPE(input_options), INTENT(in) :: options
TYPE(wannier_u) :: uu
INTEGER :: ie,jj,ii,is
COMPLEX(kind=DP) :: energy
!reads KS eigen-energies
call read_data_pw_u(uu,options%prefix)
!loop on spin
do is=1,sr%nspin
!loop on real energy grid
do ie=1,sr%n
energy=sr%grid(ie)
!divide by in valence and in conduction case
if(dble(energy) <= uu%ene(uu%nums_occ(is),is)) then
!consider valece states
do jj=sr%i_min,uu%nums_occ(is)!ATTENZIONE
!loop on poles
!for selected poles add terms
if(uu%ene(jj,is)>=dble(energy) )then
do ii=sr%i_min,sr%i_max
sr%diag(ie,ii,is)=sr%diag(ie,ii,is)-w_poles_value(uu%ene(jj,is)-energy,wp,jj,ii,is)!GIUSTO CUSSI'
enddo
endif
enddo
else
do jj=uu%nums_occ(is)+1,sr%i_max
!loop on poles
!for selected poles add terms
if(uu%ene(jj,is)<=dble(energy) )then
do ii=sr%i_min,sr%i_max
sr%diag(ie,ii,is)=sr%diag(ie,ii,is)+w_poles_value(uu%ene(jj,is)-energy,wp,jj,ii,is)
enddo
endif
enddo
endif
enddo
enddo
call free_memory(uu)
return
!NOT_TO_BE_INCLUDED_END
END SUBROUTINE do_contour
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/dgeqrt2.f | 24 | 6290 | *> \brief \b DGEQRT2 computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGEQRT2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrt2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrt2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrt2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGEQRT2( M, N, A, LDA, T, LDT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDT, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), T( LDT, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGEQRT2 computes a QR factorization of a real M-by-N matrix A,
*> using the compact WY representation of Q.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= N.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the real M-by-N matrix A. On exit, the elements on and
*> above the diagonal contain the N-by-N upper triangular matrix R; the
*> elements below the diagonal are the columns of V. See below for
*> further details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is DOUBLE PRECISION array, dimension (LDT,N)
*> The N-by-N upper triangular factor of the block reflector.
*> The elements on and above the diagonal contain the block
*> reflector T; the elements below the diagonal are not used.
*> See below for further details.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup doubleGEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix V stores the elementary reflectors H(i) in the i-th column
*> below the diagonal. For example, if M=5 and N=3, the matrix V is
*>
*> V = ( 1 )
*> ( v1 1 )
*> ( v1 v2 1 )
*> ( v1 v2 v3 )
*> ( v1 v2 v3 )
*>
*> where the vi's represent the vectors which define H(i), which are returned
*> in the matrix A. The 1's along the diagonal of V are not stored in A. The
*> block reflector H is then given by
*>
*> H = I - V * T * V**T
*>
*> where V**T is the transpose of V.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DGEQRT2( M, N, A, LDA, T, LDT, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDT, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), T( LDT, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER( ONE = 1.0D+00, ZERO = 0.0D+00 )
* ..
* .. Local Scalars ..
INTEGER I, K
DOUBLE PRECISION AII, ALPHA
* ..
* .. External Subroutines ..
EXTERNAL DLARFG, DGEMV, DGER, DTRMV, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGEQRT2', -INFO )
RETURN
END IF
*
K = MIN( M, N )
*
DO I = 1, K
*
* Generate elem. refl. H(i) to annihilate A(i+1:m,i), tau(I) -> T(I,1)
*
CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
$ T( I, 1 ) )
IF( I.LT.N ) THEN
*
* Apply H(i) to A(I:M,I+1:N) from the left
*
AII = A( I, I )
A( I, I ) = ONE
*
* W(1:N-I) := A(I:M,I+1:N)^H * A(I:M,I) [W = T(:,N)]
*
CALL DGEMV( 'T',M-I+1, N-I, ONE, A( I, I+1 ), LDA,
$ A( I, I ), 1, ZERO, T( 1, N ), 1 )
*
* A(I:M,I+1:N) = A(I:m,I+1:N) + alpha*A(I:M,I)*W(1:N-1)^H
*
ALPHA = -(T( I, 1 ))
CALL DGER( M-I+1, N-I, ALPHA, A( I, I ), 1,
$ T( 1, N ), 1, A( I, I+1 ), LDA )
A( I, I ) = AII
END IF
END DO
*
DO I = 2, N
AII = A( I, I )
A( I, I ) = ONE
*
* T(1:I-1,I) := alpha * A(I:M,1:I-1)**T * A(I:M,I)
*
ALPHA = -T( I, 1 )
CALL DGEMV( 'T', M-I+1, I-1, ALPHA, A( I, 1 ), LDA,
$ A( I, I ), 1, ZERO, T( 1, I ), 1 )
A( I, I ) = AII
*
* T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
*
CALL DTRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
*
* T(I,I) = tau(I)
*
T( I, I ) = T( I, 1 )
T( I, 1) = ZERO
END DO
*
* End of DGEQRT2
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/cheevr.f | 28 | 25045 | *> \brief <b> CHEEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHEEVR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheevr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheevr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheevr.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
* ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
* RWORK, LRWORK, IWORK, LIWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBZ, RANGE, UPLO
* INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
* $ M, N
* REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
* INTEGER ISUPPZ( * ), IWORK( * )
* REAL RWORK( * ), W( * )
* COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHEEVR computes selected eigenvalues and, optionally, eigenvectors
*> of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
*> be selected by specifying either a range of values or a range of
*> indices for the desired eigenvalues.
*>
*> CHEEVR first reduces the matrix A to tridiagonal form T with a call
*> to CHETRD. Then, whenever possible, CHEEVR calls CSTEMR to compute
*> the eigenspectrum using Relatively Robust Representations. CSTEMR
*> computes eigenvalues by the dqds algorithm, while orthogonal
*> eigenvectors are computed from various "good" L D L^T representations
*> (also known as Relatively Robust Representations). Gram-Schmidt
*> orthogonalization is avoided as far as possible. More specifically,
*> the various steps of the algorithm are as follows.
*>
*> For each unreduced block (submatrix) of T,
*> (a) Compute T - sigma I = L D L^T, so that L and D
*> define all the wanted eigenvalues to high relative accuracy.
*> This means that small relative changes in the entries of D and L
*> cause only small relative changes in the eigenvalues and
*> eigenvectors. The standard (unfactored) representation of the
*> tridiagonal matrix T does not have this property in general.
*> (b) Compute the eigenvalues to suitable accuracy.
*> If the eigenvectors are desired, the algorithm attains full
*> accuracy of the computed eigenvalues only right before
*> the corresponding vectors have to be computed, see steps c) and d).
*> (c) For each cluster of close eigenvalues, select a new
*> shift close to the cluster, find a new factorization, and refine
*> the shifted eigenvalues to suitable accuracy.
*> (d) For each eigenvalue with a large enough relative separation compute
*> the corresponding eigenvector by forming a rank revealing twisted
*> factorization. Go back to (c) for any clusters that remain.
*>
*> The desired accuracy of the output can be specified by the input
*> parameter ABSTOL.
*>
*> For more details, see DSTEMR's documentation and:
*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
*> to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
*> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
*> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
*> 2004. Also LAPACK Working Note 154.
*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
*> tridiagonal eigenvalue/eigenvector problem",
*> Computer Science Division Technical Report No. UCB/CSD-97-971,
*> UC Berkeley, May 1997.
*>
*>
*> Note 1 : CHEEVR calls CSTEMR when the full spectrum is requested
*> on machines which conform to the ieee-754 floating point standard.
*> CHEEVR calls SSTEBZ and CSTEIN on non-ieee machines and
*> when partial spectrum requests are made.
*>
*> Normal execution of CSTEMR may create NaNs and infinities and
*> hence may abort due to a floating point exception in environments
*> which do not handle NaNs and infinities in the ieee standard default
*> manner.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBZ
*> \verbatim
*> JOBZ is CHARACTER*1
*> = 'N': Compute eigenvalues only;
*> = 'V': Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] RANGE
*> \verbatim
*> RANGE is CHARACTER*1
*> = 'A': all eigenvalues will be found.
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
*> will be found.
*> = 'I': the IL-th through IU-th eigenvalues will be found.
*> For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
*> CSTEIN are called
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, N)
*> On entry, the Hermitian matrix A. If UPLO = 'U', the
*> leading N-by-N upper triangular part of A contains the
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
*> On exit, the lower triangle (if UPLO='L') or the upper
*> triangle (if UPLO='U') of A, including the diagonal, is
*> destroyed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*> VL is REAL
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*> VU is REAL
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*> IL is INTEGER
*> \endverbatim
*>
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*> Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*> ABSTOL is REAL
*> The absolute error tolerance for the eigenvalues.
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
*>
*> If high relative accuracy is important, set ABSTOL to
*> SLAMCH( 'Safe minimum' ). Doing so will guarantee that
*> eigenvalues are computed to high relative accuracy when
*> possible in future releases. The current code does not
*> make any guarantees about high relative accuracy, but
*> furutre releases will. See J. Barlow and J. Demmel,
*> "Computing Accurate Eigensystems of Scaled Diagonally
*> Dominant Matrices", LAPACK Working Note #7, for a discussion
*> of which matrices define their eigenvalues to high relative
*> accuracy.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*> M is INTEGER
*> The total number of eigenvalues found. 0 <= M <= N.
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is REAL array, dimension (N)
*> The first M elements contain the selected eigenvalues in
*> ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX array, dimension (LDZ, max(1,M))
*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
*> contain the orthonormal eigenvectors of the matrix A
*> corresponding to the selected eigenvalues, with the i-th
*> column of Z holding the eigenvector associated with W(i).
*> If JOBZ = 'N', then Z is not referenced.
*> Note: the user must ensure that at least max(1,M) columns are
*> supplied in the array Z; if RANGE = 'V', the exact value of M
*> is not known in advance and an upper bound must be used.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. LDZ >= 1, and if
*> JOBZ = 'V', LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] ISUPPZ
*> \verbatim
*> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
*> The support of the eigenvectors in Z, i.e., the indices
*> indicating the nonzero elements in Z. The i-th eigenvector
*> is nonzero only in elements ISUPPZ( 2*i-1 ) through
*> ISUPPZ( 2*i ).
*> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= max(1,2*N).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the max of the blocksize for CHETRD and for
*> CUNMTR as returned by ILAENV.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
*> the WORK, RWORK and IWORK arrays, and no error message
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (MAX(1,LRWORK))
*> On exit, if INFO = 0, RWORK(1) returns the optimal
*> (and minimal) LRWORK.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER
*> The length of the array RWORK. LRWORK >= max(1,24*N).
*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
*> of the WORK, RWORK and IWORK arrays, and no error message
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
*> On exit, if INFO = 0, IWORK(1) returns the optimal
*> (and minimal) LIWORK.
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
*> of the WORK, RWORK and IWORK arrays, and no error message
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: Internal error
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complexHEeigen
*
*> \par Contributors:
* ==================
*>
*> Inderjit Dhillon, IBM Almaden, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*> Ken Stanley, Computer Science Division, University of
*> California at Berkeley, USA \n
*> Jason Riedy, Computer Science Division, University of
*> California at Berkeley, USA \n
*>
* =====================================================================
SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
$ ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
$ RWORK, LRWORK, IWORK, LIWORK, INFO )
*
* -- LAPACK driver routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
$ M, N
REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * ), IWORK( * )
REAL RWORK( * ), W( * )
COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
$ WANTZ, TRYRAC
CHARACTER ORDER
INTEGER I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
$ INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
$ INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
$ LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
$ LWKOPT, LWMIN, NB, NSPLIT
REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
$ SIGMA, SMLNUM, TMP1, VLL, VUU
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
REAL CLANSY, SLAMCH
EXTERNAL LSAME, ILAENV, CLANSY, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CHETRD, CSSCAL, CSTEMR, CSTEIN, CSWAP, CUNMTR,
$ SCOPY, SSCAL, SSTEBZ, SSTERF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
IEEEOK = ILAENV( 10, 'CHEEVR', 'N', 1, 2, 3, 4 )
*
LOWER = LSAME( UPLO, 'L' )
WANTZ = LSAME( JOBZ, 'V' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
*
LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
$ ( LIWORK.EQ.-1 ) )
*
LRWMIN = MAX( 1, 24*N )
LIWMIN = MAX( 1, 10*N )
LWMIN = MAX( 1, 2*N )
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -2
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE
IF( VALEIG ) THEN
IF( N.GT.0 .AND. VU.LE.VL )
$ INFO = -8
ELSE IF( INDEIG ) THEN
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
INFO = -10
END IF
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -15
END IF
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
NB = MAX( NB, ILAENV( 1, 'CUNMTR', UPLO, N, -1, -1, -1 ) )
LWKOPT = MAX( ( NB+1 )*N, LWMIN )
WORK( 1 ) = LWKOPT
RWORK( 1 ) = LRWMIN
IWORK( 1 ) = LIWMIN
*
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -18
ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
INFO = -20
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -22
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHEEVR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( N.EQ.1 ) THEN
WORK( 1 ) = 2
IF( ALLEIG .OR. INDEIG ) THEN
M = 1
W( 1 ) = REAL( A( 1, 1 ) )
ELSE
IF( VL.LT.REAL( A( 1, 1 ) ) .AND. VU.GE.REAL( A( 1, 1 ) ) )
$ THEN
M = 1
W( 1 ) = REAL( A( 1, 1 ) )
END IF
END IF
IF( WANTZ ) THEN
Z( 1, 1 ) = ONE
ISUPPZ( 1 ) = 1
ISUPPZ( 2 ) = 1
END IF
RETURN
END IF
*
* Get machine constants.
*
SAFMIN = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
* Scale matrix to allowable range, if necessary.
*
ISCALE = 0
ABSTLL = ABSTOL
IF (VALEIG) THEN
VLL = VL
VUU = VU
END IF
ANRM = CLANSY( 'M', UPLO, N, A, LDA, RWORK )
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 ) THEN
IF( LOWER ) THEN
DO 10 J = 1, N
CALL CSSCAL( N-J+1, SIGMA, A( J, J ), 1 )
10 CONTINUE
ELSE
DO 20 J = 1, N
CALL CSSCAL( J, SIGMA, A( 1, J ), 1 )
20 CONTINUE
END IF
IF( ABSTOL.GT.0 )
$ ABSTLL = ABSTOL*SIGMA
IF( VALEIG ) THEN
VLL = VL*SIGMA
VUU = VU*SIGMA
END IF
END IF
* Initialize indices into workspaces. Note: The IWORK indices are
* used only if SSTERF or CSTEMR fail.
* WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
* elementary reflectors used in CHETRD.
INDTAU = 1
* INDWK is the starting offset of the remaining complex workspace,
* and LLWORK is the remaining complex workspace size.
INDWK = INDTAU + N
LLWORK = LWORK - INDWK + 1
* RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
* entries.
INDRD = 1
* RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
* tridiagonal matrix from CHETRD.
INDRE = INDRD + N
* RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
* -written by CSTEMR (the SSTERF path copies the diagonal to W).
INDRDD = INDRE + N
* RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
* -written while computing the eigenvalues in SSTERF and CSTEMR.
INDREE = INDRDD + N
* INDRWK is the starting offset of the left-over real workspace, and
* LLRWORK is the remaining workspace size.
INDRWK = INDREE + N
LLRWORK = LRWORK - INDRWK + 1
* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
* stores the block indices of each of the M<=N eigenvalues.
INDIBL = 1
* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
* stores the starting and finishing indices of each block.
INDISP = INDIBL + N
* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
* that corresponding to eigenvectors that fail to converge in
* SSTEIN. This information is discarded; if any fail, the driver
* returns INFO > 0.
INDIFL = INDISP + N
* INDIWO is the offset of the remaining integer workspace.
INDIWO = INDIFL + N
*
* Call CHETRD to reduce Hermitian matrix to tridiagonal form.
*
CALL CHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
$ WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
*
* If all eigenvalues are desired
* then call SSTERF or CSTEMR and CUNMTR.
*
TEST = .FALSE.
IF( INDEIG ) THEN
IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
TEST = .TRUE.
END IF
END IF
IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
IF( .NOT.WANTZ ) THEN
CALL SCOPY( N, RWORK( INDRD ), 1, W, 1 )
CALL SCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
CALL SSTERF( N, W, RWORK( INDREE ), INFO )
ELSE
CALL SCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
CALL SCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
*
IF (ABSTOL .LE. TWO*N*EPS) THEN
TRYRAC = .TRUE.
ELSE
TRYRAC = .FALSE.
END IF
CALL CSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
$ RWORK( INDREE ), VL, VU, IL, IU, M, W,
$ Z, LDZ, N, ISUPPZ, TRYRAC,
$ RWORK( INDRWK ), LLRWORK,
$ IWORK, LIWORK, INFO )
*
* Apply unitary matrix used in reduction to tridiagonal
* form to eigenvectors returned by CSTEIN.
*
IF( WANTZ .AND. INFO.EQ.0 ) THEN
INDWKN = INDWK
LLWRKN = LWORK - INDWKN + 1
CALL CUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
$ WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
$ LLWRKN, IINFO )
END IF
END IF
*
*
IF( INFO.EQ.0 ) THEN
M = N
GO TO 30
END IF
INFO = 0
END IF
*
* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN.
* Also call SSTEBZ and CSTEIN if CSTEMR fails.
*
IF( WANTZ ) THEN
ORDER = 'B'
ELSE
ORDER = 'E'
END IF
CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
$ RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
$ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
$ IWORK( INDIWO ), INFO )
*
IF( WANTZ ) THEN
CALL CSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
$ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
$ RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
$ INFO )
*
* Apply unitary matrix used in reduction to tridiagonal
* form to eigenvectors returned by CSTEIN.
*
INDWKN = INDWK
LLWRKN = LWORK - INDWKN + 1
CALL CUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
$ LDZ, WORK( INDWKN ), LLWRKN, IINFO )
END IF
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
30 CONTINUE
IF( ISCALE.EQ.1 ) THEN
IF( INFO.EQ.0 ) THEN
IMAX = M
ELSE
IMAX = INFO - 1
END IF
CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
END IF
*
* If eigenvalues are not in order, then sort them, along with
* eigenvectors.
*
IF( WANTZ ) THEN
DO 50 J = 1, M - 1
I = 0
TMP1 = W( J )
DO 40 JJ = J + 1, M
IF( W( JJ ).LT.TMP1 ) THEN
I = JJ
TMP1 = W( JJ )
END IF
40 CONTINUE
*
IF( I.NE.0 ) THEN
ITMP1 = IWORK( INDIBL+I-1 )
W( I ) = W( J )
IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
W( J ) = TMP1
IWORK( INDIBL+J-1 ) = ITMP1
CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
END IF
50 CONTINUE
END IF
*
* Set WORK(1) to optimal workspace size.
*
WORK( 1 ) = LWKOPT
RWORK( 1 ) = LRWMIN
IWORK( 1 ) = LIWMIN
*
RETURN
*
* End of CHEEVR
*
END
| gpl-2.0 |
omni-compiler/omni-compiler | tests/XMP/local-view/coarray/F/LIB/this_image.f90 | 1 | 2510 | real a(1:2,3:5)[6:7,8:10,-3:*]
n1 = this_image(a, 1)
n2 = this_image(a, 2)
n3 = this_image(a, 3)
nerr=0
me=this_image()
if (me==1) then
if (n1.ne.6) nerr=nerr+1
if (n2.ne.8) nerr=nerr+1
if (n3.ne.-3) nerr=nerr+1
else if (me==2) then
if (n1.ne.7) nerr=nerr+1
if (n2.ne.8) nerr=nerr+1
if (n3.ne.-3) nerr=nerr+1
else if (me==3) then
if (n1.ne.6) nerr=nerr+1
if (n2.ne.9) nerr=nerr+1
if (n3.ne.-3) nerr=nerr+1
else if (me==4) then
if (n1.ne.7) nerr=nerr+1
if (n2.ne.9) nerr=nerr+1
if (n3.ne.-3) nerr=nerr+1
else if (me==5) then
if (n1.ne.6) nerr=nerr+1
if (n2.ne.10) nerr=nerr+1
if (n3.ne.-3) nerr=nerr+1
else if (me==6) then
if (n1.ne.7) nerr=nerr+1
if (n2.ne.10) nerr=nerr+1
if (n3.ne.-3) nerr=nerr+1
else if (me==7) then
if (n1.ne.6) nerr=nerr+1
if (n2.ne.8) nerr=nerr+1
if (n3.ne.-2) nerr=nerr+1
else if (me==8) then
if (n1.ne.7) nerr=nerr+1
if (n2.ne.8) nerr=nerr+1
if (n3.ne.-2) nerr=nerr+1
else if (me==9) then
if (n1.ne.6) nerr=nerr+1
if (n2.ne.9) nerr=nerr+1
if (n3.ne.-2) nerr=nerr+1
else if (me==10) then
if (n1.ne.7) nerr=nerr+1
if (n2.ne.9) nerr=nerr+1
if (n3.ne.-2) nerr=nerr+1
else if (me==11) then
if (n1.ne.6) nerr=nerr+1
if (n2.ne.10) nerr=nerr+1
if (n3.ne.-2) nerr=nerr+1
else if (me==12) then
if (n1.ne.7) nerr=nerr+1
if (n2.ne.10) nerr=nerr+1
if (n3.ne.-2) nerr=nerr+1
else if (me==13) then
if (n1.ne.6) nerr=nerr+1
if (n2.ne.8) nerr=nerr+1
if (n3.ne.-1) nerr=nerr+1
else if (me==14) then
if (n1.ne.7) nerr=nerr+1
if (n2.ne.8) nerr=nerr+1
if (n3.ne.-1) nerr=nerr+1
else if (me==15) then
if (n1.ne.6) nerr=nerr+1
if (n2.ne.9) nerr=nerr+1
if (n3.ne.-1) nerr=nerr+1
else if (me==16) then
if (n1.ne.7) nerr=nerr+1
if (n2.ne.9) nerr=nerr+1
if (n3.ne.-1) nerr=nerr+1
else if (me==17) then
if (n1.ne.6) nerr=nerr+1
if (n2.ne.10) nerr=nerr+1
if (n3.ne.-1) nerr=nerr+1
else if (me==18) then
if (n1.ne.7) nerr=nerr+1
if (n2.ne.10) nerr=nerr+1
if (n3.ne.-1) nerr=nerr+1
end if
call final_msg(nerr)
end
subroutine final_msg(nerr)
!! include 'xmp_coarray.h'
if (nerr==0) then
print '("[",i0,"] OK")', this_image()
else
print '("[",i0,"] number of NGs: ",i0)', this_image(), nerr
call exit(1)
end if
return
end subroutine final_msg
| lgpl-3.0 |
markusappel/McCode | support/MacOSX/pgplot/pgplot-src-mac/src/pgscr.f | 6 | 1754 | C*PGSCR -- set color representation
C%void cpgscr(int ci, float cr, float cg, float cb);
C+
SUBROUTINE PGSCR (CI, CR, CG, CB)
INTEGER CI
REAL CR, CG, CB
C
C Set color representation: i.e., define the color to be
C associated with a color index. Ignored for devices which do not
C support variable color or intensity. Color indices 0-15
C have predefined color representations (see the PGPLOT manual), but
C these may be changed with PGSCR. Color indices 16-maximum have no
C predefined representations: if these indices are used, PGSCR must
C be called to define the representation. On monochrome output
C devices (e.g. VT125 terminals with monochrome monitors), the
C monochrome intensity is computed from the specified Red, Green, Blue
C intensities as 0.30*R + 0.59*G + 0.11*B, as in US color television
C systems, NTSC encoding. Note that most devices do not have an
C infinite range of colors or monochrome intensities available;
C the nearest available color is used. Examples: for black,
C set CR=CG=CB=0.0; for white, set CR=CG=CB=1.0; for medium gray,
C set CR=CG=CB=0.5; for medium yellow, set CR=CG=0.5, CB=0.0.
C
C Argument:
C CI (input) : the color index to be defined, in the range 0-max.
C If the color index greater than the device
C maximum is specified, the call is ignored. Color
C index 0 applies to the background color.
C CR (input) : red, green, and blue intensities,
C CG (input) in range 0.0 to 1.0.
C CB (input)
C--
C 5-Nov-1985 - new routine [TJP].
C-----------------------------------------------------------------------
LOGICAL PGNOTO
C
IF (PGNOTO('PGSCR')) RETURN
CALL GRSCR(CI,CR,CG,CB)
END
| gpl-2.0 |
markusappel/McCode | support/common/pgplot/src/pgerrb.f | 6 | 3510 | C*PGERRB -- horizontal or vertical error bar
C%void cpgerrb(int dir, int n, const float *x, const float *y, \
C% const float *e, float t);
C+
SUBROUTINE PGERRB (DIR, N, X, Y, E, T)
INTEGER DIR, N
REAL X(*), Y(*), E(*)
REAL T
C
C Plot error bars in the direction specified by DIR.
C This routine draws an error bar only; to mark the data point at
C the start of the error bar, an additional call to PGPT is required.
C
C Arguments:
C DIR (input) : direction to plot the error bar relative to
C the data point.
C One-sided error bar:
C DIR is 1 for +X (X to X+E);
C 2 for +Y (Y to Y+E);
C 3 for -X (X to X-E);
C 4 for -Y (Y to Y-E).
C Two-sided error bar:
C DIR is 5 for +/-X (X-E to X+E);
C 6 for +/-Y (Y-E to Y+E).
C N (input) : number of error bars to plot.
C X (input) : world x-coordinates of the data.
C Y (input) : world y-coordinates of the data.
C E (input) : value of error bar distance to be added to the
C data position in world coordinates.
C T (input) : length of terminals to be drawn at the ends
C of the error bar, as a multiple of the default
C length; if T = 0.0, no terminals will be drawn.
C
C Note: the dimension of arrays X, Y, and E must be greater
C than or equal to N. If N is 1, X, Y, and E may be scalar
C variables, or expressions.
C--
C 1-Mar-1991 - new routine [JM].
C 20-Apr-1992 - correct bug [ALF, TJP].
C 28-Mar-1995 - add options DIR = 5 or 6 [TJP].
C 31-Mar-1997 - use pgtikl [TJP].
C-----------------------------------------------------------------------
INTEGER I
LOGICAL PGNOTO
REAL XTIK, YTIK, XX, YY
C
IF (PGNOTO('PGERRB')) RETURN
IF (N.LT.1) RETURN
IF (DIR.LT.1 .OR. DIR.GT.6) RETURN
CALL PGBBUF
C
C Determine terminal length.
C
CALL PGTIKL(T, XTIK, YTIK)
C
C Loop through points.
C
DO 10 I=1,N
C
C Draw terminal at starting point if required.
C
IF (DIR.EQ.5) THEN
XX = X(I)-E(I)
YY = Y(I)
ELSE IF (DIR.EQ.6) THEN
XX = X(I)
YY = Y(I)-E(I)
ELSE
XX = X(I)
YY = Y(I)
END IF
IF (T.NE.0.0) THEN
IF (DIR.EQ.5) THEN
CALL GRMOVA(XX,YY-YTIK)
CALL GRLINA(XX,YY+YTIK)
ELSE IF (DIR.EQ.6) THEN
CALL GRMOVA(XX-XTIK,YY)
CALL GRLINA(XX+XTIK,YY)
END IF
END IF
C
C Draw the error bar itself.
C
CALL GRMOVA(XX,YY)
IF (DIR.EQ.1 .OR. DIR.EQ.5) THEN
XX = X(I)+E(I)
YY = Y(I)
ELSE IF (DIR.EQ.2 .OR. DIR.EQ.6) THEN
XX = X(I)
YY = Y(I)+E(I)
ELSE IF (DIR.EQ.3) THEN
XX = X(I)-E(I)
YY = Y(I)
ELSE IF (DIR.EQ.4) THEN
XX = X(I)
YY = Y(I)-E(I)
END IF
CALL GRLINA(XX,YY)
C
C Draw terminal at end point.
C
IF (T.NE.0.0) THEN
IF (MOD(DIR,2).EQ.1) THEN
CALL GRMOVA(XX,YY-YTIK)
CALL GRLINA(XX,YY+YTIK)
ELSE
CALL GRMOVA(XX-XTIK,YY)
CALL GRLINA(XX+XTIK,YY)
END IF
END IF
C
10 CONTINUE
CALL PGEBUF
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/zlacp2.f | 24 | 4168 | *> \brief \b ZLACP2 copies all or part of a real two-dimensional array to a complex array.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLACP2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlacp2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlacp2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlacp2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLACP2( UPLO, M, N, A, LDA, B, LDB )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDA, LDB, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * )
* COMPLEX*16 B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLACP2 copies all or part of a real two-dimensional matrix A to a
*> complex matrix B.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies the part of the matrix A to be copied to B.
*> = 'U': Upper triangular part
*> = 'L': Lower triangular part
*> Otherwise: All of the matrix A
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The m by n matrix A. If UPLO = 'U', only the upper trapezium
*> is accessed; if UPLO = 'L', only the lower trapezium is
*> accessed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,N)
*> On exit, B = A in the locations specified by UPLO.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,M).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZLACP2( UPLO, M, N, A, LDA, B, LDB )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDB, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * )
COMPLEX*16 B( LDB, * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 J = 1, N
DO 10 I = 1, MIN( J, M )
B( I, J ) = A( I, J )
10 CONTINUE
20 CONTINUE
*
ELSE IF( LSAME( UPLO, 'L' ) ) THEN
DO 40 J = 1, N
DO 30 I = J, M
B( I, J ) = A( I, J )
30 CONTINUE
40 CONTINUE
*
ELSE
DO 60 J = 1, N
DO 50 I = 1, M
B( I, J ) = A( I, J )
50 CONTINUE
60 CONTINUE
END IF
*
RETURN
*
* End of ZLACP2
*
END
| gpl-2.0 |
QEF/q-e | EPW/src/stop_epw.f90 | 2 | 14710 | !
! Copyright (C) 2010-2016 Samuel Ponce', Roxana Margine, Carla Verdi, Feliciano Giustino
!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
! Modified from stop_ph
!
!-----------------------------------------------------------------------
SUBROUTINE stop_epw()
!-----------------------------------------------------------------------
!!
!! Close all files and synchronize processes before stopping.
!! Called at the end of the run
!!
USE mp, ONLY : mp_end, mp_barrier
USE mp_global, ONLY : inter_pool_comm, mp_global_end
USE io_global, ONLY : stdout
USE printing, ONLY : print_clock_epw
USE epwcom, ONLY : eliashberg, plselfen, specfun_pl, scattering, iterative_bte, lpolar
USE elph2, ONLY : adapt_smearing
USE io_var, ONLY : epwbib
USE mp_world, ONLY : mpime
USE io_global, ONLY : ionode_id
!
IMPLICIT NONE
!
CALL print_clock_epw()
!
WRITE(stdout, '(a)') " ==============================================================================="
WRITE(stdout, '(a)') " The functionality-dependent EPW.bib file was created with suggested citations. "
WRITE(stdout, '(a)') " Please consider citing the papers listed in EPW.bib. "
WRITE(stdout, '(a)') " ==============================================================================="
WRITE(stdout, '(a)') " "
!
IF (mpime == ionode_id) THEN
!
OPEN(UNIT = epwbib, FILE = 'EPW.bib')
!
WRITE(epwbib, '(a)') " % Copyright (C) 2010-2016 Samuel Ponce', Roxana Margine, Carla Verdi, Feliciano Giustino"
WRITE(epwbib, '(a)') " "
WRITE(epwbib, '(a)') " % Paper describing the method on which EPW relies "
WRITE(epwbib, '(a)') " @Article{Giustino2007 "
WRITE(epwbib, '(a)') " Title = {Electron-phonon interaction using Wannier functions}, "
WRITE(epwbib, '(a)') " Author = {F. Giustino and M. L. Cohen and S. G. Louie}, "
WRITE(epwbib, '(a)') " Journal = {Phys. Rev. B}, "
WRITE(epwbib, '(a)') " Year = {2007}, "
WRITE(epwbib, '(a)') " Volume = {76}, "
WRITE(epwbib, '(a)') " Pages = {165108}, "
WRITE(epwbib, '(a)') " Doi = {10.1103/PhysRevB.76.165108} "
WRITE(epwbib, '(a)') " } "
WRITE(epwbib, '(a)') " "
WRITE(epwbib, '(a)') " % Paper describing the EPW software "
WRITE(epwbib, '(a)') " @Article{Ponce2016, "
WRITE(epwbib, '(a)') " Title = {EPW: Electron–phonon coupling, transport and superconducting properties &
&using maximally localized Wannier functions},"
WRITE(epwbib, '(a)') " Author = {S. Ponc\'e and E.R. Margine and C. Verdi and F. Giustino}, "
WRITE(epwbib, '(a)') " Journal = {Computer Physics Communications}, "
WRITE(epwbib, '(a)') " Year = {2016}, "
WRITE(epwbib, '(a)') " Volume = {209}, "
WRITE(epwbib, '(a)') " Pages = {116 - 133}, "
WRITE(epwbib, '(a)') " Doi = {https://doi.org/10.1016/j.cpc.2016.07.028} "
WRITE(epwbib, '(a)') " } "
!
! Specific functionalities
WRITE(epwbib, '(a)') " "
!
! Eliashberg superconductivity
IF (eliashberg) THEN
WRITE(epwbib, '(a)') " "
WRITE(epwbib, '(a)') " % Since you used the [eliashberg] input, please consider also citing "
WRITE(epwbib, '(a)') " @Article{Margine2013, "
WRITE(epwbib, '(a)') " Title = {Anisotropic Migdal-Eliashberg theory using Wannier functions}, "
WRITE(epwbib, '(a)') " Author = {E. R. Margine and F. Giustino}, "
WRITE(epwbib, '(a)') " Journal = {Phys. Rev. B}, "
WRITE(epwbib, '(a)') " Year = {2013}, "
WRITE(epwbib, '(a)') " Volume = {87} "
WRITE(epwbib, '(a)') " Pages = {024505}, "
WRITE(epwbib, '(a)') " Doi = {10.1103/PhysRevB.87.024505} "
WRITE(epwbib, '(a)') " } "
ENDIF
!
! Polar analytic interpolation
IF (lpolar) THEN
WRITE(epwbib, '(a)') " "
WRITE(epwbib, '(a)') " % Since you used the [lpolar] input, please consider also citing "
WRITE(epwbib, '(a)') " @Article{Verdi2015, "
WRITE(epwbib, '(a)') " Title = {Frohlich Electron-Phonon Vertex from First Principles}, "
WRITE(epwbib, '(a)') " Author = {C. Verdi and F. Giustino}, "
WRITE(epwbib, '(a)') " Journal = {Phys. Rev. Lett.}, "
WRITE(epwbib, '(a)') " Year = {2015}, "
WRITE(epwbib, '(a)') " Volume = {115} "
WRITE(epwbib, '(a)') " Pages = {176401}, "
WRITE(epwbib, '(a)') " Doi = {10.1103/PhysRevLett.115.176401} "
WRITE(epwbib, '(a)') " } "
ENDIF
!
! Plasmons
IF (plselfen .OR. specfun_pl) THEN
WRITE(epwbib, '(a)') " "
WRITE(epwbib, '(a)') " % Since you used the [plselfen] or [specfun_pl] input, please consider also citing "
WRITE(epwbib, '(a)') " @Article{Caruso2018, "
WRITE(epwbib, '(a)') " Title = {Electron-plasmon and electron-phonon satellites in the angle-resolved &
&photoelectron spectra of $n$-doped anatase ${\mathrm{TiO}}_{2}$},"
WRITE(epwbib, '(a)') " Author = {F. Caruso and C. Verdi and S. Ponc\'e and F. Giustino}, "
WRITE(epwbib, '(a)') " Journal = {Phys. Rev. B}, "
WRITE(epwbib, '(a)') " Year = {2018}, "
WRITE(epwbib, '(a)') " Volume = {97} "
WRITE(epwbib, '(a)') " Pages = {165113}, "
WRITE(epwbib, '(a)') " Doi = {10.1103/PhysRevB.97.165113} "
WRITE(epwbib, '(a)') " } "
ENDIF
!
! Transport module
IF (scattering .AND. .NOT. iterative_bte) THEN
WRITE(epwbib, '(a)') " "
WRITE(epwbib, '(a)') " % Since you used the [scattering] input, please consider also citing "
WRITE(epwbib, '(a)') " @Article{Ponce2018, "
WRITE(epwbib, '(a)') " Title = {Towards predictive many-body calculations of phonon-limited carrier &
&mobilities in semiconductors},"
WRITE(epwbib, '(a)') " Author = {S. Ponc\'e and E. R. Margine and F. Giustino}, "
WRITE(epwbib, '(a)') " Journal = {Phys. Rev. B}, "
WRITE(epwbib, '(a)') " Year = {2018}, "
WRITE(epwbib, '(a)') " Volume = {97} "
WRITE(epwbib, '(a)') " Pages = {121201}, "
WRITE(epwbib, '(a)') " Doi = {10.1103/PhysRevB.97.121201} "
WRITE(epwbib, '(a)') " } "
ENDIF
!
IF (iterative_bte) THEN
WRITE(epwbib, '(a)') " "
WRITE(epwbib, '(a)') " % Since you used the [iterative_bte] input, please consider also citing "
WRITE(epwbib, '(a)') " @Article{Ponce2018, "
WRITE(epwbib, '(a)') " Title = {Towards predictive many-body calculations of phonon-limited carrier &
&mobilities in semiconductors},"
WRITE(epwbib, '(a)') " Author = {S. Ponc\'e and E. R. Margine and F. Giustino}, "
WRITE(epwbib, '(a)') " Journal = {Phys. Rev. B}, "
WRITE(epwbib, '(a)') " Year = {2018}, "
WRITE(epwbib, '(a)') " Volume = {97} "
WRITE(epwbib, '(a)') " Pages = {121201}, "
WRITE(epwbib, '(a)') " Doi = {10.1103/PhysRevB.97.121201} "
WRITE(epwbib, '(a)') " } "
WRITE(epwbib, '(a)') " "
WRITE(epwbib, '(a)') " @Article{Macheda2018, "
WRITE(epwbib, '(a)') " Title = {Magnetotransport phenomena in $p$-doped diamond from first principles}, "
WRITE(epwbib, '(a)') " Author = {F. Macheda and N. Bonini}, "
WRITE(epwbib, '(a)') " Journal = {Phys. Rev. B}, "
WRITE(epwbib, '(a)') " Year = {2018}, "
WRITE(epwbib, '(a)') " Volume = {98} "
WRITE(epwbib, '(a)') " Pages = {201201}, "
WRITE(epwbib, '(a)') " Doi = {10.1103/PhysRevB.98.201201} "
WRITE(epwbib, '(a)') " } "
ENDIF
!
! Improvements
IF (adapt_smearing) THEN
WRITE(epwbib, '(a)') " "
WRITE(epwbib, '(a)') " % Since you used the [adapt_smearing] input, please consider also citing "
WRITE(epwbib, '(a)') " @Article{Macheda2018, "
WRITE(epwbib, '(a)') " Title = {Magnetotransport phenomena in $p$-doped diamond from first principles}, "
WRITE(epwbib, '(a)') " Author = {F. Macheda and N. Bonini}, "
WRITE(epwbib, '(a)') " Journal = {Phys. Rev. B}, "
WRITE(epwbib, '(a)') " Year = {2018}, "
WRITE(epwbib, '(a)') " Volume = {98} "
WRITE(epwbib, '(a)') " Pages = {201201}, "
WRITE(epwbib, '(a)') " Doi = {10.1103/PhysRevB.98.201201} "
WRITE(epwbib, '(a)') " } "
ENDIF
!
CLOSE(epwbib)
!
ENDIF
!
CALL mp_end(inter_pool_comm)
CALL mp_global_end()
!
STOP
!
RETURN
!-----------------------------------------------------------------------
END SUBROUTINE stop_epw
!-----------------------------------------------------------------------
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/dlasdq.f | 24 | 12989 | *> \brief \b DLASDQ computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASDQ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasdq.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasdq.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasdq.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
* U, LDU, C, LDC, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
* ..
* .. Array Arguments ..
* DOUBLE PRECISION C( LDC, * ), D( * ), E( * ), U( LDU, * ),
* $ VT( LDVT, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLASDQ computes the singular value decomposition (SVD) of a real
*> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
*> E, accumulating the transformations if desired. Letting B denote
*> the input bidiagonal matrix, the algorithm computes orthogonal
*> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose
*> of P). The singular values S are overwritten on D.
*>
*> The input matrix U is changed to U * Q if desired.
*> The input matrix VT is changed to P**T * VT if desired.
*> The input matrix C is changed to Q**T * C if desired.
*>
*> See "Computing Small Singular Values of Bidiagonal Matrices With
*> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
*> LAPACK Working Note #3, for a detailed description of the algorithm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the input bidiagonal matrix
*> is upper or lower bidiagonal, and wether it is square are
*> not.
*> UPLO = 'U' or 'u' B is upper bidiagonal.
*> UPLO = 'L' or 'l' B is lower bidiagonal.
*> \endverbatim
*>
*> \param[in] SQRE
*> \verbatim
*> SQRE is INTEGER
*> = 0: then the input matrix is N-by-N.
*> = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
*> (N+1)-by-N if UPLU = 'L'.
*>
*> The bidiagonal matrix has
*> N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of rows and columns
*> in the matrix. N must be at least 0.
*> \endverbatim
*>
*> \param[in] NCVT
*> \verbatim
*> NCVT is INTEGER
*> On entry, NCVT specifies the number of columns of
*> the matrix VT. NCVT must be at least 0.
*> \endverbatim
*>
*> \param[in] NRU
*> \verbatim
*> NRU is INTEGER
*> On entry, NRU specifies the number of rows of
*> the matrix U. NRU must be at least 0.
*> \endverbatim
*>
*> \param[in] NCC
*> \verbatim
*> NCC is INTEGER
*> On entry, NCC specifies the number of columns of
*> the matrix C. NCC must be at least 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> On entry, D contains the diagonal entries of the
*> bidiagonal matrix whose SVD is desired. On normal exit,
*> D contains the singular values in ascending order.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is DOUBLE PRECISION array.
*> dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
*> On entry, the entries of E contain the offdiagonal entries
*> of the bidiagonal matrix whose SVD is desired. On normal
*> exit, E will contain 0. If the algorithm does not converge,
*> D and E will contain the diagonal and superdiagonal entries
*> of a bidiagonal matrix orthogonally equivalent to the one
*> given as input.
*> \endverbatim
*>
*> \param[in,out] VT
*> \verbatim
*> VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
*> On entry, contains a matrix which on exit has been
*> premultiplied by P**T, dimension N-by-NCVT if SQRE = 0
*> and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*> LDVT is INTEGER
*> On entry, LDVT specifies the leading dimension of VT as
*> declared in the calling (sub) program. LDVT must be at
*> least 1. If NCVT is nonzero LDVT must also be at least N.
*> \endverbatim
*>
*> \param[in,out] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension (LDU, N)
*> On entry, contains a matrix which on exit has been
*> postmultiplied by Q, dimension NRU-by-N if SQRE = 0
*> and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> On entry, LDU specifies the leading dimension of U as
*> declared in the calling (sub) program. LDU must be at
*> least max( 1, NRU ) .
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension (LDC, NCC)
*> On entry, contains an N-by-NCC matrix which on exit
*> has been premultiplied by Q**T dimension N-by-NCC if SQRE = 0
*> and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> On entry, LDC specifies the leading dimension of C as
*> declared in the calling (sub) program. LDC must be at
*> least 1. If NCC is nonzero, LDC must also be at least N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (4*N)
*> Workspace. Only referenced if one of NCVT, NRU, or NCC is
*> nonzero, and if N is at least 2.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> On exit, a value of 0 indicates a successful exit.
*> If INFO < 0, argument number -INFO is illegal.
*> If INFO > 0, the algorithm did not converge, and INFO
*> specifies how many superdiagonals did not converge.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Ming Gu and Huan Ren, Computer Science Division, University of
*> California at Berkeley, USA
*>
* =====================================================================
SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
$ U, LDU, C, LDC, WORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
* ..
* .. Array Arguments ..
DOUBLE PRECISION C( LDC, * ), D( * ), E( * ), U( LDU, * ),
$ VT( LDVT, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL ROTATE
INTEGER I, ISUB, IUPLO, J, NP1, SQRE1
DOUBLE PRECISION CS, R, SMIN, SN
* ..
* .. External Subroutines ..
EXTERNAL DBDSQR, DLARTG, DLASR, DSWAP, XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IUPLO = 0
IF( LSAME( UPLO, 'U' ) )
$ IUPLO = 1
IF( LSAME( UPLO, 'L' ) )
$ IUPLO = 2
IF( IUPLO.EQ.0 ) THEN
INFO = -1
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NCVT.LT.0 ) THEN
INFO = -4
ELSE IF( NRU.LT.0 ) THEN
INFO = -5
ELSE IF( NCC.LT.0 ) THEN
INFO = -6
ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
$ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
INFO = -10
ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
INFO = -12
ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
$ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
INFO = -14
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLASDQ', -INFO )
RETURN
END IF
IF( N.EQ.0 )
$ RETURN
*
* ROTATE is true if any singular vectors desired, false otherwise
*
ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
NP1 = N + 1
SQRE1 = SQRE
*
* If matrix non-square upper bidiagonal, rotate to be lower
* bidiagonal. The rotations are on the right.
*
IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
DO 10 I = 1, N - 1
CALL DLARTG( D( I ), E( I ), CS, SN, R )
D( I ) = R
E( I ) = SN*D( I+1 )
D( I+1 ) = CS*D( I+1 )
IF( ROTATE ) THEN
WORK( I ) = CS
WORK( N+I ) = SN
END IF
10 CONTINUE
CALL DLARTG( D( N ), E( N ), CS, SN, R )
D( N ) = R
E( N ) = ZERO
IF( ROTATE ) THEN
WORK( N ) = CS
WORK( N+N ) = SN
END IF
IUPLO = 2
SQRE1 = 0
*
* Update singular vectors if desired.
*
IF( NCVT.GT.0 )
$ CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),
$ WORK( NP1 ), VT, LDVT )
END IF
*
* If matrix lower bidiagonal, rotate to be upper bidiagonal
* by applying Givens rotations on the left.
*
IF( IUPLO.EQ.2 ) THEN
DO 20 I = 1, N - 1
CALL DLARTG( D( I ), E( I ), CS, SN, R )
D( I ) = R
E( I ) = SN*D( I+1 )
D( I+1 ) = CS*D( I+1 )
IF( ROTATE ) THEN
WORK( I ) = CS
WORK( N+I ) = SN
END IF
20 CONTINUE
*
* If matrix (N+1)-by-N lower bidiagonal, one additional
* rotation is needed.
*
IF( SQRE1.EQ.1 ) THEN
CALL DLARTG( D( N ), E( N ), CS, SN, R )
D( N ) = R
IF( ROTATE ) THEN
WORK( N ) = CS
WORK( N+N ) = SN
END IF
END IF
*
* Update singular vectors if desired.
*
IF( NRU.GT.0 ) THEN
IF( SQRE1.EQ.0 ) THEN
CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),
$ WORK( NP1 ), U, LDU )
ELSE
CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),
$ WORK( NP1 ), U, LDU )
END IF
END IF
IF( NCC.GT.0 ) THEN
IF( SQRE1.EQ.0 ) THEN
CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),
$ WORK( NP1 ), C, LDC )
ELSE
CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),
$ WORK( NP1 ), C, LDC )
END IF
END IF
END IF
*
* Call DBDSQR to compute the SVD of the reduced real
* N-by-N upper bidiagonal matrix.
*
CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
$ LDC, WORK, INFO )
*
* Sort the singular values into ascending order (insertion sort on
* singular values, but only one transposition per singular vector)
*
DO 40 I = 1, N
*
* Scan for smallest D(I).
*
ISUB = I
SMIN = D( I )
DO 30 J = I + 1, N
IF( D( J ).LT.SMIN ) THEN
ISUB = J
SMIN = D( J )
END IF
30 CONTINUE
IF( ISUB.NE.I ) THEN
*
* Swap singular values and vectors.
*
D( ISUB ) = D( I )
D( I ) = SMIN
IF( NCVT.GT.0 )
$ CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
IF( NRU.GT.0 )
$ CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
IF( NCC.GT.0 )
$ CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
END IF
40 CONTINUE
*
RETURN
*
* End of DLASDQ
*
END
| gpl-2.0 |
bridgeW/Higuchi1988 | main.f90 | 1 | 3967 | PROGRAM FractalAnalysis
! Purpose:
! Calculating the fractal dimension
! Step1: Get the length of the curve,L(m,k)
! m:initial time
! k:interval time
! L(m,k)=sum(i=1,[(N-m)/k],|X(m+i*k)-X(m+(i-1)*k)|/k)
!
! Step2: Get the average of L(m,k)& its Standard_dev
! ave_Lmk=sum(m=1,k,L(m,k))/k
! std_dev_Lmk=sqrt(k*L(m,k)**2-sum(L(m,k))**2))/(k*(k-1))
!
! References:
! 1.Higuchi,T.,1988.Approach to an irregular time
! series on the basis of fractal theory.
! Physica D 31.277-283
! 2.Burlaga,L.F., Klein,L.W.,1986.Fractal structure of
! the interplanetary magnetic field. J.Geophys.Res.91,374-350
! 3.Gotoh,K.,Hayakawa,M.,Smirnova,N.A.,etal.2004. Fractal
! analysis of seimogenic ULF emissions. Physis and Chemistry of
! the Earth.29,419-424
! Record of revisions:
! Date Programmer Description of change
! ==== ========== =====================
! 2012/1/5 Q.Wang Original code
! 2012/1/8 Q.Wang Revised
! 2012/1/9 Q.Wang Revised
! 01/14/12 Q.Wang Revised
USE higuchi1988_type
USE higuchi1988_subs
use dflib
IMPLICIT NONE
!> for DFA
CHARACTER(len=30)::filename,lmk
CHARACTER(len=4)::nof !No. of file
INTEGER(I4B)::nf !No. of file
REAL(DP),SAVE,ALLOCATABLE,DIMENSION(:) :: x
REAL(DP),SAVE,allocatable,DIMENSION(:) :: section1year
integer,parameter:: Nsubsec=180
INTEGER(I1B)::fileindex
INTEGER(I4B)::i, j, Nsec!Loop Index
REAL(DP)::slope
REAL(DP)::rcoef
INTEGER(I1B)::status
!> for cmd.exe
character(len=255) :: cmd
logical :: res
!> input file's name
WRITE(*,1)
1 FORMAT("Please Enter Other File's filename: ",$)
READ(*,*)filename
!filename='JIHminSr160'
! Open a file to output everyday's slope
OPEN(100,FILE=trim(filename)//'slopes'//num2str(Nsubsec)//'.txt',STATUS='REPLACE',ACTION='WRITE')
! Open File & Read data
CALL check_in(filename,x,status)
IF(ALLOCATED(x))THEN
allocate(section1year(Nsubsec))
Nsec=floor((size(x)-size(section1year)+10)/10.0)
write(*,*)'Total section: ', Nsec
do i=1,floor((size(x)-size(section1year)+10)/10.0)
section1year(1:Nsubsec) = x(1 + (i-1)*10 : NsubSec + (i-1)*10 )
!>> output subsection's data into files
open(90,file=trim(filename)//'sec'//num2strN(i,len_trim(num2str(Nsec)))//'.dat',status='replace',action='write')
do j=1,Nsubsec
write(90,*)section1year(j)
enddo
close(90)
!> mkdir subdataBJIminSr160
cmd='mkdir subdata_'//trim(filename)//num2str(Nsubsec)
res = systemqq(cmd)
!> move LMKBJIminSr160section??? into LMK_BJIminSr160
cmd='move '//trim(filename)//'sec*.dat '//'subdata_'//trim(filename)//num2str(Nsubsec)
res = systemqq(cmd)
!>> DFA process
CALL higuchi1988_v5(trim(filename)//'section'//num2str(i),section1year,lmk,slope,rcoef,status)
WRITE(*,*)'STATUS=',status
WRITE(100,10)ABS(slope),abs(rcoef)
10 FORMAT(1X,2F16.5)
!> write xTickDays file for GMT5 plotting
!if(mod(i,9)==0) write(10,*)i, 'a', (i-1)*10+1
enddo
deallocate(section1year)
close(100)
IF(status/=0)STOP
ELSE
WRITE(*,*)'Sub chek_in: the array is not allocated.'
ENDIF
!> mkdir LMK_BJIminSr160
cmd='mkdir LMK_'//trim(filename)//num2str(Nsubsec)
res = systemqq(cmd)
!> move LMKBJIminSr160section??? into LMK_BJIminSr160
cmd='move LMK'//trim(filename)//'section* '//'LMK_'//trim(filename)//num2str(Nsubsec)
res = systemqq(cmd)
END PROGRAM FractalAnalysis
| bsd-3-clause |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/sgesvxx.f | 28 | 29963 | *> \brief <b> SGESVXX computes the solution to system of linear equations A * X = B for GE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGESVXX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesvxx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesvxx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesvxx.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SGESVXX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
* EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW,
* BERR, N_ERR_BNDS, ERR_BNDS_NORM,
* ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER EQUED, FACT, TRANS
* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
* $ N_ERR_BNDS
* REAL RCOND, RPVGRW
* ..
* .. Array Arguments ..
* INTEGER IPIV( * ), IWORK( * )
* REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
* $ X( LDX , * ),WORK( * )
* REAL R( * ), C( * ), PARAMS( * ), BERR( * ),
* $ ERR_BNDS_NORM( NRHS, * ),
* $ ERR_BNDS_COMP( NRHS, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGESVXX uses the LU factorization to compute the solution to a
*> real system of linear equations A * X = B, where A is an
*> N-by-N matrix and X and B are N-by-NRHS matrices.
*>
*> If requested, both normwise and maximum componentwise error bounds
*> are returned. SGESVXX will return a solution with a tiny
*> guaranteed error (O(eps) where eps is the working machine
*> precision) unless the matrix is very ill-conditioned, in which
*> case a warning is returned. Relevant condition numbers also are
*> calculated and returned.
*>
*> SGESVXX accepts user-provided factorizations and equilibration
*> factors; see the definitions of the FACT and EQUED options.
*> Solving with refinement and using a factorization from a previous
*> SGESVXX call will also produce a solution with either O(eps)
*> errors or warnings, but we cannot make that claim for general
*> user-provided factorizations and equilibration factors if they
*> differ from what SGESVXX would itself produce.
*> \endverbatim
*
*> \par Description:
* =================
*>
*> \verbatim
*>
*> The following steps are performed:
*>
*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
*> the system:
*>
*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
*>
*> Whether or not the system will be equilibrated depends on the
*> scaling of the matrix A, but if equilibration is used, A is
*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
*> or diag(C)*B (if TRANS = 'T' or 'C').
*>
*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
*> the matrix A (after equilibration if FACT = 'E') as
*>
*> A = P * L * U,
*>
*> where P is a permutation matrix, L is a unit lower triangular
*> matrix, and U is upper triangular.
*>
*> 3. If some U(i,i)=0, so that U is exactly singular, then the
*> routine returns with INFO = i. Otherwise, the factored form of A
*> is used to estimate the condition number of the matrix A (see
*> argument RCOND). If the reciprocal of the condition number is less
*> than machine precision, the routine still goes on to solve for X
*> and compute error bounds as described below.
*>
*> 4. The system of equations is solved for X using the factored form
*> of A.
*>
*> 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
*> the routine will use iterative refinement to try to get a small
*> error and error bounds. Refinement calculates the residual to at
*> least twice the working precision.
*>
*> 6. If equilibration was used, the matrix X is premultiplied by
*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
*> that it solves the original system before equilibration.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> Some optional parameters are bundled in the PARAMS array. These
*> settings determine how refinement is performed, but often the
*> defaults are acceptable. If the defaults are acceptable, users
*> can pass NPARAMS = 0 which prevents the source code from accessing
*> the PARAMS argument.
*> \endverbatim
*>
*> \param[in] FACT
*> \verbatim
*> FACT is CHARACTER*1
*> Specifies whether or not the factored form of the matrix A is
*> supplied on entry, and if not, whether the matrix A should be
*> equilibrated before it is factored.
*> = 'F': On entry, AF and IPIV contain the factored form of A.
*> If EQUED is not 'N', the matrix A has been
*> equilibrated with scaling factors given by R and C.
*> A, AF, and IPIV are not modified.
*> = 'N': The matrix A will be copied to AF and factored.
*> = 'E': The matrix A will be equilibrated if necessary, then
*> copied to AF and factored.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
*> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of linear equations, i.e., the order of the
*> matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
*> not 'N', then A must have been equilibrated by the scaling
*> factors in R and/or C. A is not modified if FACT = 'F' or
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
*> EQUED = 'B': A := diag(R) * A * diag(C).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] AF
*> \verbatim
*> AF is REAL array, dimension (LDAF,N)
*> If FACT = 'F', then AF is an input argument and on entry
*> contains the factors L and U from the factorization
*> A = P*L*U as computed by SGETRF. If EQUED .ne. 'N', then
*> AF is the factored form of the equilibrated matrix A.
*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
*> the form of the equilibrated matrix).
*> \endverbatim
*>
*> \param[in] LDAF
*> \verbatim
*> LDAF is INTEGER
*> The leading dimension of the array AF. LDAF >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> If FACT = 'F', then IPIV is an input argument and on entry
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by SGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
*> \endverbatim
*>
*> \param[in,out] EQUED
*> \verbatim
*> EQUED is CHARACTER*1
*> Specifies the form of equilibration that was done.
*> = 'N': No equilibration (always true if FACT = 'N').
*> = 'R': Row equilibration, i.e., A has been premultiplied by
*> diag(R).
*> = 'C': Column equilibration, i.e., A has been postmultiplied
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
*> output argument.
*> \endverbatim
*>
*> \param[in,out] R
*> \verbatim
*> R is REAL array, dimension (N)
*> The row scale factors for A. If EQUED = 'R' or 'B', A is
*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
*> is not accessed. R is an input argument if FACT = 'F';
*> otherwise, R is an output argument. If FACT = 'F' and
*> EQUED = 'R' or 'B', each element of R must be positive.
*> If R is output, each element of R is a power of the radix.
*> If R is input, each element of R should be a power of the radix
*> to ensure a reliable solution and error estimates. Scaling by
*> powers of the radix does not cause rounding errors unless the
*> result underflows or overflows. Rounding errors during scaling
*> lead to refining with a matrix that is not equivalent to the
*> input matrix, producing error estimates that may not be
*> reliable.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (N)
*> The column scale factors for A. If EQUED = 'C' or 'B', A is
*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
*> is not accessed. C is an input argument if FACT = 'F';
*> otherwise, C is an output argument. If FACT = 'F' and
*> EQUED = 'C' or 'B', each element of C must be positive.
*> If C is output, each element of C is a power of the radix.
*> If C is input, each element of C should be a power of the radix
*> to ensure a reliable solution and error estimates. Scaling by
*> powers of the radix does not cause rounding errors unless the
*> result underflows or overflows. Rounding errors during scaling
*> lead to refining with a matrix that is not equivalent to the
*> input matrix, producing error estimates that may not be
*> reliable.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (LDB,NRHS)
*> On entry, the N-by-NRHS right hand side matrix B.
*> On exit,
*> if EQUED = 'N', B is not modified;
*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
*> diag(R)*B;
*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
*> overwritten by diag(C)*B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is REAL array, dimension (LDX,NRHS)
*> If INFO = 0, the N-by-NRHS solution matrix X to the original
*> system of equations. Note that A and B are modified on exit
*> if EQUED .ne. 'N', and the solution to the equilibrated system is
*> inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
*> inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> Reciprocal scaled condition number. This is an estimate of the
*> reciprocal Skeel condition number of the matrix A after
*> equilibration (if done). If this is less than the machine
*> precision (in particular, if it is zero), the matrix is singular
*> to working precision. Note that the error may still be small even
*> if this number is very small and the matrix appears ill-
*> conditioned.
*> \endverbatim
*>
*> \param[out] RPVGRW
*> \verbatim
*> RPVGRW is REAL
*> Reciprocal pivot growth. On exit, this contains the reciprocal
*> pivot growth factor norm(A)/norm(U). The "max absolute element"
*> norm is used. If this is much less than 1, then the stability of
*> the LU factorization of the (equilibrated) matrix A could be poor.
*> This also means that the solution X, estimated condition numbers,
*> and error bounds could be unreliable. If factorization fails with
*> 0<INFO<=N, then this contains the reciprocal pivot growth factor
*> for the leading INFO columns of A. In SGESVX, this quantity is
*> returned in WORK(1).
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is REAL array, dimension (NRHS)
*> Componentwise relative backward error. This is the
*> componentwise relative backward error of each solution vector X(j)
*> (i.e., the smallest relative change in any element of A or B that
*> makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[in] N_ERR_BNDS
*> \verbatim
*> N_ERR_BNDS is INTEGER
*> Number of error bounds to return for each right hand side
*> and each type (normwise or componentwise). See ERR_BNDS_NORM and
*> ERR_BNDS_COMP below.
*> \endverbatim
*>
*> \param[out] ERR_BNDS_NORM
*> \verbatim
*> ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
*> estimate is "guaranteed". These reciprocal condition
*> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
*>
*> \param[out] ERR_BNDS_COMP
*> \verbatim
*> ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
*> estimate is "guaranteed". These reciprocal condition
*> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*> appropriately scaled matrix Z.
*> Let Z = S*(A*diag(x)), where x is the solution for the
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
*>
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is REAL array, dimension NPARAMS
*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
*> = 0.0 : No refinement is performed, and no error bounds are
*> computed.
*> = 1.0 : Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
*> Aggressive: Set to 100 to permit convergence using approximate
*> factorizations or factorizations other than LU. If
*> the factorization uses a technique other than
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
*> is true, 0.0 is false.
*> Default: 1.0 (attempt componentwise convergence)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (4*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: Successful exit. The solution to every right-hand side is
*> guaranteed.
*> < 0: If INFO = -i, the i-th argument had an illegal value
*> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
*> has been completed, but the factor U is exactly singular, so
*> the solution and error bounds could not be computed. RCOND = 0
*> is returned.
*> = N+J: The solution corresponding to the Jth right-hand side is
*> not guaranteed. The solutions corresponding to other right-
*> hand sides K with K > J may not be guaranteed as well, but
*> only the first such right-hand side is reported. If a small
*> componentwise error is not requested (PARAMS(3) = 0.0) then
*> the Jth right-hand side is the first with a normwise error
*> bound that is not guaranteed (the smallest J such
*> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
*> the Jth right-hand side is the first with either a normwise or
*> componentwise error bound that is not guaranteed (the smallest
*> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
*> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
*> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
*> about all of the right-hand sides check ERR_BNDS_NORM or
*> ERR_BNDS_COMP.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup realGEsolve
*
* =====================================================================
SUBROUTINE SGESVXX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
$ EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW,
$ BERR, N_ERR_BNDS, ERR_BNDS_NORM,
$ ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK,
$ INFO )
*
* -- LAPACK driver routine (version 3.4.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* .. Scalar Arguments ..
CHARACTER EQUED, FACT, TRANS
INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
$ N_ERR_BNDS
REAL RCOND, RPVGRW
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), IWORK( * )
REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
$ X( LDX , * ),WORK( * )
REAL R( * ), C( * ), PARAMS( * ), BERR( * ),
$ ERR_BNDS_NORM( NRHS, * ),
$ ERR_BNDS_COMP( NRHS, * )
* ..
*
* ==================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
INTEGER CMP_ERR_I, PIV_GROWTH_I
PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
$ BERR_I = 3 )
PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
$ PIV_GROWTH_I = 9 )
* ..
* .. Local Scalars ..
LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
INTEGER INFEQU, J
REAL AMAX, BIGNUM, COLCND, RCMAX, RCMIN, ROWCND,
$ SMLNUM
* ..
* .. External Functions ..
EXTERNAL LSAME, SLAMCH, SLA_GERPVGRW
LOGICAL LSAME
REAL SLAMCH, SLA_GERPVGRW
* ..
* .. External Subroutines ..
EXTERNAL SGEEQUB, SGETRF, SGETRS, SLACPY, SLAQGE,
$ XERBLA, SLASCL2, SGERFSX
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
NOFACT = LSAME( FACT, 'N' )
EQUIL = LSAME( FACT, 'E' )
NOTRAN = LSAME( TRANS, 'N' )
SMLNUM = SLAMCH( 'Safe minimum' )
BIGNUM = ONE / SMLNUM
IF( NOFACT .OR. EQUIL ) THEN
EQUED = 'N'
ROWEQU = .FALSE.
COLEQU = .FALSE.
ELSE
ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
END IF
*
* Default is failure. If an input parameter is wrong or
* factorization fails, make everything look horrible. Only the
* pivot growth is set here, the rest is initialized in SGERFSX.
*
RPVGRW = ZERO
*
* Test the input parameters. PARAMS is not tested until SGERFSX.
*
IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
$ LSAME( FACT, 'F' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
$ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
INFO = -10
ELSE
IF( ROWEQU ) THEN
RCMIN = BIGNUM
RCMAX = ZERO
DO 10 J = 1, N
RCMIN = MIN( RCMIN, R( J ) )
RCMAX = MAX( RCMAX, R( J ) )
10 CONTINUE
IF( RCMIN.LE.ZERO ) THEN
INFO = -11
ELSE IF( N.GT.0 ) THEN
ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
ELSE
ROWCND = ONE
END IF
END IF
IF( COLEQU .AND. INFO.EQ.0 ) THEN
RCMIN = BIGNUM
RCMAX = ZERO
DO 20 J = 1, N
RCMIN = MIN( RCMIN, C( J ) )
RCMAX = MAX( RCMAX, C( J ) )
20 CONTINUE
IF( RCMIN.LE.ZERO ) THEN
INFO = -12
ELSE IF( N.GT.0 ) THEN
COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
ELSE
COLCND = ONE
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -16
END IF
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGESVXX', -INFO )
RETURN
END IF
*
IF( EQUIL ) THEN
*
* Compute row and column scalings to equilibrate the matrix A.
*
CALL SGEEQUB( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
$ INFEQU )
IF( INFEQU.EQ.0 ) THEN
*
* Equilibrate the matrix.
*
CALL SLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
$ EQUED )
ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
END IF
*
* If the scaling factors are not applied, set them to 1.0.
*
IF ( .NOT.ROWEQU ) THEN
DO J = 1, N
R( J ) = 1.0
END DO
END IF
IF ( .NOT.COLEQU ) THEN
DO J = 1, N
C( J ) = 1.0
END DO
END IF
END IF
*
* Scale the right-hand side.
*
IF( NOTRAN ) THEN
IF( ROWEQU ) CALL SLASCL2( N, NRHS, R, B, LDB )
ELSE
IF( COLEQU ) CALL SLASCL2( N, NRHS, C, B, LDB )
END IF
*
IF( NOFACT .OR. EQUIL ) THEN
*
* Compute the LU factorization of A.
*
CALL SLACPY( 'Full', N, N, A, LDA, AF, LDAF )
CALL SGETRF( N, N, AF, LDAF, IPIV, INFO )
*
* Return if INFO is non-zero.
*
IF( INFO.GT.0 ) THEN
*
* Pivot in column INFO is exactly 0
* Compute the reciprocal pivot growth factor of the
* leading rank-deficient INFO columns of A.
*
RPVGRW = SLA_GERPVGRW( N, INFO, A, LDA, AF, LDAF )
RETURN
END IF
END IF
*
* Compute the reciprocal pivot growth factor RPVGRW.
*
RPVGRW = SLA_GERPVGRW( N, N, A, LDA, AF, LDAF )
*
* Compute the solution matrix X.
*
CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
CALL SGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
*
* Use iterative refinement to improve the computed solution and
* compute error bounds and backward error estimates for it.
*
CALL SGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF,
$ IPIV, R, C, B, LDB, X, LDX, RCOND, BERR,
$ N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
$ WORK, IWORK, INFO )
*
* Scale solutions.
*
IF ( COLEQU .AND. NOTRAN ) THEN
CALL SLASCL2 ( N, NRHS, C, X, LDX )
ELSE IF ( ROWEQU .AND. .NOT.NOTRAN ) THEN
CALL SLASCL2 ( N, NRHS, R, X, LDX )
END IF
*
RETURN
*
* End of SGESVXX
END
| gpl-2.0 |
QEF/q-e | Modules/mbdlib.f90 | 1 | 6099 | !
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!#############################################################
! This module computes the Many-Body Dispersion (MBD)
! van der Waals correction to the system.
! The implementation is based on a portable Fortran library
! by Jan Hermann.
! Written by S. Goger (Luxembourg) and H-Y. Ko (Cornell)
!#############################################################
MODULE libmbd_interface
USE kinds, ONLY : DP
USE io_global, ONLY : stdout
USE tsvdw_module, ONLY : veff_pub, vfree_pub, vdw_isolated
USE ions_base, ONLY : nat, atm, tau, ityp
USE cell_base, ONLY : alat, at, ainv
USE funct, ONLY : get_dft_short
USE control_flags, ONLY : conv_elec
USE constants, ONLY : ry_kbar
#if !defined(__NOMBD)
USE mbd, ONLY : mbd_input_t, mbd_calc_t
#endif
IMPLICIT NONE
PUBLIC:: mbd_interface, init_mbd, clean_mbd
REAL(dp), PUBLIC:: EmbdvdW ! MBD correction to the energy
REAL(dp), DIMENSION(:,:), ALLOCATABLE, PUBLIC:: FmbdvdW ! Ionic force contribs. (-dE/dr)
REAL(dp), DIMENSION(3, 3), PUBLIC:: HmbdvdW ! Cell derivative contribs. (-dE/da)
REAL(dp), DIMENSION(3, 3) :: cell_derivs
INTEGER:: na
LOGICAL:: do_gradients
#if !defined(__NOMBD)
TYPE(mbd_input_t):: inp
TYPE(mbd_calc_t):: calc
#endif
REAL(dp), DIMENSION(:), ALLOCATABLE:: ratios
REAL(dp), DIMENSION(:,:), ALLOCATABLE:: mbd_gradient
INTEGER:: code, ierr, my_rank, total
CHARACTER(200):: origin, msg
CONTAINS
!#############################################################
! This subroutine sets up the library before the first call
!#############################################################
SUBROUTINE init_mbd ( nks_start, nk1, nk2, nk3, k1, k2, k3, tprnfor, tstress )
!
INTEGER, INTENT(IN) :: nks_start, nk1, nk2, nk3, k1, k2, k3
LOGICAL, INTENT(IN) :: tprnfor, tstress
!
! Allocation of variables that depend on the number of atoms
!
#if defined(__NOMBD)
CALL errore( 'libmbd_interface', 'Many-Body Dispersion not compiled',1)
#else
ALLOCATE(inp%atom_types(nat))
!
EmbdvdW = 0.0_dp
do_gradients = tprnfor .OR. tstress
IF ( do_gradients ) THEN
!
IF(.NOT.ALLOCATED(mbd_gradient)) ALLOCATE(mbd_gradient(3, nat))
!
IF(.NOT.ALLOCATED(FmbdvdW)) ALLOCATE(FmbdvdW(3, nat))
!
END IF
!
ALLOCATE(ratios(nat))
inp%log_level=1
!
! Passing atom types and coordinates for LibMBD
!
DO na = 1, nat
inp%atom_types(na) = trim(atm(ityp(na)))
ENDDO
inp%coords = tau*alat ! HK-TODO: this one works for PW (check if it is for CP)
!
! If we pass lattice vectors to the library, it uses the algorithm for
! periodic system automatically
!
IF( .NOT.vdw_isolated ) THEN
inp%lattice_vectors = at*alat ! Lattice vector in real space
!
IF ( nks_start == 0 ) THEN
! K-point mesh
inp%k_grid = [nk1, nk2, nk3]
inp%k_grid_shift = 0.5_DP
!
IF (k1 .EQ. 0 .AND. k2 .EQ. 0 .AND. k3 .EQ. 0) &
CALL infomsg('mbdlib','k-point shift ignored')
!
ELSE
inp%k_grid = [1, 1, 1] !set default k points grid
inp%k_grid_shift = 0.5_DP ! set default shift
ENDIF
!
ENDIF
!
WRITE(stdout, '(5x,"mbdlib: K-point grid set to ",3I3,", shift: ",F4.2)') &
inp%k_grid, inp%k_grid_shift
!
select case (TRIM(get_dft_short())) ! An empirical factor needs to be set based on the functiona
CASE ('PBE')
inp%xc = 'pbe'
CASE ('PBE0')
inp%xc = 'pbe0'
CASE ('HSE')
inp%xc = 'hse'
CASE DEFAULT
! Block it off since parametrization is not possible
CALL errore( 'libmbd_interface', 'current xc functional not yet supported for MBD@rsSCS, use PBE, PBE0 or HSE', 1 )
END SELECT
CALL calc%init(inp)
CALL calc%get_exception(code, origin, msg)
IF (code > 0) THEN
WRITE( stdout, * ) msg
CALL errore( 'libmbd_interface', 'Many-Body Dispersion call crashed. This is most likely due to a numerical &
& error, please check your system carefully.', 1 )
STOP
ENDIF
#endif
END SUBROUTINE init_mbd
!#############################################################
! This subroutine calculates the energy and (if needed) forces and stress
!#############################################################
SUBROUTINE mbd_interface()
#if !defined(__NOMBD)
IF (.NOT.conv_elec) RETURN ! Wavefunction derivatives are still in progress,
!for now we only can add correction for converged wavefunction
CALL infomsg('mbdlib','MBD wavefunction derivatives not yet supported. '//&
& 'Performing non-self-consistent MBD calculation upon SCF convergence.')
!
! Passing the current parameters to the library
CALL calc%update_coords(tau*alat)
DO na = 1, nat
ratios(na)=veff_pub(na)/vfree_pub(ityp(na))
ENDDO
CALL calc%update_vdw_params_from_ratios(ratios)
IF( .NOT.vdw_isolated ) THEN
CALL calc%update_lattice_vectors(at*alat)
ENDIF
CALL calc%evaluate_vdw_method(EmbdvdW) !MBD energy
IF ( do_gradients ) THEN
CALL calc%get_gradients(mbd_gradient)
FmbdvdW = -mbd_gradient ! Ionic forces with correct sign
ENDIF
!
IF( do_gradients .AND. .NOT.vdw_isolated ) THEN
CALL calc%get_lattice_stress(cell_derivs)
HmbdvdW=MATMUL(cell_derivs, TRANSPOSE(ainv))
ENDIF
RETURN
#endif
END SUBROUTINE mbd_interface
!#############################################################
! Subroutine to de-allocate internal variables
!#############################################################
SUBROUTINE clean_mbd()
IMPLICIT NONE
#if !defined(__NOMBD)
CALL calc%destroy()
IF(ALLOCATED(inp%atom_types)) DEALLOCATE(inp%atom_types)
IF(ALLOCATED(ratios)) DEALLOCATE(ratios)
IF(ALLOCATED(mbd_gradient)) DEALLOCATE(mbd_gradient)
IF(ALLOCATED(veff_pub)) DEALLOCATE(veff_pub)
IF(ALLOCATED(vfree_pub)) DEALLOCATE(vfree_pub)
#endif
END SUBROUTINE clean_mbd
END MODULE libmbd_interface
| gpl-2.0 |
QEF/q-e | atomic/src/scf.f90 | 2 | 5085 | !
! Copyright (C) 2004i-2010 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!---------------------------------------------------------------
SUBROUTINE scf(ic)
!---------------------------------------------------------------
!
! this routine performs the atomic self-consistent procedure
! self-interaction-correction allowed
!
USE kinds, ONLY : dp
USE xc_lib, ONLY : xclib_dft_is
USE radial_grids, ONLY : ndmx
USE constants, ONLY: e2
USE ld1inc, ONLY : grid, zed, psi, isic, vpot, vh, vxt, rho, iter, &
lsd, rel, latt, enne, beta, nspin, tr2, eps0, &
nwf, nn, ll, jj, enl, oc, isw, core_state, frozen_core, &
tau, vtau, vsic, vsicnew, vhn1, egc, relpert, noscf
IMPLICIT NONE
INTEGER, INTENT(in) :: ic
LOGICAL:: meta, conv
INTEGER:: nerr, nstop, n, i, is, id, nin
real(DP) :: vnew(ndmx,2), vtaunew(ndmx), rhoc1(ndmx), ze2
INTEGER, PARAMETER :: maxter=200
real(DP), PARAMETER :: thresh=1.0e-10_dp
!
!
meta = xclib_dft_is('meta')
ze2 = - zed * e2
rhoc1=0.0_dp
IF (.not.frozen_core.or.ic==1) psi=0.0_dp
DO iter = 1,maxter
nerr=0
vnew=vpot
vtaunew=vtau
DO n=1,nwf
IF (oc(n) >= 0.0_dp) THEN
IF (ic==1.or..not.frozen_core.or..not.core_state(n)) THEN
is=isw(n)
IF (isic /= 0 .and. iter > 1) vnew(:,is)=vpot(:,is)-vsic(:,n)
IF (rel == 0) THEN
! nonrelativistic calculation
IF ( meta ) THEN
! Meta-GGA version of lschps
CALL lschps_meta (2, zed, thresh, grid, nin, nn(n), ll(n),&
enl(n), vnew(1,is), vtaunew, psi(1,1,n), nstop)
ELSE
! print *, "Solving nonrelativistic nonmeta equation"
CALL ascheq (nn(n),ll(n),enl(n),grid%mesh,grid,&
vnew(1,is), & ! potential
ze2,thresh,psi(1,1,n),nstop)
END IF
ELSEIF (rel == 1) THEN
! relativistic scalar calculation
IF ( meta ) THEN
CALL lschps_meta (1, zed, thresh, grid, nin, nn(n), ll(n),&
enl(n), vnew(1,is), vtaunew, psi(1,1,n), nstop)
ELSE
CALL lschps (1, zed, thresh, grid, nin, nn(n), ll(n),&
enl(n), vnew(1,is), psi(1,1,n), nstop)
END IF
IF (nstop>0.and.oc(n)<1.e-10_DP) nstop=0
ELSEIF (rel == 2) THEN
CALL dirsol (ndmx,grid%mesh,nn(n),ll(n),jj(n),iter,enl(n), &
thresh,grid,psi(1,1,n),vnew(1,is),nstop)
ELSE
CALL errore('scf','relativistic not programmed',1)
ENDIF
! write(6,*) nn(n),ll(n),enl(n)
! if (nstop /= 0) write(6,'(4i6)') iter,nn(n),ll(n),nstop
nerr=nerr+nstop
ENDIF
ELSE
enl(n)=0.0_dp
psi(:,:,n)=0.0_dp
ENDIF
ENDDO
!
! calculate charge density (spherical approximation)
!
rho=0.0_dp
IF (noscf) GOTO 500
DO n=1,nwf
rho(1:grid%mesh,isw(n))=rho(1:grid%mesh,isw(n)) + &
oc(n)*(psi(1:grid%mesh,1,n)**2+psi(1:grid%mesh,2,n)**2)
ENDDO
!
! calculate kinetc energy density (spherical approximation)
!
IF ( meta ) CALL kin_e_density (ndmx, grid%mesh, nwf, &
ll, oc, psi, grid%r, grid%r2, grid%dx, tau)
!
! calculate new potential
!
CALL new_potential ( ndmx, grid%mesh, grid, zed, vxt, &
lsd, .false., latt, enne, rhoc1, rho, vh, vnew, 1 )
!
! calculate SIC correction potential (if present)
!
IF (isic /= 0) THEN
DO n=1,nwf
IF (oc(n) >= 0.0_dp) THEN
is=isw(n)
CALL sic_correction(n,vhn1,vsicnew,egc)
!
! use simple mixing for SIC correction
!
vsic(:,n) = (1.0_dp-beta)*vsic(:,n)+beta*vsicnew(:)
ENDIF
ENDDO
ENDIF
!
! mix old and new potential
!
id = 3
IF (isic /= 0 .and. relpert) id=1
!
CALL vpack(grid%mesh,ndmx,nspin,vnew,vpot,1)
CALL dmixp(grid%mesh*nspin,vnew,vpot,beta,tr2,iter,id,eps0,conv,maxter)
CALL vpack(grid%mesh,ndmx,nspin,vnew,vpot,-1)
! write(6,*) iter, eps0
!
! mix old and new metaGGA potential - use simple mixing
!
IF ( meta ) vtau(:) = (1.0_dp-beta)*vtaunew(:)+beta*vtau(:)
!
500 IF (noscf) THEN
conv=.true.
eps0 = 0.0_DP
ENDIF
IF (conv) THEN
IF (nerr /= 0) CALL infomsg ('scf','warning: at least one error in KS equations')
EXIT ! exit cycle
ENDIF
ENDDO
IF ( .not. conv ) CALL infomsg('scf','warning: convergence not achieved')
END SUBROUTINE scf
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/ilatrans.f | 25 | 2575 | *> \brief \b ILATRANS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ILATRANS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilatrans.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilatrans.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilatrans.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* INTEGER FUNCTION ILATRANS( TRANS )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> This subroutine translates from a character string specifying a
*> transposition operation to the relevant BLAST-specified integer
*> constant.
*>
*> ILATRANS returns an INTEGER. If ILATRANS < 0, then the input is not
*> a character indicating a transposition operator. Otherwise ILATRANS
*> returns the constant value corresponding to TRANS.
*> \endverbatim
*
* Arguments:
* ==========
*
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERcomputational
*
* =====================================================================
INTEGER FUNCTION ILATRANS( TRANS )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER TRANS
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLAS_NO_TRANS, BLAS_TRANS, BLAS_CONJ_TRANS
PARAMETER ( BLAS_NO_TRANS = 111, BLAS_TRANS = 112,
$ BLAS_CONJ_TRANS = 113 )
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
IF( LSAME( TRANS, 'N' ) ) THEN
ILATRANS = BLAS_NO_TRANS
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
ILATRANS = BLAS_TRANS
ELSE IF( LSAME( TRANS, 'C' ) ) THEN
ILATRANS = BLAS_CONJ_TRANS
ELSE
ILATRANS = -1
END IF
RETURN
*
* End of ILATRANS
*
END
| gpl-2.0 |
e-q/scipy | scipy/linalg/src/lapack_deprecations/sgegv.f | 94 | 25204 | *> \brief <b> SGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGEGV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
* BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBVL, JOBVR
* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
* $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
* $ VR( LDVR, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> This routine is deprecated and has been replaced by routine SGGEV.
*>
*> SGEGV computes the eigenvalues and, optionally, the left and/or right
*> eigenvectors of a real matrix pair (A,B).
*> Given two square matrices A and B,
*> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
*> eigenvalues lambda and corresponding (non-zero) eigenvectors x such
*> that
*>
*> A*x = lambda*B*x.
*>
*> An alternate form is to find the eigenvalues mu and corresponding
*> eigenvectors y such that
*>
*> mu*A*y = B*y.
*>
*> These two forms are equivalent with mu = 1/lambda and x = y if
*> neither lambda nor mu is zero. In order to deal with the case that
*> lambda or mu is zero or small, two values alpha and beta are returned
*> for each eigenvalue, such that lambda = alpha/beta and
*> mu = beta/alpha.
*>
*> The vectors x and y in the above equations are right eigenvectors of
*> the matrix pair (A,B). Vectors u and v satisfying
*>
*> u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B
*>
*> are left eigenvectors of (A,B).
*>
*> Note: this routine performs "full balancing" on A and B
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBVL
*> \verbatim
*> JOBVL is CHARACTER*1
*> = 'N': do not compute the left generalized eigenvectors;
*> = 'V': compute the left generalized eigenvectors (returned
*> in VL).
*> \endverbatim
*>
*> \param[in] JOBVR
*> \verbatim
*> JOBVR is CHARACTER*1
*> = 'N': do not compute the right generalized eigenvectors;
*> = 'V': compute the right generalized eigenvectors (returned
*> in VR).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A, B, VL, and VR. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA, N)
*> On entry, the matrix A.
*> If JOBVL = 'V' or JOBVR = 'V', then on exit A
*> contains the real Schur form of A from the generalized Schur
*> factorization of the pair (A,B) after balancing.
*> If no eigenvectors were computed, then only the diagonal
*> blocks from the Schur form will be correct. See SGGHRD and
*> SHGEQZ for details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (LDB, N)
*> On entry, the matrix B.
*> If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
*> upper triangular matrix obtained from B in the generalized
*> Schur factorization of the pair (A,B) after balancing.
*> If no eigenvectors were computed, then only those elements of
*> B corresponding to the diagonal blocks from the Schur form of
*> A will be correct. See SGGHRD and SHGEQZ for details.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] ALPHAR
*> \verbatim
*> ALPHAR is REAL array, dimension (N)
*> The real parts of each scalar alpha defining an eigenvalue of
*> GNEP.
*> \endverbatim
*>
*> \param[out] ALPHAI
*> \verbatim
*> ALPHAI is REAL array, dimension (N)
*> The imaginary parts of each scalar alpha defining an
*> eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
*> eigenvalue is real; if positive, then the j-th and
*> (j+1)-st eigenvalues are a complex conjugate pair, with
*> ALPHAI(j+1) = -ALPHAI(j).
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is REAL array, dimension (N)
*> The scalars beta that define the eigenvalues of GNEP.
*>
*> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
*> beta = BETA(j) represent the j-th eigenvalue of the matrix
*> pair (A,B), in one of the forms lambda = alpha/beta or
*> mu = beta/alpha. Since either lambda or mu may overflow,
*> they should not, in general, be computed.
*> \endverbatim
*>
*> \param[out] VL
*> \verbatim
*> VL is REAL array, dimension (LDVL,N)
*> If JOBVL = 'V', the left eigenvectors u(j) are stored
*> in the columns of VL, in the same order as their eigenvalues.
*> If the j-th eigenvalue is real, then u(j) = VL(:,j).
*> If the j-th and (j+1)-st eigenvalues form a complex conjugate
*> pair, then
*> u(j) = VL(:,j) + i*VL(:,j+1)
*> and
*> u(j+1) = VL(:,j) - i*VL(:,j+1).
*>
*> Each eigenvector is scaled so that its largest component has
*> abs(real part) + abs(imag. part) = 1, except for eigenvectors
*> corresponding to an eigenvalue with alpha = beta = 0, which
*> are set to zero.
*> Not referenced if JOBVL = 'N'.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*> LDVL is INTEGER
*> The leading dimension of the matrix VL. LDVL >= 1, and
*> if JOBVL = 'V', LDVL >= N.
*> \endverbatim
*>
*> \param[out] VR
*> \verbatim
*> VR is REAL array, dimension (LDVR,N)
*> If JOBVR = 'V', the right eigenvectors x(j) are stored
*> in the columns of VR, in the same order as their eigenvalues.
*> If the j-th eigenvalue is real, then x(j) = VR(:,j).
*> If the j-th and (j+1)-st eigenvalues form a complex conjugate
*> pair, then
*> x(j) = VR(:,j) + i*VR(:,j+1)
*> and
*> x(j+1) = VR(:,j) - i*VR(:,j+1).
*>
*> Each eigenvector is scaled so that its largest component has
*> abs(real part) + abs(imag. part) = 1, except for eigenvalues
*> corresponding to an eigenvalue with alpha = beta = 0, which
*> are set to zero.
*> Not referenced if JOBVR = 'N'.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*> LDVR is INTEGER
*> The leading dimension of the matrix VR. LDVR >= 1, and
*> if JOBVR = 'V', LDVR >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,8*N).
*> For good performance, LWORK must generally be larger.
*> To compute the optimal value of LWORK, call ILAENV to get
*> blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute:
*> NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR;
*> The optimal LWORK is:
*> 2*N + MAX( 6*N, N*(NB+1) ).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> = 1,...,N:
*> The QZ iteration failed. No eigenvectors have been
*> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
*> should be correct for j=INFO+1,...,N.
*> > N: errors that usually indicate LAPACK problems:
*> =N+1: error return from SGGBAL
*> =N+2: error return from SGEQRF
*> =N+3: error return from SORMQR
*> =N+4: error return from SORGQR
*> =N+5: error return from SGGHRD
*> =N+6: error return from SHGEQZ (other than failed
*> iteration)
*> =N+7: error return from STGEVC
*> =N+8: error return from SGGBAK (computing VL)
*> =N+9: error return from SGGBAK (computing VR)
*> =N+10: error return from SLASCL (various calls)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup realGEeigen
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Balancing
*> ---------
*>
*> This driver calls SGGBAL to both permute and scale rows and columns
*> of A and B. The permutations PL and PR are chosen so that PL*A*PR
*> and PL*B*R will be upper triangular except for the diagonal blocks
*> A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
*> possible. The diagonal scaling matrices DL and DR are chosen so
*> that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
*> one (except for the elements that start out zero.)
*>
*> After the eigenvalues and eigenvectors of the balanced matrices
*> have been computed, SGGBAK transforms the eigenvectors back to what
*> they would have been (in perfect arithmetic) if they had not been
*> balanced.
*>
*> Contents of A and B on Exit
*> -------- -- - --- - -- ----
*>
*> If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
*> both), then on exit the arrays A and B will contain the real Schur
*> form[*] of the "balanced" versions of A and B. If no eigenvectors
*> are computed, then only the diagonal blocks will be correct.
*>
*> [*] See SHGEQZ, SGEGS, or read the book "Matrix Computations",
*> by Golub & van Loan, pub. by Johns Hopkins U. Press.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
$ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
*
* -- LAPACK driver routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
$ B( LDB, * ), BETA( * ), VL( LDVL, * ),
$ VR( LDVR, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL ILIMIT, ILV, ILVL, ILVR, LQUERY
CHARACTER CHTEMP
INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
$ IN, IRIGHT, IROWS, ITAU, IWORK, JC, JR, LOPT,
$ LWKMIN, LWKOPT, NB, NB1, NB2, NB3
REAL ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
$ BNRM1, BNRM2, EPS, ONEPLS, SAFMAX, SAFMIN,
$ SALFAI, SALFAR, SBETA, SCALE, TEMP
* ..
* .. Local Arrays ..
LOGICAL LDUMMA( 1 )
* ..
* .. External Subroutines ..
EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLACPY,
$ SLASCL, SLASET, SORGQR, SORMQR, STGEVC, XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
REAL SLAMCH, SLANGE
EXTERNAL ILAENV, LSAME, SLAMCH, SLANGE
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, MAX
* ..
* .. Executable Statements ..
*
* Decode the input arguments
*
IF( LSAME( JOBVL, 'N' ) ) THEN
IJOBVL = 1
ILVL = .FALSE.
ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
IJOBVL = 2
ILVL = .TRUE.
ELSE
IJOBVL = -1
ILVL = .FALSE.
END IF
*
IF( LSAME( JOBVR, 'N' ) ) THEN
IJOBVR = 1
ILVR = .FALSE.
ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
IJOBVR = 2
ILVR = .TRUE.
ELSE
IJOBVR = -1
ILVR = .FALSE.
END IF
ILV = ILVL .OR. ILVR
*
* Test the input arguments
*
LWKMIN = MAX( 8*N, 1 )
LWKOPT = LWKMIN
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
INFO = 0
IF( IJOBVL.LE.0 ) THEN
INFO = -1
ELSE IF( IJOBVR.LE.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
INFO = -12
ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
INFO = -14
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -16
END IF
*
IF( INFO.EQ.0 ) THEN
NB1 = ILAENV( 1, 'SGEQRF', ' ', N, N, -1, -1 )
NB2 = ILAENV( 1, 'SORMQR', ' ', N, N, N, -1 )
NB3 = ILAENV( 1, 'SORGQR', ' ', N, N, N, -1 )
NB = MAX( NB1, NB2, NB3 )
LOPT = 2*N + MAX( 6*N, N*(NB+1) )
WORK( 1 ) = LOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGEGV ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Get machine constants
*
EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
SAFMIN = SLAMCH( 'S' )
SAFMIN = SAFMIN + SAFMIN
SAFMAX = ONE / SAFMIN
ONEPLS = ONE + ( 4*EPS )
*
* Scale A
*
ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
ANRM1 = ANRM
ANRM2 = ONE
IF( ANRM.LT.ONE ) THEN
IF( SAFMAX*ANRM.LT.ONE ) THEN
ANRM1 = SAFMIN
ANRM2 = SAFMAX*ANRM
END IF
END IF
*
IF( ANRM.GT.ZERO ) THEN
CALL SLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 10
RETURN
END IF
END IF
*
* Scale B
*
BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
BNRM1 = BNRM
BNRM2 = ONE
IF( BNRM.LT.ONE ) THEN
IF( SAFMAX*BNRM.LT.ONE ) THEN
BNRM1 = SAFMIN
BNRM2 = SAFMAX*BNRM
END IF
END IF
*
IF( BNRM.GT.ZERO ) THEN
CALL SLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 10
RETURN
END IF
END IF
*
* Permute the matrix to make it more nearly triangular
* Workspace layout: (8*N words -- "work" requires 6*N words)
* left_permutation, right_permutation, work...
*
ILEFT = 1
IRIGHT = N + 1
IWORK = IRIGHT + N
CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
$ WORK( IRIGHT ), WORK( IWORK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 1
GO TO 120
END IF
*
* Reduce B to triangular form, and initialize VL and/or VR
* Workspace layout: ("work..." must have at least N words)
* left_permutation, right_permutation, tau, work...
*
IROWS = IHI + 1 - ILO
IF( ILV ) THEN
ICOLS = N + 1 - ILO
ELSE
ICOLS = IROWS
END IF
ITAU = IWORK
IWORK = ITAU + IROWS
CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
$ WORK( IWORK ), LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 2
GO TO 120
END IF
*
CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
$ LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 3
GO TO 120
END IF
*
IF( ILVL ) THEN
CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
$ VL( ILO+1, ILO ), LDVL )
CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
$ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
$ IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 4
GO TO 120
END IF
END IF
*
IF( ILVR )
$ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
*
* Reduce to generalized Hessenberg form
*
IF( ILV ) THEN
*
* Eigenvectors requested -- work on whole matrix.
*
CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
$ LDVL, VR, LDVR, IINFO )
ELSE
CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
$ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
END IF
IF( IINFO.NE.0 ) THEN
INFO = N + 5
GO TO 120
END IF
*
* Perform QZ algorithm
* Workspace layout: ("work..." must have at least 1 word)
* left_permutation, right_permutation, work...
*
IWORK = ITAU
IF( ILV ) THEN
CHTEMP = 'S'
ELSE
CHTEMP = 'E'
END IF
CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
$ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
$ WORK( IWORK ), LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
INFO = IINFO
ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
INFO = IINFO - N
ELSE
INFO = N + 6
END IF
GO TO 120
END IF
*
IF( ILV ) THEN
*
* Compute Eigenvectors (STGEVC requires 6*N words of workspace)
*
IF( ILVL ) THEN
IF( ILVR ) THEN
CHTEMP = 'B'
ELSE
CHTEMP = 'L'
END IF
ELSE
CHTEMP = 'R'
END IF
*
CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
$ VR, LDVR, N, IN, WORK( IWORK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 7
GO TO 120
END IF
*
* Undo balancing on VL and VR, rescale
*
IF( ILVL ) THEN
CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
$ WORK( IRIGHT ), N, VL, LDVL, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 8
GO TO 120
END IF
DO 50 JC = 1, N
IF( ALPHAI( JC ).LT.ZERO )
$ GO TO 50
TEMP = ZERO
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 10 JR = 1, N
TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
10 CONTINUE
ELSE
DO 20 JR = 1, N
TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
$ ABS( VL( JR, JC+1 ) ) )
20 CONTINUE
END IF
IF( TEMP.LT.SAFMIN )
$ GO TO 50
TEMP = ONE / TEMP
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 30 JR = 1, N
VL( JR, JC ) = VL( JR, JC )*TEMP
30 CONTINUE
ELSE
DO 40 JR = 1, N
VL( JR, JC ) = VL( JR, JC )*TEMP
VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
40 CONTINUE
END IF
50 CONTINUE
END IF
IF( ILVR ) THEN
CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
$ WORK( IRIGHT ), N, VR, LDVR, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 9
GO TO 120
END IF
DO 100 JC = 1, N
IF( ALPHAI( JC ).LT.ZERO )
$ GO TO 100
TEMP = ZERO
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 60 JR = 1, N
TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
60 CONTINUE
ELSE
DO 70 JR = 1, N
TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
$ ABS( VR( JR, JC+1 ) ) )
70 CONTINUE
END IF
IF( TEMP.LT.SAFMIN )
$ GO TO 100
TEMP = ONE / TEMP
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 80 JR = 1, N
VR( JR, JC ) = VR( JR, JC )*TEMP
80 CONTINUE
ELSE
DO 90 JR = 1, N
VR( JR, JC ) = VR( JR, JC )*TEMP
VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
90 CONTINUE
END IF
100 CONTINUE
END IF
*
* End of eigenvector calculation
*
END IF
*
* Undo scaling in alpha, beta
*
* Note: this does not give the alpha and beta for the unscaled
* problem.
*
* Un-scaling is limited to avoid underflow in alpha and beta
* if they are significant.
*
DO 110 JC = 1, N
ABSAR = ABS( ALPHAR( JC ) )
ABSAI = ABS( ALPHAI( JC ) )
ABSB = ABS( BETA( JC ) )
SALFAR = ANRM*ALPHAR( JC )
SALFAI = ANRM*ALPHAI( JC )
SBETA = BNRM*BETA( JC )
ILIMIT = .FALSE.
SCALE = ONE
*
* Check for significant underflow in ALPHAI
*
IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
$ MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
ILIMIT = .TRUE.
SCALE = ( ONEPLS*SAFMIN / ANRM1 ) /
$ MAX( ONEPLS*SAFMIN, ANRM2*ABSAI )
*
ELSE IF( SALFAI.EQ.ZERO ) THEN
*
* If insignificant underflow in ALPHAI, then make the
* conjugate eigenvalue real.
*
IF( ALPHAI( JC ).LT.ZERO .AND. JC.GT.1 ) THEN
ALPHAI( JC-1 ) = ZERO
ELSE IF( ALPHAI( JC ).GT.ZERO .AND. JC.LT.N ) THEN
ALPHAI( JC+1 ) = ZERO
END IF
END IF
*
* Check for significant underflow in ALPHAR
*
IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
$ MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
ILIMIT = .TRUE.
SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / ANRM1 ) /
$ MAX( ONEPLS*SAFMIN, ANRM2*ABSAR ) )
END IF
*
* Check for significant underflow in BETA
*
IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
$ MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
ILIMIT = .TRUE.
SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / BNRM1 ) /
$ MAX( ONEPLS*SAFMIN, BNRM2*ABSB ) )
END IF
*
* Check for possible overflow when limiting scaling
*
IF( ILIMIT ) THEN
TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
$ ABS( SBETA ) )
IF( TEMP.GT.ONE )
$ SCALE = SCALE / TEMP
IF( SCALE.LT.ONE )
$ ILIMIT = .FALSE.
END IF
*
* Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary.
*
IF( ILIMIT ) THEN
SALFAR = ( SCALE*ALPHAR( JC ) )*ANRM
SALFAI = ( SCALE*ALPHAI( JC ) )*ANRM
SBETA = ( SCALE*BETA( JC ) )*BNRM
END IF
ALPHAR( JC ) = SALFAR
ALPHAI( JC ) = SALFAI
BETA( JC ) = SBETA
110 CONTINUE
*
120 CONTINUE
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of SGEGV
*
END
| bsd-3-clause |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/EIG/sdrges.f | 32 | 36972 | *> \brief \b SDRGES
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SDRGES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
* NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, ALPHAR,
* ALPHAI, BETA, WORK, LWORK, RESULT, BWORK,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDQ, LWORK, NOUNIT, NSIZES, NTYPES
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL BWORK( * ), DOTYPE( * )
* INTEGER ISEED( 4 ), NN( * )
* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
* $ B( LDA, * ), BETA( * ), Q( LDQ, * ),
* $ RESULT( 13 ), S( LDA, * ), T( LDA, * ),
* $ WORK( * ), Z( LDQ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SDRGES checks the nonsymmetric generalized eigenvalue (Schur form)
*> problem driver SGGES.
*>
*> SGGES factors A and B as Q S Z' and Q T Z' , where ' means
*> transpose, T is upper triangular, S is in generalized Schur form
*> (block upper triangular, with 1x1 and 2x2 blocks on the diagonal,
*> the 2x2 blocks corresponding to complex conjugate pairs of
*> generalized eigenvalues), and Q and Z are orthogonal. It also
*> computes the generalized eigenvalues (alpha(j),beta(j)), j=1,...,n,
*> Thus, w(j) = alpha(j)/beta(j) is a root of the characteristic
*> equation
*> det( A - w(j) B ) = 0
*> Optionally it also reorder the eigenvalues so that a selected
*> cluster of eigenvalues appears in the leading diagonal block of the
*> Schur forms.
*>
*> When SDRGES is called, a number of matrix "sizes" ("N's") and a
*> number of matrix "TYPES" are specified. For each size ("N")
*> and each TYPE of matrix, a pair of matrices (A, B) will be generated
*> and used for testing. For each matrix pair, the following 13 tests
*> will be performed and compared with the threshhold THRESH except
*> the tests (5), (11) and (13).
*>
*>
*> (1) | A - Q S Z' | / ( |A| n ulp ) (no sorting of eigenvalues)
*>
*>
*> (2) | B - Q T Z' | / ( |B| n ulp ) (no sorting of eigenvalues)
*>
*>
*> (3) | I - QQ' | / ( n ulp ) (no sorting of eigenvalues)
*>
*>
*> (4) | I - ZZ' | / ( n ulp ) (no sorting of eigenvalues)
*>
*> (5) if A is in Schur form (i.e. quasi-triangular form)
*> (no sorting of eigenvalues)
*>
*> (6) if eigenvalues = diagonal blocks of the Schur form (S, T),
*> i.e., test the maximum over j of D(j) where:
*>
*> if alpha(j) is real:
*> |alpha(j) - S(j,j)| |beta(j) - T(j,j)|
*> D(j) = ------------------------ + -----------------------
*> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|)
*>
*> if alpha(j) is complex:
*> | det( s S - w T ) |
*> D(j) = ---------------------------------------------------
*> ulp max( s norm(S), |w| norm(T) )*norm( s S - w T )
*>
*> and S and T are here the 2 x 2 diagonal blocks of S and T
*> corresponding to the j-th and j+1-th eigenvalues.
*> (no sorting of eigenvalues)
*>
*> (7) | (A,B) - Q (S,T) Z' | / ( | (A,B) | n ulp )
*> (with sorting of eigenvalues).
*>
*> (8) | I - QQ' | / ( n ulp ) (with sorting of eigenvalues).
*>
*> (9) | I - ZZ' | / ( n ulp ) (with sorting of eigenvalues).
*>
*> (10) if A is in Schur form (i.e. quasi-triangular form)
*> (with sorting of eigenvalues).
*>
*> (11) if eigenvalues = diagonal blocks of the Schur form (S, T),
*> i.e. test the maximum over j of D(j) where:
*>
*> if alpha(j) is real:
*> |alpha(j) - S(j,j)| |beta(j) - T(j,j)|
*> D(j) = ------------------------ + -----------------------
*> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|)
*>
*> if alpha(j) is complex:
*> | det( s S - w T ) |
*> D(j) = ---------------------------------------------------
*> ulp max( s norm(S), |w| norm(T) )*norm( s S - w T )
*>
*> and S and T are here the 2 x 2 diagonal blocks of S and T
*> corresponding to the j-th and j+1-th eigenvalues.
*> (with sorting of eigenvalues).
*>
*> (12) if sorting worked and SDIM is the number of eigenvalues
*> which were SELECTed.
*>
*> Test Matrices
*> =============
*>
*> The sizes of the test matrices are specified by an array
*> NN(1:NSIZES); the value of each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
*> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> (1) ( 0, 0 ) (a pair of zero matrices)
*>
*> (2) ( I, 0 ) (an identity and a zero matrix)
*>
*> (3) ( 0, I ) (an identity and a zero matrix)
*>
*> (4) ( I, I ) (a pair of identity matrices)
*>
*> t t
*> (5) ( J , J ) (a pair of transposed Jordan blocks)
*>
*> t ( I 0 )
*> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t )
*> ( 0 I ) ( 0 J )
*> and I is a k x k identity and J a (k+1)x(k+1)
*> Jordan block; k=(N-1)/2
*>
*> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal
*> matrix with those diagonal entries.)
*> (8) ( I, D )
*>
*> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big
*>
*> (10) ( small*D, big*I )
*>
*> (11) ( big*I, small*D )
*>
*> (12) ( small*I, big*D )
*>
*> (13) ( big*D, big*I )
*>
*> (14) ( small*D, small*I )
*>
*> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
*> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
*> t t
*> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices.
*>
*> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices
*> with random O(1) entries above the diagonal
*> and diagonal entries diag(T1) =
*> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
*> ( 0, N-3, N-4,..., 1, 0, 0 )
*>
*> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
*> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
*> s = machine precision.
*>
*> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
*>
*> N-5
*> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
*>
*> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
*> where r1,..., r(N-4) are random.
*>
*> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular
*> matrices.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZES
*> \verbatim
*> NSIZES is INTEGER
*> The number of sizes of matrices to use. If it is zero,
*> SDRGES does nothing. NSIZES >= 0.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER array, dimension (NSIZES)
*> An array containing the sizes to be used for the matrices.
*> Zero values will be skipped. NN >= 0.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*> NTYPES is INTEGER
*> The number of elements in DOTYPE. If it is zero, SDRGES
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrix is in A on input.
*> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size in NN a
*> matrix of that size and of type j will be generated.
*> If NTYPES is smaller than the maximum number of types
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
*> MAXTYP will not be generated. If NTYPES is larger
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*> will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The random number generator uses a linear
*> congruential sequence limited to small integers, and so
*> should produce machine independent random numbers. The
*> values of ISEED are changed on exit, and can be used in the
*> next call to SDRGES to continue the same random number
*> sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error is
*> scaled to be O(1), so THRESH should be a reasonably small
*> multiple of 1, e.g., 10 or 100. In particular, it should
*> not depend on the precision (single vs. double) or the size
*> of the matrix. THRESH >= 0.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*> NOUNIT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array,
*> dimension(LDA, max(NN))
*> Used to hold the original A matrix. Used as input only
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
*> DOTYPE(MAXTYP+1)=.TRUE.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A, B, S, and T.
*> It must be at least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array,
*> dimension(LDA, max(NN))
*> Used to hold the original B matrix. Used as input only
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
*> DOTYPE(MAXTYP+1)=.TRUE.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array, dimension (LDA, max(NN))
*> The Schur form matrix computed from A by SGGES. On exit, S
*> contains the Schur form matrix corresponding to the matrix
*> in A.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is REAL array, dimension (LDA, max(NN))
*> The upper triangular matrix computed from B by SGGES.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is REAL array, dimension (LDQ, max(NN))
*> The (left) orthogonal matrix computed by SGGES.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of Q and Z. It must
*> be at least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is REAL array, dimension( LDQ, max(NN) )
*> The (right) orthogonal matrix computed by SGGES.
*> \endverbatim
*>
*> \param[out] ALPHAR
*> \verbatim
*> ALPHAR is REAL array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] ALPHAI
*> \verbatim
*> ALPHAI is REAL array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is REAL array, dimension (max(NN))
*>
*> The generalized eigenvalues of (A,B) computed by SGGES.
*> ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th
*> generalized eigenvalue of A and B.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> LWORK >= MAX( 10*(N+1), 3*N*N ), where N is the largest
*> matrix dimension.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (15)
*> The values computed by the tests described above.
*> The values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*>
*> \param[out] BWORK
*> \verbatim
*> BWORK is LOGICAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: A routine returned an error code. INFO is the
*> absolute value of the INFO value returned.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SDRGES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, ALPHAR,
$ ALPHAI, BETA, WORK, LWORK, RESULT, BWORK,
$ INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDQ, LWORK, NOUNIT, NSIZES, NTYPES
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL BWORK( * ), DOTYPE( * )
INTEGER ISEED( 4 ), NN( * )
REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
$ B( LDA, * ), BETA( * ), Q( LDQ, * ),
$ RESULT( 13 ), S( LDA, * ), T( LDA, * ),
$ WORK( * ), Z( LDQ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 26 )
* ..
* .. Local Scalars ..
LOGICAL BADNN, ILABAD
CHARACTER SORT
INTEGER I, I1, IADD, IERR, IINFO, IN, ISORT, J, JC, JR,
$ JSIZE, JTYPE, KNTEIG, MAXWRK, MINWRK, MTYPES,
$ N, N1, NB, NERRS, NMATS, NMAX, NTEST, NTESTT,
$ RSUB, SDIM
REAL SAFMAX, SAFMIN, TEMP1, TEMP2, ULP, ULPINV
* ..
* .. Local Arrays ..
INTEGER IASIGN( MAXTYP ), IBSIGN( MAXTYP ),
$ IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
$ KATYPE( MAXTYP ), KAZERO( MAXTYP ),
$ KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
$ KBZERO( MAXTYP ), KCLASS( MAXTYP ),
$ KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
REAL RMAGN( 0: 3 )
* ..
* .. External Functions ..
LOGICAL SLCTES
INTEGER ILAENV
REAL SLAMCH, SLARND
EXTERNAL SLCTES, ILAENV, SLAMCH, SLARND
* ..
* .. External Subroutines ..
EXTERNAL ALASVM, SGET51, SGET53, SGET54, SGGES, SLABAD,
$ SLACPY, SLARFG, SLASET, SLATM4, SORM2R, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL, SIGN
* ..
* .. Data statements ..
DATA KCLASS / 15*1, 10*2, 1*3 /
DATA KZ1 / 0, 1, 2, 1, 3, 3 /
DATA KZ2 / 0, 0, 1, 2, 1, 1 /
DATA KADD / 0, 0, 0, 0, 3, 2 /
DATA KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
$ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
DATA KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
$ 1, 1, -4, 2, -4, 8*8, 0 /
DATA KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
$ 4*5, 4*3, 1 /
DATA KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
$ 4*6, 4*4, 1 /
DATA KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
$ 2, 1 /
DATA KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
$ 2, 1 /
DATA KTRIAN / 16*0, 10*1 /
DATA IASIGN / 6*0, 2, 0, 2*2, 2*0, 3*2, 0, 2, 3*0,
$ 5*2, 0 /
DATA IBSIGN / 7*0, 2, 2*0, 2*2, 2*0, 2, 0, 2, 9*0 /
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
*
BADNN = .FALSE.
NMAX = 1
DO 10 J = 1, NSIZES
NMAX = MAX( NMAX, NN( J ) )
IF( NN( J ).LT.0 )
$ BADNN = .TRUE.
10 CONTINUE
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADNN ) THEN
INFO = -2
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -3
ELSE IF( THRESH.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
INFO = -9
ELSE IF( LDQ.LE.1 .OR. LDQ.LT.NMAX ) THEN
INFO = -14
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* NB refers to the optimal block size for the immediately
* following subroutine, as returned by ILAENV.
*
MINWRK = 1
IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
MINWRK = MAX( 10*( NMAX+1 ), 3*NMAX*NMAX )
NB = MAX( 1, ILAENV( 1, 'SGEQRF', ' ', NMAX, NMAX, -1, -1 ),
$ ILAENV( 1, 'SORMQR', 'LT', NMAX, NMAX, NMAX, -1 ),
$ ILAENV( 1, 'SORGQR', ' ', NMAX, NMAX, NMAX, -1 ) )
MAXWRK = MAX( 10*( NMAX+1 ), 2*NMAX+NMAX*NB, 3*NMAX*NMAX )
WORK( 1 ) = MAXWRK
END IF
*
IF( LWORK.LT.MINWRK )
$ INFO = -20
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SDRGES', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
$ RETURN
*
SAFMIN = SLAMCH( 'Safe minimum' )
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
SAFMIN = SAFMIN / ULP
SAFMAX = ONE / SAFMIN
CALL SLABAD( SAFMIN, SAFMAX )
ULPINV = ONE / ULP
*
* The values RMAGN(2:3) depend on N, see below.
*
RMAGN( 0 ) = ZERO
RMAGN( 1 ) = ONE
*
* Loop over matrix sizes
*
NTESTT = 0
NERRS = 0
NMATS = 0
*
DO 190 JSIZE = 1, NSIZES
N = NN( JSIZE )
N1 = MAX( 1, N )
RMAGN( 2 ) = SAFMAX*ULP / REAL( N1 )
RMAGN( 3 ) = SAFMIN*ULPINV*REAL( N1 )
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
* Loop over matrix types
*
DO 180 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 180
NMATS = NMATS + 1
NTEST = 0
*
* Save ISEED in case of an error.
*
DO 20 J = 1, 4
IOLDSD( J ) = ISEED( J )
20 CONTINUE
*
* Initialize RESULT
*
DO 30 J = 1, 13
RESULT( J ) = ZERO
30 CONTINUE
*
* Generate test matrices A and B
*
* Description of control parameters:
*
* KCLASS: =1 means w/o rotation, =2 means w/ rotation,
* =3 means random.
* KATYPE: the "type" to be passed to SLATM4 for computing A.
* KAZERO: the pattern of zeros on the diagonal for A:
* =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
* =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
* =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of
* non-zero entries.)
* KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
* =2: large, =3: small.
* IASIGN: 1 if the diagonal elements of A are to be
* multiplied by a random magnitude 1 number, =2 if
* randomly chosen diagonal blocks are to be rotated
* to form 2x2 blocks.
* KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.
* KTRIAN: =0: don't fill in the upper triangle, =1: do.
* KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
* RMAGN: used to implement KAMAGN and KBMAGN.
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 110
IINFO = 0
IF( KCLASS( JTYPE ).LT.3 ) THEN
*
* Generate A (w/o rotation)
*
IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
IN = 2*( ( N-1 ) / 2 ) + 1
IF( IN.NE.N )
$ CALL SLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
ELSE
IN = N
END IF
CALL SLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
$ KZ2( KAZERO( JTYPE ) ), IASIGN( JTYPE ),
$ RMAGN( KAMAGN( JTYPE ) ), ULP,
$ RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
$ ISEED, A, LDA )
IADD = KADD( KAZERO( JTYPE ) )
IF( IADD.GT.0 .AND. IADD.LE.N )
$ A( IADD, IADD ) = ONE
*
* Generate B (w/o rotation)
*
IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
IN = 2*( ( N-1 ) / 2 ) + 1
IF( IN.NE.N )
$ CALL SLASET( 'Full', N, N, ZERO, ZERO, B, LDA )
ELSE
IN = N
END IF
CALL SLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
$ KZ2( KBZERO( JTYPE ) ), IBSIGN( JTYPE ),
$ RMAGN( KBMAGN( JTYPE ) ), ONE,
$ RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
$ ISEED, B, LDA )
IADD = KADD( KBZERO( JTYPE ) )
IF( IADD.NE.0 .AND. IADD.LE.N )
$ B( IADD, IADD ) = ONE
*
IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
*
* Include rotations
*
* Generate Q, Z as Householder transformations times
* a diagonal matrix.
*
DO 50 JC = 1, N - 1
DO 40 JR = JC, N
Q( JR, JC ) = SLARND( 3, ISEED )
Z( JR, JC ) = SLARND( 3, ISEED )
40 CONTINUE
CALL SLARFG( N+1-JC, Q( JC, JC ), Q( JC+1, JC ), 1,
$ WORK( JC ) )
WORK( 2*N+JC ) = SIGN( ONE, Q( JC, JC ) )
Q( JC, JC ) = ONE
CALL SLARFG( N+1-JC, Z( JC, JC ), Z( JC+1, JC ), 1,
$ WORK( N+JC ) )
WORK( 3*N+JC ) = SIGN( ONE, Z( JC, JC ) )
Z( JC, JC ) = ONE
50 CONTINUE
Q( N, N ) = ONE
WORK( N ) = ZERO
WORK( 3*N ) = SIGN( ONE, SLARND( 2, ISEED ) )
Z( N, N ) = ONE
WORK( 2*N ) = ZERO
WORK( 4*N ) = SIGN( ONE, SLARND( 2, ISEED ) )
*
* Apply the diagonal matrices
*
DO 70 JC = 1, N
DO 60 JR = 1, N
A( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
$ A( JR, JC )
B( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
$ B( JR, JC )
60 CONTINUE
70 CONTINUE
CALL SORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, A,
$ LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
CALL SORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
$ A, LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
CALL SORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, B,
$ LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
CALL SORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
$ B, LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
END IF
ELSE
*
* Random matrices
*
DO 90 JC = 1, N
DO 80 JR = 1, N
A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
$ SLARND( 2, ISEED )
B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
$ SLARND( 2, ISEED )
80 CONTINUE
90 CONTINUE
END IF
*
100 CONTINUE
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
110 CONTINUE
*
DO 120 I = 1, 13
RESULT( I ) = -ONE
120 CONTINUE
*
* Test with and without sorting of eigenvalues
*
DO 150 ISORT = 0, 1
IF( ISORT.EQ.0 ) THEN
SORT = 'N'
RSUB = 0
ELSE
SORT = 'S'
RSUB = 5
END IF
*
* Call SGGES to compute H, T, Q, Z, alpha, and beta.
*
CALL SLACPY( 'Full', N, N, A, LDA, S, LDA )
CALL SLACPY( 'Full', N, N, B, LDA, T, LDA )
NTEST = 1 + RSUB + ISORT
RESULT( 1+RSUB+ISORT ) = ULPINV
CALL SGGES( 'V', 'V', SORT, SLCTES, N, S, LDA, T, LDA,
$ SDIM, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDQ,
$ WORK, LWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 1+RSUB+ISORT ) = ULPINV
WRITE( NOUNIT, FMT = 9999 )'SGGES', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 160
END IF
*
NTEST = 4 + RSUB
*
* Do tests 1--4 (or tests 7--9 when reordering )
*
IF( ISORT.EQ.0 ) THEN
CALL SGET51( 1, N, A, LDA, S, LDA, Q, LDQ, Z, LDQ,
$ WORK, RESULT( 1 ) )
CALL SGET51( 1, N, B, LDA, T, LDA, Q, LDQ, Z, LDQ,
$ WORK, RESULT( 2 ) )
ELSE
CALL SGET54( N, A, LDA, B, LDA, S, LDA, T, LDA, Q,
$ LDQ, Z, LDQ, WORK, RESULT( 7 ) )
END IF
CALL SGET51( 3, N, A, LDA, T, LDA, Q, LDQ, Q, LDQ, WORK,
$ RESULT( 3+RSUB ) )
CALL SGET51( 3, N, B, LDA, T, LDA, Z, LDQ, Z, LDQ, WORK,
$ RESULT( 4+RSUB ) )
*
* Do test 5 and 6 (or Tests 10 and 11 when reordering):
* check Schur form of A and compare eigenvalues with
* diagonals.
*
NTEST = 6 + RSUB
TEMP1 = ZERO
*
DO 130 J = 1, N
ILABAD = .FALSE.
IF( ALPHAI( J ).EQ.ZERO ) THEN
TEMP2 = ( ABS( ALPHAR( J )-S( J, J ) ) /
$ MAX( SAFMIN, ABS( ALPHAR( J ) ), ABS( S( J,
$ J ) ) )+ABS( BETA( J )-T( J, J ) ) /
$ MAX( SAFMIN, ABS( BETA( J ) ), ABS( T( J,
$ J ) ) ) ) / ULP
*
IF( J.LT.N ) THEN
IF( S( J+1, J ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5+RSUB ) = ULPINV
END IF
END IF
IF( J.GT.1 ) THEN
IF( S( J, J-1 ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5+RSUB ) = ULPINV
END IF
END IF
*
ELSE
IF( ALPHAI( J ).GT.ZERO ) THEN
I1 = J
ELSE
I1 = J - 1
END IF
IF( I1.LE.0 .OR. I1.GE.N ) THEN
ILABAD = .TRUE.
ELSE IF( I1.LT.N-1 ) THEN
IF( S( I1+2, I1+1 ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5+RSUB ) = ULPINV
END IF
ELSE IF( I1.GT.1 ) THEN
IF( S( I1, I1-1 ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5+RSUB ) = ULPINV
END IF
END IF
IF( .NOT.ILABAD ) THEN
CALL SGET53( S( I1, I1 ), LDA, T( I1, I1 ), LDA,
$ BETA( J ), ALPHAR( J ),
$ ALPHAI( J ), TEMP2, IERR )
IF( IERR.GE.3 ) THEN
WRITE( NOUNIT, FMT = 9998 )IERR, J, N,
$ JTYPE, IOLDSD
INFO = ABS( IERR )
END IF
ELSE
TEMP2 = ULPINV
END IF
*
END IF
TEMP1 = MAX( TEMP1, TEMP2 )
IF( ILABAD ) THEN
WRITE( NOUNIT, FMT = 9997 )J, N, JTYPE, IOLDSD
END IF
130 CONTINUE
RESULT( 6+RSUB ) = TEMP1
*
IF( ISORT.GE.1 ) THEN
*
* Do test 12
*
NTEST = 12
RESULT( 12 ) = ZERO
KNTEIG = 0
DO 140 I = 1, N
IF( SLCTES( ALPHAR( I ), ALPHAI( I ),
$ BETA( I ) ) .OR. SLCTES( ALPHAR( I ),
$ -ALPHAI( I ), BETA( I ) ) ) THEN
KNTEIG = KNTEIG + 1
END IF
IF( I.LT.N ) THEN
IF( ( SLCTES( ALPHAR( I+1 ), ALPHAI( I+1 ),
$ BETA( I+1 ) ) .OR. SLCTES( ALPHAR( I+1 ),
$ -ALPHAI( I+1 ), BETA( I+1 ) ) ) .AND.
$ ( .NOT.( SLCTES( ALPHAR( I ), ALPHAI( I ),
$ BETA( I ) ) .OR. SLCTES( ALPHAR( I ),
$ -ALPHAI( I ), BETA( I ) ) ) ) .AND.
$ IINFO.NE.N+2 ) THEN
RESULT( 12 ) = ULPINV
END IF
END IF
140 CONTINUE
IF( SDIM.NE.KNTEIG ) THEN
RESULT( 12 ) = ULPINV
END IF
END IF
*
150 CONTINUE
*
* End of Loop -- Check for RESULT(j) > THRESH
*
160 CONTINUE
*
NTESTT = NTESTT + NTEST
*
* Print out tests which fail.
*
DO 170 JR = 1, NTEST
IF( RESULT( JR ).GE.THRESH ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUNIT, FMT = 9996 )'SGS'
*
* Matrix types
*
WRITE( NOUNIT, FMT = 9995 )
WRITE( NOUNIT, FMT = 9994 )
WRITE( NOUNIT, FMT = 9993 )'Orthogonal'
*
* Tests performed
*
WRITE( NOUNIT, FMT = 9992 )'orthogonal', '''',
$ 'transpose', ( '''', J = 1, 8 )
*
END IF
NERRS = NERRS + 1
IF( RESULT( JR ).LT.10000.0 ) THEN
WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
$ RESULT( JR )
ELSE
WRITE( NOUNIT, FMT = 9990 )N, JTYPE, IOLDSD, JR,
$ RESULT( JR )
END IF
END IF
170 CONTINUE
*
180 CONTINUE
190 CONTINUE
*
* Summary
*
CALL ALASVM( 'SGS', NOUNIT, NERRS, NTESTT, 0 )
*
WORK( 1 ) = MAXWRK
*
RETURN
*
9999 FORMAT( ' SDRGES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ', ISEED=(', 4( I4, ',' ), I5, ')' )
*
9998 FORMAT( ' SDRGES: SGET53 returned INFO=', I1, ' for eigenvalue ',
$ I6, '.', / 9X, 'N=', I6, ', JTYPE=', I6, ', ISEED=(',
$ 4( I4, ',' ), I5, ')' )
*
9997 FORMAT( ' SDRGES: S not in Schur form at eigenvalue ', I6, '.',
$ / 9X, 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ),
$ I5, ')' )
*
9996 FORMAT( / 1X, A3, ' -- Real Generalized Schur form driver' )
*
9995 FORMAT( ' Matrix types (see SDRGES for details): ' )
*
9994 FORMAT( ' Special Matrices:', 23X,
$ '(J''=transposed Jordan block)',
$ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ',
$ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ',
$ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I',
$ ') 11=(large*I, small*D) 13=(large*D, large*I)', /
$ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ',
$ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' )
9993 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
$ / ' 16=Transposed Jordan Blocks 19=geometric ',
$ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ',
$ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ',
$ 'alpha, beta=0,1 21=random alpha, beta=0,1',
$ / ' Large & Small Matrices:', / ' 22=(large, small) ',
$ '23=(small,large) 24=(small,small) 25=(large,large)',
$ / ' 26=random O(1) matrices.' )
*
9992 FORMAT( / ' Tests performed: (S is Schur, T is triangular, ',
$ 'Q and Z are ', A, ',', / 19X,
$ 'l and r are the appropriate left and right', / 19X,
$ 'eigenvectors, resp., a is alpha, b is beta, and', / 19X, A,
$ ' means ', A, '.)', / ' Without ordering: ',
$ / ' 1 = | A - Q S Z', A,
$ ' | / ( |A| n ulp ) 2 = | B - Q T Z', A,
$ ' | / ( |B| n ulp )', / ' 3 = | I - QQ', A,
$ ' | / ( n ulp ) 4 = | I - ZZ', A,
$ ' | / ( n ulp )', / ' 5 = A is in Schur form S',
$ / ' 6 = difference between (alpha,beta)',
$ ' and diagonals of (S,T)', / ' With ordering: ',
$ / ' 7 = | (A,B) - Q (S,T) Z', A,
$ ' | / ( |(A,B)| n ulp ) ', / ' 8 = | I - QQ', A,
$ ' | / ( n ulp ) 9 = | I - ZZ', A,
$ ' | / ( n ulp )', / ' 10 = A is in Schur form S',
$ / ' 11 = difference between (alpha,beta) and diagonals',
$ ' of (S,T)', / ' 12 = SDIM is the correct number of ',
$ 'selected eigenvalues', / )
9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
$ 4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
9990 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
$ 4( I4, ',' ), ' result ', I2, ' is', 1P, E10.3 )
*
* End of SDRGES
*
END
| gpl-2.0 |
omni-compiler/omni-compiler | tests/XMP/local-view/coarray/F/GET/a2d2.f90 | 2 | 1284 | program putgettest
!! include "xmp_coarray.h"
integer*2 a2d2(10,8)[*]
integer xmp_node_num
integer nerr
me = this_image()
!---------------------------- switch on message
!! call xmpf_coarray_msg(1)
!---------------------------- initialization
a2d2=0
sync all
!---------------------------- exec
if (me==1) then
a2d2(1:3,1:8)[2] = reshape((/ &
11_2,21_2,31_2,12_2,22_2,32_2,13_2,23_2,33_2,&
14_2,24_2,34_2,15_2,25_2,35_2,16_2,26_2,36_2,&
17_2,27_2,37_2,18_2,28_2,38_2/), (/3,8/))
end if
sync all
!---------------------------- check and output start
nerr = 0
do i2=1,8
do i1=1,10
if (me==2.and.(i1==1.or.i1==2.or.i1==3)) then
ival=(i1*10+i2)
else
ival=0
end if
if (a2d2(i1,i2).ne.ival) then
write(*,101) i1,i2,me,a2d2(i1,i2),ival
nerr=nerr+1
end if
end do
end do
if (nerr==0) then
print '("[",i0,"] OK")', me
else
print '("[",i0,"] number of NGs: ",i0)', me, nerr
stop 1
end if
!---------------------------- check and output end
101 format ("a2d2(",i0,",",i0,")[",i0,"]=",i0," should be ",i0)
end program
| lgpl-3.0 |
linzhaoming/origin | vendor/gonum.org/v1/gonum/lapack/internal/testdata/netlib/lsame.f | 204 | 3170 | *> \brief \b LSAME
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* LOGICAL FUNCTION LSAME( CA, CB )
*
* .. Scalar Arguments ..
* CHARACTER CA, CB
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> LSAME returns .TRUE. if CA is the same letter as CB regardless of
*> case.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] CA
*> \verbatim
*> \endverbatim
*>
*> \param[in] CB
*> \verbatim
*> CA and CB specify the single characters to be compared.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
* =====================================================================
LOGICAL FUNCTION LSAME( CA, CB )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER CA, CB
* ..
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ICHAR
* ..
* .. Local Scalars ..
INTEGER INTA, INTB, ZCODE
* ..
* .. Executable Statements ..
*
* Test if the characters are equal
*
LSAME = CA.EQ.CB
IF( LSAME )
$ RETURN
*
* Now test for equivalence if both characters are alphabetic.
*
ZCODE = ICHAR( 'Z' )
*
* Use 'Z' rather than 'A' so that ASCII can be detected on Prime
* machines, on which ICHAR returns a value with bit 8 set.
* ICHAR('A') on Prime machines returns 193 which is the same as
* ICHAR('A') on an EBCDIC machine.
*
INTA = ICHAR( CA )
INTB = ICHAR( CB )
*
IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN
*
* ASCII is assumed - ZCODE is the ASCII code of either lower or
* upper case 'Z'.
*
IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32
IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32
*
ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN
*
* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
* upper case 'Z'.
*
IF( INTA.GE.129 .AND. INTA.LE.137 .OR.
$ INTA.GE.145 .AND. INTA.LE.153 .OR.
$ INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64
IF( INTB.GE.129 .AND. INTB.LE.137 .OR.
$ INTB.GE.145 .AND. INTB.LE.153 .OR.
$ INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64
*
ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN
*
* ASCII is assumed, on Prime machines - ZCODE is the ASCII code
* plus 128 of either lower or upper case 'Z'.
*
IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32
IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32
END IF
LSAME = INTA.EQ.INTB
*
* RETURN
*
* End of LSAME
*
END
| apache-2.0 |
omni-compiler/omni-compiler | tests/old/F-test/OMP-test/do001.f | 2 | 2220 | C ********************************************************************
C OpenMP Fortran API Test Suite
C -----------------------------
C
C Test Name : do001
C
C Summary : do construct with nowait clause
C
C Description : F77 version of example A.4 from specification.
C
C Verification : Execution self-checks verify results but not work
C sharing.
C
C Origin : Example A.4 from OpenMP Fortran API specification
C
C Keywords : F77, do, nowait
C
C Source Form : Fixed
C
C Last Changed : $Date: 2004/02/06 18:15:44 $
C
C ********************************************************************
SUBROUTINE D001S(M,N,A,B,Y,Z)
INTEGER M,N,I
INTEGER A(N), B(N), Y(M), Z(M), SQRT
EXTERNAL SQRT
C$OMP PARALLEL
C$OMP DO
DO 100 I=2,N
B(I) = (A(I) + A(I-1)) / 2
100 CONTINUE
C$OMP END DO NOWAIT
C$OMP DO
DO 200 I=1,M
Y(I) = SQRT(Z(I))
200 CONTINUE
C$OMP END DO NOWAIT
C$OMP END PARALLEL
END
INTEGER FUNCTION SQRT(K)
J = 1
DO 250 I=1,K
IF ( (J*J) .NE. K ) THEN
J = (J + (K/J))/2
ELSE
GOTO 260
ENDIF
250 CONTINUE
260 SQRT = J
END
PROGRAM D001
INTEGER M, N, I, ERRORS
PARAMETER(M = 117)
PARAMETER(N = 511)
INTEGER A(N), B(N), Y(M), Z(M)
DO 300 I=1,N
A(I) = 2*I + 1
B(I) = 0
300 CONTINUE
DO 400 I=1,M
Z(I) = I*I
Y(I) = 0
400 CONTINUE
CALL D001S(M, N, A, B, Y, Z)
ERRORS = 0
DO 500 I=2,N
IF (B(I) .NE. 2*I) THEN
ERRORS = ERRORS + 1
IF (ERRORS .EQ. 1) THEN
write(6,*)'do001 - VALUES IN B ARE NOT AS EXPECTED'
ENDIF
write(6,*)'EXPECTED B(', I, ') = ', 2*I, ' OBSERVED ', B(I)
ENDIF
500 CONTINUE
DO 600 I=1,M
IF (Y(I) .NE. I) THEN
ERRORS = ERRORS + 1
IF (ERRORS .EQ. 1) THEN
write(6,*)'do001 - VALUES IN Y ARE NOT AS EXPECTED'
ENDIF
write(6,*) 'EXPECTED Y(', I, ') = ', I, ' OBSERVED ', Y(I)
ENDIF
600 CONTINUE
IF (ERRORS .EQ. 0) THEN
WRITE (*,'(A)') 'do001 PASSED'
ELSE
WRITE (*,'(A)') 'do001 FAILED'
ENDIF
END
| lgpl-3.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/LIN/sdrvgt.f | 32 | 19178 | *> \brief \b SDRVGT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
* B, X, XACT, WORK, RWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NN, NOUT, NRHS
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NVAL( * )
* REAL A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
* $ X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SDRVGT tests SGTSV and -SVX.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, NRHS >= 0.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is REAL array, dimension (NMAX*4)
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is REAL array, dimension (NMAX*4)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is REAL array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is REAL array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is REAL array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension
*> (NMAX*max(3,NRHS))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension
*> (max(NMAX,2*NRHS))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (2*NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
$ B, X, XACT, WORK, RWORK, IWORK, NOUT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NN, NOUT, NRHS
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NVAL( * )
REAL A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
$ X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 12 )
INTEGER NTESTS
PARAMETER ( NTESTS = 6 )
* ..
* .. Local Scalars ..
LOGICAL TRFCON, ZEROT
CHARACTER DIST, FACT, TRANS, TYPE
CHARACTER*3 PATH
INTEGER I, IFACT, IMAT, IN, INFO, ITRAN, IX, IZERO, J,
$ K, K1, KL, KOFF, KU, LDA, M, MODE, N, NERRS,
$ NFAIL, NIMAT, NRUN, NT
REAL AINVNM, ANORM, ANORMI, ANORMO, COND, RCOND,
$ RCONDC, RCONDI, RCONDO
* ..
* .. Local Arrays ..
CHARACTER TRANSS( 3 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
REAL RESULT( NTESTS ), Z( 3 )
* ..
* .. External Functions ..
REAL SASUM, SGET06, SLANGT
EXTERNAL SASUM, SGET06, SLANGT
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, SCOPY, SERRVX, SGET04,
$ SGTSV, SGTSVX, SGTT01, SGTT02, SGTT05, SGTTRF,
$ SGTTRS, SLACPY, SLAGTM, SLARNV, SLASET, SLATB4,
$ SLATMS, SSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
$ 'C' /
* ..
* .. Executable Statements ..
*
PATH( 1: 1 ) = 'Single precision'
PATH( 2: 3 ) = 'GT'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL SERRVX( PATH, NOUT )
INFOT = 0
*
DO 140 IN = 1, NN
*
* Do for each value of N in NVAL.
*
N = NVAL( IN )
M = MAX( N-1, 0 )
LDA = MAX( 1, N )
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
DO 130 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 130
*
* Set up parameters with SLATB4.
*
CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ COND, DIST )
*
ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
IF( IMAT.LE.6 ) THEN
*
* Types 1-6: generate matrices of known condition number.
*
KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
SRNAMT = 'SLATMS'
CALL SLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
$ ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
$ INFO )
*
* Check the error code from SLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'SLATMS', INFO, 0, ' ', N, N, KL,
$ KU, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 130
END IF
IZERO = 0
*
IF( N.GT.1 ) THEN
CALL SCOPY( N-1, AF( 4 ), 3, A, 1 )
CALL SCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
END IF
CALL SCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
ELSE
*
* Types 7-12: generate tridiagonal matrices with
* unknown condition numbers.
*
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
*
* Generate a matrix with elements from [-1,1].
*
CALL SLARNV( 2, ISEED, N+2*M, A )
IF( ANORM.NE.ONE )
$ CALL SSCAL( N+2*M, ANORM, A, 1 )
ELSE IF( IZERO.GT.0 ) THEN
*
* Reuse the last matrix by copying back the zeroed out
* elements.
*
IF( IZERO.EQ.1 ) THEN
A( N ) = Z( 2 )
IF( N.GT.1 )
$ A( 1 ) = Z( 3 )
ELSE IF( IZERO.EQ.N ) THEN
A( 3*N-2 ) = Z( 1 )
A( 2*N-1 ) = Z( 2 )
ELSE
A( 2*N-2+IZERO ) = Z( 1 )
A( N-1+IZERO ) = Z( 2 )
A( IZERO ) = Z( 3 )
END IF
END IF
*
* If IMAT > 7, set one column of the matrix to 0.
*
IF( .NOT.ZEROT ) THEN
IZERO = 0
ELSE IF( IMAT.EQ.8 ) THEN
IZERO = 1
Z( 2 ) = A( N )
A( N ) = ZERO
IF( N.GT.1 ) THEN
Z( 3 ) = A( 1 )
A( 1 ) = ZERO
END IF
ELSE IF( IMAT.EQ.9 ) THEN
IZERO = N
Z( 1 ) = A( 3*N-2 )
Z( 2 ) = A( 2*N-1 )
A( 3*N-2 ) = ZERO
A( 2*N-1 ) = ZERO
ELSE
IZERO = ( N+1 ) / 2
DO 20 I = IZERO, N - 1
A( 2*N-2+I ) = ZERO
A( N-1+I ) = ZERO
A( I ) = ZERO
20 CONTINUE
A( 3*N-2 ) = ZERO
A( 2*N-1 ) = ZERO
END IF
END IF
*
DO 120 IFACT = 1, 2
IF( IFACT.EQ.1 ) THEN
FACT = 'F'
ELSE
FACT = 'N'
END IF
*
* Compute the condition number for comparison with
* the value returned by SGTSVX.
*
IF( ZEROT ) THEN
IF( IFACT.EQ.1 )
$ GO TO 120
RCONDO = ZERO
RCONDI = ZERO
*
ELSE IF( IFACT.EQ.1 ) THEN
CALL SCOPY( N+2*M, A, 1, AF, 1 )
*
* Compute the 1-norm and infinity-norm of A.
*
ANORMO = SLANGT( '1', N, A, A( M+1 ), A( N+M+1 ) )
ANORMI = SLANGT( 'I', N, A, A( M+1 ), A( N+M+1 ) )
*
* Factor the matrix A.
*
CALL SGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ),
$ AF( N+2*M+1 ), IWORK, INFO )
*
* Use SGTTRS to solve for one column at a time of
* inv(A), computing the maximum column sum as we go.
*
AINVNM = ZERO
DO 40 I = 1, N
DO 30 J = 1, N
X( J ) = ZERO
30 CONTINUE
X( I ) = ONE
CALL SGTTRS( 'No transpose', N, 1, AF, AF( M+1 ),
$ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
$ LDA, INFO )
AINVNM = MAX( AINVNM, SASUM( N, X, 1 ) )
40 CONTINUE
*
* Compute the 1-norm condition number of A.
*
IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDO = ONE
ELSE
RCONDO = ( ONE / ANORMO ) / AINVNM
END IF
*
* Use SGTTRS to solve for one column at a time of
* inv(A'), computing the maximum column sum as we go.
*
AINVNM = ZERO
DO 60 I = 1, N
DO 50 J = 1, N
X( J ) = ZERO
50 CONTINUE
X( I ) = ONE
CALL SGTTRS( 'Transpose', N, 1, AF, AF( M+1 ),
$ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
$ LDA, INFO )
AINVNM = MAX( AINVNM, SASUM( N, X, 1 ) )
60 CONTINUE
*
* Compute the infinity-norm condition number of A.
*
IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDI = ONE
ELSE
RCONDI = ( ONE / ANORMI ) / AINVNM
END IF
END IF
*
DO 110 ITRAN = 1, 3
TRANS = TRANSS( ITRAN )
IF( ITRAN.EQ.1 ) THEN
RCONDC = RCONDO
ELSE
RCONDC = RCONDI
END IF
*
* Generate NRHS random solution vectors.
*
IX = 1
DO 70 J = 1, NRHS
CALL SLARNV( 2, ISEED, N, XACT( IX ) )
IX = IX + LDA
70 CONTINUE
*
* Set the right hand side.
*
CALL SLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
$ A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
*
IF( IFACT.EQ.2 .AND. ITRAN.EQ.1 ) THEN
*
* --- Test SGTSV ---
*
* Solve the system using Gaussian elimination with
* partial pivoting.
*
CALL SCOPY( N+2*M, A, 1, AF, 1 )
CALL SLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
*
SRNAMT = 'SGTSV '
CALL SGTSV( N, NRHS, AF, AF( M+1 ), AF( N+M+1 ), X,
$ LDA, INFO )
*
* Check error code from SGTSV .
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'SGTSV ', INFO, IZERO, ' ',
$ N, N, 1, 1, NRHS, IMAT, NFAIL,
$ NERRS, NOUT )
NT = 1
IF( IZERO.EQ.0 ) THEN
*
* Check residual of computed solution.
*
CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK,
$ LDA )
CALL SGTT02( TRANS, N, NRHS, A, A( M+1 ),
$ A( N+M+1 ), X, LDA, WORK, LDA,
$ RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 3 ) )
NT = 3
END IF
*
* Print information about the tests that did not pass
* the threshold.
*
DO 80 K = 2, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )'SGTSV ', N, IMAT,
$ K, RESULT( K )
NFAIL = NFAIL + 1
END IF
80 CONTINUE
NRUN = NRUN + NT - 1
END IF
*
* --- Test SGTSVX ---
*
IF( IFACT.GT.1 ) THEN
*
* Initialize AF to zero.
*
DO 90 I = 1, 3*N - 2
AF( I ) = ZERO
90 CONTINUE
END IF
CALL SLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
*
* Solve the system and compute the condition number and
* error bounds using SGTSVX.
*
SRNAMT = 'SGTSVX'
CALL SGTSVX( FACT, TRANS, N, NRHS, A, A( M+1 ),
$ A( N+M+1 ), AF, AF( M+1 ), AF( N+M+1 ),
$ AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
$ RCOND, RWORK, RWORK( NRHS+1 ), WORK,
$ IWORK( N+1 ), INFO )
*
* Check the error code from SGTSVX.
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'SGTSVX', INFO, IZERO,
$ FACT // TRANS, N, N, 1, 1, NRHS, IMAT,
$ NFAIL, NERRS, NOUT )
*
IF( IFACT.GE.2 ) THEN
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL SGTT01( N, A, A( M+1 ), A( N+M+1 ), AF,
$ AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
$ IWORK, WORK, LDA, RWORK, RESULT( 1 ) )
K1 = 1
ELSE
K1 = 2
END IF
*
IF( INFO.EQ.0 ) THEN
TRFCON = .FALSE.
*
* Check residual of computed solution.
*
CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
CALL SGTT02( TRANS, N, NRHS, A, A( M+1 ),
$ A( N+M+1 ), X, LDA, WORK, LDA,
$ RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 3 ) )
*
* Check the error bounds from iterative refinement.
*
CALL SGTT05( TRANS, N, NRHS, A, A( M+1 ),
$ A( N+M+1 ), B, LDA, X, LDA, XACT, LDA,
$ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
NT = 5
END IF
*
* Print information about the tests that did not pass
* the threshold.
*
DO 100 K = K1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )'SGTSVX', FACT, TRANS,
$ N, IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
100 CONTINUE
*
* Check the reciprocal of the condition number.
*
RESULT( 6 ) = SGET06( RCOND, RCONDC )
IF( RESULT( 6 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )'SGTSVX', FACT, TRANS, N,
$ IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
NRUN = NRUN + NT - K1 + 2
*
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
$ ', ratio = ', G12.5 )
9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N =',
$ I5, ', type ', I2, ', test ', I2, ', ratio = ', G12.5 )
RETURN
*
* End of SDRVGT
*
END
| gpl-2.0 |
markusappel/McCode | support/MacOSX/pgplot/pgplot-src-mac/sys_mac/grgenv.f | 6 | 4059 |
C*GRGENV -- get value of PGPLOT environment parameter (MAC)
C+
SUBROUTINE GRGENV(NAME, VALUE, L)
CHARACTER*(*) NAME, VALUE
INTEGER L
C
C Return the value of a PGPLOT environment parameter. In Sun/Convex-UNIX,
C environment parameters are UNIX environment variables; e.g. parameter
C ENVOPT is environment variable PGPLOT_ENVOPT. Translation is not
C recursive and is case-sensitive.
C
C Arguments:
C NAME : (input) the name of the parameter to evaluate.
C VALUE : receives the value of the parameter, truncated or extended
C with blanks as necessary. If the parameter is undefined,
C a blank string is returned.
C L : receives the number of characters in VALUE, excluding
C trailing blanks. If the parameter is undefined, zero is
C returned.
C
C On Macintosh, the environment variables are stored in file. This subroutine
C first looks for the file PGPLOTENVNAMES, in the application directory.
C If it can't be found, a standard file dialog box will be displayed,
C so that you can find the file. Once it is found, the name and location are
C stored so that you will not be prompted again.
C--
C 19-Jan-1988
C 25-Sep-1995 Modified to work on mac with MPW Fortran 2.1. All environment
C parameters are stored in the file. The file can have any name
C but best thing to do is to put a file called pgplotenvnames
C in the application directory. See Tech. Note 35 for more information
C about Macintosh file system. Note: this subroutine
C needs to be compiled with the -u switch to initialize volrefnum
C to zero, since a value less than zero specifies a folder.
C-----------------------------------------------------------------------
INTEGER LIN, LUN,LStart,VolRefNum, JVRefNum
CHARACTER*32 TEST, Line*120, FilNam*120
External JVRefNum
Save FileName,VolRefNum
C
TEST = 'PGPLOT_'//NAME
LIN = INDEX(TEST, ' ')-1
Value = ' '
L = 0
Call GrgLun(LUN)
C If volume reference number has been set, switch to that volume. The
C first time grgenv is called, volrefnum will not be set and the current
C directory is the application directory. The volume reference number will
C be set after pgplotenvnames is found.
If (VolRefNum .lt. 0) Then
Call F_SETVOLUME(VolRefNum)
End If
C Try to open FilNam. The first time that Grgenv is called Filnam will
C be empty and the open will fail. So try to open pgplotenvnames in the
C current directory. If that fails put up a standard file dialog box to
C find pgplotenvnames. If FilNam has been set then after assigning a
C unit number to the file reset the volume reference number to the application
C directory.
Open(Unit = lun,File=FilNam,Status='OLD',Err = 10,Readonly)
Call F_SETVOLUME(JVREFNUM(-1))
Go to 1
10 Open(Unit = lun,File='pgplotenvnames',Status='OLD',Err = 20,Readonly)
FilNam = 'pgplotenvnames'
VolRefNum = JVREFNUM(Lun)
Go to 1
C Put up standard file dialog box. Once found store the file name and volume
C reference number.
20 CALL GRWARN('Could not find file PGPLOTENVNAMES in current directory.')
CALL GRWARN('A dialog box will come up allowing you to find the file with the')
CALL GRWARN('environment variables. Hit return for the dialog box to appear.')
Pause
Open(Unit=lun,File=*,STATUS='OLD',err=100,Readonly)
Inquire(Unit=LUN,Name=FilNam)
VolRefNum = JVREFNUM(Lun)
C File has been found, so search for environmental variable and extract value.
1 Continue
Read(Lun,'(A512)',End=2) Line
If (Test(:Lin) .EQ. Line(:Lin)) Then
Lstart = index(Line,"'")+1
L = index(Line(Lstart:),"'")-1
Value = Line(LStart:LStart+L-1)
Close(Lun)
Go to 2
End If
Go to 1
2 Close(LUN)
Return
C Could not find PGPLOTENVNAMES.
100 Close(LUN)
CALL GRWARN('Cancelled dialog box to find PGPLOTENVNAMES')
Return
END
| gpl-2.0 |
piyush0609/scipy | scipy/optimize/cobyla/trstlp.f | 128 | 17275 | C------------------------------------------------------------------------------
SUBROUTINE TRSTLP (N,M,A,B,RHO,DX,IFULL,IACT,Z,ZDOTA,VMULTC,
1 SDIRN,DXNEW,VMULTD,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION TEMP
DIMENSION A(N,*),B(*),DX(*),IACT(*),Z(N,*),ZDOTA(*),
1 VMULTC(*),SDIRN(*),DXNEW(*),VMULTD(*)
C
C This subroutine calculates an N-component vector DX by applying the
C following two stages. In the first stage, DX is set to the shortest
C vector that minimizes the greatest violation of the constraints
C A(1,K)*DX(1)+A(2,K)*DX(2)+...+A(N,K)*DX(N) .GE. B(K), K=2,3,...,M,
C subject to the Euclidean length of DX being at most RHO. If its length is
C strictly less than RHO, then we use the resultant freedom in DX to
C minimize the objective function
C -A(1,M+1)*DX(1)-A(2,M+1)*DX(2)-...-A(N,M+1)*DX(N)
C subject to no increase in any greatest constraint violation. This
C notation allows the gradient of the objective function to be regarded as
C the gradient of a constraint. Therefore the two stages are distinguished
C by MCON .EQ. M and MCON .GT. M respectively. It is possible that a
C degeneracy may prevent DX from attaining the target length RHO. Then the
C value IFULL=0 would be set, but usually IFULL=1 on return.
C
C In general NACT is the number of constraints in the active set and
C IACT(1),...,IACT(NACT) are their indices, while the remainder of IACT
C contains a permutation of the remaining constraint indices. Further, Z is
C an orthogonal matrix whose first NACT columns can be regarded as the
C result of Gram-Schmidt applied to the active constraint gradients. For
C J=1,2,...,NACT, the number ZDOTA(J) is the scalar product of the J-th
C column of Z with the gradient of the J-th active constraint. DX is the
C current vector of variables and here the residuals of the active
C constraints should be zero. Further, the active constraints have
C nonnegative Lagrange multipliers that are held at the beginning of
C VMULTC. The remainder of this vector holds the residuals of the inactive
C constraints at DX, the ordering of the components of VMULTC being in
C agreement with the permutation of the indices of the constraints that is
C in IACT. All these residuals are nonnegative, which is achieved by the
C shift RESMAX that makes the least residual zero.
C
C Initialize Z and some other variables. The value of RESMAX will be
C appropriate to DX=0, while ICON will be the index of a most violated
C constraint if RESMAX is positive. Usually during the first stage the
C vector SDIRN gives a search direction that reduces all the active
C constraint violations by one simultaneously.
C
IF (IPRINT .EQ. 3) THEN
print *, ' '
print *, 'BEFORE trstlp:'
PRINT *, ' **DX = ', (DX(I),I=1,N)
PRINT *, ' **IACT = ', (IACT(I),I=1,M+1)
PRINT *, 'M,N,RHO,IFULL =', M, N, RHO, IFULL
PRINT *, ' **A = ', ((A(I,K),I=1,N),K=1,M+1)
PRINT *, ' **B = ', (B(I),I=1,M)
PRINT *, ' **Z = ', ((Z(I,K),I=1,N),K=1,N)
PRINT *, ' **ZDOTA = ', (ZDOTA(I),I=1,N)
PRINT *, ' **VMULTC = ', (VMULTC(I),I=1,M+1)
PRINT *, ' **SDIRN = ', (SDIRN(I),I=1,N)
PRINT *, ' **DXNEW = ', (DXNEW(I),I=1,N)
PRINT *, ' **VMULTD = ', (VMULTD(I),I=1,M+1)
PRINT *, ' '
END IF
ICON=0
NACTX=0
RESOLD=0
IFULL=1
MCON=M
NACT=0
RESMAX=0.0d0
DO 20 I=1,N
DO 10 J=1,N
10 Z(I,J)=0.0d0
Z(I,I)=1.0d0
20 DX(I)=0.0d0
IF (M .GE. 1) THEN
DO 30 K=1,M
IF (B(K) .GT. RESMAX) THEN
RESMAX=B(K)
ICON=K
END IF
30 CONTINUE
DO 40 K=1,M
IACT(K)=K
40 VMULTC(K)=RESMAX-B(K)
END IF
IF (IPRINT .EQ. 3) THEN
PRINT *, ' 1. VMULTC = ', (VMULTC(I),I=1,M+1)
END IF
IF (RESMAX .EQ. 0.0d0) GOTO 480
DO 50 I=1,N
50 SDIRN(I)=0.0d0
C
C End the current stage of the calculation if 3 consecutive iterations
C have either failed to reduce the best calculated value of the objective
C function or to increase the number of active constraints since the best
C value was calculated. This strategy prevents cycling, but there is a
C remote possibility that it will cause premature termination.
C
60 OPTOLD=0.0d0
ICOUNT=0
70 IF (MCON .EQ. M) THEN
OPTNEW=RESMAX
ELSE
OPTNEW=0.0d0
DO 80 I=1,N
80 OPTNEW=OPTNEW-DX(I)*A(I,MCON)
END IF
IF (IPRINT .EQ. 3) THEN
PRINT *, ' ICOUNT, OPTNEW, OPTOLD = ', ICOUNT, OPTNEW, OPTOLD
END IF
IF (ICOUNT .EQ. 0 .OR. OPTNEW .LT. OPTOLD) THEN
OPTOLD=OPTNEW
NACTX=NACT
ICOUNT=3
ELSE IF (NACT .GT. NACTX) THEN
NACTX=NACT
ICOUNT=3
ELSE
ICOUNT=ICOUNT-1
IF (ICOUNT .EQ. 0) GOTO 490
END IF
C
C If ICON exceeds NACT, then we add the constraint with index IACT(ICON) to
C the active set. Apply Givens rotations so that the last N-NACT-1 columns
C of Z are orthogonal to the gradient of the new constraint, a scalar
C product being set to zero if its nonzero value could be due to computer
C rounding errors. The array DXNEW is used for working space.
C
IF (ICON .LE. NACT) GOTO 260
KK=IACT(ICON)
DO 90 I=1,N
90 DXNEW(I)=A(I,KK)
TOT=0.0D0
K=N
100 IF (K .GT. NACT) THEN
SP=0.0d0
SPABS=0.0d0
DO 110 I=1,N
TEMP=Z(I,K)*DXNEW(I)
SP=SP+TEMP
110 SPABS=SPABS+DABS(TEMP)
ACCA=SPABS+0.1d0*DABS(SP)
ACCB=SPABS+0.2d0*DABS(SP)
IF ((SPABS .GE. ACCA) .OR. (ACCA .GE. ACCB)) SP=0.0D0
IF (TOT .EQ. 0.0D0) THEN
TOT=SP
ELSE
KP=K+1
TEMP=DSQRT(SP*SP+TOT*TOT)
ALPHA=SP/TEMP
BETA=TOT/TEMP
TOT=TEMP
DO 120 I=1,N
TEMP=ALPHA*Z(I,K)+BETA*Z(I,KP)
Z(I,KP)=ALPHA*Z(I,KP)-BETA*Z(I,K)
120 Z(I,K)=TEMP
END IF
K=K-1
GOTO 100
END IF
C
C Add the new constraint if this can be done without a deletion from the
C active set.
C
IF (IPRINT .EQ. 3) THEN
PRINT *, '*TOT, NACT, ICON = ', TOT, NACT, ICON
END IF
IF (TOT .NE. 0.0d0) THEN
NACT=NACT+1
ZDOTA(NACT)=TOT
VMULTC(ICON)=VMULTC(NACT)
VMULTC(NACT)=0.0d0
GOTO 210
END IF
C
C The next instruction is reached if a deletion has to be made from the
C active set in order to make room for the new active constraint, because
C the new constraint gradient is a linear combination of the gradients of
C the old active constraints. Set the elements of VMULTD to the multipliers
C of the linear combination. Further, set IOUT to the index of the
C constraint to be deleted, but branch if no suitable index can be found.
C
RATIO=-1.0d0
K=NACT
130 ZDOTV=0.0d0
ZDVABS=0.0d0
DO 140 I=1,N
TEMP=Z(I,K)*DXNEW(I)
ZDOTV=ZDOTV+TEMP
140 ZDVABS=ZDVABS+DABS(TEMP)
ACCA=ZDVABS+0.1d0*DABS(ZDOTV)
ACCB=ZDVABS+0.2d0*DABS(ZDOTV)
IF (ZDVABS .LT. ACCA .AND. ACCA .LT. ACCB) THEN
TEMP=ZDOTV/ZDOTA(K)
IF (TEMP .GT. 0.0d0 .AND. IACT(K) .LE. M) THEN
TEMPA=VMULTC(K)/TEMP
IF (RATIO .LT. 0.0d0 .OR. TEMPA .LT. RATIO) THEN
RATIO=TEMPA
IOUT=K
END IF
END IF
IF (K .GE. 2) THEN
KW=IACT(K)
DO 150 I=1,N
150 DXNEW(I)=DXNEW(I)-TEMP*A(I,KW)
END IF
VMULTD(K)=TEMP
ELSE
VMULTD(K)=0.0d0
END IF
K=K-1
IF (K .GT. 0) GOTO 130
IF (IPRINT .EQ. 3) THEN
PRINT *, ' 1. VMULTD = ', (VMULTD(I),I=1,M+1)
END IF
IF (RATIO .LT. 0.0d0) GOTO 490
C
C Revise the Lagrange multipliers and reorder the active constraints so
C that the one to be replaced is at the end of the list. Also calculate the
C new value of ZDOTA(NACT) and branch if it is not acceptable.
C
DO 160 K=1,NACT
160 VMULTC(K)=DMAX1(0.0d0,VMULTC(K)-RATIO*VMULTD(K))
IF (IPRINT .EQ. 3) THEN
PRINT *, ' 2. VMULTC = ', (VMULTC(I),I=1,M+1)
END IF
IF (ICON .LT. NACT) THEN
ISAVE=IACT(ICON)
VSAVE=VMULTC(ICON)
K=ICON
170 KP=K+1
KW=IACT(KP)
SP=0.0d0
DO 180 I=1,N
180 SP=SP+Z(I,K)*A(I,KW)
TEMP=SQRT(SP*SP+ZDOTA(KP)**2)
ALPHA=ZDOTA(KP)/TEMP
BETA=SP/TEMP
ZDOTA(KP)=ALPHA*ZDOTA(K)
ZDOTA(K)=TEMP
DO 190 I=1,N
TEMP=ALPHA*Z(I,KP)+BETA*Z(I,K)
Z(I,KP)=ALPHA*Z(I,K)-BETA*Z(I,KP)
190 Z(I,K)=TEMP
IACT(K)=KW
VMULTC(K)=VMULTC(KP)
K=KP
IF (K .LT. NACT) GOTO 170
IACT(K)=ISAVE
VMULTC(K)=VSAVE
END IF
TEMP=0.0d0
DO 200 I=1,N
200 TEMP=TEMP+Z(I,NACT)*A(I,KK)
IF (TEMP .EQ. 0.0d0) GOTO 490
ZDOTA(NACT)=TEMP
VMULTC(ICON)=0.0d0
VMULTC(NACT)=RATIO
C
C Update IACT and ensure that the objective function continues to be
C treated as the last active constraint when MCON>M.
C
210 IACT(ICON)=IACT(NACT)
IACT(NACT)=KK
IF (MCON .GT. M .AND. KK .NE. MCON) THEN
K=NACT-1
SP=0.0d0
DO 220 I=1,N
220 SP=SP+Z(I,K)*A(I,KK)
TEMP=SQRT(SP*SP+ZDOTA(NACT)**2)
ALPHA=ZDOTA(NACT)/TEMP
BETA=SP/TEMP
ZDOTA(NACT)=ALPHA*ZDOTA(K)
ZDOTA(K)=TEMP
DO 230 I=1,N
TEMP=ALPHA*Z(I,NACT)+BETA*Z(I,K)
Z(I,NACT)=ALPHA*Z(I,K)-BETA*Z(I,NACT)
230 Z(I,K)=TEMP
IACT(NACT)=IACT(K)
IACT(K)=KK
TEMP=VMULTC(K)
VMULTC(K)=VMULTC(NACT)
VMULTC(NACT)=TEMP
END IF
C
C If stage one is in progress, then set SDIRN to the direction of the next
C change to the current vector of variables.
C
IF (MCON .GT. M) GOTO 320
KK=IACT(NACT)
TEMP=0.0d0
DO 240 I=1,N
240 TEMP=TEMP+SDIRN(I)*A(I,KK)
TEMP=TEMP-1.0d0
TEMP=TEMP/ZDOTA(NACT)
DO 250 I=1,N
250 SDIRN(I)=SDIRN(I)-TEMP*Z(I,NACT)
GOTO 340
C
C Delete the constraint that has the index IACT(ICON) from the active set.
C
260 IF (ICON .LT. NACT) THEN
ISAVE=IACT(ICON)
VSAVE=VMULTC(ICON)
K=ICON
270 KP=K+1
KK=IACT(KP)
SP=0.0d0
DO 280 I=1,N
280 SP=SP+Z(I,K)*A(I,KK)
TEMP=SQRT(SP*SP+ZDOTA(KP)**2)
ALPHA=ZDOTA(KP)/TEMP
BETA=SP/TEMP
ZDOTA(KP)=ALPHA*ZDOTA(K)
ZDOTA(K)=TEMP
DO 290 I=1,N
TEMP=ALPHA*Z(I,KP)+BETA*Z(I,K)
Z(I,KP)=ALPHA*Z(I,K)-BETA*Z(I,KP)
290 Z(I,K)=TEMP
IACT(K)=KK
VMULTC(K)=VMULTC(KP)
K=KP
IF (K .LT. NACT) GOTO 270
IACT(K)=ISAVE
VMULTC(K)=VSAVE
END IF
NACT=NACT-1
C
C If stage one is in progress, then set SDIRN to the direction of the next
C change to the current vector of variables.
C
IF (MCON .GT. M) GOTO 320
TEMP=0.0d0
DO 300 I=1,N
300 TEMP=TEMP+SDIRN(I)*Z(I,NACT+1)
DO 310 I=1,N
310 SDIRN(I)=SDIRN(I)-TEMP*Z(I,NACT+1)
GO TO 340
C
C Pick the next search direction of stage two.
C
320 TEMP=1.0d0/ZDOTA(NACT)
DO 330 I=1,N
330 SDIRN(I)=TEMP*Z(I,NACT)
C
C Calculate the step to the boundary of the trust region or take the step
C that reduces RESMAX to zero. The two statements below that include the
C factor 1.0E-6 prevent some harmless underflows that occurred in a test
C calculation. Further, we skip the step if it could be zero within a
C reasonable tolerance for computer rounding errors.
C
340 DD=RHO*RHO
SD=0.0d0
SS=0.0d0
DO 350 I=1,N
IF (ABS(DX(I)) .GE. 1.0E-6*RHO) DD=DD-DX(I)**2
SD=SD+DX(I)*SDIRN(I)
350 SS=SS+SDIRN(I)**2
IF (DD .LE. 0.0d0) GOTO 490
TEMP=SQRT(SS*DD)
IF (ABS(SD) .GE. 1.0E-6*TEMP) TEMP=SQRT(SS*DD+SD*SD)
STPFUL=DD/(TEMP+SD)
STEP=STPFUL
IF (MCON .EQ. M) THEN
ACCA=STEP+0.1d0*RESMAX
ACCB=STEP+0.2d0*RESMAX
IF (STEP .GE. ACCA .OR. ACCA .GE. ACCB) GOTO 480
STEP=DMIN1(STEP,RESMAX)
END IF
C
C Set DXNEW to the new variables if STEP is the steplength, and reduce
C RESMAX to the corresponding maximum residual if stage one is being done.
C Because DXNEW will be changed during the calculation of some Lagrange
C multipliers, it will be restored to the following value later.
call s360_380(DXNEW,DX,STEP,SDIRN,N,M,MCON,RESMAX,
1 NACT,IACT,B,A,RESOLD)
C
C Set VMULTD to the VMULTC vector that would occur if DX became DXNEW. A
C device is included to force VMULTD(K)=0.0 if deviations from this value
C can be attributed to computer rounding errors. First calculate the new
C Lagrange multipliers.
C
K=NACT
390 ZDOTW=0.0d0
ZDWABS=0.0d0
DO 400 I=1,N
TEMP=Z(I,K)*DXNEW(I)
ZDOTW=ZDOTW+TEMP
400 ZDWABS=ZDWABS+ABS(TEMP)
ACCA=ZDWABS+0.1d0*ABS(ZDOTW)
ACCB=ZDWABS+0.2d0*ABS(ZDOTW)
IF (ZDWABS .GE. ACCA .OR. ACCA .GE. ACCB) ZDOTW=0.0d0
VMULTD(K)=ZDOTW/ZDOTA(K)
IF (K .GE. 2) THEN
KK=IACT(K)
DO 410 I=1,N
410 DXNEW(I)=DXNEW(I)-VMULTD(K)*A(I,KK)
K=K-1
GOTO 390
END IF
IF (MCON .GT. M) VMULTD(NACT)=DMAX1(0.0d0,VMULTD(NACT))
IF (IPRINT .EQ. 3) THEN
PRINT *, ' 2. VMULTD = ', (VMULTD(I),I=1,M+1)
END IF
C
C Complete VMULTC by finding the new constraint residuals.
C
DO 420 I=1,N
420 DXNEW(I)=DX(I)+STEP*SDIRN(I)
IF (MCON .GT. NACT) THEN
KL=NACT+1
DO 440 K=KL,MCON
KK=IACT(K)
SUM=RESMAX-B(KK)
SUMABS=RESMAX+DABS(B(KK))
DO 430 I=1,N
TEMP=A(I,KK)*DXNEW(I)
SUM=SUM+TEMP
430 SUMABS=SUMABS+DABS(TEMP)
ACCA=SUMABS+0.1*DABS(SUM)
ACCB=SUMABS+0.2*DABS(SUM)
IF (SUMABS .GE. ACCA .OR. ACCA .GE. ACCB) SUM=0.0
440 VMULTD(K)=SUM
END IF
IF (IPRINT .EQ. 3) THEN
PRINT *, ' 3. VMULTD = ', (VMULTD(I),I=1,M+1)
END IF
C
C Calculate the fraction of the step from DX to DXNEW that will be taken.
C
RATIO=1.0d0
ICON=0
C
EPS = 2.2E-16
DO 450 K=1,MCON
IF (VMULTD(K) .GT. -EPS .AND. VMULTD(K) .LT. EPS) VMULTD(K)=0.0D0
IF (VMULTD(K) .LT. 0.0D0) THEN
TEMP=VMULTC(K)/(VMULTC(K)-VMULTD(K))
IF (TEMP .LT. RATIO) THEN
RATIO=TEMP
ICON=K
END IF
END IF
450 CONTINUE
C
C Update DX, VMULTC and RESMAX.
C
TEMP=1.0d0-RATIO
DO 460 I=1,N
460 DX(I)=TEMP*DX(I)+RATIO*DXNEW(I)
DO 470 K=1,MCON
470 VMULTC(K)=DMAX1(0.0d0,TEMP*VMULTC(K)+RATIO*VMULTD(K))
IF (IPRINT .EQ. 3) THEN
PRINT *, ' 3. VMULTC = ', (VMULTC(I),I=1,M+1)
END IF
IF (MCON .EQ. M) RESMAX=RESOLD+RATIO*(RESMAX-RESOLD)
IF (IPRINT .EQ. 3) THEN
PRINT *, ' RESMAX, MCON, M, ICON = ',
1 RESMAX, MCON, M, ICON
END IF
C
C If the full step is not acceptable then begin another iteration.
C Otherwise switch to stage two or end the calculation.
C
IF (ICON .GT. 0) GOTO 70
IF (STEP .EQ. STPFUL) GOTO 500
480 MCON=M+1
ICON=MCON
IACT(MCON)=MCON
VMULTC(MCON)=0.0d0
GOTO 60
C
C We employ any freedom that may be available to reduce the objective
C function before returning a DX whose length is less than RHO.
C
490 IF (MCON .EQ. M) GOTO 480
IFULL=0
500 CONTINUE
IF (IPRINT .EQ. 3) THEN
print *, ' '
print *, 'AFTER trstlp:'
PRINT *, ' **DX = ', (DX(I),I=1,N)
PRINT *, ' **IACT = ', (IACT(I),I=1,M+1)
PRINT *, 'M,N,RHO,IFULL =', M, N, RHO, IFULL
PRINT *, ' **A = ', ((A(I,K),I=1,N),K=1,M+1)
PRINT *, ' **B = ', (B(I),I=1,M)
PRINT *, ' **Z = ', ((Z(I,K),I=1,N),K=1,N)
PRINT *, ' **ZDOTA = ', (ZDOTA(I),I=1,N)
PRINT *, ' **VMULTC = ', (VMULTC(I),I=1,M+1)
PRINT *, ' **SDIRN = ', (SDIRN(I),I=1,N)
PRINT *, ' **DXNEW = ', (DXNEW(I),I=1,N)
PRINT *, ' **VMULTD = ', (VMULTD(I),I=1,M+1)
PRINT *, ' '
END IF
C 500 RETURN
END
subroutine s360_380(DXNEW,DX,STEP,SDIRN,N,M,MCON,RESMAX,
1 NACT,IACT,B,A,RESOLD)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(N,*),B(*),DX(*),IACT(*), SDIRN(*),DXNEW(*)
DO 360 I=1,N
360 DXNEW(I)=DX(I)+STEP*SDIRN(I)
IF (MCON .EQ. M) THEN
RESOLD=RESMAX
RESMAX=0.0d0
DO 380 K=1,NACT
KK=IACT(K)
TEMP=B(KK)
DO 370 I=1,N
370 TEMP=TEMP-A(I,KK)*DXNEW(I)
RESMAX=DMAX1(RESMAX,TEMP)
380 CONTINUE
END IF
end
| bsd-3-clause |
piyush0609/scipy | scipy/integrate/quadpack/dqawce.f | 143 | 12260 | subroutine dqawce(f,a,b,c,epsabs,epsrel,limit,result,abserr,neval,
* ier,alist,blist,rlist,elist,iord,last)
c***begin prologue dqawce
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a2a1,j4
c***keywords automatic integrator, special-purpose,
c cauchy principal value, clenshaw-curtis method
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c*** purpose the routine calculates an approximation result to a
c cauchy principal value i = integral of f*w over (a,b)
c (w(x) = 1/(x-c), (c.ne.a, c.ne.b), hopefully satisfying
c following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i))
c***description
c
c computation of a cauchy principal value
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c c - double precision
c parameter in the weight function, c.ne.a, c.ne.b
c if c = a or c = b, the routine will end with
c ier = 6.
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c limit - integer
c gives an upper bound on the number of subintervals
c in the partition of (a,b), limit.ge.1
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c ier.gt.0 abnormal termination of the routine
c the estimates for integral and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more sub-
c divisions by increasing the value of
c limit. however, if this yields no
c improvement it is advised to analyze the
c the integrand, in order to determine the
c the integration difficulties. if the
c position of a local difficulty can be
c determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling
c appropriate integrators on the subranges.
c = 2 the occurrence of roundoff error is detec-
c ted, which prevents the requested
c tolerance from being achieved.
c = 3 extremely bad integrand behaviour
c occurs at some interior points of
c the integration interval.
c = 6 the input is invalid, because
c c = a or c = b or
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c or limit.lt.1.
c result, abserr, neval, rlist(1), elist(1),
c iord(1) and last are set to zero. alist(1)
c and blist(1) are set to a and b
c respectively.
c
c alist - double precision
c vector of dimension at least limit, the first
c last elements of which are the left
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c blist - double precision
c vector of dimension at least limit, the first
c last elements of which are the right
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c rlist - double precision
c vector of dimension at least limit, the first
c last elements of which are the integral
c approximations on the subintervals
c
c elist - double precision
c vector of dimension limit, the first last
c elements of which are the moduli of the absolute
c error estimates on the subintervals
c
c iord - integer
c vector of dimension at least limit, the first k
c elements of which are pointers to the error
c estimates over the subintervals, so that
c elist(iord(1)), ..., elist(iord(k)) with k = last
c if last.le.(limit/2+2), and k = limit+1-last
c otherwise, form a decreasing sequence
c
c last - integer
c number of subintervals actually produced in
c the subdivision process
c
c***references (none)
c***routines called d1mach,dqc25c,dqpsrt
c***end prologue dqawce
c
double precision a,aa,abserr,alist,area,area1,area12,area2,a1,a2,
* b,bb,blist,b1,b2,c,dabs,dmax1,d1mach,elist,epmach,epsabs,epsrel,
* errbnd,errmax,error1,erro12,error2,errsum,f,result,rlist,uflow
integer ier,iord,iroff1,iroff2,k,krule,last,limit,maxerr,nev,
* neval,nrmax
c
dimension alist(limit),blist(limit),rlist(limit),elist(limit),
* iord(limit)
c
external f
c
c list of major variables
c -----------------------
c
c alist - list of left end points of all subintervals
c considered up to now
c blist - list of right end points of all subintervals
c considered up to now
c rlist(i) - approximation to the integral over
c (alist(i),blist(i))
c elist(i) - error estimate applying to rlist(i)
c maxerr - pointer to the interval with largest
c error estimate
c errmax - elist(maxerr)
c area - sum of the integrals over the subintervals
c errsum - sum of the errors over the subintervals
c errbnd - requested accuracy max(epsabs,epsrel*
c abs(result))
c *****1 - variable for the left subinterval
c *****2 - variable for the right subinterval
c last - index for subdivision
c
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c
c***first executable statement dqawce
epmach = d1mach(4)
uflow = d1mach(1)
c
c
c test on validity of parameters
c ------------------------------
c
ier = 6
neval = 0
last = 0
alist(1) = a
blist(1) = b
rlist(1) = 0.0d+00
elist(1) = 0.0d+00
iord(1) = 0
result = 0.0d+00
abserr = 0.0d+00
if(c.eq.a.or.c.eq.b.or.(epsabs.le.0.0d+00.and
* .epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28))) go to 999
c
c first approximation to the integral
c -----------------------------------
c
aa=a
bb=b
if (a.le.b) go to 10
aa=b
bb=a
10 ier=0
krule = 1
call dqc25c(f,aa,bb,c,result,abserr,krule,neval)
last = 1
rlist(1) = result
elist(1) = abserr
iord(1) = 1
alist(1) = a
blist(1) = b
c
c test on accuracy
c
errbnd = dmax1(epsabs,epsrel*dabs(result))
if(limit.eq.1) ier = 1
if(abserr.lt.dmin1(0.1d-01*dabs(result),errbnd)
* .or.ier.eq.1) go to 70
c
c initialization
c --------------
c
alist(1) = aa
blist(1) = bb
rlist(1) = result
errmax = abserr
maxerr = 1
area = result
errsum = abserr
nrmax = 1
iroff1 = 0
iroff2 = 0
c
c main do-loop
c ------------
c
do 40 last = 2,limit
c
c bisect the subinterval with nrmax-th largest
c error estimate.
c
a1 = alist(maxerr)
b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
b2 = blist(maxerr)
if(c.le.b1.and.c.gt.a1) b1 = 0.5d+00*(c+b2)
if(c.gt.b1.and.c.lt.b2) b1 = 0.5d+00*(a1+c)
a2 = b1
krule = 2
call dqc25c(f,a1,b1,c,area1,error1,krule,nev)
neval = neval+nev
call dqc25c(f,a2,b2,c,area2,error2,krule,nev)
neval = neval+nev
c
c improve previous approximations to integral
c and error and test for accuracy.
c
area12 = area1+area2
erro12 = error1+error2
errsum = errsum+erro12-errmax
area = area+area12-rlist(maxerr)
if(dabs(rlist(maxerr)-area12).lt.0.1d-04*dabs(area12)
* .and.erro12.ge.0.99d+00*errmax.and.krule.eq.0)
* iroff1 = iroff1+1
if(last.gt.10.and.erro12.gt.errmax.and.krule.eq.0)
* iroff2 = iroff2+1
rlist(maxerr) = area1
rlist(last) = area2
errbnd = dmax1(epsabs,epsrel*dabs(area))
if(errsum.le.errbnd) go to 15
c
c test for roundoff error and eventually set error flag.
c
if(iroff1.ge.6.and.iroff2.gt.20) ier = 2
c
c set error flag in the case that number of interval
c bisections exceeds limit.
c
if(last.eq.limit) ier = 1
c
c set error flag in the case of bad integrand behaviour
c at a point of the integration range.
c
if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)
* *(dabs(a2)+0.1d+04*uflow)) ier = 3
c
c append the newly-created intervals to the list.
c
15 if(error2.gt.error1) go to 20
alist(last) = a2
blist(maxerr) = b1
blist(last) = b2
elist(maxerr) = error1
elist(last) = error2
go to 30
20 alist(maxerr) = a2
alist(last) = a1
blist(last) = b1
rlist(maxerr) = area2
rlist(last) = area1
elist(maxerr) = error2
elist(last) = error1
c
c call subroutine dqpsrt to maintain the descending ordering
c in the list of error estimates and select the subinterval
c with nrmax-th largest error estimate (to be bisected next).
c
30 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
if(ier.ne.0.or.errsum.le.errbnd) go to 50
40 continue
c
c compute final result.
c ---------------------
c
50 result = 0.0d+00
do 60 k=1,last
result = result+rlist(k)
60 continue
abserr = errsum
70 if (aa.eq.b) result=-result
999 return
end
| bsd-3-clause |
LucasGandel/ITK | Modules/ThirdParty/VNL/src/vxl/v3p/netlib/napack/cg.f | 41 | 14263 | C
C ________________________________________________________
C | |
C | MINIMIZE A FUNCTION USING THE FLETCHER-REEVES FORM |
C | OF THE CONJUGATE GRADIENT METHOD |
C | WITH (OR WITHOUT) PRECONDITIONING |
C | |
C | INPUT: |
C | |
C | X --ARRAY CONTAINING STARTING GUESS |
C | |
C | STEP --STARTING GUESS FOR MINIMIZER IN DIREC- |
C | TION OF NEGATIVE GRADIENT DURING FIRST |
C | ITERATION (E. G. STEP=1) WHEN STEP=0, |
C | THE PROGRAM SELECTS A STARTING GUESS |
C | |
C | T --COMPUTING TOLERANCE (ITERATIONS STOP |
C | WHEN MAX-NORM OF GRADIENT .LE. T) |
C | |
C | LIMIT --MAXIMUM NUMBER OF ITERATIONS |
C | |
C | N --NUMBER OF UNKNOWNS |
C | |
C | M --NUMBER OF ITERATIONS UNTIL THE SEARCH |
C | DIRECTIONS ARE RENORMALIZED ALONG THE |
C | NEGATIVE GRADIENT (TYPICALLY, M = N) |
C | |
C | VALUE --NAME OF COST EVALUATION FUNC. ROUTINE |
C | (EXTERNAL IN MAIN PROGRAM) |
C | VALUE(X) IS VALUE OF COST AT X |
C | |
C | GRAD --NAME OF GRADIENT EVALUATION SUBROUTINE |
C | (EXTERNAL IN MAIN PROGRAM) |
C | GRAD(G,X) PUTS IN G THE GRADIENT AT X |
C | |
C | BOTH --NAME SUBROUTINE TO EVALUATE BOTH COST |
C | AND ITS GRADIENT (EXTERNAL IN MAIN |
C | PROGRAM) BOTH(V,G,X) PUTS THE VALUE IN |
C | V AND THE GRADIENT IN G FOR THE POINT X|
C | |
C | PRE --NAME OF PRECONDITIONING SUBROUTINE |
C | (EXTERNAL IN MAIN PROGRAM) |
C | PRE(Y,Z) APPLIES THE PRECONDITIONER TO |
C | Z, STORING THE RESULT IN Y. |
C | IF PRECONDITIONING NOT USED SET Y = Z |
C | |
C | H --WORK ARRAY (LENGTH AT LEAST 3N) |
C | |
C | OUTPUT: |
C | |
C | X --MINIMIZER |
C | |
C | E --MAX-NORM OF GRADIENT |
C | |
C | IT --NUMBER OF ITERATIONS PERFORMED |
C | |
C | STEP --STEP SIZE ALONG SEARCH DIRECTION FOR |
C | FINAL ITERATION |
C | |
C | BUILTIN FUNCTIONS: DABS,DEXP,IDINT,DLOG,DSQRT,DMAX1,|
C | DMIN1,DSIGN |
C | PACKAGE ROUTINES: CUB,FD,FV,FVD,INS |
C |________________________________________________________|
C
SUBROUTINE CG(X,E,IT,STEP,T,LIMIT,N,M,VALUE,GRAD,BOTH,PRE,H)
INTEGER I,IT,J,K,L,LIMIT,M,N,NA,NB,NC,ND
REAL*8 H(N,1),X(1),Y(50),Z(50),A1,A2,A3,A4,A5,A6,A7,A8,A,B,C,C0,C1
REAL*8 D,D0,DA,DB,E,F,F0,F1,FA,FB,FC,G,L3,P,Q,R,S,STEP,T,V,W
REAL*8 FV,FD,VALUE
EXTERNAL BOTH,GRAD,PRE,VALUE
DATA A1/.1D0/,A2/.9D0/,A3/5.D0/,A4/.2D0/,A5/10.D0/,A6/.9D0/
DATA A7/.3D0/
A8 = A3 + .01D0
IT = 0
CALL BOTH(F,H(1,3),X)
E = 0.
DO 10 I = 1,N
10 IF ( DABS(H(I,3)) .GT. E ) E = DABS(H(I,3))
IF ( E .LE. T ) RETURN
L3 = 1./DLOG(A3)
CALL PRE(H(1,2),H(1,3))
A = STEP
IF ( A .GT. 0. ) GOTO 30
DO 20 I = 1,N
20 IF ( DABS(X(I)) .GT. A ) A = DABS(X(I))
A = .01*A/E
IF ( A .EQ. 0. ) A = 1.
30 G = 0.
DO 40 I = 1,N
40 G = G + H(I,2)*H(I,3)
IF ( G .LT. 0. ) GOTO 620
50 L = 0
DO 60 I = 1,N
60 H(I,1) = -H(I,2)
D = -G
70 FA = FV(A,X,H,N,VALUE)
C0 = A
F0 = FA
J = 2
Y(1) = 0.
Z(1) = F
Y(2) = A
Z(2) = FA
V = A1*D
W = A2*D
IQ = 0
IF ( FA .LE. F ) GOTO 80
C = A
B = 0.
A = 0.
FC = FA
FB = F
FA = F
GOTO 90
80 C = 0.
B = 0.
FC = F
FB = F
IQ = 1
90 NA = 0
NB = 0
NC = 0
ND = 0
Q = (D+(F-F0)/C0)/C0
IF ( Q .LT. 0. ) GOTO 110
Q = A
100 ND = ND + 1
IF ( ND .GT. 25 ) GOTO 610
Q = A3*Q
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
IF ( P-F .LT. W*Q ) GOTO 100
GOTO 260
110 Q = .5*D/Q
IF ( Q .LT. .01*C0 ) Q = .01*C0
P = FV(Q,X,H,N,VALUE)
IF ( P .LE. F0 ) GOTO 120
F1 = F0
C1 = C0
F0 = P
C0 = Q
GOTO 130
120 F1 = P
C1 = Q
130 CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
135 IF ( A .EQ. 0. ) GOTO 140
IF ( FA-F .GE. V*A ) GOTO 160
IF ( FA-F .LT. W*A ) GOTO 210
GOTO 280
140 Q = C0
IF ( C1 .LT. Q ) Q = C1
150 NA = NA + 1
IF ( NA .GT. 25 ) GOTO 630
Q = A4*Q
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
IF ( P-F .GE. V*Q ) GOTO 150
GOTO 250
160 IF ( C0 .GT. C1 ) GOTO 200
IF ( F0-F .GT. V*C0 ) GOTO 180
IF ( F0-F .GE. W*C0 ) GOTO 320
IF ( C1 .LE. A5*C0 ) GOTO 320
R = DLOG(C1/C0)
S = -IDINT(R*L3+.999)
R = .999*DEXP(R/S)
Q = C1
170 Q = Q*R
IF ( Q .LT. C0 ) GOTO 320
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
NA = NA + 1
IF ( P-F .GT. V*Q ) GOTO 170
GOTO 320
180 Q = C0
190 NA = NA + 1
IF ( NA .GT. 25 ) GOTO 630
Q = A4*Q
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
IF ( P-F .GE. V*Q ) GOTO 190
GOTO 250
200 Q = A
GOTO 190
210 IF ( C0 .LT. C1 ) GOTO 290
IF ( F0-F .GE. V*C0 ) GOTO 230
IF ( F0-F .GE. W*C0 ) GOTO 250
Q = C0
220 ND = ND + 1
IF ( ND .GT. 25 ) GOTO 610
Q = A3*Q
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
IF ( P-F .LT. W*Q ) GOTO 220
GOTO 250
230 IF ( C0 .LE. A5*C1 ) GOTO 250
R = DLOG(C0/C1)
S = IDINT(R*L3+.999)
R = 1.001*DEXP(R/S)
Q = A
240 Q = Q*R
IF ( Q .GT. C0 ) GOTO 250
ND = ND + 1
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
IF ( P-F .LT. W*Q ) GOTO 240
250 IF ( IQ .EQ. 1 ) GOTO 320
260 IF ( B .EQ. 0. ) GOTO 280
IF ( C .EQ. 0. ) GOTO 270
V = C - A
W = A - B
R = 1./V
S = 1./W
P = FC - FA
Q = FB - FA
E = P*R + Q*S
IF ( DSIGN(E,C-B) .NE. E ) GOTO 320
IF ( E .EQ. 0. ) GOTO 320
Q = (P*R)*W - (Q*S)*V
Q = A - .5*Q/E
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
GOTO 320
270 R = 1./A
S = 1./B
P = R*(FA-F) - D
Q = S*(FB-F) - D
E = A - B
V = (R*P-S*Q)/E
W = (A*Q*S-B*P*R)/E
V = W*W-3.*V*D
IF ( V .LT. 0. ) V = 0.
V = DSQRT(V)
IF ( W+V .EQ. 0. ) GOTO 320
Q = -D/(W+V)
IF ( Q .LE. 0. ) GOTO 320
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
GOTO 320
280 IF ( IQ .EQ. 1 ) GOTO 320
Q = (D+(F-FA)/A)/A
IF ( Q .GE. 0. ) GOTO 320
Q = .5*D/Q
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
GOTO 320
290 IF ( F0-F .GT. V*C0 ) GOTO 300
IF ( F0-F .GT. W*C0 ) GOTO 320
300 Q = A
310 ND = ND + 1
IF ( ND .GT. 25 ) GOTO 610
Q = A3*Q
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
IF ( P-F .LT. W*Q ) GOTO 310
GOTO 250
320 DA = FD(A,X,H,N,GRAD)
IF ( DA .GT. A6*G ) GOTO 410
IF ( DA .GE. 0. ) GOTO 560
R = A
Q = 0.
DO 330 I = 1,J
IF ( Y(I) .GT. A ) GOTO 370
IF ( Y(I) .LE. Q ) GOTO 330
IF ( Y(I) .EQ. A ) GOTO 330
Q = Y(I)
330 CONTINUE
IF ( A .LE. A8*Q ) GOTO 560
Q = A
340 ND = ND + 1
IF ( ND .GT. 25 ) GOTO 610
Q = A3*Q
P = FV(Q,X,H,N,VALUE)
F1 = FA
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
IF ( P .LT. F1 ) GOTO 340
IF ( A .GT. R ) GOTO 360
DO 350 I = 1,N
350 H(I,2) = X(I) + A*H(I,1)
GOTO 560
360 DA = FD(A,X,H,N,GRAD)
IF ( DA .GT. A6*G ) GOTO 410
GOTO 560
370 Q = Y(I)
DO 380 K = I,J
IF ( Y(K) .LE. A ) GOTO 380
IF ( Y(K) .LT. Q ) Q = Y(K)
380 CONTINUE
IF ( Q .LE. A5*A ) GOTO 560
F0 = DLOG(Q/A)
S = IDINT(F0*L3+.999)
F0 = 1.001*DEXP(F0/S)
S = A
390 S = S*F0
IF ( S .GE. Q ) GOTO 320
P = FV(S,X,H,N,VALUE)
F1 = FA
CALL INS(S,P,A,B,C,FA,FB,FC,J,Y,Z)
IF ( P .LT. F1 ) GOTO 390
IF ( A .GT. R ) GOTO 320
DO 400 I = 1,N
400 H(I,2) = X(I) + A*H(I,1)
GOTO 560
410 B = 0.
K = 1
I = K
420 I = I + 1
IF ( I .GT. J ) GOTO 430
IF ( Y(I) .GE. A ) GOTO 420
IF ( Y(I) .LT. B ) GOTO 420
B = Y(I)
K = I
GOTO 420
430 FB = Z(K)
DB = D
IF ( B .NE. 0. ) DB = FD(B,X,H,N,GRAD)
440 W = 2.*DABS(B-A)
CALL CUB(C,A,B,FA,FB,DA,DB)
NC = 1
GOTO 480
450 W = .5*W
IF ( W .LT. DABS(C0-C) ) GOTO 550
IF ( C0 .LT. C ) GOTO 460
IF ( D0 .GE. D ) GOTO 470
GOTO 550
460 IF ( D0 .GT. D ) GOTO 550
470 CALL CUB(C,C,C0,F,F0,D,D0)
NC = NC + 1
IF ( NC .GT. 30 ) GOTO 600
480 R = DMAX1(A,B)
S = DMIN1(A,B)
IF ( C .GT. R ) GOTO 490
IF ( C .GT. S ) GOTO 500
C = S + (S-C)
S = .5*(A+B)
IF ( C .GT. S ) C = S
GOTO 500
490 C = R - (C-R)
S = .5*(A+B)
IF ( C .LT. S ) C = S
500 C0 = A
F0 = FA
D0 = DA
CALL FVD(F,D,C,X,H,N,BOTH)
IF ( F .LT. FA ) GOTO 510
B = C
FB = F
DB = D
GOTO 450
510 IF ( C .LT. A ) GOTO 540
IF ( D .LT. 0. ) GOTO 530
520 B = A
FB = FA
DB = DA
530 A = C
FA = F
DA = D
IF ( D .GT. A6*G ) GOTO 450
GOTO 560
540 IF ( D .LT. 0. ) GOTO 520
GOTO 530
550 C = .5*(A+B)
NB = NB + 1
W = DABS(B-A)
GOTO 500
560 E = 0.
DO 570 I = 1,N
IF ( DABS(H(I,3)) .GT. E ) E = DABS(H(I,3))
570 X(I) = H(I,2)
IT = IT + 1
IF ( E .LE. T ) GOTO 660
IF ( IT .GE. LIMIT ) GOTO 660
F = FA
D = DA
A = A7*A
CALL PRE(H(1,2),H(1,3))
R = 0.
DO 580 I = 1,N
580 R = R + H(I,2)*H(I,3)
IF ( R .LT. 0. ) GOTO 620
S = R/G
G = R
L = L + 1
IF ( L .GE. M ) GOTO 50
D = 0.
DO 590 I = 1,N
H(I,1) = -H(I,2) + S*H(I,1)
590 D = D + H(I,1)*H(I,3)
GOTO 70
600 IF ( D .LT. G ) GOTO 560
WRITE(6,*) 'UNABLE TO OBTAIN DESCENT DIRECTION'
STOP
610 WRITE(6,*) 'THE FUNCTION DECREASES WITH NO MINIMUM'
STOP
620 WRITE(6,*) 'PRECONDITIONER NOT POSITIVE DEFINITE'
STOP
630 Q = Q*A3**25
ND = 0
640 ND = ND + 1
IF ( ND .GT. 25 ) GOTO 650
Q = A3*Q
P = FV(Q,X,H,N,VALUE)
CALL INS(Q,P,A,B,C,FA,FB,FC,J,Y,Z)
IF ( P-F .GT. V*Q ) GOTO 640
GOTO 135
650 WRITE(6,*) 'UNABLE TO SATISFY ARMIJO CONDITION'
RETURN
660 STEP = A
RETURN
END
DOUBLE PRECISION FUNCTION FV(A,X,H,N,VALUE)
REAL*8 H(N,1),X(1),A,VALUE
EXTERNAL VALUE
DO 10 I = 1 , N
10 H(I,2) = X(I) + A*H(I,1)
FV = VALUE(H(1,2))
RETURN
END
DOUBLE PRECISION FUNCTION FD(A,X,H,N,GRAD)
REAL*8 H(N,1),X(1),A,D
EXTERNAL GRAD
DO 10 I = 1 , N
10 H(I,2) = X(I) + A*H(I,1)
CALL GRAD(H(1,3),H(1,2))
D = 0.
DO 20 I = 1,N
20 D = D + H(I,1)*H(I,3)
FD = D
RETURN
END
SUBROUTINE FVD(V,D,A,X,H,N,BOTH)
REAL*8 H(N,1),X(1),A,D,V
EXTERNAL BOTH
DO 10 I = 1 , N
10 H(I,2) = X(I) + A*H(I,1)
CALL BOTH(V,H(1,3),H(1,2))
D = 0.
DO 20 I = 1,N
20 D = D + H(I,1)*H(I,3)
RETURN
END
SUBROUTINE CUB(X,A,B,C,D,E,F)
REAL*8 A,B,C,D,E,F,G,V,W,X,Y,Z
G = B - A
IF ( G .EQ. 0. ) GOTO 50
V = E + F - 3*(D-C)/G
W = V*V-E*F
IF ( W .LT. 0. ) W = 0.
W = DSIGN(DSQRT(W),G)
Y = E + V
Z = F + V
IF ( DSIGN(Y,G) .NE. Y ) GOTO 30
IF ( DSIGN(Z,G) .NE. Z ) GOTO 20
IF ( Z .EQ. 0. ) GOTO 20
10 X = B - G*F/(Z+W)
RETURN
20 IF ( C .LT. D ) X = A
IF ( C .GE. D ) X = B
RETURN
30 IF ( DSIGN(Z,G) .NE. Z ) GOTO 40
IF ( DABS(E) .GT. DABS(F) ) GOTO 10
40 X = A + G*E/(Y-W)
RETURN
50 X = A
RETURN
END
SUBROUTINE INS(S,F,A,B,C,FA,FB,FC,J,Y,Z)
REAL*8 A,B,C,F,FA,FB,FC,S,Y(1),Z(1)
INTEGER J
J = J + 1
Y(J) = S
Z(J) = F
IF ( F .LE. FA ) GOTO 20
IF ( F .LE. FB ) GOTO 10
IF ( F .GT. FC ) RETURN
C = S
FC = F
RETURN
10 C = B
B = S
FC = FB
FB = F
RETURN
20 C = B
B = A
A = S
FC = FB
FB = FA
FA = F
RETURN
END
| apache-2.0 |
QEF/q-e_schrodinger | atomic/src/export_upf.f90 | 2 | 15169 | !
! Copyright (C) 2008 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!---------------------------------------------------------------------
SUBROUTINE export_upf(filename, unit_loc)
!---------------------------------------------------------------------
!
use constants, only : fpi
use kinds, only : dp
use ld1inc, only : author, nlcc, zval, lpaw, write_coulomb, &
etots, rel, ecutwfc, ecutrho, iswitch, &
nwfts, nbeta, lmax, which_augfun, elts, octs, llts, &
nnts, rcutusts, rcutts, rcut, rcutus, els, ikk, nwfs, &
lls, nns, ocs, beta, bmat, qq, qvan, qvanl, rcloc, lloc, &
betas, grid, rhos, phits, psipaw, vpsloc, phis, &
rmatch_augfun, etot, etots, jjs, pawsetup, nn, &
core_state, ll, el, nwf, psi, vpot, nconf, zed, &
jjts, vpstot, lltsc, rcuttsc, rcutustsc, eltsc, &
lsave_wfc, wfc_ae_recon, wfc_ps_recon, tm, enlts, &
nstoaets, pseudotype, enls, rhoc, vnl, vpsloc, &
lgipaw_reconstruction, use_paw_as_gipaw, use_xsd
use funct, only: get_dft_name
use global_version, only: version_number
!
use pseudo_types, only : pseudo_upf, pseudo_config, &
deallocate_pseudo_upf, deallocate_pseudo_config
use write_upf_new, only: write_upf
!
implicit none
!
CHARACTER(len=*),INTENT(IN) :: filename
INTEGER,INTENT(IN):: unit_loc
!
integer :: ibeta, jbeta, kbeta, l, ind, l1, l2
!
! Local variables
!
integer :: nb, mesh
TYPE (pseudo_upf) :: upf
TYPE (pseudo_config) :: at_conf
CHARACTER(len=2), external :: atom_name
CHARACTER(len=9) :: day, hour
call date_and_tim(day,hour)
!
IF (iswitch < 4 ) THEN
upf%generated='Generated using "atomic" code by A. Dal Corso &
& v.' // TRIM (version_number)
ELSE IF (iswitch==4) THEN
upf%generated='Generated using LDA-1/2 implemented by Leonardo&
& Matheus Marion Jorge'
ENDIF
upf%author=trim(author)
upf%date=trim(day)
upf%nv = "2.0.1" ! format version
!
upf%zp = zval
upf%nlcc = nlcc
upf%dft = get_dft_name()
upf%psd = atom_name(nint(zed))
if( pseudotype == 3) then
upf%tvanp = .true.
upf%typ='USPP'
else
upf%tvanp = .false.
upf%typ='NC'
endif
if(lpaw) upf%typ='PAW'
if(write_coulomb) upf%typ='1/r'
upf%tpawp = lpaw
upf%tcoulombp = write_coulomb
upf%has_gipaw = lgipaw_reconstruction
upf%paw_as_gipaw = use_paw_as_gipaw
upf%etotps = etots
upf%has_so = (rel == 2)
IF (rel == 2) THEN
upf%rel='full'
ELSE IF (rel == 1) THEN
upf%rel='scalar'
ELSE IF (rel < 1) THEN
upf%rel='no'
ELSE
call errore('export_upf', 'Unknown relativistic',1)
ENDIF
!
upf%ecutwfc = ecutwfc
upf%ecutrho = max(ecutrho, ecutwfc*4._dp)
!
upf%nwfc = nwfts
upf%nbeta = nbeta
!
if (.not. lpaw) then
upf%lmax = lmax
upf%q_with_l = (which_augfun == 'PSQ')
else
upf%lmax = pawsetup%lmax
upf%q_with_l = .true.
endif
upf%lmax_rho = 2*upf%lmax
upf%nqlc = 2* upf%lmax+1
upf%mesh = grid%mesh
upf%dx = grid%dx
upf%xmin = grid%xmin
upf%zmesh = grid%zmesh
upf%rmax = grid%rmax
!
allocate( upf%r (upf%mesh) )
allocate( upf%rab(upf%mesh) )
!
upf%r = grid%r
upf%rab = grid%rab
!
! when possible, write semilocal PP's in the UPF file - may be
! useful if one wants to use PPs in the UPF format in other codes
!
if( pseudotype == 1 ) then
if ( rel == 2 ) then
allocate(upf%vnl(1:grid%mesh, 0:upf%lmax,2))
else
allocate(upf%vnl(1:grid%mesh, 0:upf%lmax,1))
end if
do nb=1, nbeta
l=lls(nb)
if ( rel < 2 .or. l == 0 .or. &
abs(jjs(nb)-l+0.5_dp) < 0.001_dp) then
ind = 1
else if ( rel == 2 .and. l > 0 .and. &
abs(jjs(nb)-l-0.5_dp) < 0.001_dp) then
ind = 2
endif
upf%vnl(1:grid%mesh,l,ind) = vnl(1:grid%mesh,l,ind) + &
vpsloc(1:grid%mesh)
end do
end if
!
allocate(upf%lll(nbeta))
upf%lll(1:nbeta) = lls(1:nbeta)
!
! *initial* wavefunctions indexes and parameters
allocate(upf%els(upf%nwfc), upf%oc(upf%nwfc), &
upf%nchi(upf%nwfc), upf%lchi(upf%nwfc), &
upf%epseu(upf%nwfc), upf%rcut_chi(upf%nwfc), &
upf%rcutus_chi(upf%nwfc) )
upf%els(1:upf%nwfc) = elts(1:upf%nwfc)
upf%oc(1:upf%nwfc) = octs(1:upf%nwfc)
upf%lchi(1:upf%nwfc) = llts(1:upf%nwfc)
upf%nchi(1:upf%nwfc) = nnts(1:upf%nwfc)
upf%epseu(1:upf%nwfc) = enlts(1:upf%nwfc)
upf%rcut_chi(1:upf%nwfc) = rcutts(1:upf%nwfc)
upf%rcutus_chi(1:upf%nwfc) = rcutusts(1:upf%nwfc)
!
! projectors indexes and parameters
!
allocate(upf%kbeta(nbeta), upf%els_beta(nbeta),&
upf%rcut(nbeta), upf%rcutus(nbeta))
do nb=1,nbeta
upf%kbeta(nb) = ikk(nb)
upf%els_beta(nb)= els(nb)
upf%rcut(nb) = rcut(nb)
upf%rcutus(nb) = rcutus(nb)
end do
upf%kkbeta = maxval(upf%kbeta(1:nbeta))
!
! Save GENERATION configuration: not needed to use the pseudopotential,
! but must be saved for reference and for re-generating the pseudo
!
at_conf%nwfs = nwfs
if (tm) then
at_conf%pseud = 'troullier-martins'
else
at_conf%pseud = 'rrkj'
endif
allocate(at_conf%els (nwfs),&
at_conf%nns (nwfs),&
at_conf%lls (nwfs),&
at_conf%ocs (nwfs),&
at_conf%rcut (nwfs),&
at_conf%rcutus(nwfs),&
at_conf%enls (nwfs))
at_conf%els (1:nwfs) = els (1:nwfs) ! label (char*2)
at_conf%nns (1:nwfs) = nns (1:nwfs) ! n
at_conf%lls (1:nwfs) = lls (1:nwfs) ! l
at_conf%ocs (1:nwfs) = ocs (1:nwfs) ! occupation
at_conf%rcut (1:nwfs) = rcut (1:nwfs) ! inner cutoff radius
at_conf%rcutus(1:nwfs) = rcutus(1:nwfs) ! outer cutoff radius
at_conf%enls (1:nwfs) = enls (1:nwfs) ! one-particle energy
! projectors
allocate(upf%beta(grid%mesh, upf%nbeta))
upf%beta(1:grid%mesh, 1:upf%nbeta) = betas(1:grid%mesh, 1:nbeta)
!
! hamiltonian terms
allocate(upf%dion(upf%nbeta, upf%nbeta))
upf%dion(1:upf%nbeta, 1:upf%nbeta) = bmat(1:nbeta, 1:nbeta)
!
if (pseudotype.eq.3) then
allocate(upf%qqq(upf%nbeta, upf%nbeta))
upf%qqq(1:upf%nbeta,1:upf%nbeta) = qq(1:nbeta,1:nbeta)
!
upf%qqq_eps = 1.e-12_dp ! (hardcoded)
upf%nqf = 0 ! polinomial expansion of aug.charge is not supported by atomic
!
if (upf%q_with_l .or. lpaw) then
allocate(upf%qfuncl(upf%mesh, upf%nbeta*(upf%nbeta+1)/2, 0:2*upf%lmax))
else
allocate(upf%qfunc(upf%mesh, upf%nbeta*(upf%nbeta+1)/2))
endif
!
if(lpaw) qvanl(1:grid%mesh,:,:,:) = pawsetup%augfun(1:grid%mesh,:,:,:)
do ibeta=1,nbeta
do jbeta=ibeta,nbeta
kbeta = jbeta * (jbeta-1) / 2 + ibeta
if (upf%q_with_l .or. lpaw) then
l1=upf%lll(ibeta)
l2=upf%lll(jbeta)
do l=abs(l1-l2), l1+l2
upf%qfuncl(1:grid%mesh,kbeta,l) = qvanl(1:grid%mesh,ibeta,jbeta,l)
enddo
else
upf%qfunc(1:grid%mesh,kbeta) = qvan (1:grid%mesh, ibeta, jbeta)
endif
enddo
enddo
!
endif
!
allocate(upf%rho_atc(upf%mesh))
if (upf%nlcc) then
upf%rho_atc(1:grid%mesh) = rhoc(1:grid%mesh)/fpi/grid%r2(1:grid%mesh)
else
upf%rho_atc(:) = 0.0_dp
end if
allocate(upf%rho_at(upf%mesh))
upf%rho_at (1:grid%mesh) = rhos (1:grid%mesh,1)
!
allocate(upf%chi(upf%mesh,upf%nwfc))
upf%chi(1:grid%mesh,1:upf%nwfc) = phits(1:grid%mesh,1:upf%nwfc)
!
allocate(upf%vloc(upf%mesh))
upf%vloc(1:grid%mesh) = vpsloc(1:grid%mesh)
upf%lloc = lloc
upf%rcloc = rcloc
!
!
if (upf%has_so) CALL export_upf_so()
if (upf%tpawp) CALL export_upf_paw()
if (upf%has_gipaw) CALL export_upf_gipaw()
upf%has_wfc = lsave_wfc
if (upf%has_wfc) CALL export_upf_wfc()
!
if (use_xsd) then
CALL write_upf( FILENAME = TRIM(filename) , UPF=upf, SCHEMA = 'qe_pp', CONF = at_conf, U_INPUT = unit_loc)
else
CALL write_upf( FILENAME = TRIM(filename), UPF= upf, SCHEMA = 'v2', CONF = at_conf, U_INPUT = unit_loc)
endif
!
CALL deallocate_pseudo_upf( upf )
CALL deallocate_pseudo_config( at_conf )
RETURN
CONTAINS
SUBROUTINE export_upf_wfc
ALLOCATE( upf%aewfc(upf%mesh, upf%nbeta), upf%pswfc(upf%mesh, upf%nbeta) )
upf%aewfc(1:upf%mesh,1:upf%nbeta) = psipaw(1:upf%mesh,1:upf%nbeta)
upf%pswfc(1:upf%mesh,1:upf%nbeta) = phis(1:upf%mesh,1:upf%nbeta)
END SUBROUTINE export_upf_wfc
SUBROUTINE export_upf_so
ALLOCATE( upf%nn(upf%nwfc), upf%jchi(upf%nwfc), upf%jjj(upf%nbeta) )
upf%els(1:upf%nwfc) = elts(1:upf%nwfc)
upf%nn(1:upf%nwfc) = nnts(1:upf%nwfc)
upf%lchi(1:upf%nwfc) = llts(1:upf%nwfc)
upf%jchi(1:upf%nwfc) = jjts(1:upf%nwfc)
!
upf%lll(1:upf%nbeta) = lls(1:upf%nbeta)
upf%jjj(1:upf%nbeta) = jjs(1:upf%nbeta)
END SUBROUTINE export_upf_so
!
SUBROUTINE export_upf_paw
INTEGER :: co,n !EMINE
upf%paw_data_format = 2
!
upf%paw%core_energy = etot -etots
upf%paw%lmax_aug = 2*upf%lmax
upf%paw%augshape = which_augfun
upf%paw%raug = rmatch_augfun
upf%paw%iraug = pawsetup%irc
allocate(upf%paw%ae_rho_atc(upf%mesh))
upf%paw%ae_rho_atc(1:upf%mesh) = pawsetup%aeccharge(1:upf%mesh)/fpi/grid%r2(1:grid%mesh)
!
allocate(upf%paw%ae_vloc(upf%mesh))
upf%paw%ae_vloc(1:upf%mesh) = pawsetup%aeloc(1:upf%mesh)
!
allocate(upf%paw%oc(upf%nbeta))
do nb = 1,upf%nbeta
upf%paw%oc(nb) = max(pawsetup%oc(nb),0._dp)
enddo
!
allocate(upf%paw%augmom(upf%nbeta, upf%nbeta, 0:2*upf%lmax))
upf%paw%augmom(1:upf%nbeta,1:upf%nbeta,0:2*upf%lmax) &
= pawsetup%augmom(1:upf%nbeta,1:upf%nbeta,0:2*upf%lmax)
!
upf%kkbeta = max(upf%kkbeta, upf%paw%iraug)
IF (upf%has_so) THEN
ALLOCATE( upf%paw%aewfc_rel(upf%mesh, upf%nbeta) )
upf%paw%aewfc_rel(1:upf%mesh,1:upf%nbeta) = &
pawsetup%aewfc_rel(1:upf%mesh,1:upf%nbeta)
ENDIF
!
!upf%paw%pfunc(:) = not used when writing, reconstructed from upf%aewfc
!upf%paw%ptfunc(:) = not used when writing, reconstructed from upf%pswfc
!===============================================================
!For PAW pseudopotentials, now we also include core information:
!even when lgipaw_reconstruction = .false.
!EMINE
upf%gipaw_ncore_orbitals = COUNT(core_state(1:nwf))
co = upf%gipaw_ncore_orbitals
ALLOCATE ( &
upf%gipaw_core_orbital_n(co), &
upf%gipaw_core_orbital_l(co), &
upf%gipaw_core_orbital_el(co), &
upf%gipaw_core_orbital(upf%mesh,co))
upf%gipaw_core_orbital_n(1:co) = nn(1:co)
upf%gipaw_core_orbital_l(1:co) = ll(1:co)
upf%gipaw_core_orbital_el(1:co) = el(1:co)
DO n = 1,co
upf%gipaw_core_orbital(1:upf%mesh,n) &
= psi(1:upf%mesh,1,n)
ENDDO
!================================================================
RETURN
END SUBROUTINE export_upf_paw
SUBROUTINE export_upf_gipaw
INTEGER :: co,nw,n,nb
IF ( nconf /= 1 ) CALL errore ( "write_gipaw_orbitals", &
"The (GI)PAW reconstruction requires one test configuration", abs(nconf) )
upf%gipaw_data_format = 2 ! The version of the format
upf%gipaw_ncore_orbitals = COUNT(core_state(1:nwf))
co = upf%gipaw_ncore_orbitals
upf%gipaw_wfs_nchannels = nwfts
nw = upf%gipaw_wfs_nchannels
IF (allocated(upf%gipaw_core_orbital_n)) DEALLOCATE(upf%gipaw_core_orbital_n)
IF (allocated(upf%gipaw_core_orbital_l)) DEALLOCATE(upf%gipaw_core_orbital_l)
IF (allocated(upf%gipaw_core_orbital_el)) DEALLOCATE(upf%gipaw_core_orbital_el)
IF (allocated(upf%gipaw_core_orbital)) DEALLOCATE(upf%gipaw_core_orbital)
IF (allocated(upf%gipaw_wfs_el)) DEALLOCATE(upf%gipaw_wfs_el)
IF (allocated(upf%gipaw_wfs_ll)) DEALLOCATE(upf%gipaw_wfs_ll)
IF (allocated(upf%gipaw_wfs_ll)) DEALLOCATE(upf%gipaw_wfs_ll)
IF (allocated(upf%gipaw_wfs_rcut)) DEALLOCATE(upf%gipaw_wfs_rcut)
IF (allocated(upf%gipaw_wfs_rcutus)) DEALLOCATE(upf%gipaw_wfs_rcutus)
IF (allocated(upf%gipaw_wfs_ae)) DEALLOCATE(upf%gipaw_wfs_ae)
IF (allocated(upf%gipaw_wfs_ps)) DEALLOCATE(upf%gipaw_wfs_ps)
IF (allocated(upf%gipaw_vlocal_ae)) DEALLOCATE(upf%gipaw_vlocal_ae)
IF (allocated(upf%gipaw_vlocal_ps)) DEALLOCATE(upf%gipaw_vlocal_ps)
ALLOCATE ( &
upf%gipaw_core_orbital_n(co), &
upf%gipaw_core_orbital_l(co), &
upf%gipaw_core_orbital_el(co), &
upf%gipaw_core_orbital(upf%mesh,co), &
upf%gipaw_wfs_el(nw), &
upf%gipaw_wfs_ll(nw), &
upf%gipaw_wfs_rcut(nw), &
upf%gipaw_wfs_rcutus(nw), &
upf%gipaw_wfs_ae(upf%mesh,nw), &
upf%gipaw_wfs_ps(upf%mesh,nw), &
upf%gipaw_vlocal_ae(upf%mesh), &
upf%gipaw_vlocal_ps(upf%mesh) &
)
upf%gipaw_core_orbital_n(1:co) = nn(1:co)
upf%gipaw_core_orbital_l(1:co) = ll(1:co)
upf%gipaw_core_orbital_el(1:co) = el(1:co)
DO n = 1,co
upf%gipaw_core_orbital(1:upf%mesh,n) &
= psi(1:upf%mesh,1,n)
ENDDO
upf%gipaw_vlocal_ae(1:upf%mesh) &
= grid%r(1:upf%mesh) * vpot(1:upf%mesh,1)
upf%gipaw_vlocal_ps(1:upf%mesh) &
= grid%r(1:upf%mesh) * vpstot(1:upf%mesh,1)
upf%gipaw_wfs_el(1:nw) = elts(1:nw)
upf%gipaw_wfs_ll(1:nw) = lltsc(1:nw,1)
! Find the suitable core radii to be written out
!*apsi WARNING: DOES NOT WORK WITH VANDERBILT PP YET
DO nb = 1,nw
upf%gipaw_wfs_rcut(nb) = -1.0_dp
DO n = 1, nwfs
IF ( els(n) == eltsc(nb,1) ) THEN
upf%gipaw_wfs_rcut(nb) = rcuttsc(nb,1)
upf%gipaw_wfs_rcutus(nb) = rcutustsc(nb,1)
END IF
END DO
!
IF ( upf%gipaw_wfs_rcut(nb) < 0.0_dp ) THEN
DO n = 1, nwfs
! If there is one with the same l...
IF ( lltsc(nb,1) == lls(n) ) THEN
upf%gipaw_wfs_rcut(nb) = rcuttsc(nb,1)
upf%gipaw_wfs_rcutus(nb) = rcutustsc(nb,1)
END IF
END DO
END IF
ENDDO
DO n = 1,nw
!
upf%gipaw_wfs_ae(1:upf%mesh,n) = wfc_ae_recon(1:upf%mesh,nstoaets(n))
!
upf%gipaw_wfs_ps(1:upf%mesh,n) = wfc_ps_recon(1:upf%mesh,n)
ENDDO
RETURN
END SUBROUTINE export_upf_gipaw
!
END SUBROUTINE export_upf
| gpl-2.0 |
QEF/q-e_schrodinger | CPV/src/print_out.f90 | 2 | 24425 | !
! Copyright (C) 2002-2011 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!=----------------------------------------------------------------------------=!
SUBROUTINE printout_new_x &
( nfi, tfirst, tfilei, tprint, tps, h, stress, tau0, vels, &
fion, ekinc, temphc, tempp, temps, etot, enthal, econs, econt, &
vnhh, xnhh0, vnhp, xnhp0, vnhe, xnhe0, atot, ekin, epot, print_forces, print_stress, &
tstdout)
!=----------------------------------------------------------------------------=!
!
USE kinds, ONLY : DP
USE control_flags, ONLY : iprint, textfor, do_makov_payne, conv_elec
USE energies, ONLY : print_energies, dft_energy_type
USE printout_base, ONLY : printout_base_open, printout_base_close, &
printout_pos, printout_cell, printout_stress, &
printout_vefftsvdw, printout_wfc, &
save_print_counter
USE constants, ONLY : au_gpa, bohr_radius_cm, amu_au, &
BOHR_RADIUS_ANGS, pi
USE ions_base, ONLY : na, nsp, nat, ityp, atm, amass, cdmi, &
ions_cofmass, ions_displacement
USE cell_base, ONLY : s_to_r, get_volume, ainv
USE efield_module, ONLY : tefield, pberryel, pberryion, &
tefield2, pberryel2, pberryion2
USE cg_module, ONLY : tcg, itercg
USE sic_module, ONLY : self_interaction, sic_alpha, sic_epsilon
USE electrons_module, ONLY : print_eigenvalues
USE pres_ai_mod, ONLY : P_ext, Surf_t, volclu, surfclu, abivol, &
abisur, pvar, n_ele
USE cp_main_variables, ONLY : nprint_nfi, iprint_stdout
USE control_flags, ONLY : ndw
USE io_global, ONLY : ionode, ionode_id, stdout
USE control_flags, ONLY : lwf, lwfpbe0nscf ! exx_wf related
USE energies, ONLY : exx ! exx_wf related
USE control_flags, ONLY : ts_vdw
USE tsvdw_module, ONLY : EtsvdW, VefftsvdW
USE input_parameters, ONLY : tcpbo
USE exx_module, ONLY : exxalfa
USE xc_lib, ONLY : xclib_dft_is, exx_is_active
USE wannier_module, ONLY : wfc
USE electrons_base, ONLY : nbsp, nspin, nupdwn, iupdwn
USE clib_wrappers, ONLY : memstat
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: nfi
LOGICAL, INTENT(IN) :: tfirst, tfilei, tprint
REAL(DP), INTENT(IN) :: tps
REAL(DP), INTENT(IN) :: h( 3, 3 )
REAL(DP), INTENT(IN) :: stress( 3, 3 )
REAL(DP), INTENT(IN) :: tau0( :, : ) ! real positions
REAL(DP), INTENT(IN) :: vels( :, : ) ! scaled velocities
REAL(DP), INTENT(IN) :: fion( :, : ) ! real forces
REAL(DP), INTENT(IN) :: ekinc, temphc, tempp, etot, enthal, econs, econt
REAL(DP), INTENT(IN) :: temps( : ) ! partial temperature for different ionic species
REAL(DP), INTENT(IN) :: vnhh( 3, 3 ), xnhh0( 3, 3 ), vnhp( 1 ), xnhp0( 1 ), vnhe, xnhe0
REAL(DP), INTENT(IN) :: atot! enthalpy of system for c.g. case
REAL(DP), INTENT(IN) :: ekin
REAL(DP), INTENT(IN) :: epot ! ( epseu + eht + exc )
LOGICAL, INTENT(IN) :: print_forces, print_stress, tstdout
!
REAL(DP) :: stress_gpa( 3, 3 )
REAL(DP) :: cdm0( 3 )
REAL(DP) :: dis( SIZE(na) )
REAL(DP) :: out_press, volume
REAL(DP) :: totalmass
INTEGER :: isa, is, ia, kilobytes
REAL(DP), ALLOCATABLE :: tauw(:, :), wfc_temp(:,:)
LOGICAL :: tsic, tfile
LOGICAL, PARAMETER :: nice_output_files=.false.
!
! avoid double printing to files by refering to nprint_nfi
!
tfile = tfilei .and. ( nfi .gt. nprint_nfi )
!
CALL memstat( kilobytes )
!
IF( ionode .AND. tfile .AND. tprint ) THEN
CALL printout_base_open()
END IF
!
IF( tprint ) THEN
IF ( tfile ) THEN
! we're writing files, let's save nfi
CALL save_print_counter( nfi, ndw )
ELSE IF ( tfilei ) then
! not there yet, save the old nprint_nfi
CALL save_print_counter( nprint_nfi, ndw )
END IF
END IF
!
volume = get_volume( h )
!
stress_gpa = stress * au_gpa
!
out_press = ( stress_gpa(1,1) + stress_gpa(2,2) + stress_gpa(3,3) ) / 3.0d0
!
IF( nfi > 0 ) THEN
CALL update_accomulators &
( ekinc, ekin, epot, etot, tempp, enthal, econs, out_press, volume )
END IF
!
! Makov-Payne correction to the total energy (isolated systems only)
!
IF( do_makov_payne .AND. tprint ) CALL makov_payne( etot )
!
IF( ionode ) THEN
!
IF( tprint ) THEN
!
tsic = ( self_interaction /= 0 )
!
IF(tstdout) &
CALL print_energies( tsic, sic_alpha = sic_alpha, sic_epsilon = sic_epsilon, textfor = textfor )
!
CALL print_eigenvalues( 31, tfile, tstdout, nfi, tps )
!
IF(tstdout) WRITE( stdout, * )
IF( kilobytes > 0 .AND. tstdout ) &
WRITE( stdout, fmt="(3X,'Allocated memory (kb) = ', I9 )" ) kilobytes
IF(tstdout) WRITE( stdout, * )
!
IF( tstdout ) CALL printout_cell( stdout, h )
!
IF( tfile ) CALL printout_cell( 36, h, nfi, tps )
!
! System density:
!
totalmass = 0.0d0
DO is = 1, nsp
totalmass = totalmass + amass(is) * na(is)
END DO
totalmass = totalmass / volume * 11.2061d0 ! AMU_SI * 1000.0 / BOHR_RADIUS_CM**3
IF(tstdout) &
WRITE( stdout, fmt='(/,3X,"System Density [g/cm^3] : ",F25.10,/)' ) totalmass
IF(tstdout) &
WRITE( stdout, fmt='(/,3X,"System Volume [A.U.^3] : ",F25.10,/)' ) volume ! BS
!
! Compute Center of mass displacement since the initialization of step counter
!
CALL ions_cofmass( tau0, amass, nat, ityp, cdm0 )
!
IF(tstdout) &
WRITE( stdout,1000) SUM( ( cdm0(:)-cdmi(:) )**2 )
!
CALL ions_displacement( dis, tau0, nsp, nat, ityp )
!
IF( print_stress ) THEN
!
IF(tstdout) &
CALL printout_stress( stdout, stress_gpa )
!
IF( tfile ) CALL printout_stress( 38, stress_gpa, nfi, tps )
!
END IF
!
! ... write out a standard XYZ file in angstroms
!
IF(tstdout) &
CALL printout_pos( stdout, tau0, nat, ityp, what = 'pos', label = atm )
!
IF( tfile ) then
if (.not.nice_output_files) then
CALL printout_pos( 35, tau0, nat, ityp, nfi = nfi, tps = tps )
else
CALL printout_pos( 35, tau0, nat, ityp, what = 'xyz', &
nfi = nfi, tps = tps, label = atm, &
fact= BOHR_RADIUS_ANGS )
endif
END IF
!
ALLOCATE( tauw( 3, nat ) )
!
DO ia = 1, nat
!
CALL s_to_r( vels(:,ia), tauw(:,ia), h )
!
END DO
!
IF(tstdout) WRITE( stdout, * )
!
IF(tstdout) &
CALL printout_pos( stdout, tauw, nat, ityp, &
what = 'vel', label = atm )
!
IF( tfile ) then
if (.not.nice_output_files) then
CALL printout_pos( 34, tauw, nat, ityp, nfi = nfi, tps = tps )
else
CALL printout_pos( 34, tauw, nat, ityp, nfi = nfi, tps = tps, &
what = 'vel', label = atm )
endif
END IF
!
IF( print_forces ) THEN
!
IF(tstdout) WRITE( stdout, * )
!
IF(tstdout) &
CALL printout_pos( stdout, fion, nat, ityp, &
what = 'for', label = atm )
!
IF( tfile ) then
if (.not.nice_output_files) then
CALL printout_pos( 37, fion, nat, ityp, nfi = nfi, tps = tps )
else
CALL printout_pos( 37, fion, nat, ityp, nfi = nfi, tps = tps, &
what = 'for', label = atm )
endif
END IF
!
END IF
!
DEALLOCATE( tauw )
!
! ... Write partial temperature and MSD for each atomic specie tu stdout
!
IF(tstdout) WRITE( stdout, * )
IF(tstdout) WRITE( stdout, 1944 )
!
DO is = 1, nsp
IF( tstdout ) WRITE( stdout, 1945 ) is, temps(is), dis(is)
END DO
!
IF( tfile ) THEN
!
IF(tcpbo) THEN
!
WRITE( 33, 29484 ) nfi,tps,tempp,etot,enthal,econs,econt,(-exx*exxalfa),EtsvdW
! BS: different printing options need to be added ..
!
ELSE
!
IF((nfi/iprint).EQ.1) WRITE( 33, 29471 )
!
IF(xclib_dft_is('hybrid').AND.exx_is_active().AND.ts_vdw) THEN
WRITE( 33, 29481 ) nfi,tps,ekinc,temphc,tempp,etot,enthal, &
econs,econt,volume,out_press,(-exx*exxalfa),EtsvdW
ELSEIF(ts_vdw) THEN
WRITE( 33, 29482 ) nfi,tps,ekinc,temphc,tempp,etot,enthal, &
econs,econt,volume,out_press,EtsvdW
ELSEIF(xclib_dft_is('hybrid').AND.exx_is_active()) THEN
WRITE( 33, 29482 ) nfi,tps,ekinc,temphc,tempp,etot,enthal, &
econs,econt,volume,out_press,(-exx*exxalfa)
ELSE
#if defined(__OLD_FORMAT)
WRITE( 33, '(I6,1X,F8.5,1X,F6.1,1X,F6.1,4(1X,F14.5),F10.2, F8.2, F8.5)') &
nfi,ekinc,temphc,tempp,etot,enthal, &
econs,econt,volume,out_press,tps
#else
WRITE( 33, 29483 ) nfi,tps,ekinc,temphc,tempp,etot,enthal, &
econs,econt,volume,out_press
#endif
END IF
!
END IF
!
END IF
!
IF( tfile ) WRITE( 39, 2949 ) nfi,tps,vnhh(3,3),xnhh0(3,3),vnhp(1),xnhp0(1), vnhe, xnhe0
!
!print Wannier centers at every iprint steps in .wfc file
!
IF(tfile.AND.lwf) THEN
!
IF (.NOT.tcpbo) THEN
!
ALLOCATE( wfc_temp(3,nbsp) ); wfc_temp=0.0_DP
!
wfc_temp(:,:) = MATMUL( ainv(:,:), wfc(:,:) )
!
wfc_temp(:,:) = wfc_temp(:,:) - FLOOR (wfc_temp(:,:))
!
wfc_temp(:,:) = MATMUL( h(:,:), wfc_temp(:,:) )
!
CALL printout_wfc( 42, wfc_temp(:,1:nupdwn(1)), nupdwn(1), nfi, tps, 1)
IF(nspin.EQ.2)CALL printout_wfc( 42, wfc_temp(:,iupdwn(2):nbsp), nupdwn(2), nfi, tps, nspin )
!
DEALLOCATE( wfc_temp )
!
ELSE
!
IF (conv_elec) THEN
!
ALLOCATE( wfc_temp(3,nbsp) ); wfc_temp=0.0_DP
!
wfc_temp(:,:) = MATMUL( ainv(:,:), wfc(:,:) )
!
wfc_temp(:,:) = wfc_temp(:,:) - FLOOR (wfc_temp(:,:))
!
wfc_temp(:,:) = MATMUL( h(:,:), wfc_temp(:,:) )
!
CALL printout_wfc( 42, wfc_temp(:,1:nupdwn(1)), nupdwn(1), nfi, tps, 1)
IF(nspin.EQ.2)CALL printout_wfc( 42, wfc_temp(:,iupdwn(2):nbsp), nupdwn(2), nfi, tps, nspin )
!
DEALLOCATE( wfc_temp )
!
END IF
!
END IF
!
END IF
!
!print TS-vdW effective Hirshfeld volume of each atom at every iprint steps in .hrs file
!
IF(tfile.AND.ts_vdw) THEN
!
IF (.NOT.tcpbo) THEN
!
CALL printout_vefftsvdw( 43, VefftsvdW, nat, nfi, tps )
!
ELSE
!
IF (conv_elec) CALL printout_vefftsvdw( 43, VefftsvdW, nat, nfi, tps )
!
END IF
!
END IF
!
END IF !tprint
!
END IF !ionode
!
IF( ionode .AND. tfile .AND. tprint ) THEN
!
! ... Close and flush unit 30, ... 40
!
CALL printout_base_close()
!
END IF
!
IF( ( MOD( nfi, iprint_stdout ) == 0 ) .OR. tfirst ) THEN
!
WRITE( stdout, * )
!======================================================
!printing with better format
IF(xclib_dft_is('hybrid').AND.exx_is_active()) THEN
IF(ts_vdw)THEN
IF(tcpbo) THEN
WRITE( stdout, 19473 )
ELSE
WRITE( stdout, 19472 )
END IF
ELSE
WRITE( stdout, 19470 )
END IF
ELSE
IF(ts_vdw)THEN
WRITE( stdout, 19471 )
ELSE
WRITE( stdout, 1947 )
END IF
END IF
!======================================================
!
IF ( abivol .AND. pvar ) write(stdout,*) 'P = ', P_ext*au_gpa
!
END IF
!
if (abivol) then
write(stdout,*) nfi, 'ab-initio volume = ', volclu, ' a.u.^3'
write(stdout,*) nfi, 'PV = ', P_ext*volclu, ' ha'
end if
if (abisur) then
write(stdout,*) nfi, 'ab-initio surface = ', surfclu, ' a.u.^2'
if (abivol) write(stdout,*) nfi, 'spherical surface = ', &
4.d0*pi*(0.75d0*volclu/pi)**(2.d0/3.d0), ' a.u.^2'
write(stdout,*) nfi, 't*S = ', Surf_t*surfclu, ' ha'
end if
if (abivol.or.abisur) write(stdout,*) nfi, &
' # of electrons within the isosurface = ', n_ele
IF( .not. tcg ) THEN
!
IF(xclib_dft_is('hybrid').AND.exx_is_active()) THEN
!
IF (ts_vdw) THEN
!
IF(tcpbo) THEN
!
WRITE(stdout,19483) nfi,tempp,etot,enthal,econs,econt,-exx*exxalfa,EtsvdW
!
ELSE
!
WRITE(stdout,19482) nfi,ekinc,temphc,tempp,-exx*exxalfa,etot,enthal,econs, &
econt,vnhh(3,3),xnhh0(3,3),vnhp(1),xnhp0(1),EtsvdW
!
END IF
!
ELSE
!
WRITE(stdout, 19480)nfi,ekinc,temphc,tempp,-exx*exxalfa,etot,enthal,econs, &
econt,vnhh(3,3),xnhh0(3,3),vnhp(1),xnhp0(1)
!
END IF
!
ELSE
IF (ts_vdw) THEN
!
WRITE(stdout,19481) nfi,ekinc,temphc,tempp,etot,enthal,econs, &
econt,vnhh(3,3),xnhh0(3,3),vnhp(1),xnhp0(1),EtsvdW
!
ELSE
!
WRITE(stdout, 1948) nfi, ekinc, temphc, tempp, etot, enthal, &
econs, econt, vnhh(3,3), xnhh0(3,3), vnhp(1), xnhp0(1)
!
END IF
END IF
!
ELSE
IF ( MOD( nfi, iprint ) == 0 .OR. tfirst ) THEN
!
WRITE( stdout, * )
WRITE( stdout, 255 ) 'nfi','tempp','E','-T.S-mu.nbsp','+K_p','#Iter'
!
END IF
!
WRITE( stdout, 256 ) nfi, INT( tempp ), etot, atot, econs, itercg
!
END IF
IF( tefield) THEN
IF(ionode) write(stdout,'( A14,F12.6,2X,A14,F12.6)') 'Elct. dipole 1',-pberryel,'Ionic dipole 1',-pberryion
ENDIF
IF( tefield2) THEN
IF(ionode) write(stdout,'( A14,F12.6,2X,A14,F12.6)') 'Elct. dipole 2',-pberryel2,'Ionic dipole 2',-pberryion2
ENDIF
!
!
255 FORMAT( ' ',A5,A8,3(1X,A12),A6 )
256 FORMAT( 'Step ',I5,1X,I7,1X,F13.6,1X,F13.6,1X,F13.6,1X,I5 )
1000 FORMAT(/,3X,'Center of mass square displacement (a.u.): ',F10.6,/)
1944 FORMAT(//' Partial temperatures (for each ionic specie) ', &
/,' Species Temp (K) Mean Square Displacement (a.u.)')
1945 FORMAT(3X,I6,1X,ES10.2,1X,ES14.4)
1947 FORMAT( 2X,'nfi',5X,'ekinc',14X,'temph',2X,'tempp',5X,'etot',17X,'enthal', &
& 15X,'econs',16X,'econt',14X,'vnhh',4X,'xnhh0',3X,'vnhp',4X,'xnhp0') ! GGA
19470 FORMAT(2X,'nfi',5X,'ekinc',14X,'temph',2X,'tempp',10X,'exx',15X,'etot',15X,'enthal', &
& 15X,'econs',16X,'econt',12X,'vnhh',4X,'xnhh0',3X,'vnhp',4X,'xnhp0') ! PBE0
19471 FORMAT(2X,'nfi',5X,'ekinc',14X,'temph',2X,'tempp',5X,'etot',17X,'enthal', &
& 15X,'econs',16X,'econt',16X,'vnhh',4X,'xnhh0',4X,'vnhp',4X,'xnhp0',8X,'evdw') ! GGA+vdW
19472 FORMAT(2X,'nfi',5X,'ekinc',14X,'temph',2X,'tempp',10X,'exx',15X,'etot',15X,'enthal', &
& 15X,'econs',16X,'econt',16X,'vnhh',4X,'xnhh0',4X,'vnhp',4X,'xnhp0',8X,'evdw') ! PBE0+vdW
19473 FORMAT(2X,'nfi',8X,'tempp',15X,'etot',15X,'enthal',15X,'econs', &
& 15X,'econt',15X,'exx',15X,'evdw')
1948 FORMAT( I7,1X,F20.15,1X,F6.1,1X,F7.2,4(1X,F20.12),4(1X,F8.4) ) ! GGA
19480 FORMAT( I7,1X,F20.15,1X,F6.1,1X,F7.2,5(1X,F20.12),4(1X,F8.4) ) ! PBE0
19481 FORMAT( I7,1X,F20.15,1X,F6.1,1X,F7.2,4(1X,F20.12),4(1X,F8.4),1X,F20.12 ) ! GGA+vdW
19482 FORMAT( I7,1X,F20.15,1X,F6.1,1X,F7.2,5(1X,F20.12),4(1X,F8.4),1X,F20.12 ) ! PBE0+vdW
19483 FORMAT( I7,1X,F10.5,6(1X,F18.10) )
29471 FORMAT( '#',3X,'nfi',4X,'time(ps)',8X,'ekinc',8X,'T_cell(K)',5X,'Tion(K)',10X,'etot',15X,'enthal',15X,'econs', &
& 15X,'econt',10X,'Volume',8X,'Pressure(GPa)',8X,'EXX',15X,'EVDW' )
29481 FORMAT( I7,4(1X,ES13.6),4(2X,F18.8),1X,ES13.6,2X,F12.5,2(2X,F15.8) )
29482 FORMAT( I7,4(1X,ES13.6),4(2X,F18.8),1X,ES13.6,2X,F12.5,2X,F15.8 )
29483 FORMAT( I7,4(1X,ES13.6),4(2X,F18.8),1X,ES13.6,2X,F12.5 )
29484 FORMAT( I7,2(1X,ES13.6),6(2X,F18.8) )
2949 FORMAT( I7,1X,ES13.6,6(1X,F15.8) )
!
RETURN
END SUBROUTINE printout_new_x
!
!
!=----------------------------------------------------------------------------=!
SUBROUTINE print_legend()
!=----------------------------------------------------------------------------=!
!
USE io_global, ONLY : ionode, stdout
!
IMPLICIT NONE
!
IF ( .NOT. ionode ) RETURN
!
WRITE( stdout, *)
WRITE( stdout, *) ' Short Legend and Physical Units in the Output'
WRITE( stdout, *) ' ---------------------------------------------'
WRITE( stdout, *) ' NFI [int] - step index'
WRITE( stdout, *) ' EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics'
WRITE( stdout, *) ' TEMPH [K] - Temperature of the fictitious cell dynamics'
WRITE( stdout, *) ' TEMP [K] - Ionic temperature'
WRITE( stdout, *) ' ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian)'
WRITE( stdout, *) ' ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V )'
WRITE( stdout, *) ' ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell'
WRITE( stdout, *) ' ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian'
WRITE( stdout, *)
!
RETURN
!
END SUBROUTINE print_legend
!=----------------------------------------------------------------------------=!
SUBROUTINE printacc( )
!=----------------------------------------------------------------------------=!
USE kinds, ONLY : DP
USE cp_main_variables, ONLY : acc, acc_this_run, nfi, nfi_run
USE io_global, ONLY : ionode, stdout
IMPLICIT NONE
!
REAL(DP) :: avgs(9)
REAL(DP) :: avgs_run(9)
avgs = 0.0d0
avgs_run = 0.0d0
!
IF ( nfi > 0 ) THEN
avgs = acc( 1:9 ) / DBLE( nfi )
END IF
!
IF ( nfi_run > 0 ) THEN
avgs_run = acc_this_run(1:9) / DBLE( nfi_run )
END IF
IF( ionode ) THEN
WRITE( stdout,1949)
WRITE( stdout,1951) avgs(1), avgs_run(1)
WRITE( stdout,1952) avgs(2), avgs_run(2)
WRITE( stdout,1953) avgs(3), avgs_run(3)
WRITE( stdout,1954) avgs(4), avgs_run(4)
WRITE( stdout,1955) avgs(5), avgs_run(5)
WRITE( stdout,1956) avgs(6), avgs_run(6)
WRITE( stdout,1957) avgs(7), avgs_run(7)
WRITE( stdout,1958) avgs(8), avgs_run(8)
WRITE( stdout,1959) avgs(9), avgs_run(9)
WRITE( stdout,1990)
1949 FORMAT(//,3X,'Averaged Physical Quantities',/ &
,3X,' ',' accumulated',' this run')
1951 FORMAT(3X,'ekinc : ',F14.5,F14.5,' (AU)')
1952 FORMAT(3X,'ekin : ',F14.5,F14.5,' (AU)')
1953 FORMAT(3X,'epot : ',F14.5,F14.5,' (AU)')
1954 FORMAT(3X,'total energy : ',F14.5,F14.5,' (AU)')
1955 FORMAT(3X,'temperature : ',F14.5,F14.5,' (K )')
1956 FORMAT(3X,'enthalpy : ',F14.5,F14.5,' (AU)')
1957 FORMAT(3X,'econs : ',F14.5,F14.5,' (AU)')
1958 FORMAT(3X,'pressure : ',F14.5,F14.5,' (Gpa)')
1959 FORMAT(3X,'volume : ',F14.5,F14.5,' (AU)')
1990 FORMAT(/)
END IF
RETURN
END SUBROUTINE printacc
!=----------------------------------------------------------------------------=!
SUBROUTINE open_and_append_x( iunit, file_name )
!=----------------------------------------------------------------------------=!
USE io_global, ONLY: ionode
IMPLICIT NONE
INTEGER, INTENT(IN) :: iunit
CHARACTER(LEN = *), INTENT(IN) :: file_name
INTEGER :: ierr
IF( ionode ) THEN
OPEN( UNIT = iunit, FILE = trim( file_name ), &
STATUS = 'unknown', POSITION = 'append', IOSTAT = ierr)
IF( ierr /= 0 ) &
CALL errore( ' open_and_append ', ' opening file '//trim(file_name), 1 )
END IF
RETURN
END SUBROUTINE open_and_append_x
!=----------------------------------------------------------------------------=!
SUBROUTINE update_accomulators &
( ekinc, ekin, epot, etot, tempp, enthal, econs, press, volume )
!=----------------------------------------------------------------------------=!
USE kinds, ONLY : DP
USE cp_main_variables, ONLY : acc, acc_this_run, nfi_run
IMPLICIT NONE
REAL(DP), INTENT(IN) :: ekinc, ekin, epot, etot, tempp
REAL(DP), INTENT(IN) :: enthal, econs, press, volume
nfi_run = nfi_run + 1
! ... sum up values to be averaged
acc(1) = acc(1) + ekinc
acc(2) = acc(2) + ekin
acc(3) = acc(3) + epot
acc(4) = acc(4) + etot
acc(5) = acc(5) + tempp
acc(6) = acc(6) + enthal
acc(7) = acc(7) + econs
acc(8) = acc(8) + press ! pressure in GPa
acc(9) = acc(9) + volume
! ... sum up values to be averaged
acc_this_run(1) = acc_this_run(1) + ekinc
acc_this_run(2) = acc_this_run(2) + ekin
acc_this_run(3) = acc_this_run(3) + epot
acc_this_run(4) = acc_this_run(4) + etot
acc_this_run(5) = acc_this_run(5) + tempp
acc_this_run(6) = acc_this_run(6) + enthal
acc_this_run(7) = acc_this_run(7) + econs
acc_this_run(8) = acc_this_run(8) + press ! pressure in GPa
acc_this_run(9) = acc_this_run(9) + volume
RETURN
END SUBROUTINE
| gpl-2.0 |
piyush0609/scipy | scipy/integrate/quadpack/dqk51.f | 145 | 9707 | subroutine dqk51(f,a,b,result,abserr,resabs,resasc)
c***begin prologue dqk51
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a1a2
c***keywords 51-point gauss-kronrod rules
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math & progr. div. - k.u.leuven
c***purpose to compute i = integral of f over (a,b) with error
c estimate
c j = integral of abs(f) over (a,b)
c***description
c
c integration rules
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subroutine defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the calling program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c on return
c result - double precision
c approximation to the integral i
c result is computed by applying the 51-point
c kronrod rule (resk) obtained by optimal addition
c of abscissae to the 25-point gauss rule (resg).
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should not exceed abs(i-result)
c
c resabs - double precision
c approximation to the integral j
c
c resasc - double precision
c approximation to the integral of abs(f-i/(b-a))
c over (a,b)
c
c***references (none)
c***routines called d1mach
c***end prologue dqk51
c
double precision a,absc,abserr,b,centr,dabs,dhlgth,dmax1,dmin1,
* d1mach,epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc,
* resg,resk,reskh,result,uflow,wg,wgk,xgk
integer j,jtw,jtwm1
external f
c
dimension fv1(25),fv2(25),xgk(26),wgk(26),wg(13)
c
c the abscissae and weights are given for the interval (-1,1).
c because of symmetry only the positive abscissae and their
c corresponding weights are given.
c
c xgk - abscissae of the 51-point kronrod rule
c xgk(2), xgk(4), ... abscissae of the 25-point
c gauss rule
c xgk(1), xgk(3), ... abscissae which are optimally
c added to the 25-point gauss rule
c
c wgk - weights of the 51-point kronrod rule
c
c wg - weights of the 25-point gauss rule
c
c
c gauss quadrature weights and kronron quadrature abscissae and weights
c as evaluated with 80 decimal digit arithmetic by l. w. fullerton,
c bell labs, nov. 1981.
c
data wg ( 1) / 0.0113937985 0102628794 7902964113 235 d0 /
data wg ( 2) / 0.0263549866 1503213726 1901815295 299 d0 /
data wg ( 3) / 0.0409391567 0130631265 5623487711 646 d0 /
data wg ( 4) / 0.0549046959 7583519192 5936891540 473 d0 /
data wg ( 5) / 0.0680383338 1235691720 7187185656 708 d0 /
data wg ( 6) / 0.0801407003 3500101801 3234959669 111 d0 /
data wg ( 7) / 0.0910282619 8296364981 1497220702 892 d0 /
data wg ( 8) / 0.1005359490 6705064420 2206890392 686 d0 /
data wg ( 9) / 0.1085196244 7426365311 6093957050 117 d0 /
data wg ( 10) / 0.1148582591 4571164833 9325545869 556 d0 /
data wg ( 11) / 0.1194557635 3578477222 8178126512 901 d0 /
data wg ( 12) / 0.1222424429 9031004168 8959518945 852 d0 /
data wg ( 13) / 0.1231760537 2671545120 3902873079 050 d0 /
c
data xgk ( 1) / 0.9992621049 9260983419 3457486540 341 d0 /
data xgk ( 2) / 0.9955569697 9049809790 8784946893 902 d0 /
data xgk ( 3) / 0.9880357945 3407724763 7331014577 406 d0 /
data xgk ( 4) / 0.9766639214 5951751149 8315386479 594 d0 /
data xgk ( 5) / 0.9616149864 2584251241 8130033660 167 d0 /
data xgk ( 6) / 0.9429745712 2897433941 4011169658 471 d0 /
data xgk ( 7) / 0.9207471152 8170156174 6346084546 331 d0 /
data xgk ( 8) / 0.8949919978 7827536885 1042006782 805 d0 /
data xgk ( 9) / 0.8658470652 9327559544 8996969588 340 d0 /
data xgk ( 10) / 0.8334426287 6083400142 1021108693 570 d0 /
data xgk ( 11) / 0.7978737979 9850005941 0410904994 307 d0 /
data xgk ( 12) / 0.7592592630 3735763057 7282865204 361 d0 /
data xgk ( 13) / 0.7177664068 1308438818 6654079773 298 d0 /
data xgk ( 14) / 0.6735663684 7346836448 5120633247 622 d0 /
data xgk ( 15) / 0.6268100990 1031741278 8122681624 518 d0 /
data xgk ( 16) / 0.5776629302 4122296772 3689841612 654 d0 /
data xgk ( 17) / 0.5263252843 3471918259 9623778158 010 d0 /
data xgk ( 18) / 0.4730027314 4571496052 2182115009 192 d0 /
data xgk ( 19) / 0.4178853821 9303774885 1814394594 572 d0 /
data xgk ( 20) / 0.3611723058 0938783773 5821730127 641 d0 /
data xgk ( 21) / 0.3030895389 3110783016 7478909980 339 d0 /
data xgk ( 22) / 0.2438668837 2098843204 5190362797 452 d0 /
data xgk ( 23) / 0.1837189394 2104889201 5969888759 528 d0 /
data xgk ( 24) / 0.1228646926 1071039638 7359818808 037 d0 /
data xgk ( 25) / 0.0615444830 0568507888 6546392366 797 d0 /
data xgk ( 26) / 0.0000000000 0000000000 0000000000 000 d0 /
c
data wgk ( 1) / 0.0019873838 9233031592 6507851882 843 d0 /
data wgk ( 2) / 0.0055619321 3535671375 8040236901 066 d0 /
data wgk ( 3) / 0.0094739733 8617415160 7207710523 655 d0 /
data wgk ( 4) / 0.0132362291 9557167481 3656405846 976 d0 /
data wgk ( 5) / 0.0168478177 0912829823 1516667536 336 d0 /
data wgk ( 6) / 0.0204353711 4588283545 6568292235 939 d0 /
data wgk ( 7) / 0.0240099456 0695321622 0092489164 881 d0 /
data wgk ( 8) / 0.0274753175 8785173780 2948455517 811 d0 /
data wgk ( 9) / 0.0307923001 6738748889 1109020215 229 d0 /
data wgk ( 10) / 0.0340021302 7432933783 6748795229 551 d0 /
data wgk ( 11) / 0.0371162714 8341554356 0330625367 620 d0 /
data wgk ( 12) / 0.0400838255 0403238207 4839284467 076 d0 /
data wgk ( 13) / 0.0428728450 2017004947 6895792439 495 d0 /
data wgk ( 14) / 0.0455029130 4992178890 9870584752 660 d0 /
data wgk ( 15) / 0.0479825371 3883671390 6392255756 915 d0 /
data wgk ( 16) / 0.0502776790 8071567196 3325259433 440 d0 /
data wgk ( 17) / 0.0523628858 0640747586 4366712137 873 d0 /
data wgk ( 18) / 0.0542511298 8854549014 4543370459 876 d0 /
data wgk ( 19) / 0.0559508112 2041231730 8240686382 747 d0 /
data wgk ( 20) / 0.0574371163 6156783285 3582693939 506 d0 /
data wgk ( 21) / 0.0586896800 2239420796 1974175856 788 d0 /
data wgk ( 22) / 0.0597203403 2417405997 9099291932 562 d0 /
data wgk ( 23) / 0.0605394553 7604586294 5360267517 565 d0 /
data wgk ( 24) / 0.0611285097 1705304830 5859030416 293 d0 /
data wgk ( 25) / 0.0614711898 7142531666 1544131965 264 d0 /
c note: wgk (26) was calculated from the values of wgk(1..25)
data wgk ( 26) / 0.0615808180 6783293507 8759824240 066 d0 /
c
c
c list of major variables
c -----------------------
c
c centr - mid point of the interval
c hlgth - half-length of the interval
c absc - abscissa
c fval* - function value
c resg - result of the 25-point gauss formula
c resk - result of the 51-point kronrod formula
c reskh - approximation to the mean value of f over (a,b),
c i.e. to i/(b-a)
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c
c***first executable statement dqk51
epmach = d1mach(4)
uflow = d1mach(1)
c
centr = 0.5d+00*(a+b)
hlgth = 0.5d+00*(b-a)
dhlgth = dabs(hlgth)
c
c compute the 51-point kronrod approximation to
c the integral, and estimate the absolute error.
c
fc = f(centr)
resg = wg(13)*fc
resk = wgk(26)*fc
resabs = dabs(resk)
do 10 j=1,12
jtw = j*2
absc = hlgth*xgk(jtw)
fval1 = f(centr-absc)
fval2 = f(centr+absc)
fv1(jtw) = fval1
fv2(jtw) = fval2
fsum = fval1+fval2
resg = resg+wg(j)*fsum
resk = resk+wgk(jtw)*fsum
resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2))
10 continue
do 15 j = 1,13
jtwm1 = j*2-1
absc = hlgth*xgk(jtwm1)
fval1 = f(centr-absc)
fval2 = f(centr+absc)
fv1(jtwm1) = fval1
fv2(jtwm1) = fval2
fsum = fval1+fval2
resk = resk+wgk(jtwm1)*fsum
resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2))
15 continue
reskh = resk*0.5d+00
resasc = wgk(26)*dabs(fc-reskh)
do 20 j=1,25
resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh))
20 continue
result = resk*hlgth
resabs = resabs*dhlgth
resasc = resasc*dhlgth
abserr = dabs((resk-resg)*hlgth)
if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00)
* abserr = resasc*dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00)
if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1
* ((epmach*0.5d+02)*resabs,abserr)
return
end
| bsd-3-clause |
davidandrewnew/uclales | src/rfft.f90 | 1 | 29802 | !
!---------------------------------------------------------------------
! SUBROUTINE FFT2DC: This routine computes the two dimensional
! transform of a complex cubic array of square N and length NZ.
! FFT's are done for each square level for k=2->NZ inclusive. The
! first level is used as a scratch array for storing the transpose
! matrix for the second half of the transform. The code uses
! Swartztrauber's fft routines. ISGN=1 implies the backward
! transform otherwise the forward transform is carried out,
! normalization is done only on the backward transform
!
SUBROUTINE FFT2DC_ALT(N,NZ,A,WSAVE,ISGN)
!
! In this alternate method we leave A in the transposed array space
!
IMPLICIT NONE
INTEGER N,NZ,ISGN,I,J,K
REAL WSAVE(4*N+15),FACT
COMPLEX A(N,N,NZ)
IF(ISGN.NE.1)THEN
CALL CFFTI(N,WSAVE)
DO K=2,NZ
DO J=1,N
CALL CFFTF(N,A(1,J,K),WSAVE)
ENDDO
DO I=1,N-1
DO J=I+1,N
A(I,J,1)=A(J,I,K) !transpose
A(J,I,K)=A(I,J,K)
A(I,J,K)=A(I,J,1)
ENDDO
ENDDO
DO I=1,N
CALL CFFTF(N,A(1,I,K),WSAVE)
ENDDO
ENDDO
ELSE
FACT=1./FLOAT(N)
FACT=FACT*FACT
DO K=2,NZ
DO J=1,N
CALL CFFTB(N,A(1,J,K),WSAVE)
ENDDO
DO I=1,N
DO J=1,N
A(I,J,1)=A(J,I,K)
ENDDO
ENDDO
DO J=1,N
CALL CFFTB(N,A(1,J,1),WSAVE)
ENDDO
DO I=1,N
DO J=1,N
A(I,J,K)=A(I,J,1)*FACT
ENDDO
ENDDO
ENDDO
ENDIF
RETURN
END
!
!---------------------------------------------------------------------
! SUBROUTINE FFT2DC: This routine computes the two dimensional
! transform of a complex cubic array of square N and length NZ.
! FFT's are done for each square level for k=2->NZ inclusive. The
! first level is used as a scratch array for storing the transpose
! matrix for the second half of the transform. The code uses
! Swartztrauber's fft routines. ISGN=1 implies the backward
! transform otherwise the forward transform is carried out,
! normalization is done only on the backward transform
!
SUBROUTINE FFT2DC(N,NZ,A,WSAVE,ISGN)
IMPLICIT NONE
INTEGER N,NZ,ISGN,I,J,K
REAL WSAVE(4*N+15),FACT
COMPLEX A(N,N,NZ)
IF(ISGN.NE.1)THEN
CALL CFFTI(N,WSAVE)
DO K=2,NZ
DO J=1,N
CALL CFFTF(N,A(1,J,K),WSAVE)
ENDDO
DO I=1,N
DO J=1,N
A(I,J,1)=A(J,I,K) !transpose
ENDDO
ENDDO
DO J=1,N
CALL CFFTF(N,A(1,J,1),WSAVE)
ENDDO
DO I=1,N
DO J=1,N
A(I,J,K)=A(J,I,1)
ENDDO
ENDDO
ENDDO
ELSE
FACT=1./FLOAT(N)
FACT=FACT*FACT
DO K=2,NZ
DO J=1,N
CALL CFFTB(N,A(1,J,K),WSAVE)
ENDDO
DO I=1,N
DO J=1,N
A(I,J,1)=A(J,I,K)
ENDDO
ENDDO
DO J=1,N
CALL CFFTB(N,A(1,J,1),WSAVE)
ENDDO
DO I=1,N
DO J=1,N
A(I,J,K)=A(J,I,1)*FACT
ENDDO
ENDDO
ENDDO
ENDIF
RETURN
END
!
!---------------------------------------------------------------------
! SUBROUTINE FFT1DC: This routine computes the fourier transform of
! a complex N element vector defined at NZ levels, for levels 2 --> NZ
! inclusive. FFT's are done using Swartztrauber's fft routines.
! ISGN=1 implies the backward transform, otherwise the forward
! transform is carried out, normalization is done only on the backward
! transform
!
SUBROUTINE FFT1DC(N,NZ,A,WSAVE,ISGN,FFTINI)
IMPLICIT NONE
INTEGER N,NZ,ISGN,I,K, FFTINI
REAL WSAVE(4*N+100),FACT
COMPLEX A(N,NZ)
IF(FFTINI .EQ. 1) THEN
CALL CFFTI(N,WSAVE)
FFTINI = 0
ENDIF
IF(ISGN.NE.1)THEN
DO K=1,NZ
CALL CFFTF(N,A(1,K),WSAVE)
ENDDO
ELSE
FACT=1./FLOAT(N)
DO K=1,NZ
CALL CFFTB(N,A(1,K),WSAVE)
DO I=1,N
A(I,K)=A(I,K)*FACT
ENDDO
ENDDO
ENDIF
RETURN
END
!
! ------------------------------------- Schwartztraubers routines
!
SUBROUTINE CFFTB (N,C,WSAVE)
DIMENSION C(*), WSAVE(*)
IF (N .EQ. 1) RETURN
IW1 = N+N+1
IW2 = IW1+N+N
CALL CFFTB1 (N,C,WSAVE,WSAVE(IW1),WSAVE(IW2))
RETURN
END
SUBROUTINE CFFTB1 (N,C,CH,WA,IFAC)
DIMENSION CH(*) ,C(*) ,WA(*) ,IFAC(*)
NF = IFAC(2)
NA = 0
L1 = 1
IW = 1
DO 116 K1=1,NF
IP = IFAC(K1+2)
L2 = IP*L1
IDO = N/L2
IDOT = IDO+IDO
IDL1 = IDOT*L1
IF (IP .NE. 4) GO TO 103
IX2 = IW+IDOT
IX3 = IX2+IDOT
IF (NA .NE. 0) GO TO 101
CALL PASSB4 (IDOT,L1,C,CH,WA(IW),WA(IX2),WA(IX3))
GO TO 102
101 CALL PASSB4 (IDOT,L1,CH,C,WA(IW),WA(IX2),WA(IX3))
102 NA = 1-NA
GO TO 115
103 IF (IP .NE. 2) GO TO 106
IF (NA .NE. 0) GO TO 104
CALL PASSB2 (IDOT,L1,C,CH,WA(IW))
GO TO 105
104 CALL PASSB2 (IDOT,L1,CH,C,WA(IW))
105 NA = 1-NA
GO TO 115
106 IF (IP .NE. 3) GO TO 109
IX2 = IW+IDOT
IF (NA .NE. 0) GO TO 107
CALL PASSB3 (IDOT,L1,C,CH,WA(IW),WA(IX2))
GO TO 108
107 CALL PASSB3 (IDOT,L1,CH,C,WA(IW),WA(IX2))
108 NA = 1-NA
GO TO 115
109 IF (IP .NE. 5) GO TO 112
IX2 = IW+IDOT
IX3 = IX2+IDOT
IX4 = IX3+IDOT
IF (NA .NE. 0) GO TO 110
CALL PASSB5 (IDOT,L1,C,CH,WA(IW),WA(IX2),WA(IX3),WA(IX4))
GO TO 111
110 CALL PASSB5 (IDOT,L1,CH,C,WA(IW),WA(IX2),WA(IX3),WA(IX4))
111 NA = 1-NA
GO TO 115
112 IF (NA .NE. 0) GO TO 113
CALL PASSB (NAC,IDOT,IP,L1,IDL1,C,C,C,CH,CH,WA(IW))
GO TO 114
113 CALL PASSB (NAC,IDOT,IP,L1,IDL1,CH,CH,CH,C,C,WA(IW))
114 IF (NAC .NE. 0) NA = 1-NA
115 L1 = L2
IW = IW+(IP-1)*IDOT
116 CONTINUE
IF (NA .EQ. 0) RETURN
N2 = N+N
DO 117 I=1,N2
C(I) = CH(I)
117 CONTINUE
RETURN
END
SUBROUTINE CFFTF (N,C,WSAVE)
DIMENSION C(*) ,WSAVE(*)
IF (N .EQ. 1) RETURN
IW1 = N+N+1
IW2 = IW1+N+N
CALL CFFTF1 (N,C,WSAVE,WSAVE(IW1),WSAVE(IW2))
RETURN
END
SUBROUTINE CFFTF1 (N,C,CH,WA,IFAC)
DIMENSION CH(*) ,C(*) ,WA(*) ,IFAC(*)
NF = IFAC(2)
NA = 0
L1 = 1
IW = 1
DO 116 K1=1,NF
IP = IFAC(K1+2)
L2 = IP*L1
IDO = N/L2
IDOT = IDO+IDO
IDL1 = IDOT*L1
IF (IP .NE. 4) GO TO 103
IX2 = IW+IDOT
IX3 = IX2+IDOT
IF (NA .NE. 0) GO TO 101
CALL PASSF4 (IDOT,L1,C,CH,WA(IW),WA(IX2),WA(IX3))
GO TO 102
101 CALL PASSF4 (IDOT,L1,CH,C,WA(IW),WA(IX2),WA(IX3))
102 NA = 1-NA
GO TO 115
103 IF (IP .NE. 2) GO TO 106
IF (NA .NE. 0) GO TO 104
CALL PASSF2 (IDOT,L1,C,CH,WA(IW))
GO TO 105
104 CALL PASSF2 (IDOT,L1,CH,C,WA(IW))
105 NA = 1-NA
GO TO 115
106 IF (IP .NE. 3) GO TO 109
IX2 = IW+IDOT
IF (NA .NE. 0) GO TO 107
CALL PASSF3 (IDOT,L1,C,CH,WA(IW),WA(IX2))
GO TO 108
107 CALL PASSF3 (IDOT,L1,CH,C,WA(IW),WA(IX2))
108 NA = 1-NA
GO TO 115
109 IF (IP .NE. 5) GO TO 112
IX2 = IW+IDOT
IX3 = IX2+IDOT
IX4 = IX3+IDOT
IF (NA .NE. 0) GO TO 110
CALL PASSF5 (IDOT,L1,C,CH,WA(IW),WA(IX2),WA(IX3),WA(IX4))
GO TO 111
110 CALL PASSF5 (IDOT,L1,CH,C,WA(IW),WA(IX2),WA(IX3),WA(IX4))
111 NA = 1-NA
GO TO 115
112 IF (NA .NE. 0) GO TO 113
CALL PASSF (NAC,IDOT,IP,L1,IDL1,C,C,C,CH,CH,WA(IW))
GO TO 114
113 CALL PASSF (NAC,IDOT,IP,L1,IDL1,CH,CH,CH,C,C,WA(IW))
114 IF (NAC .NE. 0) NA = 1-NA
115 L1 = L2
IW = IW+(IP-1)*IDOT
116 CONTINUE
IF (NA .EQ. 0) RETURN
N2 = N+N
DO 117 I=1,N2
C(I) = CH(I)
117 CONTINUE
RETURN
END
SUBROUTINE CFFTI (N,WSAVE)
DIMENSION WSAVE(*)
IF (N .EQ. 1) RETURN
IW1 = N+N+1
IW2 = IW1+N+N
CALL CFFTI1 (N,WSAVE(IW1),WSAVE(IW2))
RETURN
END
SUBROUTINE CFFTI1 (N,WA,IFAC)
DIMENSION WA(*) ,IFAC(*) ,NTRYH(4)
DATA NTRYH(1),NTRYH(2),NTRYH(3),NTRYH(4)/3,4,2,5/
NL = N
NF = 0
J = 0
101 J = J+1
IF (J-4) 102,102,103
102 NTRY = NTRYH(J)
GO TO 104
103 NTRY = NTRY+2
104 NQ = NL/NTRY
NR = NL-NTRY*NQ
IF (NR) 101,105,101
105 NF = NF+1
IFAC(NF+2) = NTRY
NL = NQ
IF (NTRY .NE. 2) GO TO 107
IF (NF .EQ. 1) GO TO 107
DO 106 I=2,NF
IB = NF-I+2
IFAC(IB+2) = IFAC(IB+1)
106 CONTINUE
IFAC(3) = 2
107 IF (NL .NE. 1) GO TO 104
IFAC(1) = N
IFAC(2) = NF
TPI = 6.28318530717959
ARGH = TPI/FLOAT(N)
I = 2
L1 = 1
DO 110 K1=1,NF
IP = IFAC(K1+2)
LD = 0
L2 = L1*IP
IDO = N/L2
IDOT = IDO+IDO+2
IPM = IP-1
DO 109 J=1,IPM
I1 = I
WA(I-1) = 1.
WA(I) = 0.
LD = LD+L1
FI = 0.
ARGLD = FLOAT(LD)*ARGH
DO 108 II=4,IDOT,2
I = I+2
FI = FI+1.
ARG = FI*ARGLD
WA(I-1) = COS(ARG)
WA(I) = SIN(ARG)
108 CONTINUE
IF (IP .LE. 5) GO TO 109
WA(I1-1) = WA(I-1)
WA(I1) = WA(I)
109 CONTINUE
L1 = L2
110 CONTINUE
RETURN
END
SUBROUTINE PASSB (NAC,IDO,IP,L1,IDL1,CC,C1,C2,CH,CH2,WA)
DIMENSION CH(IDO,L1,IP) ,CC(IDO,IP,L1) , &
C1(IDO,L1,IP) ,WA(*) ,C2(IDL1,IP), &
CH2(IDL1,IP)
IDOT = IDO/2
NT = IP*IDL1
IPP2 = IP+2
IPPH = (IP+1)/2
IDP = IP*IDO
!
IF (IDO .LT. L1) GO TO 106
DO 103 J=2,IPPH
JC = IPP2-J
DO 102 K=1,L1
DO 101 I=1,IDO
CH(I,K,J) = CC(I,J,K)+CC(I,JC,K)
CH(I,K,JC) = CC(I,J,K)-CC(I,JC,K)
101 CONTINUE
102 CONTINUE
103 CONTINUE
DO 105 K=1,L1
DO 104 I=1,IDO
CH(I,K,1) = CC(I,1,K)
104 CONTINUE
105 CONTINUE
GO TO 112
106 DO 109 J=2,IPPH
JC = IPP2-J
DO 108 I=1,IDO
DO 107 K=1,L1
CH(I,K,J) = CC(I,J,K)+CC(I,JC,K)
CH(I,K,JC) = CC(I,J,K)-CC(I,JC,K)
107 CONTINUE
108 CONTINUE
109 CONTINUE
DO 111 I=1,IDO
DO 110 K=1,L1
CH(I,K,1) = CC(I,1,K)
110 CONTINUE
111 CONTINUE
112 IDL = 2-IDO
INC = 0
DO 116 L=2,IPPH
LC = IPP2-L
IDL = IDL+IDO
DO 113 IK=1,IDL1
C2(IK,L) = CH2(IK,1)+WA(IDL-1)*CH2(IK,2)
C2(IK,LC) = WA(IDL)*CH2(IK,IP)
113 CONTINUE
IDLJ = IDL
INC = INC+IDO
DO 115 J=3,IPPH
JC = IPP2-J
IDLJ = IDLJ+INC
IF (IDLJ .GT. IDP) IDLJ = IDLJ-IDP
WAR = WA(IDLJ-1)
WAI = WA(IDLJ)
DO 114 IK=1,IDL1
C2(IK,L) = C2(IK,L)+WAR*CH2(IK,J)
C2(IK,LC) = C2(IK,LC)+WAI*CH2(IK,JC)
114 CONTINUE
115 CONTINUE
116 CONTINUE
DO 118 J=2,IPPH
DO 117 IK=1,IDL1
CH2(IK,1) = CH2(IK,1)+CH2(IK,J)
117 CONTINUE
118 CONTINUE
DO 120 J=2,IPPH
JC = IPP2-J
DO 119 IK=2,IDL1,2
CH2(IK-1,J) = C2(IK-1,J)-C2(IK,JC)
CH2(IK-1,JC) = C2(IK-1,J)+C2(IK,JC)
CH2(IK,J) = C2(IK,J)+C2(IK-1,JC)
CH2(IK,JC) = C2(IK,J)-C2(IK-1,JC)
119 CONTINUE
120 CONTINUE
NAC = 1
IF (IDO .EQ. 2) RETURN
NAC = 0
DO 121 IK=1,IDL1
C2(IK,1) = CH2(IK,1)
121 CONTINUE
DO 123 J=2,IP
DO 122 K=1,L1
C1(1,K,J) = CH(1,K,J)
C1(2,K,J) = CH(2,K,J)
122 CONTINUE
123 CONTINUE
IF (IDOT .GT. L1) GO TO 127
IDIJ = 0
DO 126 J=2,IP
IDIJ = IDIJ+2
DO 125 I=4,IDO,2
IDIJ = IDIJ+2
DO 124 K=1,L1
C1(I-1,K,J) = WA(IDIJ-1)*CH(I-1,K,J)-WA(IDIJ)*CH(I,K,J)
C1(I,K,J) = WA(IDIJ-1)*CH(I,K,J)+WA(IDIJ)*CH(I-1,K,J)
124 CONTINUE
125 CONTINUE
126 CONTINUE
RETURN
127 IDJ = 2-IDO
DO 130 J=2,IP
IDJ = IDJ+IDO
DO 129 K=1,L1
IDIJ = IDJ
DO 128 I=4,IDO,2
IDIJ = IDIJ+2
C1(I-1,K,J) = WA(IDIJ-1)*CH(I-1,K,J)-WA(IDIJ)*CH(I,K,J)
C1(I,K,J) = WA(IDIJ-1)*CH(I,K,J)+WA(IDIJ)*CH(I-1,K,J)
128 CONTINUE
129 CONTINUE
130 CONTINUE
RETURN
END
SUBROUTINE PASSB2 (IDO,L1,CC,CH,WA1)
DIMENSION CC(IDO,2,L1) ,CH(IDO,L1,2) , &
WA1(*)
IF (IDO .GT. 2) GO TO 102
DO 101 K=1,L1
CH(1,K,1) = CC(1,1,K)+CC(1,2,K)
CH(1,K,2) = CC(1,1,K)-CC(1,2,K)
CH(2,K,1) = CC(2,1,K)+CC(2,2,K)
CH(2,K,2) = CC(2,1,K)-CC(2,2,K)
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
CH(I-1,K,1) = CC(I-1,1,K)+CC(I-1,2,K)
TR2 = CC(I-1,1,K)-CC(I-1,2,K)
CH(I,K,1) = CC(I,1,K)+CC(I,2,K)
TI2 = CC(I,1,K)-CC(I,2,K)
CH(I,K,2) = WA1(I-1)*TI2+WA1(I)*TR2
CH(I-1,K,2) = WA1(I-1)*TR2-WA1(I)*TI2
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE PASSB3 (IDO,L1,CC,CH,WA1,WA2)
DIMENSION CC(IDO,3,L1) ,CH(IDO,L1,3) , &
WA1(*) ,WA2(*)
DATA TAUR,TAUI /-.5,.866025403784439/
IF (IDO .NE. 2) GO TO 102
DO 101 K=1,L1
TR2 = CC(1,2,K)+CC(1,3,K)
CR2 = CC(1,1,K)+TAUR*TR2
CH(1,K,1) = CC(1,1,K)+TR2
TI2 = CC(2,2,K)+CC(2,3,K)
CI2 = CC(2,1,K)+TAUR*TI2
CH(2,K,1) = CC(2,1,K)+TI2
CR3 = TAUI*(CC(1,2,K)-CC(1,3,K))
CI3 = TAUI*(CC(2,2,K)-CC(2,3,K))
CH(1,K,2) = CR2-CI3
CH(1,K,3) = CR2+CI3
CH(2,K,2) = CI2+CR3
CH(2,K,3) = CI2-CR3
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
TR2 = CC(I-1,2,K)+CC(I-1,3,K)
CR2 = CC(I-1,1,K)+TAUR*TR2
CH(I-1,K,1) = CC(I-1,1,K)+TR2
TI2 = CC(I,2,K)+CC(I,3,K)
CI2 = CC(I,1,K)+TAUR*TI2
CH(I,K,1) = CC(I,1,K)+TI2
CR3 = TAUI*(CC(I-1,2,K)-CC(I-1,3,K))
CI3 = TAUI*(CC(I,2,K)-CC(I,3,K))
DR2 = CR2-CI3
DR3 = CR2+CI3
DI2 = CI2+CR3
DI3 = CI2-CR3
CH(I,K,2) = WA1(I-1)*DI2+WA1(I)*DR2
CH(I-1,K,2) = WA1(I-1)*DR2-WA1(I)*DI2
CH(I,K,3) = WA2(I-1)*DI3+WA2(I)*DR3
CH(I-1,K,3) = WA2(I-1)*DR3-WA2(I)*DI3
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE PASSB4 (IDO,L1,CC,CH,WA1,WA2,WA3)
DIMENSION CC(IDO,4,L1) ,CH(IDO,L1,4) , &
WA1(*) ,WA2(*) ,WA3(*)
IF (IDO .NE. 2) GO TO 102
DO 101 K=1,L1
TI1 = CC(2,1,K)-CC(2,3,K)
TI2 = CC(2,1,K)+CC(2,3,K)
TR4 = CC(2,4,K)-CC(2,2,K)
TI3 = CC(2,2,K)+CC(2,4,K)
TR1 = CC(1,1,K)-CC(1,3,K)
TR2 = CC(1,1,K)+CC(1,3,K)
TI4 = CC(1,2,K)-CC(1,4,K)
TR3 = CC(1,2,K)+CC(1,4,K)
CH(1,K,1) = TR2+TR3
CH(1,K,3) = TR2-TR3
CH(2,K,1) = TI2+TI3
CH(2,K,3) = TI2-TI3
CH(1,K,2) = TR1+TR4
CH(1,K,4) = TR1-TR4
CH(2,K,2) = TI1+TI4
CH(2,K,4) = TI1-TI4
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
TI1 = CC(I,1,K)-CC(I,3,K)
TI2 = CC(I,1,K)+CC(I,3,K)
TI3 = CC(I,2,K)+CC(I,4,K)
TR4 = CC(I,4,K)-CC(I,2,K)
TR1 = CC(I-1,1,K)-CC(I-1,3,K)
TR2 = CC(I-1,1,K)+CC(I-1,3,K)
TI4 = CC(I-1,2,K)-CC(I-1,4,K)
TR3 = CC(I-1,2,K)+CC(I-1,4,K)
CH(I-1,K,1) = TR2+TR3
CR3 = TR2-TR3
CH(I,K,1) = TI2+TI3
CI3 = TI2-TI3
CR2 = TR1+TR4
CR4 = TR1-TR4
CI2 = TI1+TI4
CI4 = TI1-TI4
CH(I-1,K,2) = WA1(I-1)*CR2-WA1(I)*CI2
CH(I,K,2) = WA1(I-1)*CI2+WA1(I)*CR2
CH(I-1,K,3) = WA2(I-1)*CR3-WA2(I)*CI3
CH(I,K,3) = WA2(I-1)*CI3+WA2(I)*CR3
CH(I-1,K,4) = WA3(I-1)*CR4-WA3(I)*CI4
CH(I,K,4) = WA3(I-1)*CI4+WA3(I)*CR4
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE PASSB5 (IDO,L1,CC,CH,WA1,WA2,WA3,WA4)
DIMENSION CC(IDO,5,L1) ,CH(IDO,L1,5) , &
WA1(*) ,WA2(*) ,WA3(*) ,WA4(*)
DATA TR11,TI11,TR12,TI12 /.309016994374947,.951056516295154,-.809016994374947,.587785252292473/
IF (IDO .NE. 2) GO TO 102
DO 101 K=1,L1
TI5 = CC(2,2,K)-CC(2,5,K)
TI2 = CC(2,2,K)+CC(2,5,K)
TI4 = CC(2,3,K)-CC(2,4,K)
TI3 = CC(2,3,K)+CC(2,4,K)
TR5 = CC(1,2,K)-CC(1,5,K)
TR2 = CC(1,2,K)+CC(1,5,K)
TR4 = CC(1,3,K)-CC(1,4,K)
TR3 = CC(1,3,K)+CC(1,4,K)
CH(1,K,1) = CC(1,1,K)+TR2+TR3
CH(2,K,1) = CC(2,1,K)+TI2+TI3
CR2 = CC(1,1,K)+TR11*TR2+TR12*TR3
CI2 = CC(2,1,K)+TR11*TI2+TR12*TI3
CR3 = CC(1,1,K)+TR12*TR2+TR11*TR3
CI3 = CC(2,1,K)+TR12*TI2+TR11*TI3
CR5 = TI11*TR5+TI12*TR4
CI5 = TI11*TI5+TI12*TI4
CR4 = TI12*TR5-TI11*TR4
CI4 = TI12*TI5-TI11*TI4
CH(1,K,2) = CR2-CI5
CH(1,K,5) = CR2+CI5
CH(2,K,2) = CI2+CR5
CH(2,K,3) = CI3+CR4
CH(1,K,3) = CR3-CI4
CH(1,K,4) = CR3+CI4
CH(2,K,4) = CI3-CR4
CH(2,K,5) = CI2-CR5
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
TI5 = CC(I,2,K)-CC(I,5,K)
TI2 = CC(I,2,K)+CC(I,5,K)
TI4 = CC(I,3,K)-CC(I,4,K)
TI3 = CC(I,3,K)+CC(I,4,K)
TR5 = CC(I-1,2,K)-CC(I-1,5,K)
TR2 = CC(I-1,2,K)+CC(I-1,5,K)
TR4 = CC(I-1,3,K)-CC(I-1,4,K)
TR3 = CC(I-1,3,K)+CC(I-1,4,K)
CH(I-1,K,1) = CC(I-1,1,K)+TR2+TR3
CH(I,K,1) = CC(I,1,K)+TI2+TI3
CR2 = CC(I-1,1,K)+TR11*TR2+TR12*TR3
CI2 = CC(I,1,K)+TR11*TI2+TR12*TI3
CR3 = CC(I-1,1,K)+TR12*TR2+TR11*TR3
CI3 = CC(I,1,K)+TR12*TI2+TR11*TI3
CR5 = TI11*TR5+TI12*TR4
CI5 = TI11*TI5+TI12*TI4
CR4 = TI12*TR5-TI11*TR4
CI4 = TI12*TI5-TI11*TI4
DR3 = CR3-CI4
DR4 = CR3+CI4
DI3 = CI3+CR4
DI4 = CI3-CR4
DR5 = CR2+CI5
DR2 = CR2-CI5
DI5 = CI2-CR5
DI2 = CI2+CR5
CH(I-1,K,2) = WA1(I-1)*DR2-WA1(I)*DI2
CH(I,K,2) = WA1(I-1)*DI2+WA1(I)*DR2
CH(I-1,K,3) = WA2(I-1)*DR3-WA2(I)*DI3
CH(I,K,3) = WA2(I-1)*DI3+WA2(I)*DR3
CH(I-1,K,4) = WA3(I-1)*DR4-WA3(I)*DI4
CH(I,K,4) = WA3(I-1)*DI4+WA3(I)*DR4
CH(I-1,K,5) = WA4(I-1)*DR5-WA4(I)*DI5
CH(I,K,5) = WA4(I-1)*DI5+WA4(I)*DR5
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE PASSF (NAC,IDO,IP,L1,IDL1,CC,C1,C2,CH,CH2,WA)
DIMENSION CH(IDO,L1,IP) ,CC(IDO,IP,L1) , &
C1(IDO,L1,IP) ,WA(*) ,C2(IDL1,IP), &
CH2(IDL1,IP)
IDOT = IDO/2
NT = IP*IDL1
IPP2 = IP+2
IPPH = (IP+1)/2
IDP = IP*IDO
!
IF (IDO .LT. L1) GO TO 106
DO 103 J=2,IPPH
JC = IPP2-J
DO 102 K=1,L1
DO 101 I=1,IDO
CH(I,K,J) = CC(I,J,K)+CC(I,JC,K)
CH(I,K,JC) = CC(I,J,K)-CC(I,JC,K)
101 CONTINUE
102 CONTINUE
103 CONTINUE
DO 105 K=1,L1
DO 104 I=1,IDO
CH(I,K,1) = CC(I,1,K)
104 CONTINUE
105 CONTINUE
GO TO 112
106 DO 109 J=2,IPPH
JC = IPP2-J
DO 108 I=1,IDO
DO 107 K=1,L1
CH(I,K,J) = CC(I,J,K)+CC(I,JC,K)
CH(I,K,JC) = CC(I,J,K)-CC(I,JC,K)
107 CONTINUE
108 CONTINUE
109 CONTINUE
DO 111 I=1,IDO
DO 110 K=1,L1
CH(I,K,1) = CC(I,1,K)
110 CONTINUE
111 CONTINUE
112 IDL = 2-IDO
INC = 0
DO 116 L=2,IPPH
LC = IPP2-L
IDL = IDL+IDO
DO 113 IK=1,IDL1
C2(IK,L) = CH2(IK,1)+WA(IDL-1)*CH2(IK,2)
C2(IK,LC) = -WA(IDL)*CH2(IK,IP)
113 CONTINUE
IDLJ = IDL
INC = INC+IDO
DO 115 J=3,IPPH
JC = IPP2-J
IDLJ = IDLJ+INC
IF (IDLJ .GT. IDP) IDLJ = IDLJ-IDP
WAR = WA(IDLJ-1)
WAI = WA(IDLJ)
DO 114 IK=1,IDL1
C2(IK,L) = C2(IK,L)+WAR*CH2(IK,J)
C2(IK,LC) = C2(IK,LC)-WAI*CH2(IK,JC)
114 CONTINUE
115 CONTINUE
116 CONTINUE
DO 118 J=2,IPPH
DO 117 IK=1,IDL1
CH2(IK,1) = CH2(IK,1)+CH2(IK,J)
117 CONTINUE
118 CONTINUE
DO 120 J=2,IPPH
JC = IPP2-J
DO 119 IK=2,IDL1,2
CH2(IK-1,J) = C2(IK-1,J)-C2(IK,JC)
CH2(IK-1,JC) = C2(IK-1,J)+C2(IK,JC)
CH2(IK,J) = C2(IK,J)+C2(IK-1,JC)
CH2(IK,JC) = C2(IK,J)-C2(IK-1,JC)
119 CONTINUE
120 CONTINUE
NAC = 1
IF (IDO .EQ. 2) RETURN
NAC = 0
DO 121 IK=1,IDL1
C2(IK,1) = CH2(IK,1)
121 CONTINUE
DO 123 J=2,IP
DO 122 K=1,L1
C1(1,K,J) = CH(1,K,J)
C1(2,K,J) = CH(2,K,J)
122 CONTINUE
123 CONTINUE
IF (IDOT .GT. L1) GO TO 127
IDIJ = 0
DO 126 J=2,IP
IDIJ = IDIJ+2
DO 125 I=4,IDO,2
IDIJ = IDIJ+2
DO 124 K=1,L1
C1(I-1,K,J) = WA(IDIJ-1)*CH(I-1,K,J)+WA(IDIJ)*CH(I,K,J)
C1(I,K,J) = WA(IDIJ-1)*CH(I,K,J)-WA(IDIJ)*CH(I-1,K,J)
124 CONTINUE
125 CONTINUE
126 CONTINUE
RETURN
127 IDJ = 2-IDO
DO 130 J=2,IP
IDJ = IDJ+IDO
DO 129 K=1,L1
IDIJ = IDJ
DO 128 I=4,IDO,2
IDIJ = IDIJ+2
C1(I-1,K,J) = WA(IDIJ-1)*CH(I-1,K,J)+WA(IDIJ)*CH(I,K,J)
C1(I,K,J) = WA(IDIJ-1)*CH(I,K,J)-WA(IDIJ)*CH(I-1,K,J)
128 CONTINUE
129 CONTINUE
130 CONTINUE
RETURN
END
SUBROUTINE PASSF2 (IDO,L1,CC,CH,WA1)
DIMENSION CC(IDO,2,L1) ,CH(IDO,L1,2) , &
WA1(*)
IF (IDO .GT. 2) GO TO 102
DO 101 K=1,L1
CH(1,K,1) = CC(1,1,K)+CC(1,2,K)
CH(1,K,2) = CC(1,1,K)-CC(1,2,K)
CH(2,K,1) = CC(2,1,K)+CC(2,2,K)
CH(2,K,2) = CC(2,1,K)-CC(2,2,K)
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
CH(I-1,K,1) = CC(I-1,1,K)+CC(I-1,2,K)
TR2 = CC(I-1,1,K)-CC(I-1,2,K)
CH(I,K,1) = CC(I,1,K)+CC(I,2,K)
TI2 = CC(I,1,K)-CC(I,2,K)
CH(I,K,2) = WA1(I-1)*TI2-WA1(I)*TR2
CH(I-1,K,2) = WA1(I-1)*TR2+WA1(I)*TI2
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE PASSF3 (IDO,L1,CC,CH,WA1,WA2)
DIMENSION CC(IDO,3,L1) ,CH(IDO,L1,3) , &
WA1(*) ,WA2(*)
DATA TAUR,TAUI /-.5,-.866025403784439/
IF (IDO .NE. 2) GO TO 102
DO 101 K=1,L1
TR2 = CC(1,2,K)+CC(1,3,K)
CR2 = CC(1,1,K)+TAUR*TR2
CH(1,K,1) = CC(1,1,K)+TR2
TI2 = CC(2,2,K)+CC(2,3,K)
CI2 = CC(2,1,K)+TAUR*TI2
CH(2,K,1) = CC(2,1,K)+TI2
CR3 = TAUI*(CC(1,2,K)-CC(1,3,K))
CI3 = TAUI*(CC(2,2,K)-CC(2,3,K))
CH(1,K,2) = CR2-CI3
CH(1,K,3) = CR2+CI3
CH(2,K,2) = CI2+CR3
CH(2,K,3) = CI2-CR3
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
TR2 = CC(I-1,2,K)+CC(I-1,3,K)
CR2 = CC(I-1,1,K)+TAUR*TR2
CH(I-1,K,1) = CC(I-1,1,K)+TR2
TI2 = CC(I,2,K)+CC(I,3,K)
CI2 = CC(I,1,K)+TAUR*TI2
CH(I,K,1) = CC(I,1,K)+TI2
CR3 = TAUI*(CC(I-1,2,K)-CC(I-1,3,K))
CI3 = TAUI*(CC(I,2,K)-CC(I,3,K))
DR2 = CR2-CI3
DR3 = CR2+CI3
DI2 = CI2+CR3
DI3 = CI2-CR3
CH(I,K,2) = WA1(I-1)*DI2-WA1(I)*DR2
CH(I-1,K,2) = WA1(I-1)*DR2+WA1(I)*DI2
CH(I,K,3) = WA2(I-1)*DI3-WA2(I)*DR3
CH(I-1,K,3) = WA2(I-1)*DR3+WA2(I)*DI3
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE PASSF4 (IDO,L1,CC,CH,WA1,WA2,WA3)
DIMENSION CC(IDO,4,L1) ,CH(IDO,L1,4) , &
WA1(*) ,WA2(*) ,WA3(*)
IF (IDO .NE. 2) GO TO 102
DO 101 K=1,L1
TI1 = CC(2,1,K)-CC(2,3,K)
TI2 = CC(2,1,K)+CC(2,3,K)
TR4 = CC(2,2,K)-CC(2,4,K)
TI3 = CC(2,2,K)+CC(2,4,K)
TR1 = CC(1,1,K)-CC(1,3,K)
TR2 = CC(1,1,K)+CC(1,3,K)
TI4 = CC(1,4,K)-CC(1,2,K)
TR3 = CC(1,2,K)+CC(1,4,K)
CH(1,K,1) = TR2+TR3
CH(1,K,3) = TR2-TR3
CH(2,K,1) = TI2+TI3
CH(2,K,3) = TI2-TI3
CH(1,K,2) = TR1+TR4
CH(1,K,4) = TR1-TR4
CH(2,K,2) = TI1+TI4
CH(2,K,4) = TI1-TI4
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
TI1 = CC(I,1,K)-CC(I,3,K)
TI2 = CC(I,1,K)+CC(I,3,K)
TI3 = CC(I,2,K)+CC(I,4,K)
TR4 = CC(I,2,K)-CC(I,4,K)
TR1 = CC(I-1,1,K)-CC(I-1,3,K)
TR2 = CC(I-1,1,K)+CC(I-1,3,K)
TI4 = CC(I-1,4,K)-CC(I-1,2,K)
TR3 = CC(I-1,2,K)+CC(I-1,4,K)
CH(I-1,K,1) = TR2+TR3
CR3 = TR2-TR3
CH(I,K,1) = TI2+TI3
CI3 = TI2-TI3
CR2 = TR1+TR4
CR4 = TR1-TR4
CI2 = TI1+TI4
CI4 = TI1-TI4
CH(I-1,K,2) = WA1(I-1)*CR2+WA1(I)*CI2
CH(I,K,2) = WA1(I-1)*CI2-WA1(I)*CR2
CH(I-1,K,3) = WA2(I-1)*CR3+WA2(I)*CI3
CH(I,K,3) = WA2(I-1)*CI3-WA2(I)*CR3
CH(I-1,K,4) = WA3(I-1)*CR4+WA3(I)*CI4
CH(I,K,4) = WA3(I-1)*CI4-WA3(I)*CR4
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE PASSF5 (IDO,L1,CC,CH,WA1,WA2,WA3,WA4)
DIMENSION CC(IDO,5,L1) ,CH(IDO,L1,5) , &
WA1(*) ,WA2(*) ,WA3(*) ,WA4(*)
DATA TR11,TI11,TR12,TI12 /.309016994374947,-.951056516295154,-.809016994374947,-.587785252292473/
IF (IDO .NE. 2) GO TO 102
DO 101 K=1,L1
TI5 = CC(2,2,K)-CC(2,5,K)
TI2 = CC(2,2,K)+CC(2,5,K)
TI4 = CC(2,3,K)-CC(2,4,K)
TI3 = CC(2,3,K)+CC(2,4,K)
TR5 = CC(1,2,K)-CC(1,5,K)
TR2 = CC(1,2,K)+CC(1,5,K)
TR4 = CC(1,3,K)-CC(1,4,K)
TR3 = CC(1,3,K)+CC(1,4,K)
CH(1,K,1) = CC(1,1,K)+TR2+TR3
CH(2,K,1) = CC(2,1,K)+TI2+TI3
CR2 = CC(1,1,K)+TR11*TR2+TR12*TR3
CI2 = CC(2,1,K)+TR11*TI2+TR12*TI3
CR3 = CC(1,1,K)+TR12*TR2+TR11*TR3
CI3 = CC(2,1,K)+TR12*TI2+TR11*TI3
CR5 = TI11*TR5+TI12*TR4
CI5 = TI11*TI5+TI12*TI4
CR4 = TI12*TR5-TI11*TR4
CI4 = TI12*TI5-TI11*TI4
CH(1,K,2) = CR2-CI5
CH(1,K,5) = CR2+CI5
CH(2,K,2) = CI2+CR5
CH(2,K,3) = CI3+CR4
CH(1,K,3) = CR3-CI4
CH(1,K,4) = CR3+CI4
CH(2,K,4) = CI3-CR4
CH(2,K,5) = CI2-CR5
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
TI5 = CC(I,2,K)-CC(I,5,K)
TI2 = CC(I,2,K)+CC(I,5,K)
TI4 = CC(I,3,K)-CC(I,4,K)
TI3 = CC(I,3,K)+CC(I,4,K)
TR5 = CC(I-1,2,K)-CC(I-1,5,K)
TR2 = CC(I-1,2,K)+CC(I-1,5,K)
TR4 = CC(I-1,3,K)-CC(I-1,4,K)
TR3 = CC(I-1,3,K)+CC(I-1,4,K)
CH(I-1,K,1) = CC(I-1,1,K)+TR2+TR3
CH(I,K,1) = CC(I,1,K)+TI2+TI3
CR2 = CC(I-1,1,K)+TR11*TR2+TR12*TR3
CI2 = CC(I,1,K)+TR11*TI2+TR12*TI3
CR3 = CC(I-1,1,K)+TR12*TR2+TR11*TR3
CI3 = CC(I,1,K)+TR12*TI2+TR11*TI3
CR5 = TI11*TR5+TI12*TR4
CI5 = TI11*TI5+TI12*TI4
CR4 = TI12*TR5-TI11*TR4
CI4 = TI12*TI5-TI11*TI4
DR3 = CR3-CI4
DR4 = CR3+CI4
DI3 = CI3+CR4
DI4 = CI3-CR4
DR5 = CR2+CI5
DR2 = CR2-CI5
DI5 = CI2-CR5
DI2 = CI2+CR5
CH(I-1,K,2) = WA1(I-1)*DR2+WA1(I)*DI2
CH(I,K,2) = WA1(I-1)*DI2-WA1(I)*DR2
CH(I-1,K,3) = WA2(I-1)*DR3+WA2(I)*DI3
CH(I,K,3) = WA2(I-1)*DI3-WA2(I)*DR3
CH(I-1,K,4) = WA3(I-1)*DR4+WA3(I)*DI4
CH(I,K,4) = WA3(I-1)*DI4-WA3(I)*DR4
CH(I-1,K,5) = WA4(I-1)*DR5+WA4(I)*DI5
CH(I,K,5) = WA4(I-1)*DI5-WA4(I)*DR5
103 CONTINUE
104 CONTINUE
RETURN
END
| gpl-3.0 |
LucasGandel/ITK | Modules/ThirdParty/Netlib/src/netlib/slatec/dlbeta.f | 48 | 1910 | *DECK DLBETA
DOUBLE PRECISION FUNCTION DLBETA (A, B)
C***BEGIN PROLOGUE DLBETA
C***PURPOSE Compute the natural logarithm of the complete Beta
C function.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C7B
C***TYPE DOUBLE PRECISION (ALBETA-S, DLBETA-D, CLBETA-C)
C***KEYWORDS FNLIB, LOGARITHM OF THE COMPLETE BETA FUNCTION,
C SPECIAL FUNCTIONS
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C DLBETA(A,B) calculates the double precision natural logarithm of
C the complete beta function for double precision arguments
C A and B.
C
C***REFERENCES (NONE)
C***ROUTINES CALLED D9LGMC, DGAMMA, DLNGAM, DLNREL, XERMSG
C***REVISION HISTORY (YYMMDD)
C 770701 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900727 Added EXTERNAL statement. (WRB)
C***END PROLOGUE DLBETA
DOUBLE PRECISION A, B, P, Q, CORR, SQ2PIL, D9LGMC, DGAMMA, DLNGAM,
1 DLNREL
EXTERNAL DGAMMA
SAVE SQ2PIL
DATA SQ2PIL / 0.9189385332 0467274178 0329736405 62 D0 /
C***FIRST EXECUTABLE STATEMENT DLBETA
P = MIN (A, B)
Q = MAX (A, B)
C
IF (P .LE. 0.D0) CALL XERMSG ('SLATEC', 'DLBETA',
+ 'BOTH ARGUMENTS MUST BE GT ZERO', 1, 2)
C
IF (P.GE.10.D0) GO TO 30
IF (Q.GE.10.D0) GO TO 20
C
C P AND Q ARE SMALL.
C
DLBETA = LOG (DGAMMA(P) * (DGAMMA(Q)/DGAMMA(P+Q)) )
RETURN
C
C P IS SMALL, BUT Q IS BIG.
C
20 CORR = D9LGMC(Q) - D9LGMC(P+Q)
DLBETA = DLNGAM(P) + CORR + P - P*LOG(P+Q)
1 + (Q-0.5D0)*DLNREL(-P/(P+Q))
RETURN
C
C P AND Q ARE BIG.
C
30 CORR = D9LGMC(P) + D9LGMC(Q) - D9LGMC(P+Q)
DLBETA = -0.5D0*LOG(Q) + SQ2PIL + CORR + (P-0.5D0)*LOG(P/(P+Q))
1 + Q*DLNREL(-P/(P+Q))
RETURN
C
END
| apache-2.0 |
kbai/specfem3d | utils/EXTERNAL_CODES_coupled_with_SPECFEM3D/DSM_for_SPECFEM3D/DSM-1-BIG_3D_storage_version/Part-3-modify_DSM_results_for_SPECFEM/FFT_MPI_FACES_VERT_SH/rotations_matrix.f90 | 15 | 5195 | !
!
! ROUTINES POUR FAIRE DES ROTATIONS 3D ET DIVERS CHANGEMENTS DE REPERES
!
! Vadim Monteiller Mars 2013
!
!-------------------------------------------------------------------------------
! matrice de rotation 3D d'axe "axe" et d'angle theta (degres)
! cette matrice est en complexe
subroutine rotation_matrix(R,axe,theta)
implicit none
double precision axe(3),theta,pi,deg2rad
double complex R(3,3)
double precision c,s,ux,uy,uz,norme_axe
integer i,j
pi=3.1415926535897932d0
deg2rad = pi / 180.d0
! on normalise l'axe
!write(100,*) 'axe rotation :',axe
norme_axe=dsqrt(axe(1)**2 + axe(2)**2 + axe(3)**2)
! composantes de l'axe
ux=axe(1)/norme_axe
uy=axe(2)/norme_axe
uz=axe(3)/norme_axe
! on calcule le cos et sin
c=dcos(deg2rad * theta);s=dsin(deg2rad * theta)
! matrice de rotation complexe
R(1,1)=dcmplx(ux**2 + (1.d0-ux**2)*c)
R(1,2)=dcmplx(ux*uy*(1.d0-c)-uz*s)
R(1,3)=dcmplx(ux*uz*(1.d0-c)+uy*s)
R(2,1)=dcmplx(ux*uy*(1.d0-c)+uz*s)
R(2,2)=dcmplx(uy**2+(1.d0-uy**2)*c)
R(2,3)=dcmplx(uy*uz*(1.d0-c)-ux*s)
R(3,1)=dcmplx(ux*uz*(1.d0-c)-uy*s)
R(3,2)=dcmplx(uy*uz*(1.d0-c)+ux*s)
R(3,3)=dcmplx(uz**2+(1.d0-uz**2)*c)
end subroutine rotation_matrix
!-------------------------------------------------------------------------------
! R=R2*R1*R0
subroutine compose3matrix(R,R0,R1,R2)
implicit none
double complex R(3,3),R0(3,3),R1(3,3),R2(3,3)
integer i,j,k
R(:,:)=dcmplx(0.d0)
! multiplication R=R1*R0
do j=1,3
do i=1,3
do k=1,3
R(i,j)=R(i,j) + R1(i,k)*R0(k,j)
enddo
enddo
enddo
R1(:,:)=R(:,:)
R(:,:)=dcmplx(0.d0)
! multiplication R=R2*R1
do j=1,3
do i=1,3
do k=1,3
R(i,j)=R(i,j) + R2(i,k)*R1(k,j)
enddo
enddo
enddo
end subroutine compose3matrix
!------------------------------------------------------------------------------
! rotation pour passer d'un repere local a un autre
subroutine local2localMatrix(lat0,lon0,lat1,lon1,R)
implicit none
double precision lat0,lon0,lat1,lon1
double precision distance_epicentrale,azi,bazi
double complex R(3,3),axe_rotation(3)
! calcul de la distance epicentrale = angle de rotation
call epitra1(lat0,lon0,lat1,lon1,distance_epicentrale,azi,bazi)
! calcul de l'axe de rotation = perendiculaire au plan (O,P0,P1)
call calcule_axe_rotation(lat0,lon0,lat1,lon1,axe_rotation)
! on calcule la matrice de rotation
call rotation_matrix(R,axe_rotation,distance_epicentrale)
end subroutine local2localMatrix
!-------------------------------------------------------------------------------
!calcul de l'axe de rotation
subroutine calcule_axe_rotation(lat0,lon0,lat1,lon1,axe)
implicit none
double precision lat0,lon0,lat1,lon1,axe(3)
double precision X0(3),X1(3)
! on passe dans le repere global cartesien
call geograph2cartglob(X0,lat0,lon0,1.d0)
call geograph2cartglob(X1,lat1,lon1,1.d0)
! on fait le produit vectoriel X0^X1
call pdt_vectoriel(axe,X0,X1)
end subroutine calcule_axe_rotation
!-------------------------------------------------------------------------------
! passage geographique -> global
subroutine geograph2cartglob(X,lat,lon,r)
implicit none
double precision deg2rad,lat,lon,r,X(3)
integer i
deg2rad=3.1415926535897932d0/180.d0
X(1)=r*dcos(deg2rad*lon)*cos(deg2rad*lat);
X(2)=r*dsin(deg2rad*lon)*cos(deg2rad*lat);
X(3)=r*dsin(deg2rad*lat);
end subroutine geograph2cartglob
!-------------------------------------------------------------------------------
! passage global -> geographique
subroutine cartglob2geograph(X,lat,lon,r)
implicit none
double precision r,lat,lon,X(3),rad2deg
rad2deg=180.d0/3.1415926535897932d0
r=dsqrt(X(1)**2+X(2)**2+X(3)**2);
lon=datan2(X(2),X(1))*rad2deg;
lat=dasin(X(3)/r)*rad2deg;
end subroutine cartglob2geograph
!-------------------------------------------------------------------------------
! produit vectoriel
subroutine pdt_vectoriel(Z,X,Y)
implicit none
double precision X(3),Y(3),Z(3)
z(1)=x(2)*y(3)-x(3)*y(2);
z(2)=x(3)*y(1)-x(1)*y(3);
z(3)=x(1)*y(2)-x(2)*y(1);
end subroutine pdt_vectoriel
!-------------------------------------------------------------------------------
! produit matrice vecteur Y=R*X
subroutine matmulvect(Y,R,X)
implicit none
double complex Y(3),R(3,3),X(3)
integer i,k
Y(:)=dcmplx(0.d0)
do i=1,3
do k=1,3
Y(i)=Y(i)+R(i,k)*X(k)
enddo
enddo
end subroutine matmulvect
!------------------------------------------------------------------------------
! affichage d'une matrice complexe
subroutine Display_matrix_complex(iunit,M)
implicit none
integer i,iunit
double complex M(3,3)
do i=1,3
write(iunit,'("|",2f10.5,5x,2f10.5,5x,2f10.5," |")') real(M(i,1)),aimag(M(i,1)),real(M(i,2)),aimag(M(i,2)),real(M(i,3)),aimag(M(i,3))
enddo
end subroutine Display_matrix_complex
!------------------------------------------------------------------------------
! affichage d'une matrice complexe partie reele
subroutine Display_matrix_realpart(iunit,M)
implicit none
integer i,iunit
double complex M(3,3)
do i=1,3
write(iunit,'("|",f10.5,5x,f10.5,5x,f10.5," |")') real(M(i,1)),real(M(i,2)),real(M(i,3))
enddo
end subroutine Display_matrix_realpart
| gpl-2.0 |
kbai/specfem3d | utils/EXTERNAL_CODES_coupled_with_SPECFEM3D/DSM_for_SPECFEM3D/DSM-1-BIG_3D_storage_version/Part-3-modify_DSM_results_for_SPECFEM/FFT_MPI_FACES_VERT_PSV/rotations_matrix.f90 | 15 | 5195 | !
!
! ROUTINES POUR FAIRE DES ROTATIONS 3D ET DIVERS CHANGEMENTS DE REPERES
!
! Vadim Monteiller Mars 2013
!
!-------------------------------------------------------------------------------
! matrice de rotation 3D d'axe "axe" et d'angle theta (degres)
! cette matrice est en complexe
subroutine rotation_matrix(R,axe,theta)
implicit none
double precision axe(3),theta,pi,deg2rad
double complex R(3,3)
double precision c,s,ux,uy,uz,norme_axe
integer i,j
pi=3.1415926535897932d0
deg2rad = pi / 180.d0
! on normalise l'axe
!write(100,*) 'axe rotation :',axe
norme_axe=dsqrt(axe(1)**2 + axe(2)**2 + axe(3)**2)
! composantes de l'axe
ux=axe(1)/norme_axe
uy=axe(2)/norme_axe
uz=axe(3)/norme_axe
! on calcule le cos et sin
c=dcos(deg2rad * theta);s=dsin(deg2rad * theta)
! matrice de rotation complexe
R(1,1)=dcmplx(ux**2 + (1.d0-ux**2)*c)
R(1,2)=dcmplx(ux*uy*(1.d0-c)-uz*s)
R(1,3)=dcmplx(ux*uz*(1.d0-c)+uy*s)
R(2,1)=dcmplx(ux*uy*(1.d0-c)+uz*s)
R(2,2)=dcmplx(uy**2+(1.d0-uy**2)*c)
R(2,3)=dcmplx(uy*uz*(1.d0-c)-ux*s)
R(3,1)=dcmplx(ux*uz*(1.d0-c)-uy*s)
R(3,2)=dcmplx(uy*uz*(1.d0-c)+ux*s)
R(3,3)=dcmplx(uz**2+(1.d0-uz**2)*c)
end subroutine rotation_matrix
!-------------------------------------------------------------------------------
! R=R2*R1*R0
subroutine compose3matrix(R,R0,R1,R2)
implicit none
double complex R(3,3),R0(3,3),R1(3,3),R2(3,3)
integer i,j,k
R(:,:)=dcmplx(0.d0)
! multiplication R=R1*R0
do j=1,3
do i=1,3
do k=1,3
R(i,j)=R(i,j) + R1(i,k)*R0(k,j)
enddo
enddo
enddo
R1(:,:)=R(:,:)
R(:,:)=dcmplx(0.d0)
! multiplication R=R2*R1
do j=1,3
do i=1,3
do k=1,3
R(i,j)=R(i,j) + R2(i,k)*R1(k,j)
enddo
enddo
enddo
end subroutine compose3matrix
!------------------------------------------------------------------------------
! rotation pour passer d'un repere local a un autre
subroutine local2localMatrix(lat0,lon0,lat1,lon1,R)
implicit none
double precision lat0,lon0,lat1,lon1
double precision distance_epicentrale,azi,bazi
double complex R(3,3),axe_rotation(3)
! calcul de la distance epicentrale = angle de rotation
call epitra1(lat0,lon0,lat1,lon1,distance_epicentrale,azi,bazi)
! calcul de l'axe de rotation = perendiculaire au plan (O,P0,P1)
call calcule_axe_rotation(lat0,lon0,lat1,lon1,axe_rotation)
! on calcule la matrice de rotation
call rotation_matrix(R,axe_rotation,distance_epicentrale)
end subroutine local2localMatrix
!-------------------------------------------------------------------------------
!calcul de l'axe de rotation
subroutine calcule_axe_rotation(lat0,lon0,lat1,lon1,axe)
implicit none
double precision lat0,lon0,lat1,lon1,axe(3)
double precision X0(3),X1(3)
! on passe dans le repere global cartesien
call geograph2cartglob(X0,lat0,lon0,1.d0)
call geograph2cartglob(X1,lat1,lon1,1.d0)
! on fait le produit vectoriel X0^X1
call pdt_vectoriel(axe,X0,X1)
end subroutine calcule_axe_rotation
!-------------------------------------------------------------------------------
! passage geographique -> global
subroutine geograph2cartglob(X,lat,lon,r)
implicit none
double precision deg2rad,lat,lon,r,X(3)
integer i
deg2rad=3.1415926535897932d0/180.d0
X(1)=r*dcos(deg2rad*lon)*cos(deg2rad*lat);
X(2)=r*dsin(deg2rad*lon)*cos(deg2rad*lat);
X(3)=r*dsin(deg2rad*lat);
end subroutine geograph2cartglob
!-------------------------------------------------------------------------------
! passage global -> geographique
subroutine cartglob2geograph(X,lat,lon,r)
implicit none
double precision r,lat,lon,X(3),rad2deg
rad2deg=180.d0/3.1415926535897932d0
r=dsqrt(X(1)**2+X(2)**2+X(3)**2);
lon=datan2(X(2),X(1))*rad2deg;
lat=dasin(X(3)/r)*rad2deg;
end subroutine cartglob2geograph
!-------------------------------------------------------------------------------
! produit vectoriel
subroutine pdt_vectoriel(Z,X,Y)
implicit none
double precision X(3),Y(3),Z(3)
z(1)=x(2)*y(3)-x(3)*y(2);
z(2)=x(3)*y(1)-x(1)*y(3);
z(3)=x(1)*y(2)-x(2)*y(1);
end subroutine pdt_vectoriel
!-------------------------------------------------------------------------------
! produit matrice vecteur Y=R*X
subroutine matmulvect(Y,R,X)
implicit none
double complex Y(3),R(3,3),X(3)
integer i,k
Y(:)=dcmplx(0.d0)
do i=1,3
do k=1,3
Y(i)=Y(i)+R(i,k)*X(k)
enddo
enddo
end subroutine matmulvect
!------------------------------------------------------------------------------
! affichage d'une matrice complexe
subroutine Display_matrix_complex(iunit,M)
implicit none
integer i,iunit
double complex M(3,3)
do i=1,3
write(iunit,'("|",2f10.5,5x,2f10.5,5x,2f10.5," |")') real(M(i,1)),aimag(M(i,1)),real(M(i,2)),aimag(M(i,2)),real(M(i,3)),aimag(M(i,3))
enddo
end subroutine Display_matrix_complex
!------------------------------------------------------------------------------
! affichage d'une matrice complexe partie reele
subroutine Display_matrix_realpart(iunit,M)
implicit none
integer i,iunit
double complex M(3,3)
do i=1,3
write(iunit,'("|",f10.5,5x,f10.5,5x,f10.5," |")') real(M(i,1)),real(M(i,2)),real(M(i,3))
enddo
end subroutine Display_matrix_realpart
| gpl-2.0 |
kbai/specfem3d | utils/Visualization/opendx_AVS/view_basin_model_box_dx.f90 | 8 | 2058 |
program test_opendx_hexahedra
!-------------------------------------------------------------------------
! creates an OpenDX file showing the edges of the SEM grid
!-------------------------------------------------------------------------
implicit none
include "../../../constants.h"
double precision, parameter :: LONGMIN = -120.5d0,LONGMAX = -114.5d0
double precision, parameter :: LATMIN = 32.5d0,LATMAX = 36.5d0
double precision, dimension(4) :: x,y
write(*,*) 'creating OpenDX grid'
call utm_geo(LONGMIN,LATMIN,x(1),y(1),IZONE_UTM_LA,ILONGLAT2UTM)
call utm_geo(LONGMAX,LATMIN,x(2),y(2),IZONE_UTM_LA,ILONGLAT2UTM)
call utm_geo(LONGMAX,LATMAX,x(3),y(3),IZONE_UTM_LA,ILONGLAT2UTM)
call utm_geo(LONGMIN,LATMAX,x(4),y(4),IZONE_UTM_LA,ILONGLAT2UTM)
!---
!--- write OpenDX file
!---
open(unit=10,file='basin_grid_edges.dx', status='unknown')
!--- write nodal coordinates
write(10,*) 'object 1 class array type float rank 1 shape 3 items 4 data follows'
! use fictitious height of 1. to place on top of the rest on top view
write(10,*) sngl(x(1)),sngl(y(1)),' 1'
write(10,*) sngl(x(2)),sngl(y(2)),' 1'
write(10,*) sngl(x(3)),sngl(y(3)),' 1'
write(10,*) sngl(x(4)),sngl(y(4)),' 1'
!--- write connectivity pattern
!--- OpenDX node numbers start at zero
write(10,*) 'object 2 class array type int rank 1 shape 4 items 1 data follows'
write(10,*) '0 3 1 2'
write(10,*) 'attribute "element type" string "quads"'
write(10,*) 'attribute "ref" string "positions"'
!--- write element data
write(10,*) 'object 3 class array type float rank 0 items 1 data follows'
write(10,*) '100'
write(10,*) 'attribute "dep" string "connections"'
!--- define field
write(10,*) 'object "irregular connections irregular positions" class field'
write(10,*) 'component "positions" value 1'
write(10,*) 'component "connections" value 2'
write(10,*) 'component "data" value 3'
write(10,*) 'end'
close(10)
end program test_opendx_hexahedra
!! DK DK add UTM projection routine
include "../../../utm_geo.f90"
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/iso_fortran_env_1.f90 | 136 | 1193 | ! { dg-do run }
module iso_fortran_env
real :: x
end module iso_fortran_env
subroutine bar
use , intrinsic :: iso_fortran_env
implicit none
if (file_storage_size /= 8) call abort
if (character_storage_size /= 8) call abort
if (all (numeric_storage_size /= [ 8, 16, 32, 64, 128])) call abort
if (input_unit /= 5) call abort
if (output_unit /= 6) call abort
if (error_unit /= 0) call abort
if (iostat_end /= -1) call abort
if (iostat_eor /= -2) call abort
end
subroutine bar2
use , intrinsic :: iso_fortran_env, only : file_storage_size, &
character_storage_size, numeric_storage_size, input_unit, output_unit, &
error_unit, iostat_end, iostat_eor
implicit none
if (file_storage_size /= 8) call abort
if (character_storage_size /= 8) call abort
if (all (numeric_storage_size /= [ 8, 16, 32, 64, 128])) call abort
if (input_unit /= 5) call abort
if (output_unit /= 6) call abort
if (error_unit /= 0) call abort
if (iostat_end /= -1) call abort
if (iostat_eor /= -2) call abort
end
program test
use , intrinsic :: iso_fortran_env, uu => output_unit
implicit none
if (input_unit /= 5 .or. uu /= 6) call abort
call bar
call bar2
end
| gpl-2.0 |
QEF/q-e_schrodinger | PW/src/h_psi.f90 | 1 | 10060 | !
! Copyright (C) 2002-2022 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
SUBROUTINE h_psi( lda, n, m, psi, hpsi )
!----------------------------------------------------------------------------
!! This routine computes the product of the Hamiltonian matrix with m
!! wavefunctions contained in psi.
!
!! \(\textit{Wrapper routine}\): performs bgrp parallelization on
!! non-distributed bands. If suitable and required, calls old H\psi
!! routine h_psi_ .
!
USE kinds, ONLY: DP
USE noncollin_module, ONLY: npol
USE xc_lib, ONLY: exx_is_active
USE mp_bands, ONLY: use_bgrp_in_hpsi, inter_bgrp_comm
USE mp, ONLY: mp_allgather, mp_size, &
mp_type_create_column_section, mp_type_free
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: lda
!! leading dimension of arrays psi, spsi, hpsi
INTEGER, INTENT(IN) :: n
!! true dimension of psi, spsi, hpsi
INTEGER, INTENT(IN) :: m
!! number of states psi
COMPLEX(DP), INTENT(IN) :: psi(lda*npol,m)
!! the wavefunction
COMPLEX(DP), INTENT(OUT) :: hpsi(lda*npol,m)
!! Hamiltonian dot psi
!
! ... local variables
!
INTEGER :: m_start, m_end
INTEGER :: column_type
INTEGER, ALLOCATABLE :: recv_counts(:), displs(:)
!
!
CALL start_clock( 'h_psi_bgrp' ); !write (*,*) 'start h_psi_bgrp'; FLUSH(6)
!
! band parallelization with non-distributed bands is performed if
! 1. enabled (variable use_bgrp_in_hpsi must be set to .T.)
! 2. exact exchange is not active (if it is, band parallelization is already
! used in exx routines called by Hpsi)
! 3. there is more than one band, otherwise there is nothing to parallelize
!
IF (use_bgrp_in_hpsi .AND. .NOT. exx_is_active() .AND. m > 1) THEN
!
! use band parallelization here
ALLOCATE( recv_counts(mp_size(inter_bgrp_comm)), displs(mp_size(inter_bgrp_comm)) )
CALL divide_all( inter_bgrp_comm, m, m_start, m_end, recv_counts,displs )
CALL mp_type_create_column_section( hpsi(1,1), 0, lda*npol, lda*npol, column_type )
!
! Check if there at least one band in this band group
IF (m_end >= m_start) &
CALL h_psi_( lda, n, m_end-m_start+1, psi(1,m_start), hpsi(1,m_start) )
CALL mp_allgather( hpsi, column_type, recv_counts, displs, inter_bgrp_comm )
!
CALL mp_type_free( column_type )
DEALLOCATE( recv_counts )
DEALLOCATE( displs )
!
ELSE
! don't use band parallelization here
CALL h_psi_( lda, n, m, psi, hpsi )
!
ENDIF
!
CALL stop_clock( 'h_psi_bgrp' )
!
!
RETURN
!
END SUBROUTINE h_psi
!
!----------------------------------------------------------------------------
SUBROUTINE h_psi_( lda, n, m, psi, hpsi )
!----------------------------------------------------------------------------
!! This routine computes the product of the Hamiltonian matrix with m
!! wavefunctions contained in psi.
!
USE kinds, ONLY: DP
USE bp, ONLY: lelfield, l3dstring, gdir, efield, efield_cry
USE becmod, ONLY: bec_type, becp, calbec
USE lsda_mod, ONLY: current_spin
USE scf, ONLY: vrs
USE wvfct, ONLY: g2kin
USE uspp, ONLY: vkb, nkb
USE ldaU, ONLY: lda_plus_u, Hubbard_projectors
USE gvect, ONLY: gstart
USE control_flags, ONLY: gamma_only
USE noncollin_module, ONLY: npol, noncolin
USE realus, ONLY: real_space, invfft_orbital_gamma, fwfft_orbital_gamma, &
calbec_rs_gamma, add_vuspsir_gamma, invfft_orbital_k, &
fwfft_orbital_k, calbec_rs_k, add_vuspsir_k, &
v_loc_psir_inplace
USE fft_base, ONLY: dffts
USE exx, ONLY: use_ace, vexx, vexxace_gamma, vexxace_k
USE xc_lib, ONLY: exx_is_active, xclib_dft_is
USE fft_helper_subroutines
!
USE wvfct_gpum, ONLY: using_g2kin
USE scf_gpum, ONLY: using_vrs
USE becmod_subs_gpum, ONLY: using_becp_auto
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: lda
!! leading dimension of arrays psi, spsi, hpsi
INTEGER, INTENT(IN) :: n
!! true dimension of psi, spsi, hpsi
INTEGER, INTENT(IN) :: m
!! number of states psi
COMPLEX(DP), INTENT(IN) :: psi(lda*npol,m)
!! the wavefunction
COMPLEX(DP), INTENT(OUT) :: hpsi(lda*npol,m)
!! Hamiltonian dot psi
!
! ... local variables
!
INTEGER :: ipol, ibnd
REAL(DP) :: ee
!
!
CALL start_clock( 'h_psi' ); !write (*,*) 'start h_psi';FLUSH(6)
CALL using_g2kin(0)
CALL using_vrs(0) ! vloc_psi_gamma (intent:in)
!
! ... Here we set the kinetic energy (k+G)^2 psi and clean up garbage
!
!$omp parallel do
DO ibnd = 1, m
hpsi(1:n,ibnd) = g2kin(1:n) * psi(1:n,ibnd)
IF (n<lda) hpsi(n+1:lda, ibnd) = (0.0_dp, 0.0_dp)
IF ( noncolin ) THEN
hpsi(lda+1:lda+n, ibnd) = g2kin(1:n) * psi(lda+1:lda+n, ibnd)
IF (n<lda) hpsi(lda+n+1:lda+lda, ibnd) = (0.0_dp, 0.0_dp)
ENDIF
ENDDO
!$omp end parallel do
CALL start_clock( 'h_psi:pot' ); !write (*,*) 'start h_psi:pot';FLUSH(6)
!
! ... Here the product with the local potential V_loc psi
!
IF ( gamma_only ) THEN
!
IF ( real_space .AND. nkb > 0 ) THEN
CALL using_becp_auto(1)
!
! ... real-space algorithm
! ... fixme: real_space without beta functions does not make sense
!
IF ( dffts%has_task_groups ) &
CALL errore( 'h_psi', 'task_groups not implemented with real_space', 1 )
DO ibnd = 1, m, 2
! ... transform psi to real space -> psic
CALL invfft_orbital_gamma( psi, ibnd, m )
! ... compute becp%r = < beta|psi> from psic in real space
CALL start_clock( 'h_psi:calbec' )
CALL calbec_rs_gamma( ibnd, m, becp%r )
CALL stop_clock( 'h_psi:calbec' )
! ... psic -> vrs * psic (psic overwritten will become hpsi)
CALL v_loc_psir_inplace( ibnd, m )
! ... psic (hpsi) -> psic + vusp
CALL add_vuspsir_gamma( ibnd, m )
! ... transform psic back in reciprocal space and add it to hpsi
CALL fwfft_orbital_gamma( hpsi, ibnd, m, add_to_orbital=.TRUE. )
ENDDO
!
ELSE
! ... usual reciprocal-space algorithm
CALL vloc_psi_gamma( lda, n, m, psi, vrs(1,current_spin), hpsi )
!
ENDIF
!
ELSEIF ( noncolin ) THEN
!
CALL vloc_psi_nc( lda, n, m, psi, vrs, hpsi )
!
ELSE
!
IF ( real_space .AND. nkb > 0 ) THEN
!
! ... real-space algorithm
! ... fixme: real_space without beta functions does not make sense
!
CALL using_becp_auto(1) ! WHY IS THIS HERE?
IF ( dffts%has_task_groups ) &
CALL errore( 'h_psi', 'task_groups not implemented with real_space', 1 )
!
DO ibnd = 1, m
! ... transform psi to real space -> psic
CALL invfft_orbital_k( psi, ibnd, m )
! ... compute becp%r = < beta|psi> from psic in real space
CALL start_clock( 'h_psi:calbec' )
CALL calbec_rs_k( ibnd, m )
CALL stop_clock( 'h_psi:calbec' )
! ... psic -> vrs * psic (psic overwritten will become hpsi)
CALL v_loc_psir_inplace( ibnd, m )
! ... psic (hpsi) -> psic + vusp
CALL add_vuspsir_k( ibnd, m )
! ... transform psic back in reciprocal space and add it to hpsi
CALL fwfft_orbital_k( hpsi, ibnd, m, add_to_orbital=.TRUE. )
!
ENDDO
!
ELSE
!
CALL vloc_psi_k( lda, n, m, psi, vrs(1,current_spin), hpsi )
!
ENDIF
!
ENDIF
!
! ... Here the product with the non local potential V_NL psi
! ... (not in the real-space case: it is done together with V_loc)
!
IF ( nkb > 0 .AND. .NOT. real_space) THEN
!
CALL using_becp_auto(1)
!
CALL start_clock( 'h_psi:calbec' )
CALL calbec( n, vkb, psi, becp, m )
CALL stop_clock( 'h_psi:calbec' )
CALL add_vuspsi( lda, n, m, hpsi )
!
ENDIF
!
CALL stop_clock( 'h_psi:pot' ); !write (*,*) 'stop h_psi:pot';FLUSH(6)
!
IF (xclib_dft_is('meta')) CALL h_psi_meta( lda, n, m, psi, hpsi )
!
! ... Here we add the Hubbard potential times psi
!
IF ( lda_plus_u .AND. Hubbard_projectors.NE."pseudo" ) THEN
!
IF ( noncolin ) THEN
CALL vhpsi_nc( lda, n, m, psi, hpsi )
ELSE
CALL vhpsi( lda, n, m, psi, hpsi )
ENDIF
!
ENDIF
!
! ... Here the exact-exchange term Vxx psi
!
IF ( exx_is_active() ) THEN
IF ( use_ace ) THEN
IF ( gamma_only ) THEN
CALL vexxace_gamma( lda, m, psi, ee, hpsi )
ELSE
CALL vexxace_k( lda, m, psi, ee, hpsi )
ENDIF
ELSE
CALL using_becp_auto(0)
CALL vexx( lda, n, m, psi, hpsi, becp )
ENDIF
ENDIF
!
! ... electric enthalpy if required
!
IF ( lelfield ) THEN
!
IF ( .NOT.l3dstring ) THEN
CALL h_epsi_her_apply( lda, n, m, psi, hpsi,gdir, efield )
ELSE
DO ipol = 1, 3
CALL h_epsi_her_apply( lda, n, m, psi, hpsi,ipol,efield_cry(ipol) )
ENDDO
ENDIF
!
ENDIF
!
! ... With Gamma-only trick, Im(H*psi)(G=0) = 0 by definition,
! ... but it is convenient to explicitly set it to 0 to prevent trouble
!
IF ( gamma_only .AND. gstart == 2 ) &
hpsi(1,1:m) = CMPLX( DBLE( hpsi(1,1:m) ), 0.D0, KIND=DP)
!
CALL stop_clock( 'h_psi' )
!
!
RETURN
!
END SUBROUTINE h_psi_
| gpl-2.0 |
yangf4/phasta | phSolver/compressible/itrfdi.f | 1 | 8406 | subroutine itrFDI (ypre, y, ac, x,
& rmes, uBrg, BDiag,
& iBC, BC, iper,
& ilwork, shp, shgl,
& shpb, shglb)
c
c----------------------------------------------------------------------
c
c This subroutine computes the "optimum" finite difference
c interval eps for the forward difference scheme
c
c Rmod(y + eps u) - Rmod(y)
c ---------------------------
c eps
c
c where u is the step and Rmod is the modified residual.
c
c Note: A good theoretical reference is 'Practical Optimization' by
c P.E. Gill, W. Murray and M.H. Wright [1981].
c
c input:
c y (nshg,ndof) : Y-variables
c ypre (nshg,ndof) : preconditioned Y-variables
c x (numnp,nsd) : node coordinates
c rmes (nshg,nflow) : modified residual
c uBrg (nshg,nflow) : step
c BDiag (nshg,nflow,nflow) : block-diagonal preconditioner
c iBC (nshg) : BC codes
c BC (nshg,ndofBC) : BC constraint parameters
c
c
c
c Zdenek Johan, Winter 1989.
c Zdenek Johan, Winter 1991. (Fortran 90)
c----------------------------------------------------------------------
c
include "common.h"
c
dimension y(nshg,ndof), ypre(nshg,nflow),
& x(numnp,nsd), ac(nshg,ndof),
& rmes(nshg,nflow),
& uBrg(nshg,nflow), BDiag(nshg,nflow,nflow),
& iBC(nshg), BC(nshg,ndofBC),
& ilwork(nlwork),
& iper(nshg)
c
dimension ytmp(nshg,nflow), rtmp(nshg,nflow)
dimension tmpy(nshg,ndof)
c
dimension shp(MAXTOP,maxsh,MAXQPT),
& shgl(MAXTOP,nsd,maxsh,MAXQPT),
& shpb(MAXTOP,maxsh,MAXQPT),
& shglb(MAXTOP,nsd,maxsh,MAXQPT)
c
c.... compute the accuracy (cancellation error) -> epsA
c
rtmp = zero
c
ytmp = ypre
c
c call yshuffle(ytmp, 'new2old ')
c
call i3LU (BDiag, ytmp, 'backward')
c
call yshuffle(ytmp, 'old2new ')
c
iabres = 1
c
call itrRes (ytmp, y,
& x, shp,
& shgl, iBC,
& BC, shpb,
& shglb, rtmp,
& iper, ilwork,
& ac)
c
iabres = 0
c
call i3LU (BDiag, rtmp, 'forward ')
c
rtmp = rtmp**2
call sumgat (rtmp, nflow, summed, ilwork)
epsA = (epsM**2) * sqrt(summed)
c
c.... compute the norm of the second derivative (truncation error)
c
c.... set interval
c
epsSD = sqrt(epsM)
c
c.... compute the first residual
c
rtmp = zero
c
c call yshuffle(ypre, 'new2old ')
c
ytmp = ypre + epsSD * uBrg
c
call i3LU (BDiag, ytmp, 'backward')
c
call yshuffle(ytmp, 'old2new ')
c
call itrRes (ytmp, y,
& x, shp,
& shgl, iBC,
& BC, shpb,
& shglb, rtmp,
& iper, ilwork, ac)
!Added ac to the end if itrRes, but not tested - Nicholas
c
c.... compute the second residual and add it to the first one
c
ytmp = ypre - epsSD * uBrg
c
c call yshuffle(ypre, 'old2new ')
c
call i3LU (BDiag, ytmp, 'backward')
c
call yshuffle(ytmp, 'old2new ')
call itrRes (ytmp, y,
& x, shp,
& shgl, iBC,
& BC, shpb,
& shglb, rtmp,
& iper, ilwork, ac)
!Added ac to the end if itrRes, but not tested - Nicholas
c
call i3LU (BDiag, rtmp, 'forward ')
c
c.... compute the second derivative and its norm
c
rtmp = (( rtmp - two * rmes ) / epsM)**2
c
call sumgat (rtmp, nflow, summed, ilwork)
SDnrm = sqrt(summed)
c
c.... compute the 'optimum' interval
c
eGMRES = two * sqrt( epsA / SDnrm )
c
c.... flop count
c
! flops = flops + 10*nflow*nshg+3*nshg
c
c.... end
c
return
end
subroutine itrFDISclr (y, ypre, x,
& rmes, uBrg, BDiag,
& iBC, BC, engBC, iper,
& ilwork)
c
c----------------------------------------------------------------------
c
c This subroutine computes the "optimum" finite difference
c interval eps for the forward difference scheme
c
c Rmod(y + eps u) - Rmod(y)
c ---------------------------
c eps
c
c where u is the step and Rmod is the modified residual.
c
c Note: A good theoretical reference is 'Practical Optimization' by
c P.E. Gill, W. Murray and M.H. Wright [1981].
c
c input:
c y (nshg,ndof) : Y-variables
c ypre (nshg,ndof) : preconditioned Y-variables
c x (numnp,nsd) : node coordinates
c rmes (nshg,nflow) : modified residual
c uBrg (nshg,nflow) : step
c BDiag (nshg,nflow,nflow) : block-diagonal preconditioner
c iBC (nshg) : BC codes
c BC (nshg,ndofBC) : BC constraint parameters
c engBC (nshg) : energy for BC on density or pressure
c
c
c Zdenek Johan, Winter 1989.
c Zdenek Johan, Winter 1991. (Fortran 90)
c----------------------------------------------------------------------
c
include "common.h"
c
dimension y(nshg,ndof), ypre(nshg,ndof),
& x(numnp,nsd),
& rmes(nshg,nflow),
& uBrg(nshg,nflow), BDiag(nshg,nflow,nflow),
& iBC(nshg), BC(nshg,ndofBC),
& engBC(nshg), ilwork(nlwork),
& iper(nshg)
c
dimension ytmp(nshg,ndof), rtmp(nshg,nflow)
c
c.... compute the accuracy (cancellation error) -> epsA
c
rtmp = zero
c
ytmp = ypre
c
c call tnanq(ytmp,ndof,"ytmp ")
iabres = 1
c
call itrRes (ytmp, y,
& x, a(mshp),
& a(mshgl), a(mwght), iBC,
& BC, engBC, a(mshpb),
& a(mshglb), a(mwghtb), rtmp,
& iper, ilwork, ac)
!Added ac to the end if itrRes, but not tested - Nicholas
c
iabres = 0
c
rtmp = rtmp**2
call sumgat (rtmp, nflow, summed, ilwork)
epsA = (epsM**2) * sqrt(summed)
c
c.... compute the norm of the second derivative (truncation error)
c
c.... set interval
c
epsSD = sqrt(epsM)
c
c.... compute the first residual
c
rtmp = zero
c
ytmp = ypre + epsSD * uBrg
c
call itrRes (ytmp, y,
& x, a(mshp),
& a(mshgl), a(mwght), iBC,
& BC, engBC, a(mshpb),
& a(mshglb), a(mwghtb), rtmp,
& iper, ilwork, ac)
!Added ac to the end if itrRes, but not tested - Nicholas
c
c.... compute the second residual and add it to the first one
c
ytmp = ypre - epsSD * uBrg
c
call itrRes (ytmp, y,
& x, a(mshp),
& a(mshgl), a(mwght), iBC,
& BC, engBC, a(mshpb),
& a(mshglb), a(mwghtb), rtmp,
& iper, ilwork, ac)
!Added ac to the end if itrRes, but not tested - Nicholas
c
c.... compute the second derivative and its norm
c
rtmp = (( rtmp - two * rmes ) / epsM)**2
c
call sumgat (rtmp, nflow, summed, ilwork)
SDnrm = sqrt(summed)
c
c.... compute the 'optimum' interval
c
eGMRES = two * sqrt( epsA / SDnrm )
c
c.... flop count
c
! flops = flops + 10*nflow*nshg+3*nshg
c
c.... end
c
return
end
| bsd-3-clause |
piyush0609/scipy | scipy/interpolate/fitpack/cualde.f | 148 | 3040 | subroutine cualde(idim,t,n,c,nc,k1,u,d,nd,ier)
c subroutine cualde evaluates at the point u all the derivatives
c (l)
c d(idim*l+j) = sj (u) ,l=0,1,...,k, j=1,2,...,idim
c of a spline curve s(u) of order k1 (degree k=k1-1) and dimension idim
c given in its b-spline representation.
c
c calling sequence:
c call cualde(idim,t,n,c,nc,k1,u,d,nd,ier)
c
c input parameters:
c idim : integer, giving the dimension of the spline curve.
c t : array,length n, which contains the position of the knots.
c n : integer, giving the total number of knots of s(u).
c c : array,length nc, which contains the b-spline coefficients.
c nc : integer, giving the total number of coefficients of s(u).
c k1 : integer, giving the order of s(u) (order=degree+1).
c u : real, which contains the point where the derivatives must
c be evaluated.
c nd : integer, giving the dimension of the array d. nd >= k1*idim
c
c output parameters:
c d : array,length nd,giving the different curve derivatives.
c d(idim*l+j) will contain the j-th coordinate of the l-th
c derivative of the curve at the point u.
c ier : error flag
c ier = 0 : normal return
c ier =10 : invalid input data (see restrictions)
c
c restrictions:
c nd >= k1*idim
c t(k1) <= u <= t(n-k1+1)
c
c further comments:
c if u coincides with a knot, right derivatives are computed
c ( left derivatives if u = t(n-k1+1) ).
c
c other subroutines required: fpader.
c
c references :
c de boor c : on calculating with b-splines, j. approximation theory
c 6 (1972) 50-62.
c cox m.g. : the numerical evaluation of b-splines, j. inst. maths
c applics 10 (1972) 134-149.
c dierckx p. : curve and surface fitting with splines, monographs on
c numerical analysis, oxford university press, 1993.
c
c author :
c p.dierckx
c dept. computer science, k.u.leuven
c celestijnenlaan 200a, b-3001 heverlee, belgium.
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c latest update : march 1987
c
c ..scalar arguments..
integer idim,n,nc,k1,nd,ier
real*8 u
c ..array arguments..
real*8 t(n),c(nc),d(nd)
c ..local scalars..
integer i,j,kk,l,m,nk1
c ..local array..
real*8 h(6)
c ..
c before starting computations a data check is made. if the input data
c are invalid control is immediately repassed to the calling program.
ier = 10
if(nd.lt.(k1*idim)) go to 500
nk1 = n-k1
if(u.lt.t(k1) .or. u.gt.t(nk1+1)) go to 500
c search for knot interval t(l) <= u < t(l+1)
l = k1
100 if(u.lt.t(l+1) .or. l.eq.nk1) go to 200
l = l+1
go to 100
200 if(t(l).ge.t(l+1)) go to 500
ier = 0
c calculate the derivatives.
j = 1
do 400 i=1,idim
call fpader(t,n,c(j),k1,u,l,h)
m = i
do 300 kk=1,k1
d(m) = h(kk)
m = m+idim
300 continue
j = j+n
400 continue
500 return
end
| bsd-3-clause |
LucasGandel/ITK | Modules/ThirdParty/VNL/src/vxl/v3p/netlib/blas/sdot.f | 55 | 1229 | real function sdot(n,sx,incx,sy,incy)
c
c forms the dot product of two vectors.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c modified 12/3/93, array(1) declarations changed to array(*)
c
real sx(*),sy(*),stemp
integer i,incx,incy,ix,iy,m,mp1,n
c
stemp = 0.0e0
sdot = 0.0e0
if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
stemp = stemp + sx(ix)*sy(iy)
ix = ix + incx
iy = iy + incy
10 continue
sdot = stemp
return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
20 m = mod(n,5)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
stemp = stemp + sx(i)*sy(i)
30 continue
if( n .lt. 5 ) go to 60
40 mp1 = m + 1
do 50 i = mp1,n,5
stemp = stemp + sx(i)*sy(i) + sx(i + 1)*sy(i + 1) +
* sx(i + 2)*sy(i + 2) + sx(i + 3)*sy(i + 3) + sx(i + 4)*sy(i + 4)
50 continue
60 sdot = stemp
return
end
| apache-2.0 |
aidanheerdegen/MOM6 | src/core/MOM_PressureForce.F90 | 1 | 8767 | module MOM_PressureForce
!***********************************************************************
!* GNU General Public License *
!* This file is a part of MOM. *
!* *
!* MOM is free software; you can redistribute it and/or modify it and *
!* are expected to follow the terms of the GNU General Public License *
!* as published by the Free Software Foundation; either version 2 of *
!* the License, or (at your option) any later version. *
!* *
!* MOM is distributed in the hope that it will be useful, but WITHOUT *
!* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
!* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public *
!* License for more details. *
!* *
!* For the full text of the GNU General Public License, *
!* write to: Free Software Foundation, Inc., *
!* 675 Mass Ave, Cambridge, MA 02139, USA. *
!* or see: http://www.gnu.org/licenses/gpl.html *
!***********************************************************************
!********+*********+*********+*********+*********+*********+*********+**
!* *
!* By Robert Hallberg, April 1994 - June 2008 *
!* *
!* This file contains the subroutine that directs the model to use *
!* the code that determines the horizontal accelerations due to *
!* pressure gradients. The two options currently available are a *
!* traditional Montgomery potential form, and the analytic finite *
!* volume form described in Adcroft, Hallberg and Harrison, 2008, *
!* Ocean Modelling, 22, 106-113. *
!* *
!* PressureForce takes 9 arguments, which are described below. If *
!* a non-split time stepping scheme is used, the last three arguments *
!* are ignored. *
!* *
!* Macros written all in capital letters are defined in MOM_memory.h. *
!* *
!* A small fragment of the grid is shown below: *
!* *
!* j+1 x ^ x ^ x At x: q, CoriolisBu *
!* j+1 > o > o > At ^: v, PFv *
!* j x ^ x ^ x At >: u, PFu *
!* j > o > o > At o: h, bathyT, M, e, p, pbce, T, S *
!* j-1 x ^ x ^ x *
!* i-1 i i+1 *
!* i i+1 *
!* *
!* The boundaries always run through q grid points (x). *
!* *
!********+*********+*********+*********+*********+*********+*********+**
use MOM_diag_mediator, only : diag_ctrl, time_type
use MOM_error_handler, only : MOM_error, MOM_mesg, FATAL, WARNING, is_root_pe
use MOM_file_parser, only : get_param, log_version, param_file_type
use MOM_grid, only : ocean_grid_type
use MOM_PressureForce_AFV, only : PressureForce_AFV_Bouss, PressureForce_AFV_nonBouss
use MOM_PressureForce_AFV, only : PressureForce_AFV_init, PressureForce_AFV_CS
use MOM_PressureForce_Mont, only : PressureForce_Mont_Bouss, PressureForce_Mont_nonBouss
use MOM_PressureForce_Mont, only : PressureForce_Mont_init, PressureForce_Mont_CS
use MOM_tidal_forcing, only : calc_tidal_forcing, tidal_forcing_CS
use MOM_variables, only : thermo_var_ptrs
use MOM_ALE, only: ALE_CS
implicit none ; private
#include <MOM_memory.h>
public PressureForce, PressureForce_init, PressureForce_end
type, public :: PressureForce_CS ; private
logical :: Analytic_FV_PGF ! If true, use the analytic finite volume form
! (Adcroft et al., Ocean Mod. 2008) of the PGF.
type(PressureForce_AFV_CS), pointer :: PressureForce_AFV_CSp => NULL()
type(PressureForce_Mont_CS), pointer :: PressureForce_Mont_CSp => NULL()
end type PressureForce_CS
contains
subroutine PressureForce(h, tv, PFu, PFv, G, CS, ALE_CSp, p_atm, pbce, eta)
real, dimension(NIMEM_,NJMEM_,NKMEM_), intent(in) :: h
type(thermo_var_ptrs), intent(in) :: tv
real, dimension(NIMEMB_,NJMEM_,NKMEM_), intent(out) :: PFu
real, dimension(NIMEM_,NJMEMB_,NKMEM_), intent(out) :: PFv
type(ocean_grid_type), intent(in) :: G
type(PressureForce_CS), pointer :: CS
type(ALE_CS), pointer :: ALE_CSp
real, dimension(:,:), optional, pointer :: p_atm
real, dimension(NIMEM_,NJMEM_,NKMEM_), optional, intent(out) :: pbce
real, dimension(NIMEM_,NJMEM_), optional, intent(out) :: eta
! This subroutine works as a temporary interface between the model and the
! Boussinesq and non-Boussinesq pressure force routines.
! Descriptions of the variables are in each of the routines called in the
! following conditional block.
if (CS%Analytic_FV_PGF) then
if (G%Boussinesq) then
call PressureForce_AFV_Bouss(h, tv, PFu, PFv, G, CS%PressureForce_AFV_CSp, &
ALE_CSp, p_atm, pbce, eta)
else
call PressureForce_AFV_nonBouss(h, tv, PFu, PFv, G, CS%PressureForce_AFV_CSp, &
p_atm, pbce, eta)
endif
else
if (G%Boussinesq) then
call PressureForce_Mont_Bouss(h, tv, PFu, PFv, G, CS%PressureForce_Mont_CSp, &
p_atm, pbce, eta)
else
call PressureForce_Mont_nonBouss(h, tv, PFu, PFv, G, CS%PressureForce_Mont_CSp, &
p_atm, pbce, eta)
endif
endif
end subroutine Pressureforce
subroutine PressureForce_init(Time, G, param_file, diag, CS, tides_CSp)
type(time_type), target, intent(in) :: Time
type(ocean_grid_type), intent(in) :: G
type(param_file_type), intent(in) :: param_file
type(diag_ctrl), target, intent(inout) :: diag
type(PressureForce_CS), pointer :: CS
type(tidal_forcing_CS), optional, pointer :: tides_CSp
! Arguments: Time - The current model time.
! (in) G - The ocean's grid structure.
! (in) param_file - A structure indicating the open file to parse for
! model parameter values.
! (in) diag - A structure that is used to regulate diagnostic output.
! (in/out) CS - A pointer that is set to point to the control structure
! for this module.
! (in) tides_CSp - a pointer to the control structure of the tide module.
! This include declares and sets the variable "version".
#include "version_variable.h"
character(len=40) :: mod = "MOM_PressureForce" ! This module's name.
if (associated(CS)) then
call MOM_error(WARNING, "PressureForce_init called with an associated "// &
"control structure.")
return
else ; allocate(CS) ; endif
! Read all relevant parameters and write them to the model log.
call log_version(param_file, mod, version)
call get_param(param_file, mod, "ANALYTIC_FV_PGF", CS%Analytic_FV_PGF, &
"If true the pressure gradient forces are calculated \n"//&
"with a finite volume form that analytically integrates \n"//&
"the equations of state in pressure to avoid any \n"//&
"possibility of numerical thermobaric instability, as \n"//&
"described in Adcroft et al., O. Mod. (2008).", default=.true.)
if (CS%Analytic_FV_PGF) then
call PressureForce_AFV_init(Time, G, param_file, diag, &
CS%PressureForce_AFV_CSp, tides_CSp)
else
call PressureForce_Mont_init(Time, G, param_file, diag, &
CS%PressureForce_Mont_CSp, tides_CSp)
endif
end subroutine PressureForce_init
subroutine PressureForce_end(CS)
type(PressureForce_CS), pointer :: CS
if (associated(CS)) deallocate(CS)
end subroutine PressureForce_end
end module MOM_PressureForce
| gpl-3.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/used_before_typed_1.f90 | 193 | 1320 | ! { dg-do compile }
! { dg-options "-std=f95" }
! PR fortran/32095
! PR fortran/34228
! Check that standards-conforming mode rejects uses of variables that
! are used before they are typed.
SUBROUTINE test1 (n, arr, m, arr2, k, arr3, a) ! { dg-error "has no IMPLICIT" }
IMPLICIT NONE
INTEGER :: arr(n) ! { dg-error "used before it is typed" }
INTEGER :: n
INTEGER :: m, arr2(m) ! { dg-bogus "used before it is typed" }
INTEGER, DIMENSION(k) :: arr3 ! { dg-error "used before it is typed" }
INTEGER :: k
CHARACTER(len=LEN(a)) :: a ! { dg-error "'a' is used before it is typed" }
REAL(KIND=l) :: x ! { dg-error "has no IMPLICIT type" }
REAL(KIND=KIND(y)) :: y ! { dg-error "has no IMPLICIT type" }
DATA str/'abc'/ ! { dg-error "used before it is typed" }
CHARACTER(len=3) :: str, str2
DATA str2/'abc'/ ! { dg-bogus "used before it is typed" }
END SUBROUTINE test1
SUBROUTINE test2 (n, arr, m, arr2)
IMPLICIT INTEGER(a-z)
INTEGER :: arr(n)
REAL :: n ! { dg-error "already has basic type" }
INTEGER :: m, arr2(m) ! { dg-bogus "already has an IMPLICIT type" }
END SUBROUTINE test2
SUBROUTINE test3 (n, arr, m, arr2)
IMPLICIT REAL(a-z)
INTEGER :: arr(n) ! { dg-error "must be of INTEGER type" }
INTEGER :: m, arr2(m) ! { dg-bogus "must be of INTEGER type" }
END SUBROUTINE test3
| gpl-2.0 |
QEF/q-e_schrodinger | LR_Modules/lr_dot_magnons.f90 | 2 | 3012 | !
! Copyright (C) 2021 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
FUNCTION lr_dot_magnons(x,y)
!---------------------------------------------------------------------
!
! Extension of lr_dot.f90 to magnons
!
USE kinds, ONLY : dp
USE io_global, ONLY : stdout
USE klist, ONLY : nks, xk, wk, ngk
USE lsda_mod, ONLY : nspin
USE wvfct, ONLY : npwx,nbnd,wg
USE gvecw, ONLY : gcutw
USE control_flags, ONLY : gamma_only
USE gvect, ONLY : gstart, ngm, g
USE mp, ONLY : mp_sum
USE mp_global, ONLY : inter_pool_comm, intra_bgrp_comm
USE noncollin_module, ONLY : noncolin, npol
USE control_lr, ONLY : nbnd_occ, nbnd_occx
USE qpoint, ONLY : nksq
!
IMPLICIT NONE
!
COMPLEX(kind=dp) :: x(npwx*npol,nbnd_occx,nksq,2), &
y(npwx*npol,nbnd_occx,nksq,2)
COMPLEX(kind=dp) :: lr_dot_magnons
REAL(kind=dp) :: degspin
INTEGER :: ibnd, ik
!
CALL start_clock ('lr_dot_magnons')
!
lr_dot_magnons = (0.0d0,0.0d0)
!
IF (nspin==2) THEN
degspin = 1.0d0
ELSE
degspin = 2.0d0
ENDIF
IF (noncolin) degspin = 1.0d0
!
CALL lr_dot_k_magnons()
!
! lr_dot_magnons = lr_dot_magnons/degspin
!
CALL stop_clock ('lr_dot_magnons')
!
RETURN
!
CONTAINS
!
SUBROUTINE lr_dot_k_magnons
!
! MAGNONS
! Noncollinear case is implemented
!
USE qpoint, ONLY : ikks, ikqs
!
IMPLICIT NONE
INTEGER :: ios
INTEGER :: ik, &
ikk, & ! index of the point k
ikq, & ! index of the point k+q
npwq, &! number of the plane-waves at point k+q
imk
!
DO ik = 1, nksq
!
ikk = ikks(ik)
ikq = ikqs(ik)
npwq = ngk(ikq)
!
IF ( mod(ik,2) == 0) THEN
imk = ikk - 3 ! position of -k
ELSE
imk = ikk + 3 ! position of -k
ENDIF
!
! Resonant part (upper batch)
!
DO ibnd = 1, nbnd_occ(ikk)
!
lr_dot_magnons = lr_dot_magnons + wk(ikk) * &
dot_product(x(:,ibnd,ik,1),y(:,ibnd,ik,1))
!
ENDDO
!
! Anti - Resonant part (lower batch)
!
DO ibnd = 1, nbnd_occ(imk)
!
lr_dot_magnons = lr_dot_magnons + wk(imk) * &
dot_product(x(:,ibnd,ik,2),y(:,ibnd,ik,2))
!
ENDDO
!
ENDDO
!
#if defined(__MPI)
CALL mp_sum(lr_dot_magnons, intra_bgrp_comm)
CALL mp_sum(lr_dot_magnons, inter_pool_comm)
#endif
!
RETURN
!
END SUBROUTINE lr_dot_k_magnons
!
END FUNCTION lr_dot_magnons
| gpl-2.0 |
QEF/q-e_schrodinger | PW/src/init_nsg.f90 | 1 | 4463 | !
! Copyright (C) 2001-2022 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
SUBROUTINE init_nsg
!-----------------------------------------------------------------------
!
! This routine computes the starting ns (for DFT+U+V calculation) filling
! up the Hubbard manifold (we are only interested in the on-site potential
! for the moment) according to the Hund's rule (valid for the isolated atoms
! on which starting potential is built), and to the starting_magnetization:
! majority spin levels are populated first, then the remaining electrons
! are equally distributed among the minority spin states
!
USE kinds, ONLY : DP
USE ions_base, ONLY : nat, ityp
USE uspp_param, ONLY : upf
USE lsda_mod, ONLY : nspin, starting_magnetization
USE ldaU, ONLY : Hubbard_l, Hubbard_l2, Hubbard_l3, hubbard_occ, &
nsg, ldim_u, backall, is_hubbard, is_hubbard_back
!
IMPLICIT NONE
REAL(DP) :: totoc, totoc_b
INTEGER :: ldim, ldim2, na, nt, is, m1, majs, mins, viz
LOGICAL :: nm ! true if the atom is non-magnetic
INTEGER, EXTERNAL :: find_viz
!
nsg(:,:,:,:,:) = (0.d0, 0.d0)
!
DO na = 1, nat
!
! The index of atom 'na' in the neighbors list
!
viz = find_viz(na,na)
!
nt = ityp(na)
!
IF ( is_hubbard(nt) ) THEN
!
ldim = 2*Hubbard_l(nt)+1
nm = .TRUE.
!
IF (hubbard_occ(nt,1)<0.0d0) CALL determine_hubbard_occ(nt,1)
totoc = hubbard_occ(nt,1)
!
IF (nspin.EQ.2) THEN
IF (starting_magnetization(nt).GT.0.d0) THEN
nm = .FALSE.
majs = 1
mins = 2
ELSEIF (starting_magnetization(nt).LT.0.d0) THEN
nm = .FALSE.
majs = 2
mins = 1
ENDIF
ENDIF
!
IF (.NOT.nm) THEN
! Atom is magnetic
IF (totoc.GT.ldim) THEN
DO m1 = 1, ldim
nsg (m1,m1,viz,na,majs) = 1.d0
nsg (m1,m1,viz,na,mins) = (totoc - ldim) / ldim
ENDDO
ELSE
DO m1 = 1, ldim
nsg (m1,m1,viz,na,majs) = totoc / ldim
ENDDO
ENDIF
ELSE
! Atom is non-magnetic
DO is = 1, nspin
DO m1 = 1, ldim
nsg (m1,m1,viz,na,is) = totoc / 2.d0 / ldim
ENDDO
ENDDO
ENDIF
!
! Background part
!
IF ( is_hubbard_back(nt) ) THEN
!
IF (.NOT.backall(nt)) THEN
! Fill in the second Hubbard manifold
ldim2 = 2*Hubbard_l2(nt)+1
IF (hubbard_occ(nt,2)<0.0d0) CALL determine_hubbard_occ(nt,2)
totoc_b = hubbard_occ(nt,2)
DO is = 1, nspin
DO m1 = ldim+1, ldim_u(nt)
nsg (m1,m1,viz,na,is) = totoc_b / 2.d0 / ldim2
ENDDO
ENDDO
ELSE
! Fill in the second Hubbard manifold
ldim2 = 2*Hubbard_l2(nt)+1
IF (hubbard_occ(nt,2)<0.0d0) CALL determine_hubbard_occ(nt,2)
totoc_b = hubbard_occ(nt,2)
DO is = 1, nspin
DO m1 = ldim+1, ldim+2*Hubbard_l2(nt)+1
nsg (m1,m1,viz,na,is) = totoc_b / 2.d0 / ldim2
ENDDO
ENDDO
! Fill in the third Hubbard manifold
ldim2 = 2*(Hubbard_l2(nt) + Hubbard_l3(nt)) + 2
IF (hubbard_occ(nt,3)<0.0d0) CALL determine_hubbard_occ(nt,3)
totoc_b = hubbard_occ(nt,3)
DO is = 1, nspin
DO m1 = ldim+2*Hubbard_l2(nt)+2, ldim_u(nt)
nsg (m1,m1,viz,na,is) = totoc_b / 2.d0 / ldim2
ENDDO
ENDDO
ENDIF
!
ENDIF
!
ENDIF
!
ENDDO ! na
!
RETURN
!
END SUBROUTINE init_nsg
!-----------------------------------------------------------------------
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/g77/980519-2.f | 209 | 1605 | c { dg-do compile }
* Date: Fri, 17 Apr 1998 14:12:51 +0200
* From: Jean-Paul Jeannot <jeannot@gx-tech.fr>
* Organization: GX Technology France
* To: egcs-bugs@cygnus.com
* Subject: identified bug in g77 on Alpha
*
* Dear Sir,
*
* You will find below the assembly code of a simple Fortran routine which
* crashes with segmentation fault when storing the first element
* in( jT_f-hd_T ) = Xsp
* whereas everything is fine when commenting this line.
*
* The assembly code (generated with
* -ffast-math -fexpensive-optimizations -fomit-frame-pointer -fno-inline
* or with -O5)
* uses a zapnot instruction to copy an address.
* BUT the zapnot parameter is 15 (copuing 4 bytes) instead of 255 (to copy
* 8 bytes).
*
* I guess this is typically a 64 bit issue. As, from my understanding,
* zapnots are used a lot to copy registers, this may create problems
* elsewhere.
*
* Thanks for your help
*
* Jean-Paul Jeannot
*
subroutine simul_trace( in, Xsp, Ysp, Xrcv, Yrcv )
c Next declaration added on transfer to gfortran testsuite
integer hd_S, hd_Z, hd_T
common /Idim/ jT_f, jT_l, nT, nT_dim
common /Idim/ jZ_f, jZ_l, nZ, nZ_dim
common /Idim/ jZ2_f, jZ2_l, nZ2, nZ2_dim
common /Idim/ jzs_f, jzs_l, nzs, nzs_dim, l_amp
common /Idim/ hd_S, hd_Z, hd_T
common /Idim/ nlay, nlayz
common /Idim/ n_work
common /Idim/ nb_calls
real Xsp, Ysp, Xrcv, Yrcv
real in( jT_f-hd_T : jT_l )
in( jT_f-hd_T ) = Xsp
in( jT_f-hd_T + 1 ) = Ysp
in( jT_f-hd_T + 2 ) = Xrcv
in( jT_f-hd_T + 3 ) = Yrcv
end
| gpl-2.0 |
piyush0609/scipy | scipy/linalg/src/det.f | 121 | 4747 |
c Calculate determinant of square matrix
c Author: Pearu Peterson, March 2002
c
c prefixes: d,z,s,c (double,complex double,float,complex float)
c suffixes: _c,_r (column major order,row major order)
subroutine ddet_c(det,a,n,piv,info)
integer n,piv(n),i
double precision det,a(n,n)
cf2py intent(in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument double*,double*,int*,int*,int*
external dgetrf
call dgetrf(n,n,a,n,piv,info)
det = 0d0
if (info.ne.0) then
return
endif
det = 1d0
do 10,i=1,n
if (piv(i).ne.i) then
det = -det * a(i,i)
else
det = det * a(i,i)
endif
10 continue
end
subroutine ddet_r(det,a,n,piv,info)
integer n,piv(n)
double precision det,a(n,n)
cf2py intent(c,in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument double*,double*,int*,int*,int*
external ddet_c
call ddet_c(det,a,n,piv,info)
end
subroutine sdet_c(det,a,n,piv,info)
integer n,piv(n),i
real det,a(n,n)
cf2py intent(in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument float*,float*,int*,int*,int*
external sgetrf
call sgetrf(n,n,a,n,piv,info)
det = 0e0
if (info.ne.0) then
return
endif
det = 1e0
do 10,i=1,n
if (piv(i).ne.i) then
det = -det * a(i,i)
else
det = det * a(i,i)
endif
10 continue
end
subroutine sdet_r(det,a,n,piv,info)
integer n,piv(n)
real det,a(n,n)
cf2py intent(c,in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument float*,float*,int*,int*,int*
external sdet_c
call sdet_c(det,a,n,piv,info)
end
subroutine zdet_c(det,a,n,piv,info)
integer n,piv(n),i
complex*16 det,a(n,n)
cf2py intent(in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument complex_double*,complex_double*,int*,int*,int*
external zgetrf
call zgetrf(n,n,a,n,piv,info)
det = (0d0,0d0)
if (info.ne.0) then
return
endif
det = (1d0,0d0)
do 10,i=1,n
if (piv(i).ne.i) then
det = -det * a(i,i)
else
det = det * a(i,i)
endif
10 continue
end
subroutine zdet_r(det,a,n,piv,info)
integer n,piv(n)
complex*16 det,a(n,n)
cf2py intent(c,in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument complex_double*,complex_double*,int*,int*,int*
external zdet_c
call zdet_c(det,a,n,piv,info)
end
subroutine cdet_c(det,a,n,piv,info)
integer n,piv(n),i
complex det,a(n,n)
cf2py intent(in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument complex_float*,complex_float*,int*,int*,int*
external cgetrf
call cgetrf(n,n,a,n,piv,info)
det = (0e0,0e0)
if (info.ne.0) then
return
endif
det = (1e0,0e0)
do 10,i=1,n
if (piv(i).ne.i) then
det = -det * a(i,i)
else
det = det * a(i,i)
endif
10 continue
end
subroutine cdet_r(det,a,n,piv,info)
integer n,piv(n)
complex det,a(n,n)
cf2py intent(c,in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument complex_float*,complex_float*,int*,int*,int*
external cdet_c
call cdet_c(det,a,n,piv,info)
end
| bsd-3-clause |
kbai/specfem3d | src/tomography/get_cg_direction.f90 | 2 | 17305 | !=====================================================================
!
! S p e c f e m 3 D V e r s i o n 3 . 0
! ---------------------------------------
!
! Main historical authors: Dimitri Komatitsch and Jeroen Tromp
! Princeton University, USA
! and CNRS / University of Marseille, France
! (there are currently many more authors!)
! (c) Princeton University and CNRS / University of Marseille, July 2012
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 2 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along
! with this program; if not, write to the Free Software Foundation, Inc.,
! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
!
!=====================================================================
subroutine get_cg_direction_tiso()
! calculates TI gradient based on a conjugate gradient method
!
! based on: Tarantola, inverse problem theory, 2005.
! section 6.22.7 conjugate directions, page 217.
! formula for alpha_n based on Polak & Ribiere (1969)
!
! note: we use a preconditioner F_0 = 1, thus lambda_n = gamma_n in (6.322)
! and use gamma_n as the smoothed kernel (for bulk_c, bulk_betav,..).
!
! however, one could see smoothing as preconditioner F_0, thus
! gamma_n would be un-smoothed kernel and lambda_n would be smoothed one...
! i'm not sure if this makes a difference.
use tomography_kernels_tiso
use tomography_kernels_tiso_cg
implicit none
! local parameters
real(kind=CUSTOM_REAL) :: alpha_bulk,alpha_betav,alpha_betah,alpha_eta,alpha_all
real(kind=CUSTOM_REAL) :: minmax(4),depthmax(2),depthmax_radius(2),max
real(kind=CUSTOM_REAL) :: r,rmax_vsv,rmax_vsh,depthmax_depth
! gradient vector norm ( v^T * v )
real(kind=CUSTOM_REAL) :: norm_bulk,norm_betav,norm_betah,norm_eta
real(kind=CUSTOM_REAL) :: norm_bulk_old,norm_betav_old,norm_betah_old,norm_eta_old
real(kind=CUSTOM_REAL) :: norm_bulk_sum,norm_betav_sum, &
norm_betah_sum,norm_eta_sum
real(kind=CUSTOM_REAL) :: min_vsv,min_vsh,max_vsv,max_vsh,min_eta,max_eta,min_bulk,max_bulk
integer :: maxindex(1)
real(kind=CUSTOM_REAL) :: ratio_bulk,ratio_betav,ratio_betah,ratio_eta
integer :: iglob
integer :: i,j,k,ispec,ier
! allocate arrays for storing gradient
! transversely isotropic arrays
allocate(model_dbulk(NGLLX,NGLLY,NGLLZ,NSPEC), &
model_dbetav(NGLLX,NGLLY,NGLLZ,NSPEC), &
model_dbetah(NGLLX,NGLLY,NGLLZ,NSPEC), &
model_deta(NGLLX,NGLLY,NGLLZ,NSPEC),stat=ier)
if (ier /= 0) stop 'error allocating gradient arrays'
! initializes arrays
model_dbulk = 0.0_CUSTOM_REAL
model_dbetav = 0.0_CUSTOM_REAL
model_dbetah = 0.0_CUSTOM_REAL
model_deta = 0.0_CUSTOM_REAL
! old kernel/gradient
! length ( gamma_(n-1)^T * lambda_(n-1) )
norm_bulk_old = sum( kernel_bulk_old * kernel_bulk_old )
norm_betav_old = sum( kernel_betav_old * kernel_betav_old )
norm_betah_old = sum( kernel_betah_old * kernel_betah_old )
norm_eta_old = sum( kernel_eta_old * kernel_eta_old )
call sum_all_cr(norm_bulk_old,norm_bulk_sum)
call sum_all_cr(norm_betav_old,norm_betav_sum)
call sum_all_cr(norm_betah_old,norm_betah_sum)
call sum_all_cr(norm_eta_old,norm_eta_sum)
! don't use square root, just take gamma^T * gamma
norm_bulk_old = norm_bulk_sum
norm_betav_old = norm_betav_sum
norm_betah_old = norm_betah_sum
norm_eta_old = norm_eta_sum
if (myrank == 0) then
print *,'norm squared old gradient:'
print *,' bulk : ',norm_bulk_old
print *,' betav: ',norm_betav_old
print *,' betah: ',norm_betah_old
print *,' eta : ',norm_eta_old
print *
! checks lengths
if (norm_bulk_old < 1.e-22) call exit_mpi(myrank,'norm old gradient bulk is zero')
if (norm_betav_old < 1.e-22) call exit_mpi(myrank,'norm old gradient betav is zero')
if (norm_betah_old < 1.e-22) call exit_mpi(myrank,'norm old gradient betah is zero')
if (norm_eta_old < 1.e-22) call exit_mpi(myrank,'norm old gradient eta is zero')
endif
! Powell, 1977: checks orthogonality between old and new gradient
! gets length of ( gamma_(n-1)^T * gamma_n )
norm_bulk = sum( kernel_bulk_old * kernel_bulk )
norm_betav = sum( kernel_betav_old * kernel_betav )
norm_betah = sum( kernel_betah_old * kernel_betah )
norm_eta = sum( kernel_eta_old * kernel_eta )
call sum_all_cr(norm_bulk,norm_bulk_sum)
call sum_all_cr(norm_betav,norm_betav_sum)
call sum_all_cr(norm_betah,norm_betah_sum)
call sum_all_cr(norm_eta,norm_eta_sum)
if (myrank == 0) then
! ratio: ( g_n * g_n-1) / ( g_n-1 * g_n-1)
ratio_bulk = norm_bulk_sum / norm_bulk_old
ratio_betav = norm_betav_sum / norm_betav_old
ratio_betah = norm_betah_sum / norm_betah_old
ratio_eta = norm_eta_sum / norm_eta_old
! if ratio > 0.2 (empirical threshold value), then one should restart with a steepest descent
print *,'Powell ratio: (> 0.2 then restart with steepest descent)'
print *,' bulk : ',ratio_bulk
print *,' betav: ',ratio_betav
print *,' betah: ',ratio_betah
print *,' eta : ',ratio_eta
print *
if (ratio_bulk > 0.2 .and. ratio_betav > 0.2 .and. ratio_betah > 0.2 &
.and. ratio_eta > 0.2) then
print *,' critical ratio found!'
print *
print *,'****************'
print *
print *,' Please consider doing a steepest descent instead cg...'
print *
print *,'****************'
endif
endif
! difference kernel/gradient
! length ( ( gamma_n - gamma_(n-1))^T * lambda_n )
norm_bulk = sum( (kernel_bulk - kernel_bulk_old) * kernel_bulk )
norm_betav = sum( (kernel_betav - kernel_betav_old) * kernel_betav )
norm_betah = sum( (kernel_betah - kernel_betah_old) * kernel_betah )
norm_eta = sum( (kernel_eta - kernel_eta_old) * kernel_eta )
call sum_all_cr(norm_bulk,norm_bulk_sum)
call sum_all_cr(norm_betav,norm_betav_sum)
call sum_all_cr(norm_betah,norm_betah_sum)
call sum_all_cr(norm_eta,norm_eta_sum)
! don't take square root, since norm_bulk_sum could be negative
! just use (gamma_n - gamma_n-1)^T * lambda_n
norm_bulk = norm_bulk_sum
norm_betav = norm_betav_sum
norm_betah = norm_betah_sum
norm_eta = norm_eta_sum
if (myrank == 0) then
print *,'norm squared difference gradient:'
print *,' bulk : ',norm_bulk
print *,' betav: ',norm_betav
print *,' betah: ',norm_betah
print *,' eta : ',norm_eta
print *
endif
! calculates ratio based on Polak & Ribiere (1969)
if (myrank == 0) then
if (USE_SEPARATE_CG_STEPLENGTHS) then
! calculates steplength alpha for each parameter
alpha_bulk = norm_bulk / norm_bulk_old
alpha_betav = norm_betav / norm_betav_old
alpha_betah = norm_betah / norm_betah_old
alpha_eta = norm_eta / norm_eta_old
! only if contribution is positive it will be considered, otherwise
! we set it to zero so that it becomes a steepest descent update
if (alpha_bulk < 0.0) then
alpha_bulk = 0.0
endif
if (alpha_betav < 0.0) then
alpha_betav = 0.0
endif
if (alpha_betah < 0.0) then
alpha_betah = 0.0
endif
if (alpha_eta < 0.0) then
alpha_eta = 0.0
endif
else
! calculates only a single steplength applied to all
alpha_all = (norm_bulk + norm_betav + norm_betah + norm_eta) &
/ (norm_bulk_old + norm_betav_old + norm_betah_old + norm_eta_old)
! only if contribution is positive it will be considered, otherwise
! we set it to zero so that it becomes a steepest descent update
if (alpha_all < 0.0) then
alpha_all = 0.0
endif
! sets each steplength to same single one
alpha_bulk = alpha_all
alpha_betav = alpha_all
alpha_betah = alpha_all
alpha_eta = alpha_all
endif
! user output
print *,'alpha gradient:'
print *,' bulk : ',alpha_bulk
print *,' betav: ',alpha_betav
print *,' betah: ',alpha_betah
print *,' eta : ',alpha_eta
print *
endif
! broadcast values from rank 0 to all others
call bcast_all_singlecr(alpha_bulk)
call bcast_all_singlecr(alpha_betav)
call bcast_all_singlecr(alpha_betah)
call bcast_all_singlecr(alpha_eta)
! initializes kernel maximum
depthmax(:) = 0._CUSTOM_REAL
! gradient in negative direction
if (USE_OLD_GRADIENT) then
! uses old kernel/gradient updates ( phi_n-1)
do ispec = 1, NSPEC
do k = 1, NGLLZ
do j = 1, NGLLY
do i = 1, NGLLX
! note: uses old gradient update (phi_(n-1) as model_bulk_old, but
! given in negative gradient direction
! for bulk
model_dbulk(i,j,k,ispec) = - kernel_bulk(i,j,k,ispec) &
+ alpha_bulk * model_dbulk_old(i,j,k,ispec)
! for shear
model_dbetav(i,j,k,ispec) = - kernel_betav(i,j,k,ispec) &
+ alpha_betav * model_dbetav_old(i,j,k,ispec)
model_dbetah(i,j,k,ispec) = - kernel_betah(i,j,k,ispec) &
+ alpha_betah * model_dbetah_old(i,j,k,ispec)
! for eta
model_deta(i,j,k,ispec) = - kernel_eta(i,j,k,ispec) &
+ alpha_eta * model_deta_old(i,j,k,ispec)
! determines maximum kernel betav value within given radius
if (USE_DEPTH_RANGE_MAXIMUM) then
! get radius of point
iglob = ibool(i,j,k,ispec)
r = z(iglob)
! stores maximum kernel betav/betah value in this depth slice,
! since betav/betah are most likely dominating
if (r < R_TOP .and. r > R_BOTTOM) then
! kernel betav value
max_vsv = abs( model_dbetav(i,j,k,ispec) )
if (depthmax(1) < max_vsv) then
depthmax(1) = max_vsv
depthmax_radius(1) = r
endif
! kernel betav value
max_vsh = abs( model_dbetah(i,j,k,ispec) )
if (depthmax(2) < max_vsh) then
depthmax(2) = max_vsh
depthmax_radius(2) = r
endif
endif
endif
enddo
enddo
enddo
enddo
else
! uses only old kernel/gradient
do ispec = 1, NSPEC
do k = 1, NGLLZ
do j = 1, NGLLY
do i = 1, NGLLX
! note: uses old kernels (lambda_(n-1) ) in negative gradient direction
! for bulk
model_dbulk(i,j,k,ispec) = - kernel_bulk(i,j,k,ispec) &
- alpha_bulk * kernel_bulk_old(i,j,k,ispec)
! for shear
model_dbetav(i,j,k,ispec) = - kernel_betav(i,j,k,ispec) &
- alpha_betav * kernel_betav_old(i,j,k,ispec)
model_dbetah(i,j,k,ispec) = - kernel_betah(i,j,k,ispec) &
- alpha_betah * kernel_betah_old(i,j,k,ispec)
! for eta
model_deta(i,j,k,ispec) = - kernel_eta(i,j,k,ispec) &
- alpha_eta * kernel_eta_old(i,j,k,ispec)
! determines maximum kernel betav value within given radius
if (USE_DEPTH_RANGE_MAXIMUM) then
! get radius of point
iglob = ibool(i,j,k,ispec)
r = z(iglob)
! stores maximum kernel betav/betah value in this depth slice,
! since betav/betah are most likely dominating
if (r < R_TOP .and. r > R_BOTTOM) then
! kernel betav value
max_vsv = abs( model_dbetav(i,j,k,ispec) )
if (depthmax(1) < max_vsv) then
depthmax(1) = max_vsv
depthmax_radius(1) = r
endif
! kernel betav value
max_vsh = abs( model_dbetah(i,j,k,ispec) )
if (depthmax(2) < max_vsh) then
depthmax(2) = max_vsh
depthmax_radius(2) = r
endif
endif
endif
enddo
enddo
enddo
enddo
endif
! stores model_dbulk, ... arrays
! note: stores these new gradient before we scale them with the step length
call write_gradient_tiso()
! statistics
call min_all_cr(minval(model_dbulk),min_bulk)
call max_all_cr(maxval(model_dbulk),max_bulk)
call min_all_cr(minval(model_dbetav),min_vsv)
call max_all_cr(maxval(model_dbetav),max_vsv)
call min_all_cr(minval(model_dbetah),min_vsh)
call max_all_cr(maxval(model_dbetah),max_vsh)
call min_all_cr(minval(model_deta),min_eta)
call max_all_cr(maxval(model_deta),max_eta)
if (myrank == 0) then
print *,'initial gradient updates:'
print *,' bulk min/max : ',min_bulk,max_bulk
print *,' betav min/max: ',min_vsv,max_vsv
print *,' betah min/max: ',min_vsh,max_vsh
print *,' eta min/max : ',min_eta,max_eta
print *
endif
! determines maximum kernel betav value within given radius
if (USE_DEPTH_RANGE_MAXIMUM) then
! maximum of all processes stored in max_vsv
call max_all_cr(depthmax(1),max_vsv)
call max_all_cr(depthmax(2),max_vsh)
call max_all_cr(depthmax_radius(1),rmax_vsv)
call max_all_cr(depthmax_radius(2),rmax_vsh)
endif
! determines step length
! based on maximum gradient value (either vsv or vsh)
if (myrank == 0) then
! determines maximum kernel betav value within given radius
if (USE_DEPTH_RANGE_MAXIMUM) then
depthmax(1) = max_vsv
depthmax(2) = max_vsh
depthmax_radius(1) = rmax_vsv
depthmax_radius(2) = rmax_vsh
max = maxval(depthmax)
maxindex = maxloc(depthmax)
depthmax_depth = depthmax_radius(maxindex(1))
! maximum in given depth range
print *,' using depth maximum: '
print *,' between depths (top/bottom) : ',R_TOP,R_BOTTOM
print *,' maximum kernel value : ',max
print *,' depth of maximum kernel value : ',depthmax_depth
print *
else
! maximum gradient values
minmax(1) = abs(min_vsv)
minmax(2) = abs(max_vsv)
minmax(3) = abs(min_vsh)
minmax(4) = abs(max_vsh)
! maximum value of all kernel maxima
max = maxval(minmax)
endif
print *,'step length:'
print *,' using kernel maximum: ',max
! checks maximum value
if (max < 1.e-25) stop 'Error maximum kernel value too small for update'
! chooses step length such that it becomes the desired, given step factor as inputted
step_length = step_fac/max
print *,' step length : ',step_length
print *
endif
call bcast_all_singlecr(step_length)
! gradient length sqrt( v^T * v )
norm_bulk = sum( model_dbulk * model_dbulk )
norm_betav = sum( model_dbetav * model_dbetav )
norm_betah = sum( model_dbetah * model_dbetah )
norm_eta = sum( model_deta * model_deta )
call sum_all_cr(norm_bulk,norm_bulk_sum)
call sum_all_cr(norm_betav,norm_betav_sum)
call sum_all_cr(norm_betah,norm_betah_sum)
call sum_all_cr(norm_eta,norm_eta_sum)
if (myrank == 0) then
norm_bulk = sqrt(norm_bulk_sum)
norm_betav = sqrt(norm_betav_sum)
norm_betah = sqrt(norm_betah_sum)
norm_eta = sqrt(norm_eta_sum)
print *,'norm model updates:'
print *,' bulk : ',norm_bulk
print *,' betav: ',norm_betav
print *,' betah: ',norm_betah
print *,' eta : ',norm_eta
print *
endif
! multiply model updates by a subjective factor that will change the step
model_dbulk(:,:,:,:) = step_length * model_dbulk(:,:,:,:)
model_dbetav(:,:,:,:) = step_length * model_dbetav(:,:,:,:)
model_dbetah(:,:,:,:) = step_length * model_dbetah(:,:,:,:)
model_deta(:,:,:,:) = step_length * model_deta(:,:,:,:)
! statistics
call min_all_cr(minval(model_dbulk),min_bulk)
call max_all_cr(maxval(model_dbulk),max_bulk)
call min_all_cr(minval(model_dbetav),min_vsv)
call max_all_cr(maxval(model_dbetav),max_vsv)
call min_all_cr(minval(model_dbetah),min_vsh)
call max_all_cr(maxval(model_dbetah),max_vsh)
call min_all_cr(minval(model_deta),min_eta)
call max_all_cr(maxval(model_deta),max_eta)
if (myrank == 0) then
print *,'scaled gradient:'
print *,' bulk min/max : ',min_bulk,max_bulk
print *,' betav min/max: ',min_vsv,max_vsv
print *,' betah min/max: ',min_vsh,max_vsh
print *,' eta min/max : ',min_eta,max_eta
print *
endif
call synchronize_all()
end subroutine get_cg_direction_tiso
| gpl-2.0 |
piyush0609/scipy | scipy/interpolate/fitpack/curfit.f | 113 | 13785 | subroutine curfit(iopt,m,x,y,w,xb,xe,k,s,nest,n,t,c,fp,
* wrk,lwrk,iwrk,ier)
c given the set of data points (x(i),y(i)) and the set of positive
c numbers w(i),i=1,2,...,m,subroutine curfit determines a smooth spline
c approximation of degree k on the interval xb <= x <= xe.
c if iopt=-1 curfit calculates the weighted least-squares spline
c according to a given set of knots.
c if iopt>=0 the number of knots of the spline s(x) and the position
c t(j),j=1,2,...,n is chosen automatically by the routine. the smooth-
c ness of s(x) is then achieved by minimalizing the discontinuity
c jumps of the k-th derivative of s(x) at the knots t(j),j=k+2,k+3,...,
c n-k-1. the amount of smoothness is determined by the condition that
c f(p)=sum((w(i)*(y(i)-s(x(i))))**2) be <= s, with s a given non-
c negative constant, called the smoothing factor.
c the fit s(x) is given in the b-spline representation (b-spline coef-
c ficients c(j),j=1,2,...,n-k-1) and can be evaluated by means of
c subroutine splev.
c
c calling sequence:
c call curfit(iopt,m,x,y,w,xb,xe,k,s,nest,n,t,c,fp,wrk,
c * lwrk,iwrk,ier)
c
c parameters:
c iopt : integer flag. on entry iopt must specify whether a weighted
c least-squares spline (iopt=-1) or a smoothing spline (iopt=
c 0 or 1) must be determined. if iopt=0 the routine will start
c with an initial set of knots t(i)=xb, t(i+k+1)=xe, i=1,2,...
c k+1. if iopt=1 the routine will continue with the knots
c found at the last call of the routine.
c attention: a call with iopt=1 must always be immediately
c preceded by another call with iopt=1 or iopt=0.
c unchanged on exit.
c m : integer. on entry m must specify the number of data points.
c m > k. unchanged on exit.
c x : real array of dimension at least (m). before entry, x(i)
c must be set to the i-th value of the independent variable x,
c for i=1,2,...,m. these values must be supplied in strictly
c ascending order. unchanged on exit.
c y : real array of dimension at least (m). before entry, y(i)
c must be set to the i-th value of the dependent variable y,
c for i=1,2,...,m. unchanged on exit.
c w : real array of dimension at least (m). before entry, w(i)
c must be set to the i-th value in the set of weights. the
c w(i) must be strictly positive. unchanged on exit.
c see also further comments.
c xb,xe : real values. on entry xb and xe must specify the boundaries
c of the approximation interval. xb<=x(1), xe>=x(m).
c unchanged on exit.
c k : integer. on entry k must specify the degree of the spline.
c 1<=k<=5. it is recommended to use cubic splines (k=3).
c the user is strongly dissuaded from choosing k even,together
c with a small s-value. unchanged on exit.
c s : real.on entry (in case iopt>=0) s must specify the smoothing
c factor. s >=0. unchanged on exit.
c for advice on the choice of s see further comments.
c nest : integer. on entry nest must contain an over-estimate of the
c total number of knots of the spline returned, to indicate
c the storage space available to the routine. nest >=2*k+2.
c in most practical situation nest=m/2 will be sufficient.
c always large enough is nest=m+k+1, the number of knots
c needed for interpolation (s=0). unchanged on exit.
c n : integer.
c unless ier =10 (in case iopt >=0), n will contain the
c total number of knots of the spline approximation returned.
c if the computation mode iopt=1 is used this value of n
c should be left unchanged between subsequent calls.
c in case iopt=-1, the value of n must be specified on entry.
c t : real array of dimension at least (nest).
c on succesful exit, this array will contain the knots of the
c spline,i.e. the position of the interior knots t(k+2),t(k+3)
c ...,t(n-k-1) as well as the position of the additional knots
c t(1)=t(2)=...=t(k+1)=xb and t(n-k)=...=t(n)=xe needed for
c the b-spline representation.
c if the computation mode iopt=1 is used, the values of t(1),
c t(2),...,t(n) should be left unchanged between subsequent
c calls. if the computation mode iopt=-1 is used, the values
c t(k+2),...,t(n-k-1) must be supplied by the user, before
c entry. see also the restrictions (ier=10).
c c : real array of dimension at least (nest).
c on succesful exit, this array will contain the coefficients
c c(1),c(2),..,c(n-k-1) in the b-spline representation of s(x)
c fp : real. unless ier=10, fp contains the weighted sum of
c squared residuals of the spline approximation returned.
c wrk : real array of dimension at least (m*(k+1)+nest*(7+3*k)).
c used as working space. if the computation mode iopt=1 is
c used, the values wrk(1),...,wrk(n) should be left unchanged
c between subsequent calls.
c lwrk : integer. on entry,lwrk must specify the actual dimension of
c the array wrk as declared in the calling (sub)program.lwrk
c must not be too small (see wrk). unchanged on exit.
c iwrk : integer array of dimension at least (nest).
c used as working space. if the computation mode iopt=1 is
c used,the values iwrk(1),...,iwrk(n) should be left unchanged
c between subsequent calls.
c ier : integer. unless the routine detects an error, ier contains a
c non-positive value on exit, i.e.
c ier=0 : normal return. the spline returned has a residual sum of
c squares fp such that abs(fp-s)/s <= tol with tol a relat-
c ive tolerance set to 0.001 by the program.
c ier=-1 : normal return. the spline returned is an interpolating
c spline (fp=0).
c ier=-2 : normal return. the spline returned is the weighted least-
c squares polynomial of degree k. in this extreme case fp
c gives the upper bound fp0 for the smoothing factor s.
c ier=1 : error. the required storage space exceeds the available
c storage space, as specified by the parameter nest.
c probably causes : nest too small. if nest is already
c large (say nest > m/2), it may also indicate that s is
c too small
c the approximation returned is the weighted least-squares
c spline according to the knots t(1),t(2),...,t(n). (n=nest)
c the parameter fp gives the corresponding weighted sum of
c squared residuals (fp>s).
c ier=2 : error. a theoretically impossible result was found during
c the iteration proces for finding a smoothing spline with
c fp = s. probably causes : s too small.
c there is an approximation returned but the corresponding
c weighted sum of squared residuals does not satisfy the
c condition abs(fp-s)/s < tol.
c ier=3 : error. the maximal number of iterations maxit (set to 20
c by the program) allowed for finding a smoothing spline
c with fp=s has been reached. probably causes : s too small
c there is an approximation returned but the corresponding
c weighted sum of squared residuals does not satisfy the
c condition abs(fp-s)/s < tol.
c ier=10 : error. on entry, the input data are controlled on validity
c the following restrictions must be satisfied.
c -1<=iopt<=1, 1<=k<=5, m>k, nest>2*k+2, w(i)>0,i=1,2,...,m
c xb<=x(1)<x(2)<...<x(m)<=xe, lwrk>=(k+1)*m+nest*(7+3*k)
c if iopt=-1: 2*k+2<=n<=min(nest,m+k+1)
c xb<t(k+2)<t(k+3)<...<t(n-k-1)<xe
c the schoenberg-whitney conditions, i.e. there
c must be a subset of data points xx(j) such that
c t(j) < xx(j) < t(j+k+1), j=1,2,...,n-k-1
c if iopt>=0: s>=0
c if s=0 : nest >= m+k+1
c if one of these conditions is found to be violated,control
c is immediately repassed to the calling program. in that
c case there is no approximation returned.
c
c further comments:
c by means of the parameter s, the user can control the tradeoff
c between closeness of fit and smoothness of fit of the approximation.
c if s is too large, the spline will be too smooth and signal will be
c lost ; if s is too small the spline will pick up too much noise. in
c the extreme cases the program will return an interpolating spline if
c s=0 and the weighted least-squares polynomial of degree k if s is
c very large. between these extremes, a properly chosen s will result
c in a good compromise between closeness of fit and smoothness of fit.
c to decide whether an approximation, corresponding to a certain s is
c satisfactory the user is highly recommended to inspect the fits
c graphically.
c recommended values for s depend on the weights w(i). if these are
c taken as 1/d(i) with d(i) an estimate of the standard deviation of
c y(i), a good s-value should be found in the range (m-sqrt(2*m),m+
c sqrt(2*m)). if nothing is known about the statistical error in y(i)
c each w(i) can be set equal to one and s determined by trial and
c error, taking account of the comments above. the best is then to
c start with a very large value of s ( to determine the least-squares
c polynomial and the corresponding upper bound fp0 for s) and then to
c progressively decrease the value of s ( say by a factor 10 in the
c beginning, i.e. s=fp0/10, fp0/100,...and more carefully as the
c approximation shows more detail) to obtain closer fits.
c to economize the search for a good s-value the program provides with
c different modes of computation. at the first call of the routine, or
c whenever he wants to restart with the initial set of knots the user
c must set iopt=0.
c if iopt=1 the program will continue with the set of knots found at
c the last call of the routine. this will save a lot of computation
c time if curfit is called repeatedly for different values of s.
c the number of knots of the spline returned and their location will
c depend on the value of s and on the complexity of the shape of the
c function underlying the data. but, if the computation mode iopt=1
c is used, the knots returned may also depend on the s-values at
c previous calls (if these were smaller). therefore, if after a number
c of trials with different s-values and iopt=1, the user can finally
c accept a fit as satisfactory, it may be worthwhile for him to call
c curfit once more with the selected value for s but now with iopt=0.
c indeed, curfit may then return an approximation of the same quality
c of fit but with fewer knots and therefore better if data reduction
c is also an important objective for the user.
c
c other subroutines required:
c fpback,fpbspl,fpchec,fpcurf,fpdisc,fpgivs,fpknot,fprati,fprota
c
c references:
c dierckx p. : an algorithm for smoothing, differentiation and integ-
c ration of experimental data using spline functions,
c j.comp.appl.maths 1 (1975) 165-184.
c dierckx p. : a fast algorithm for smoothing data on a rectangular
c grid while using spline functions, siam j.numer.anal.
c 19 (1982) 1286-1304.
c dierckx p. : an improved algorithm for curve fitting with spline
c functions, report tw54, dept. computer science,k.u.
c leuven, 1981.
c dierckx p. : curve and surface fitting with splines, monographs on
c numerical analysis, oxford university press, 1993.
c
c author:
c p.dierckx
c dept. computer science, k.u. leuven
c celestijnenlaan 200a, b-3001 heverlee, belgium.
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c creation date : may 1979
c latest update : march 1987
c
c ..
c ..scalar arguments..
real*8 xb,xe,s,fp
integer iopt,m,k,nest,n,lwrk,ier
c ..array arguments..
real*8 x(m),y(m),w(m),t(nest),c(nest),wrk(lwrk)
integer iwrk(nest)
c ..local scalars..
real*8 tol
integer i,ia,ib,ifp,ig,iq,iz,j,k1,k2,lwest,maxit,nmin
c ..
c we set up the parameters tol and maxit
maxit = 20
tol = 0.1d-02
c before starting computations a data check is made. if the input data
c are invalid, control is immediately repassed to the calling program.
ier = 10
if(k.le.0 .or. k.gt.5) go to 50
k1 = k+1
k2 = k1+1
if(iopt.lt.(-1) .or. iopt.gt.1) go to 50
nmin = 2*k1
if(m.lt.k1 .or. nest.lt.nmin) go to 50
lwest = m*k1+nest*(7+3*k)
if(lwrk.lt.lwest) go to 50
if(xb.gt.x(1) .or. xe.lt.x(m)) go to 50
do 10 i=2,m
if(x(i-1).gt.x(i)) go to 50
10 continue
if(iopt.ge.0) go to 30
if(n.lt.nmin .or. n.gt.nest) go to 50
j = n
do 20 i=1,k1
t(i) = xb
t(j) = xe
j = j-1
20 continue
call fpchec(x,m,t,n,k,ier)
if (ier.eq.0) go to 40
go to 50
30 if(s.lt.0.) go to 50
if(s.eq.0. .and. nest.lt.(m+k1)) go to 50
c we partition the working space and determine the spline approximation.
40 ifp = 1
iz = ifp+nest
ia = iz+nest
ib = ia+nest*k1
ig = ib+nest*k2
iq = ig+nest*k2
call fpcurf(iopt,x,y,w,m,xb,xe,k,s,nest,tol,maxit,k1,k2,n,t,c,fp,
* wrk(ifp),wrk(iz),wrk(ia),wrk(ib),wrk(ig),wrk(iq),iwrk,ier)
50 return
end
| bsd-3-clause |
QEF/q-e_schrodinger | Modules/wgauss.f90 | 2 | 2505 | !
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
function wgauss (x, n)
!-----------------------------------------------------------------------
!! This function computes the approximate theta function for the
!! given order n, at the point x:
!
!! * \( n \geq 0 \): Methfessel-Paxton case. See PRB 40, 3616 (1989).
!! * \( n=-1 \): cold smearing (Marzari-Vanderbilt-DeVita-Payne,
!! see PRL 82, 3296 (1999)):
!! $$ \frac{1}{2} \text{erf}\(x-\frac{1}{\sqrt(2)}\) + \frac{1}{\sqrt{2\pi}} \exp
!! {-\(x-\frac{1}{sqrt{2}}\)^2} + 1/2 $$
!! * \( n=-99 \): Fermi-Dirac case:
!! $$ \frac{1.0}{1.0+\exp{-x}} $$
!
USE kinds, ONLY : DP
USE constants, ONLY : pi
implicit none
real(DP) :: wgauss
!! output: the value of the function
real(DP) :: x
!! input: the argument of the function
integer :: n
!! input: the order of the function
!
! ... local variables
!
real(DP) :: a, hp, arg, hd, xp
! the coefficient a_n
! the hermitean function
! the argument of the exponential
! the hermitean function
! auxiliary variable (cold smearing)
integer :: i, ni
! counter on the n indices
! counter on 2n
real(DP), parameter :: maxarg = 200.d0
! maximum value for the argument of the exponential
! Fermi-Dirac smearing
if (n.eq. - 99) then
if (x.lt. - maxarg) then
wgauss = 0.d0
elseif (x.gt.maxarg) then
wgauss = 1.d0
else
wgauss = 1.0d0 / (1.0d0 + exp ( - x) )
endif
return
endif
! Cold smearing
if (n.eq. - 1) then
xp = x - 1.0d0 / sqrt (2.0d0)
arg = min (maxarg, xp**2)
wgauss = 0.5d0 * erf(xp) + 1.0d0 / sqrt (2.0d0 * pi) * exp ( - &
arg) + 0.5d0
return
endif
! Methfessel-Paxton and plain gaussian cases
arg = -x
IF (arg .LT. sqrt(maxarg)) THEN
wgauss = 0.5_DP * ERFC( arg)
ELSE
wgauss = 0._DP
END IF
if (n.eq.0) return
hd = 0.d0
arg = min (maxarg, x**2)
hp = exp ( - arg)
ni = 0
a = 1.d0 / sqrt (pi)
do i = 1, n
hd = 2.0d0 * x * hp - 2.0d0 * DBLE (ni) * hd
ni = ni + 1
a = - a / (DBLE (i) * 4.0d0)
wgauss = wgauss - a * hd
hp = 2.0d0 * x * hd-2.0d0 * DBLE (ni) * hp
ni = ni + 1
enddo
return
end function wgauss
| gpl-2.0 |
kbai/specfem3d | src/inverse_problem/program03_smooth_sem.f90 | 2 | 24106 | !=====================================================================
!
! S p e c f e m 3 D V e r s i o n 3 . 0
! ---------------------------------------
!
! Main historical authors: Dimitri Komatitsch and Jeroen Tromp
! Princeton University, USA
! and CNRS / University of Marseille, France
! (there are currently many more authors!)
! (c) Princeton University and CNRS / University of Marseille, July 2012
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 2 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along
! with this program; if not, write to the Free Software Foundation, Inc.,
! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
!
!=====================================================================
! this program can be used for smoothing a kernel,
! where it smooths files with a given input kernel name:
!
! compile with:
!
! make xsmooth_sem
!
! Usage:
! mpirun -np nprocs ./xsmooth_sem sigma_h sigma_v kernel_file_name scratch_file_dir output_dir
! e.g.
! mpirun -np 8 ./xsmooth_sem 100 20 alpha_kernel DATABASES_MPI/ OUTPUT_SUM/
!
! where:
! sigma_h - gaussian width for horizontal smoothing
! sigma_v - gaussian width for vertical smoothing
! kernel_file_name - takes file with this kernel name,
! e.g. "alpha_kernel"
! scratch_file_dir - directory containing kernel files,
! e.g. proc***_alpha_kernel.bin
! output_dir - directory for outputting files,
! e.g. proc***_alpha_kernel_smooth.bin
! outputs:
! puts the resulting, smoothed kernel files into the output_dir directory,
! with a file ending "proc***_kernel_smooth.bin"
program smooth_sem
! this is the embarassingly-parallel program that smooths any specfem function (primarily the kernels)
! that has the dimension of (NGLLX,NGLLY,NGLLZ,NSPEC)
!
! NOTE: smoothing can be different in vertical & horizontal directions; mesh is in Cartesian geometry.
! algorithm uses vertical as Z, horizontal as X/Y direction
use constants,only: CUSTOM_REAL,NGLLX,NGLLY,NGLLZ,NDIM,NGLLSQUARE, &
MAX_STRING_LEN,IIN,IOUT, &
GAUSSALPHA,GAUSSBETA,PI,TWO_PI
use specfem_par
use specfem_par_elastic,only: ELASTIC_SIMULATION,ispec_is_elastic,rho_vp,rho_vs,min_resolved_period
use specfem_par_acoustic,only: ACOUSTIC_SIMULATION,ispec_is_acoustic
use specfem_par_poroelastic,only: POROELASTIC_SIMULATION,ispec_is_poroelastic,rho_vpI,rho_vpII,rho_vsI, &
phistore,tortstore,rhoarraystore
use specfem_par_movie
implicit none
! data must be of dimension: (NGLLX,NGLLY,NGLLZ,NSPEC_AB)
real(kind=CUSTOM_REAL), dimension(:,:,:,:),allocatable :: dat,dat_smooth
real(kind=CUSTOM_REAL), dimension(:,:,:,:),allocatable :: dummy
integer :: NSPEC_N, NGLOB_N
integer :: i,j,k,iglob,ier,ispec2,ispec,inum
integer :: iproc
integer,parameter :: MAX_NODE_LIST = 300
integer :: node_list(MAX_NODE_LIST)
character(len=MAX_STRING_LEN) :: arg(5)
character(len=MAX_STRING_LEN) :: filename, indir, outdir
character(len=MAX_STRING_LEN) :: prname_lp
character(len=MAX_STRING_LEN*2) :: local_data_file
! smoothing parameters
character(len=MAX_STRING_LEN*2) :: ks_file
real(kind=CUSTOM_REAL) :: sigma_h, sigma_h2, sigma_h3, sigma_v, sigma_v2, sigma_v3
real(kind=CUSTOM_REAL) :: x0, y0, z0, norm, norm_h, norm_v, max_old, max_new
real(kind=CUSTOM_REAL), dimension(NGLLX,NGLLY,NGLLZ) :: exp_val !,factor
real(kind=CUSTOM_REAL), dimension(:,:,:,:),allocatable :: tk, bk
real(kind=CUSTOM_REAL), dimension(:,:,:,:),allocatable :: xl, yl, zl
real(kind=CUSTOM_REAL), dimension(:,:,:,:),allocatable :: xx, yy, zz
real(kind=CUSTOM_REAL), dimension(:),allocatable :: cx0, cy0, cz0
real(kind=CUSTOM_REAL), dimension(:),allocatable :: cx, cy, cz
real(kind=CUSTOM_REAL) :: dist_h,dist_v
real(kind=CUSTOM_REAL) :: element_size
real(kind=CUSTOM_REAL) :: distance_min_glob,distance_max_glob
real(kind=CUSTOM_REAL) :: elemsize_min_glob,elemsize_max_glob
real(kind=CUSTOM_REAL) :: x_min_glob,x_max_glob
real(kind=CUSTOM_REAL) :: y_min_glob,y_max_glob
real(kind=CUSTOM_REAL) :: z_min_glob,z_max_glob
logical :: BROADCAST_AFTER_READ
! initialize the MPI communicator and start the NPROCTOT MPI processes
call init_mpi()
call world_size(sizeprocs)
call world_rank(myrank)
if (myrank == 0) print *,"smooth_sem:"
call synchronize_all()
! reads arguments
do i = 1, 5
call get_command_argument(i,arg(i))
if (i <= 5 .and. trim(arg(i)) == '') then
if (myrank == 0) then
print *, 'Usage: '
print *, ' xsmooth_data sigma_h sigma_v kernel_file_name input_dir/ output_dir/'
print *
print *, 'with '
print *, ' sigma_h - gaussian width for horizontal smoothing'
print *, ' sigma_v - gaussian width for vertical smoothing'
print *
print *, ' possible kernel_file_names are: '
print *, ' alpha_kernel, beta_kernel, .., rho_vp, rho_vs, kappastore, mustore, etc.'
print *
print *, ' that are stored in the local directory as real(kind=CUSTOM_REAL) filename(NGLLX,NGLLY,NGLLZ,NSPEC_AB) '
print *, ' in filename.bin'
print *
print *, ' files have been collected in input_dir/, smooth output mesh file goes to output_dir/ '
print *
endif
call synchronize_all()
stop ' Reenter command line options'
endif
enddo
! gets arguments
read(arg(1),*) sigma_h
read(arg(2),*) sigma_v
filename = arg(3)
indir= arg(4)
outdir = arg(5)
! initializes lengths
sigma_h2 = 2.0 * sigma_h ** 2 ! factor two for gaussian distribution with standard variance sigma
sigma_v2 = 2.0 * sigma_v ** 2
! checks
if (sigma_h2 < 1.e-18) stop 'Error sigma_h2 zero, must non-zero'
if (sigma_v2 < 1.e-18) stop 'Error sigma_v2 zero, must non-zero'
! adds margin to search radius
element_size = max(sigma_h,sigma_v) * 0.5
! search radius
sigma_h3 = 3.0 * sigma_h + element_size
sigma_v3 = 3.0 * sigma_v + element_size
! theoretic normal value
! (see integral over -inf to +inf of exp[- x*x/(2*sigma) ] = sigma * sqrt(2*pi) )
! note: smoothing is using a gaussian (ellipsoid for sigma_h /= sigma_v),
norm_h = 2.0*PI*sigma_h**2
norm_v = sqrt(2.0*PI) * sigma_v
norm = norm_h * norm_v
! user output
if (myrank == 0) then
print *,"defaults:"
print *," smoothing sigma_h , sigma_v : ",sigma_h,sigma_v
! scalelength: approximately S ~ sigma * sqrt(8.0) for a gaussian smoothing
print *," smoothing scalelengths horizontal, vertical: ",sigma_h*sqrt(8.0),sigma_v*sqrt(8.0)
print *," input dir : ",trim(indir)
print *," output dir: ",trim(outdir)
print *
endif
! reads the parameter file
BROADCAST_AFTER_READ = .true.
call read_parameter_file(myrank,BROADCAST_AFTER_READ)
if (ADIOS_ENABLED) stop 'Flag ADIOS_ENABLED not supported yet for smoothing, please rerun program...'
! check that the code is running with the requested nb of processes
if (sizeprocs /= NPROC) then
if (myrank == 0) then
print *, 'Error number of processors supposed to run on: ',NPROC
print *, 'Error number of MPI processors actually run on: ',sizeprocs
print *
print *, 'please rerun with: mpirun -np ',NPROC,' bin/xsmooth_sem .. '
endif
call exit_MPI(myrank,'Error wrong number of MPI processes')
endif
! read the value of NSPEC_AB and NGLOB_AB because we need it to define some array sizes below
call read_mesh_for_init()
! allocate arrays for storing the databases
allocate(ibool(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
xix(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
xiy(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
xiz(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
etax(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
etay(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
etaz(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
gammax(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
gammay(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
gammaz(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
jacobian(NGLLX,NGLLY,NGLLZ,NSPEC_AB),stat=ier)
if (ier /= 0) stop 'Error allocating arrays for databases'
! mesh node locations
allocate(xstore(NGLOB_AB), &
ystore(NGLOB_AB), &
zstore(NGLOB_AB),stat=ier)
if (ier /= 0) stop 'Error allocating arrays for mesh nodes'
! material properties
allocate(kappastore(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
mustore(NGLLX,NGLLY,NGLLZ,NSPEC_AB),stat=ier)
if (ier /= 0) stop 'Error allocating arrays for material properties'
! material flags
allocate(ispec_is_acoustic(NSPEC_AB), &
ispec_is_elastic(NSPEC_AB), &
ispec_is_poroelastic(NSPEC_AB),stat=ier)
if (ier /= 0) stop 'Error allocating arrays for material flags'
ispec_is_acoustic(:) = .false.
ispec_is_elastic(:) = .false.
ispec_is_poroelastic(:) = .false.
! reads in external mesh
call read_mesh_databases()
! gets mesh dimensions
call check_mesh_distances(myrank,NSPEC_AB,NGLOB_AB,ibool,xstore,ystore,zstore, &
x_min_glob,x_max_glob,y_min_glob,y_max_glob,z_min_glob,z_max_glob, &
elemsize_min_glob,elemsize_max_glob, &
distance_min_glob,distance_max_glob)
! outputs infos
if (myrank == 0) then
print *,'mesh dimensions:'
print *,' Xmin and Xmax of the model = ',x_min_glob,x_max_glob
print *,' Ymin and Ymax of the model = ',y_min_glob,y_max_glob
print *,' Zmin and Zmax of the model = ',z_min_glob,z_max_glob
print *
print *,' Max GLL point distance = ',distance_max_glob
print *,' Min GLL point distance = ',distance_min_glob
print *,' Max/min ratio = ',distance_max_glob/distance_min_glob
print *
print *,' Max element size = ',elemsize_max_glob
print *,' Min element size = ',elemsize_min_glob
print *,' Max/min ratio = ',elemsize_max_glob/elemsize_min_glob
print *
endif
if (ELASTIC_SIMULATION) then
call check_mesh_resolution(myrank,NSPEC_AB,NGLOB_AB, &
ibool,xstore,ystore,zstore, &
kappastore,mustore,rho_vp,rho_vs, &
DT,model_speed_max,min_resolved_period, &
LOCAL_PATH,SAVE_MESH_FILES)
else if (POROELASTIC_SIMULATION) then
allocate(rho_vp(NGLLX,NGLLY,NGLLZ,NSPEC_AB))
allocate(rho_vs(NGLLX,NGLLY,NGLLZ,NSPEC_AB))
rho_vp = 0.0_CUSTOM_REAL
rho_vs = 0.0_CUSTOM_REAL
call check_mesh_resolution_poro(myrank,NSPEC_AB,NGLOB_AB,ibool,xstore,ystore,zstore, &
DT,model_speed_max,min_resolved_period, &
phistore,tortstore,rhoarraystore,rho_vpI,rho_vpII,rho_vsI, &
LOCAL_PATH,SAVE_MESH_FILES)
deallocate(rho_vp,rho_vs)
else if (ACOUSTIC_SIMULATION) then
allocate(rho_vp(NGLLX,NGLLY,NGLLZ,NSPEC_AB),stat=ier)
if (ier /= 0) stop 'Error allocating array rho_vp'
allocate(rho_vs(NGLLX,NGLLY,NGLLZ,NSPEC_AB),stat=ier)
if (ier /= 0) stop 'Error allocating array rho_vs'
rho_vp = sqrt( kappastore / rhostore ) * rhostore
rho_vs = 0.0_CUSTOM_REAL
call check_mesh_resolution(myrank,NSPEC_AB,NGLOB_AB, &
ibool,xstore,ystore,zstore, &
kappastore,mustore,rho_vp,rho_vs, &
DT,model_speed_max,min_resolved_period, &
LOCAL_PATH,SAVE_MESH_FILES)
deallocate(rho_vp,rho_vs)
endif
! for smoothing, we use cell centers to find and locate nearby elements
!
! sets the location of the center of the elements and local points
allocate(xl(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
yl(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
zl(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
cx0(NSPEC_AB), &
cy0(NSPEC_AB), &
cz0(NSPEC_AB),stat=ier)
if (ier /= 0) stop 'Error allocating array xl etc.'
! sets element center location
do ispec = 1, nspec_AB
do k = 1, NGLLZ
do j = 1, NGLLY
do i = 1, NGLLX
iglob = ibool(i,j,k,ispec)
xl(i,j,k,ispec) = xstore(iglob)
yl(i,j,k,ispec) = ystore(iglob)
zl(i,j,k,ispec) = zstore(iglob)
enddo
enddo
enddo
cx0(ispec) = (xl(1,1,1,ispec) + xl(NGLLX,NGLLY,NGLLZ,ispec))/2.0
cy0(ispec) = (yl(1,1,1,ispec) + yl(NGLLX,NGLLY,NGLLZ,ispec))/2.0
cz0(ispec) = (zl(1,1,1,ispec) + zl(NGLLX,NGLLY,NGLLZ,ispec))/2.0
enddo
! frees memory
deallocate(xstore,ystore,zstore)
deallocate(xix,xiy,xiz,etax,etay,etaz,gammax,gammay,gammaz)
deallocate(ibool)
deallocate(jacobian)
! sets up slices to process
if (num_interfaces_ext_mesh+1 > MAX_NODE_LIST) stop 'Error number of neighbor interfaces exceeds MAX_NODE_LIST'
node_list(:) = -1
do i=1,num_interfaces_ext_mesh
! adds neighbors
node_list(i) = my_neighbours_ext_mesh(i)
enddo
! adds this partition itself
node_list(num_interfaces_ext_mesh+1) = myrank
! user output
if (myrank == 0) then
print *,'slices:'
print *,' rank:',myrank,' smoothing slices'
print *,node_list(1:num_interfaces_ext_mesh+1)
endif
!do i=0,sizeprocs-1
! if (myrank == i) then
! print *,'rank:',myrank,' smoothing slices'
! print *,node_list(1:num_interfaces_ext_mesh+1)
! print *
! endif
!enddo
! GLL points weights
call zwgljd(xigll,wxgll,NGLLX,GAUSSALPHA,GAUSSBETA)
call zwgljd(yigll,wygll,NGLLY,GAUSSALPHA,GAUSSBETA)
call zwgljd(zigll,wzgll,NGLLZ,GAUSSALPHA,GAUSSBETA)
do k=1,NGLLZ
do j=1,NGLLY
do i=1,NGLLX
wgll_cube(i,j,k) = wxgll(i)*wygll(j)*wzgll(k)
enddo
enddo
enddo
! synchronizes
call synchronize_all()
! loops over slices
! each process reads in his own neighbor slices and gaussian filters the values
allocate(tk(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
bk(NGLLX,NGLLY,NGLLZ,NSPEC_AB),stat=ier)
if (ier /= 0) stop 'Error allocating array tk and bk'
tk = 0.0_CUSTOM_REAL
bk = 0.0_CUSTOM_REAL
do inum = 1,num_interfaces_ext_mesh+1
iproc = node_list(inum)
if (myrank == 0) print *,' reading slice:',iproc
! neighbor database file
call create_name_database(prname,iproc,LOCAL_PATH)
prname_lp = prname(1:len_trim(prname))//'external_mesh.bin'
! gets number of elements and global points for this partition
open(unit=IIN,file=trim(prname_lp),status='old',action='read',form='unformatted',iostat=ier)
if (ier /= 0) then
print *,'Error could not open database file: ',trim(prname_lp)
call exit_mpi(myrank, 'Error reading neighbors external mesh file')
endif
read(IIN) NSPEC_N
read(IIN) NGLOB_N
close(IIN)
! allocates arrays
allocate(ibool(NGLLX,NGLLY,NGLLZ,NSPEC_N),stat=ier)
if (ier /= 0) stop 'Error allocating array ibool'
allocate(xstore(NGLOB_N),ystore(NGLOB_N),zstore(NGLOB_N),stat=ier)
if (ier /= 0) stop 'Error allocating array xstore etc.'
allocate(jacobian(NGLLX,NGLLY,NGLLZ,NSPEC_N),stat=ier)
if (ier /= 0) stop 'Error allocating array jacobian'
allocate(dummy(NGLLX,NGLLY,NGLLZ,NSPEC_N),stat=ier)
if (ier /= 0) stop 'Error allocating array dummy'
! gets number of point locations (and jacobian, but jacobian not used by default)
open(unit=IIN,file=trim(prname_lp),status='old',action='read',form='unformatted',iostat=ier)
if (ier /= 0) then
print *,'Error: could not open database file: ',trim(prname_lp)
call exit_mpi(myrank, 'Error reading neighbors external mesh file')
endif
read(IIN) NSPEC_N
read(IIN) NGLOB_N
! ibool file
read(IIN) ibool
! global point arrays
read(IIN) xstore
read(IIN) ystore
read(IIN) zstore
! reads in jacobian
read(IIN) dummy ! xix
read(IIN) dummy ! xiy
read(IIN) dummy ! xiz
read(IIN) dummy ! etax
read(IIN) dummy ! etay
read(IIN) dummy ! etaz
read(IIN) dummy ! gammax
read(IIN) dummy ! gammay
read(IIN) dummy ! gammaz
read(IIN) jacobian
close(IIN)
deallocate(dummy)
! get the location of the center of the elements and local points
allocate(xx(NGLLX,NGLLY,NGLLZ,NSPEC_N), &
yy(NGLLX,NGLLY,NGLLZ,NSPEC_N), &
zz(NGLLX,NGLLY,NGLLZ,NSPEC_N), &
cx(NSPEC_N), &
cy(NSPEC_N), &
cz(NSPEC_N),stat=ier)
if (ier /= 0) stop 'Error allocating array xx etc.'
! sets element center location
do ispec = 1, nspec_N
do k = 1, NGLLZ
do j = 1, NGLLY
do i = 1, NGLLX
iglob = ibool(i,j,k,ispec)
xx(i,j,k,ispec) = xstore(iglob)
yy(i,j,k,ispec) = ystore(iglob)
zz(i,j,k,ispec) = zstore(iglob)
enddo
enddo
enddo
cx(ispec) = (xx(1,1,1,ispec) + xx(NGLLX,NGLLY,NGLLZ,ispec))/2.0
cy(ispec) = (yy(1,1,1,ispec) + yy(NGLLX,NGLLY,NGLLZ,ispec))/2.0
cz(ispec) = (zz(1,1,1,ispec) + zz(NGLLX,NGLLY,NGLLZ,ispec))/2.0
enddo
deallocate(xstore,ystore,zstore)
deallocate(ibool)
! data file
write(prname,'(a,i6.6,a)') trim(indir)//'proc',iproc,'_'
local_data_file = trim(prname) // trim(filename) // '.bin'
open(unit = IIN,file = trim(local_data_file),status='old',action='read',form ='unformatted',iostat=ier)
if (ier /= 0) then
print *,'Error opening data file: ',trim(local_data_file)
stop 'Error opening data file'
endif
allocate(dat(NGLLX,NGLLY,NGLLZ,NSPEC_N),stat=ier)
if (ier /= 0) stop 'Error allocating dat array'
read(IIN) dat
close(IIN)
if (iproc == myrank) max_old = maxval(abs(dat(:,:,:,:)))
! finds closest elements for smoothing
!if (myrank==0) print *, ' start looping over elements and points for smoothing ...'
! loop over elements to be smoothed in the current slice
do ispec = 1, nspec_AB
! --- only double loop over the elements in the search radius ---
do ispec2 = 1, nspec_N
! calculates horizontal and vertical distance between two element centers
call get_distance_vec(dist_h,dist_v,cx0(ispec),cy0(ispec),cz0(ispec),&
cx(ispec2),cy(ispec2),cz(ispec2))
! checks distance between centers of elements
if (dist_h > sigma_h3 .or. dist_v > sigma_v3) cycle
! integration factors
!factor(:,:,:) = jacobian(:,:,:,ispec2) * wgll_cube(:,:,:)
!factor(:,:,:) = 1.0_CUSTOM_REAL
! loop over GLL points of the elements in current slice (ispec)
do k = 1, NGLLZ
do j = 1, NGLLY
do i = 1, NGLLX
! reference location
! current point (i,j,k,ispec) location, cartesian coordinates
x0 = xl(i,j,k,ispec)
y0 = yl(i,j,k,ispec)
z0 = zl(i,j,k,ispec)
! calculate weights based on gaussian smoothing
exp_val = 0.0_CUSTOM_REAL
call smoothing_weights_vec(x0,y0,z0,sigma_h2,sigma_v2,exp_val,&
xx(:,:,:,ispec2),yy(:,:,:,ispec2),zz(:,:,:,ispec2))
! adds GLL integration weights
!exp_val(:,:,:) = exp_val(:,:,:) * factor(:,:,:)
! adds contribution of element ispec2 to smoothed kernel values
tk(i,j,k,ispec) = tk(i,j,k,ispec) + sum(exp_val(:,:,:) * dat(:,:,:,ispec2))
! normalization, integrated values of gaussian smoothing function
bk(i,j,k,ispec) = bk(i,j,k,ispec) + sum(exp_val(:,:,:))
enddo
enddo
enddo ! i,j,k
enddo ! ispec2
enddo ! ispec
! frees arrays
deallocate(xx,yy,zz)
deallocate(cx,cy,cz)
deallocate(jacobian)
deallocate(dat)
enddo ! iproc
if (myrank == 0) print *
! normalizes/scaling factor
if (myrank == 0) print *, 'Scaling values: min/max = ',minval(bk),maxval(bk)
allocate(dat_smooth(NGLLX,NGLLY,NGLLZ,NSPEC_AB),stat=ier)
if (ier /= 0) stop 'Error allocating array dat_smooth'
dat_smooth(:,:,:,:) = 0.0_CUSTOM_REAL
do ispec = 1, nspec_AB
do k = 1, NGLLZ
do j = 1, NGLLY
do i = 1, NGLLX
! checks the normalization criterion
!if (abs(bk(i,j,k,ispec) - norm) > 1.e-4) then
! print *, 'Problem norm here --- ', ispec, i, j, k, bk(i,j,k,ispec), norm
!endif
if (abs(bk(i,j,k,ispec)) < 1.e-18) then
print *, 'Problem norm here --- ', ispec, i, j, k, bk(i,j,k,ispec), norm
endif
! normalizes smoothed kernel values by integral value of gaussian weighting
dat_smooth(i,j,k,ispec) = tk(i,j,k,ispec) / bk(i,j,k,ispec)
enddo
enddo
enddo
enddo ! ispec
deallocate(tk,bk)
max_new = maxval(abs(dat_smooth(:,:,:,:)))
! file output
! smoothed kernel file name
write(ks_file,'(a,i6.6,a)') trim(outdir)//'/proc',myrank,'_'//trim(filename)//'_smooth.bin'
open(IOUT,file=trim(ks_file),status='unknown',form='unformatted',iostat=ier)
if (ier /= 0) stop 'Error opening smoothed kernel file'
write(IOUT) dat_smooth(:,:,:,:)
close(IOUT)
if (myrank == 0) print *,'written: ',trim(ks_file)
! frees memory
deallocate(dat_smooth)
! synchronizes
call synchronize_all()
! the maximum value for the smoothed kernel
norm = max_old
call max_all_cr(norm, max_old)
norm = max_new
call max_all_cr(norm, max_new)
if (myrank == 0) then
print *
print *,' Maximum data value before smoothing = ', max_old
print *,' Maximum data value after smoothing = ', max_new
print *
close(IMAIN)
endif
! stop all the processes and exit
call finalize_mpi()
end program smooth_sem
!
! -----------------------------------------------------------------------------
!
subroutine smoothing_weights_vec(x0,y0,z0,sigma_h2,sigma_v2,exp_val,&
xx_elem,yy_elem,zz_elem)
use constants
implicit none
real(kind=CUSTOM_REAL),dimension(NGLLX,NGLLY,NGLLZ),intent(out) :: exp_val
real(kind=CUSTOM_REAL),dimension(NGLLX,NGLLY,NGLLZ),intent(in) :: xx_elem, yy_elem, zz_elem
real(kind=CUSTOM_REAL),intent(in) :: x0,y0,z0,sigma_h2,sigma_v2
! local parameters
integer :: ii,jj,kk
real(kind=CUSTOM_REAL) :: dist_h,dist_v
real(kind=CUSTOM_REAL) :: sigma_h2_inv,sigma_v2_inv
sigma_h2_inv = 1.0_CUSTOM_REAL / sigma_h2
sigma_v2_inv = 1.0_CUSTOM_REAL / sigma_v2
do kk = 1, NGLLZ
do jj = 1, NGLLY
do ii = 1, NGLLX
! point in second slice
! gets vertical and horizontal distance
call get_distance_vec(dist_h,dist_v,x0,y0,z0, &
xx_elem(ii,jj,kk),yy_elem(ii,jj,kk),zz_elem(ii,jj,kk))
! gaussian function
exp_val(ii,jj,kk) = exp(- sigma_h2_inv*(dist_h*dist_h) - sigma_v2_inv*(dist_v*dist_v))
enddo
enddo
enddo
end subroutine smoothing_weights_vec
!
! -----------------------------------------------------------------------------
!
subroutine get_distance_vec(dist_h,dist_v,x0,y0,z0,x1,y1,z1)
! returns vector lengths as distances in radial and horizontal direction
! only for flat earth with z in vertical direction
use constants
implicit none
real(kind=CUSTOM_REAL),intent(out) :: dist_h,dist_v
real(kind=CUSTOM_REAL),intent(in) :: x0,y0,z0,x1,y1,z1
! vertical distance
dist_v = sqrt( (z0-z1)*(z0-z1) )
! horizontal distance
dist_h = sqrt( (x0-x1)*(x0-x1) + (y0-y1)*(y0-y1) )
end subroutine get_distance_vec
| gpl-2.0 |
QEF/q-e_schrodinger | Modules/eqn_lauevoid.f90 | 2 | 17227 | !
! Copyright (C) 2016 National Institute of Advanced Industrial Science and Technology (AIST)
! [ This code is written by Satomichi Nishihara. ]
!
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!---------------------------------------------------------------------------
SUBROUTINE eqn_lauevoid(rismt, lboth, expand, ierr)
!---------------------------------------------------------------------------
!
! ... solve Laue-RISM equation from void-region, which is defined as
! ...
! ... /
! ... h1(gxy=0,z1) = | dz2 c2(gxy=0,z2) * x21(gxy=0,z2-z1)
! ... /void-region
! ...
! ... void-region is in right-hand side, left-hand side or between right- and left-hand side,
! ... where solvents does not exist and c2 is linear function.
! ... calculated total correlations are added to `hgz' or `hsgz'.
! ...
!
USE err_rism, ONLY : IERR_RISM_NULL, IERR_RISM_INCORRECT_DATA_TYPE
USE rism, ONLY : rism_type, ITYPE_LAUERISM
USE solvmol, ONLY : get_nuniq_in_solVs
!
IMPLICIT NONE
!
TYPE(rism_type), INTENT(INOUT) :: rismt
LOGICAL, INTENT(IN) :: lboth ! both-hands calculation, or not
LOGICAL, INTENT(IN) :: expand ! expand-cell(.TRUE.) or unit-cell(.FALSE.)
INTEGER, INTENT(OUT) :: ierr
!
INTEGER :: nq
!
! ... number of sites in solvents
nq = get_nuniq_in_solVs()
!
! ... check data type
IF (rismt%itype /= ITYPE_LAUERISM) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rismt%mp_site%nsite < nq) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rismt%nrzs < rismt%dfft%nr3) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rismt%nrzl < rismt%lfft%nrz) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rismt%lfft%xright .AND. rismt%lfft%xleft) THEN
!
! ... void-region is between right- and left-hand side
CALL eqn_lauevoid_between(rismt, lboth, expand)
!
ELSE
!
! ... void-region is right-hand side or left-hand side
CALL eqn_lauevoid_oneside(rismt, expand)
!
END IF
!
ierr = IERR_RISM_NULL
!
END SUBROUTINE eqn_lauevoid
!
!---------------------------------------------------------------------------
SUBROUTINE eqn_lauevoid_oneside(rismt, expand)
!---------------------------------------------------------------------------
!
! ... Laue-RISM equation from void-region of right-hand side or left-hand side.
!
USE cell_base, ONLY : alat
USE constants, ONLY : K_BOLTZMANN_RY
USE kinds, ONLY : DP
USE mp, ONLY : mp_sum
USE rism, ONLY : rism_type
USE solvmol, ONLY : solVs, get_nuniq_in_solVs, &
& iuniq_to_isite, isite_to_isolV, isite_to_iatom
!
IMPLICIT NONE
!
TYPE(rism_type), INTENT(INOUT) :: rismt
LOGICAL, INTENT(IN) :: expand ! expand-cell(.TRUE.) or unit-cell(.FALSE.)
!
INTEGER :: nq
INTEGER :: iq1, iq2
INTEGER :: iiq1, iiq2
INTEGER :: iv2
INTEGER :: isolV2
INTEGER :: iatom2
INTEGER :: iz
INTEGER :: izsta
INTEGER :: izend
INTEGER :: izsolv
INTEGER :: izvoid
INTEGER :: nzint
INTEGER :: izint
INTEGER :: izdelt
REAL(DP) :: beta
REAL(DP) :: qv2
REAL(DP) :: z
REAL(DP) :: zstep
REAL(DP) :: zoffs
REAL(DP) :: zedge
REAL(DP) :: voppo
REAL(DP) :: vsign
REAL(DP) :: cz
REAL(DP) :: dz
REAL(DP), ALLOCATABLE :: c2(:)
REAL(DP), ALLOCATABLE :: d2(:)
REAL(DP), ALLOCATABLE :: h1(:)
!
! ... number of sites in solvents
nq = get_nuniq_in_solVs()
!
! ... beta = 1 / (kB * T)
beta = 1.0_DP / K_BOLTZMANN_RY / rismt%temp
!
! ... set integral regions as index of long Z-stick (i.e. expanded cell)
IF (rismt%lfft%xright) THEN
IF (expand) THEN
izsta = rismt%lfft%izright_gedge
izend = rismt%lfft%nrz
ELSE
izsta = rismt%lfft%izright_start0
izend = rismt%lfft%izright_end0
END IF
!
izsolv = rismt%lfft%izright_start0
izvoid = izsolv - 1
!
IF (rismt%lfft%gxystart > 1) THEN
voppo = DBLE(rismt%vleft(1)) / alat
ELSE
voppo = 0.0_DP
END IF
!
vsign = -1.0_DP
!
ELSE !IF (rismt%lfft%xleft) THEN
IF (expand) THEN
izsta = 1
izend = rismt%lfft%izleft_gedge
ELSE
izsta = rismt%lfft%izleft_start0
izend = rismt%lfft%izleft_end0
END IF
!
izsolv = rismt%lfft%izleft_end0
izvoid = izsolv + 1
!
IF (rismt%lfft%gxystart > 1) THEN
voppo = DBLE(rismt%vright(1)) / alat
ELSE
voppo = 0.0_DP
END IF
!
vsign = +1.0_DP
END IF
!
! ... count integral points along Z
nzint = izend - izsta + 1
!
! ... properties about length (in a.u.)
zstep = alat * rismt%lfft%zstep
zoffs = alat * (rismt%lfft%zleft + rismt%lfft%zoffset)
zedge = zoffs + zstep * DBLE(izsolv - 1)
!
! ... allocate working memory
IF (rismt%nsite > 0) THEN
ALLOCATE(c2(rismt%nsite))
ALLOCATE(d2(rismt%nsite))
END IF
IF (nzint > 0) THEN
ALLOCATE(h1(nzint))
END IF
!
! ... calculate c2, d2
DO iq2 = rismt%mp_site%isite_start, rismt%mp_site%isite_end
iiq2 = iq2 - rismt%mp_site%isite_start + 1
iv2 = iuniq_to_isite(1, iq2)
isolV2 = isite_to_isolV(iv2)
iatom2 = isite_to_iatom(iv2)
qv2 = solVs(isolV2)%charge(iatom2)
!
IF (rismt%lfft%gxystart > 1) THEN
c2(iiq2) = rismt%csdg0(izsolv, iiq2) &
& - beta * qv2 * DBLE(rismt%vlgz(izsolv))
d2(iiq2) = -beta * qv2 * voppo
ELSE
c2(iiq2) = 0.0_DP
d2(iiq2) = 0.0_DP
END IF
END DO
!
IF (rismt%nsite > 0) THEN
CALL mp_sum(c2, rismt%mp_site%intra_sitg_comm)
CALL mp_sum(d2, rismt%mp_site%intra_sitg_comm)
END IF
!
! ... Laue-RISM equation of void-region
DO iq1 = 1, nq
IF (rismt%mp_site%isite_start <= iq1 .AND. iq1 <= rismt%mp_site%isite_end) THEN
iiq1 = iq1 - rismt%mp_site%isite_start + 1
ELSE
iiq1 = 0
END IF
!
IF (nzint > 0) THEN
h1 = 0.0_DP
END IF
!
DO iq2 = rismt%mp_site%isite_start, rismt%mp_site%isite_end
iiq2 = iq2 - rismt%mp_site%isite_start + 1
!
! ... h1(z1)
!$omp parallel do default(shared) private(iz, izint, izdelt, z, cz, dz)
DO iz = izsta, izend
izint = iz - izsta + 1
izdelt = ABS(iz - izvoid) + 1
!
IF (izdelt <= rismt%lfft%nrz) THEN
z = zoffs + zstep * DBLE(iz - 1)
cz = c2(iiq2) + d2(iiq2) * (z - zedge)
dz = d2(iiq2) * vsign
h1(izint) = h1(izint) &
& + cz * rismt%xgs0(izdelt, iiq2, iq1) &
& + dz * rismt%xgs1(izdelt, iiq2, iq1)
END IF
END DO
!$omp end parallel do
END DO
!
IF (nzint > 0) THEN
CALL mp_sum(h1, rismt%mp_site%inter_sitg_comm)
END IF
!
IF (iiq1 > 0) THEN
IF (expand) THEN
! ... add h1 -> hsgz
IF (rismt%lfft%gxystart > 1) THEN
!$omp parallel do default(shared) private(iz, izint)
DO iz = izsta, izend
izint = iz - izsta + 1
rismt%hsgz(iz, iiq1) = rismt%hsgz(iz, iiq1) + CMPLX(h1(izint), 0.0_DP, kind=DP)
END DO
!$omp end parallel do
END IF
!
ELSE
! ... add h1 -> hg0
!$omp parallel do default(shared) private(iz, izint)
DO iz = izsta, izend
izint = iz - izsta + 1
rismt%hg0(iz, iiq1) = rismt%hg0(iz, iiq1) + h1(izint)
END DO
!$omp end parallel do
END IF
END IF
!
END DO
!
! ... deallocate working memory
IF (rismt%nsite > 0) THEN
DEALLOCATE(c2)
DEALLOCATE(d2)
END IF
IF (nzint > 0) THEN
DEALLOCATE(h1)
END IF
!
END SUBROUTINE eqn_lauevoid_oneside
!
!---------------------------------------------------------------------------
SUBROUTINE eqn_lauevoid_between(rismt, lboth, expand)
!---------------------------------------------------------------------------
!
! ... Laue-RISM equation from void-region between right- and left-hand side.
!
USE cell_base, ONLY : alat
USE constants, ONLY : K_BOLTZMANN_RY
USE kinds, ONLY : DP
USE mp, ONLY : mp_sum
USE rism, ONLY : rism_type
USE solvmol, ONLY : solVs, get_nuniq_in_solVs, &
& iuniq_to_isite, isite_to_isolV, isite_to_iatom
!
IMPLICIT NONE
!
TYPE(rism_type), INTENT(INOUT) :: rismt
LOGICAL, INTENT(IN) :: lboth ! both-hands calculation, or not
LOGICAL, INTENT(IN) :: expand ! expand-cell(.TRUE.) or unit-cell(.FALSE.)
!
INTEGER :: nq
INTEGER :: iq1, iq2
INTEGER :: iiq1, iiq2
INTEGER :: iv2
INTEGER :: isolV2
INTEGER :: iatom2
INTEGER :: iz
INTEGER :: nzright
INTEGER :: izright_sta
INTEGER :: izright_end
INTEGER :: izright_solv
INTEGER :: izright_void
INTEGER :: nzleft
INTEGER :: izleft_sta
INTEGER :: izleft_end
INTEGER :: izleft_solv
INTEGER :: izleft_void
INTEGER :: izint
INTEGER :: izdelt1
INTEGER :: izdelt2
REAL(DP) :: beta
REAL(DP) :: qv2
REAL(DP) :: z
REAL(DP) :: zstep
REAL(DP) :: zoffs
REAL(DP) :: zright_edge
REAL(DP) :: zleft_edge
REAL(DP) :: c2, cz
REAL(DP) :: d2, dz
REAL(DP), ALLOCATABLE :: xg0(:)
REAL(DP), ALLOCATABLE :: xg1(:)
REAL(DP), ALLOCATABLE :: cright(:)
REAL(DP), ALLOCATABLE :: cleft(:)
REAL(DP), ALLOCATABLE :: hright(:)
REAL(DP), ALLOCATABLE :: hleft(:)
!
! ... has void-region ?
IF ((rismt%lfft%izright_start0 - rismt%lfft%izleft_end0) <= 1) THEN
RETURN
END IF
!
! ... number of sites in solvents
nq = get_nuniq_in_solVs()
!
! ... beta = 1 / (kB * T)
beta = 1.0_DP / K_BOLTZMANN_RY / rismt%temp
!
! ... set integral regions as index of long Z-stick (i.e. expanded cell)
IF (expand) THEN
izright_sta = rismt%lfft%izright_gedge
izright_end = rismt%lfft%nrz
izleft_sta = 1
izleft_end = rismt%lfft%izleft_gedge
ELSE
izright_sta = rismt%lfft%izright_start0
izright_end = rismt%lfft%izright_end0
izleft_sta = rismt%lfft%izleft_start0
izleft_end = rismt%lfft%izleft_end0
END IF
!
izright_solv = rismt%lfft%izright_start0
izright_void = izright_solv - 1
izleft_solv = rismt%lfft%izleft_end0
izleft_void = izleft_solv + 1
!
! ... count integral points along Z
nzright = izright_end - izright_sta + 1
nzleft = izleft_end - izleft_sta + 1
!
! ... properties about length (in a.u.)
zstep = alat * rismt%lfft%zstep
zoffs = alat * (rismt%lfft%zleft + rismt%lfft%zoffset)
!
zright_edge = zoffs + zstep * DBLE(izright_solv - 1)
zleft_edge = zoffs + zstep * DBLE(izleft_solv - 1)
!
! ... allocate working memory
IF (rismt%nrzl > 0) THEN
ALLOCATE(xg0(rismt%nrzl))
ALLOCATE(xg1(rismt%nrzl))
END IF
IF (rismt%nsite > 0) THEN
ALLOCATE(cright(rismt%nsite))
ALLOCATE(cleft( rismt%nsite))
END IF
IF (nzright > 0) THEN
ALLOCATE(hright(nzright))
END IF
IF (nzleft > 0) THEN
ALLOCATE(hleft(nzleft))
END IF
!
! ... calculate cright(z2), cleft(z2)
DO iq2 = rismt%mp_site%isite_start, rismt%mp_site%isite_end
iiq2 = iq2 - rismt%mp_site%isite_start + 1
iv2 = iuniq_to_isite(1, iq2)
isolV2 = isite_to_isolV(iv2)
iatom2 = isite_to_iatom(iv2)
qv2 = solVs(isolV2)%charge(iatom2)
!
IF (rismt%lfft%gxystart > 1) THEN
cright(iiq2) = rismt%csdg0(izright_solv, iiq2) &
& - beta * qv2 * DBLE(rismt%vlgz(izright_solv))
cleft( iiq2) = rismt%csdg0(izleft_solv, iiq2) &
& - beta * qv2 * DBLE(rismt%vlgz(izleft_solv))
ELSE
cright(iiq2) = 0.0_DP
cleft( iiq2) = 0.0_DP
END IF
END DO
!
IF (rismt%nsite > 0) THEN
CALL mp_sum(cright, rismt%mp_site%intra_sitg_comm)
CALL mp_sum(cleft, rismt%mp_site%intra_sitg_comm)
END IF
!
! ... Laue-RISM equation of void-region
DO iq1 = 1, nq
IF (rismt%mp_site%isite_start <= iq1 .AND. iq1 <= rismt%mp_site%isite_end) THEN
iiq1 = iq1 - rismt%mp_site%isite_start + 1
ELSE
iiq1 = 0
END IF
!
IF (nzright > 0) THEN
hright = 0.0_DP
END IF
IF (nzleft > 0) THEN
hleft = 0.0_DP
END IF
!
DO iq2 = rismt%mp_site%isite_start, rismt%mp_site%isite_end
iiq2 = iq2 - rismt%mp_site%isite_start + 1
!
d2 = (cright(iiq2) - cleft(iiq2)) / (zright_edge - zleft_edge)
!
! ... hleft(z1)
c2 = cleft(iiq2)
!
IF (.NOT. lboth) THEN
xg0 = rismt%xgs0(1:rismt%nrzl, iiq2, iq1)
xg1 = rismt%xgs1(1:rismt%nrzl, iiq2, iq1)
ELSE
xg0 = rismt%ygs0(1:rismt%nrzl, iiq2, iq1)
xg1 = rismt%ygs1(1:rismt%nrzl, iiq2, iq1)
END IF
!
!$omp parallel do default(shared) private(iz, izint, izdelt1, izdelt2, z, cz, dz)
DO iz = izleft_sta, izleft_end
izint = iz - izleft_sta + 1
izdelt1 = ABS(iz - izleft_void ) + 1
izdelt2 = ABS(iz - izright_solv) + 1
!
IF (izdelt1 <= rismt%lfft%nrz) THEN
z = zoffs + zstep * DBLE(iz - 1)
cz = c2 + d2 * (z - zleft_edge)
dz = d2
hleft(izint) = hleft(izint) &
& + cz * xg0(izdelt1) &
& + dz * xg1(izdelt1)
END IF
!
IF (izdelt2 <= rismt%lfft%nrz) THEN
z = zoffs + zstep * DBLE(iz - 1)
cz = c2 + d2 * (z - zleft_edge)
dz = d2
hleft(izint) = hleft(izint) &
& - cz * xg0(izdelt2) &
& - dz * xg1(izdelt2)
END IF
END DO
!$omp end parallel do
!
! ... hright(z1)
c2 = cright(iiq2)
!
xg0 = rismt%xgs0(1:rismt%nrzl, iiq2, iq1)
xg1 = rismt%xgs1(1:rismt%nrzl, iiq2, iq1)
!
!$omp parallel do default(shared) private(iz, izint, izdelt1, izdelt2, z, cz, dz)
DO iz = izright_sta, izright_end
izint = iz - izright_sta + 1
izdelt1 = ABS(iz - izright_void) + 1
izdelt2 = ABS(iz - izleft_solv ) + 1
!
IF (izdelt1 <= rismt%lfft%nrz) THEN
z = zoffs + zstep * DBLE(iz - 1)
cz = c2 + d2 * (z - zright_edge)
dz = -d2
hright(izint) = hright(izint) &
& + cz * xg0(izdelt1) &
& + dz * xg1(izdelt1)
END IF
!
IF (izdelt2 <= rismt%lfft%nrz) THEN
z = zoffs + zstep * DBLE(iz - 1)
cz = c2 + d2 * (z - zright_edge)
dz = -d2
hright(izint) = hright(izint) &
& - cz * xg0(izdelt2) &
& - dz * xg1(izdelt2)
END IF
END DO
!$omp end parallel do
END DO
!
IF (nzright > 0) THEN
CALL mp_sum(hright, rismt%mp_site%inter_sitg_comm)
END IF
IF (nzleft > 0) THEN
CALL mp_sum(hleft, rismt%mp_site%inter_sitg_comm)
END IF
!
IF (iiq1 > 0) THEN
IF (expand) THEN
IF (rismt%lfft%gxystart > 1) THEN
! ... add hleft -> hsgz
!$omp parallel do default(shared) private(iz, izint)
DO iz = izleft_sta, izleft_end
izint = iz - izleft_sta + 1
rismt%hsgz(iz, iiq1) = rismt%hsgz(iz, iiq1) + CMPLX(hleft(izint), 0.0_DP, kind=DP)
END DO
!$omp end parallel do
!
! ... add hright -> hsgz
!$omp parallel do default(shared) private(iz, izint)
DO iz = izright_sta, izright_end
izint = iz - izright_sta + 1
rismt%hsgz(iz, iiq1) = rismt%hsgz(iz, iiq1) + CMPLX(hright(izint), 0.0_DP, kind=DP)
END DO
!$omp end parallel do
END IF
!
ELSE
! ... add hleft -> hg0
!$omp parallel do default(shared) private(iz, izint)
DO iz = izleft_sta, izleft_end
izint = iz - izleft_sta + 1
rismt%hg0(iz, iiq1) = rismt%hg0(iz, iiq1) + hleft(izint)
END DO
!$omp end parallel do
!
! ... add hright -> hg0
!$omp parallel do default(shared) private(iz, izint)
DO iz = izright_sta, izright_end
izint = iz - izright_sta + 1
rismt%hg0(iz, iiq1) = rismt%hg0(iz, iiq1) + hright(izint)
END DO
!$omp end parallel do
END IF
END IF
!
END DO
!
! ... deallocate working memory
IF (rismt%nrzl > 0) THEN
DEALLOCATE(xg0)
DEALLOCATE(xg1)
END IF
IF (rismt%nsite > 0) THEN
DEALLOCATE(cright)
DEALLOCATE(cleft)
END IF
IF (nzright > 0) THEN
DEALLOCATE(hright)
END IF
IF (nzleft > 0) THEN
DEALLOCATE(hleft)
END IF
!
END SUBROUTINE eqn_lauevoid_between
| gpl-2.0 |
yangf4/phasta | M2NFixBnd/src/readnblk.f | 5 | 27844 | c readnblk.f (pronounce "Reed and Block Dot Eff") contains:
c
c module readarrays ("Red Arrays") -- contains the arrays that
c are read in from binary files but not immediately blocked
c through pointers.
c
c subroutine readnblk ("Reed and Block") -- allocates space for
c and reads data to be contained in module readarrays. Reads
c all remaining data and blocks them with pointers.
c
module readarrays
real*8, allocatable :: point2x(:,:)
real*8, allocatable :: qold(:,:)
real*8, allocatable :: dwal(:)
real*8, allocatable :: errors(:,:)
real*8, allocatable :: ybar(:,:)
real*8, allocatable :: yphbar(:,:,:)
real*8, allocatable :: vort(:,:)
real*8, allocatable :: uold(:,:)
real*8, allocatable :: acold(:,:)
integer, allocatable :: iBCtmp(:)
real*8, allocatable :: BCinp(:,:)
integer, allocatable :: point2ilwork(:)
integer, allocatable :: nBC(:)
integer, allocatable :: point2iper(:)
integer, allocatable :: point2ifath(:)
integer, allocatable :: point2nsons(:)
end module
subroutine readnblk
c
use readarrays
include "commonM2NFixBnd.h"
include "mpif.h"
c
real*8, allocatable :: xread(:,:), qread(:,:), qread1(:)
real*8, allocatable :: uread(:,:), acread(:,:)
real*8, allocatable :: BCinpread(:,:)
real*8 globmax,globmin
integer, allocatable :: iperread(:), iBCtmpread(:)
integer, allocatable :: ilworkread(:), nBCread(:)
character*10 cname2
character*30 fmt1
character*255 fname1,fnamer,fnamelr
character*255 warning
integer :: descriptor, color, nfiles, nfields
integer :: numparts, nppf
character*255 fname2, temp2
character*64 temp1
integer :: igeom, ibndc, irstin, ierr
integer :: ndof, ndoferrors, ndofybar
integer :: itmp, itmp2
integer :: irstart, irstartmap, iybar
integer :: ierror, numphavg, ivort, idwal, idebug, iphavg
integer intfromfile(50) ! integers read from headers
logical exinput
c
c
c.... determine the step number to start with
c
! open(unit=72,file='numstart.dat',status='old')
! read(72,*) irstart
! close(72)
if(myrank == 0) then
fnamer='M2N_input.dat'
fnamer = trim(fnamer) // char(0)
inquire(file=fnamer,exist=exinput)
if(exinput) then
open(unit=72,file=fnamer,status='old')
read(72,*) irstart
read(72,*) irstartmap
read(72,*) iybar
read(72,*) ierror
read(72,*) numphavg
read(72,*) ivort
read(72,*) idwal
read(72,*) idebug
close(72)
else
write(*,*) 'ERROR: Input file ',
& trim(fnamer),' does not exist!'
endif
endif
call mpi_barrier(mpi_comm_world, ierr)
call mpi_bcast(exinput,1,MPI_LOGICAL,0,mpi_comm_world,ierr)
if(.not. exinput) then ! M2NFixBnd_input.dat does not exist. Quit
! call mpi_abort(mpi_comm_world,911,ierr)
! call mpi_finalize(ierr)
return
else ! broadcast the information read by rank 0
call mpi_bcast(irstart,1,MPI_INTEGER,0,mpi_comm_world,ierr)
call mpi_bcast(iybar,1,MPI_INTEGER,0,mpi_comm_world,ierr)
call mpi_bcast(ierror,1,MPI_INTEGER,0,mpi_comm_world,ierr)
call mpi_bcast(numphavg,1,MPI_INTEGER,0,mpi_comm_world,ierr)
call mpi_bcast(ivort,1,MPI_INTEGER,0,mpi_comm_world,ierr)
call mpi_bcast(idwal,1,MPI_INTEGER,0,mpi_comm_world,ierr)
endif
if(myrank == 0 ) then
! Print some info
write(*,*) 'The solution field is reduced by default'
if(iybar .gt. 0) then
write(*,*) 'The ybar field will also be reduced'
iybar = 1 ! security
else
write(*,*) 'The ybar field will NOT be reduced'
endif
if(ierror .gt. 0) then
write(*,*) 'The error field will also be reduced'
ierror = 1 ! security
else
write(*,*) 'The error field will NOT be reduced'
endif
if(numphavg .gt. 0) then
write(*,*) 'The phase average fields (',numphavg,
& ') will also be reduced'
else
write(*,*) 'The phase average fields will NOT be reduced'
endif
if(ivort .gt. 0) then
write(*,*) 'The vorticity field will also be reduced'
ivort = 1 ! security
else
write(*,*) 'The vorticity field will NOT be reduced'
endif
if(idwal .gt. 0) then
write(*,*) 'The dwal field will also be reduced'
idwal = 1 ! security
else
write(*,*) 'The dwal field will NOT be reduced'
endif
write(*,*) ''
endif
call mpi_barrier(mpi_comm_world, ierr)
if(myrank == 0) then
write(*,*) 'Reading the geombcRed-dat files'
endif
lstep=irstart ! in case restart files have no fields
nfiles = nsynciofiles
numparts = numpe !This is the common settings. Beware if you try to compute several parts per process
c
c.... input the geometry parameters
c
color = int(myrank/(numparts/nfiles)) !Should call the color routine in SyncIO here
itmp2 = int(log10(float(color+1)))+1
write (temp2,"('(''geombcRed-dat.'',i',i1,')')") itmp2
write (fnamer,temp2) (color+1)
fnamer = trim(fnamer)//char(0)
ieleven=11
ione=1
itmp = int(log10(float(myrank+1)))+1
call queryphmpiio(fnamer, nfields, nppf);
if (myrank == 0) then
write(*,*) 'Number of fields in geombcRed-dat: ',nfields
write(*,*) 'Number of parts per file geombcRed-dat: ',nppf
endif
call initphmpiio( nfields, nppf, nfiles, igeom,
& 'read'//char(0))
call openfile( fnamer, 'read'//char(0), igeom )
write (temp1,"('(''number of nodes@'',i',i1,',A1)')") itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),numnp,ione,
& 'integer'//char(0), iotype)
write (temp1,"('(''number of modes@'',i',i1,',A1)')") itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),nshg,ione,
& 'integer'//char(0), iotype)
write (temp1,"('(''number of interior elements@'',i',i1,',A1)')")
& itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),numel,ione,
& 'integer'//char(0), iotype)
write (temp1,"('(''number of boundary elements@'',i',i1,',A1)')")
& itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),numelb,ione,
& 'integer'//char(0),iotype)
write (temp1,
& "('(''maximum number of element nodes@'',i',i1,',A1)')") itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),nen,ione,
&'integer'//char(0),iotype)
write (temp1,"('(''number of interior tpblocks@'',i',i1,',A1)')")
& itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),nelblk,ione,
& 'integer'//char(0) ,iotype)
write (temp1,"('(''number of boundary tpblocks@'',i',i1,',A1)')")
& itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),nelblb,ione,
& 'integer'//char(0), iotype)
write (temp1,
& "('(''number of nodes with Dirichlet BCs@'',i',i1,',A1)')") itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),numpbc,ione,
& 'integer'//char(0),iotype)
write (temp1,"('(''number of shape functions@'',i',i1,',A1)')")
& itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),ntopsh,ione,
& 'integer'//char(0),iotype)
call closefile( igeom, "read"//char(0) )
call finalizephmpiio( igeom )
c
c.... calculate the maximum number of boundary element nodes
c
nenb = 3 !was initialized to 0 but
do i = 1, melCat !melCat is 0 here
if (nen .eq. nenCat(i,nsd)) nenb = max(nenCat(i,nsd-1), nenb)
enddo
c
if (myrank == master) then
if (nenb .eq. 0) call error ('input '//char(0),
& 'nen '//char(0),nen)
endif
c
c.... setup some useful constants
c
I3nsd = nsd / 3 ! nsd=3 integer flag
E3nsd = float(I3nsd) ! nsd=3 real flag
c
if(matflg(1,1).lt.0) then
nflow = nsd + 1
else
nflow = nsd + 2
endif
ndof = nsd + 2
nsclr=impl(1)/100
ndof=ndof+nsclr ! number of sclr transport equations to solve
ndofBC = ndof + I3nsd ! dimension of BC array
ndiBCB = 2 ! dimension of iBCB array
ndBCB = ndof + 1 ! dimension of BCB array
c
nsymdf = (ndof*(ndof + 1)) / 2 ! symm. d.o.f.'s
c
c.... Read restart files
c
c.... read the header and check it against the run data
c
call mpi_barrier(mpi_comm_world, ierr)
if(myrank == 0) then
write(*,*) 'Reading the RestartRedTmp-dat files'
endif
! Beware in what follows! nshg2 read from the header of the solution,
! dwal, errors and ybar can be different from nshg read from the geombc files
! This is due to the fact that nshg2 represents the largest vID referenced
! by the mapping and not the largest vID present in the mesh.
! qold, dwal, errors, ybar must be allocated to nshg and initialized
! to a large negative value. The unmapped vertices will be updated
! through communication with ilwork.
itmp=1
if (irstart .gt. 0) itmp = int(log10(float(irstart+1)))+1
write (fmt1,"('(''restartRedTmp-dat.'',i',i1,',1x)')") itmp
write (fnamer,fmt1) irstart
fnamer = trim(fnamer) // cname2(color+1)
call queryphmpiio(fnamer//char(0), nfields, nppf);
if (myrank == 0) then
write(*,*) 'Number of fields in restartRedTmp-dat: ',nfields
write(*,*) 'Number of parts per file restartRedTmp-dat: ',nppf
endif
call initphmpiio(nfields,nppf,nfiles,descriptor,
& 'read'//char(0))
call openfile( fnamer//char(0) ,
& 'read'//char(0), descriptor )
c
c Read the solution
c
ithree=3
itmp = int(log10(float(myrank+1)))+1
write (temp1,"('(''solution@'',i',i1,',A1)')") itmp
write (fname1,temp1) (myrank+1),'?'
fname1 = trim(fname1)
intfromfile=0
call readheader(descriptor,fname1//char(0) ,intfromfile,
& ithree,'integer'//char(0), iotype)
c
c.... read the values of primitive variables into q
c
if(intfromfile(1).ne.0) then
nshg2=intfromfile(1)
ndof2=intfromfile(2)
ndof=ndof2 !This must be the same anyway
allocate( qold(nshg,ndof) )
qold(:,:) = -9.87654321e32
lstep=intfromfile(3)
allocate( qread(nshg2,ndof2) )
if (nshg2 .ne. nshg) then
write(*,*) 'nshg from geombc and nshg2 from restart differ'
& //' on rank', myrank, ' :',nshg,nshg2,
& ' - Probably mixing phasta files'
endif
call mpi_barrier(mpi_comm_world, ierr)
iqsiz=nshg2*ndof2
call readdatablock(descriptor,fname1//char(0),qread,iqsiz,
& 'double'//char(0),iotype)
qold(1:nshg2,1:ndof2)=qread(1:nshg2,1:ndof2)
deallocate(qread)
else
if (myrank.eq.master) then
if (matflg(1,1).eq.0) then ! compressible
warning='Solution is set to zero (with p and T to one)'
else
warning='Solution is set to zero'
endif
write(*,*) warning// char(0)
endif
qold=zero
if (matflg(1,1).eq.0) then ! compressible
qold(:,1)=one ! avoid zero pressure
qold(:,nflow)=one ! avoid zero temperature
endif
endif
c
c Read the ybar
c
ndofybar = 0
if(iybar==1) then
itmp = int(log10(float(myrank+1)))+1
write (temp1,"('(''ybar@'',i',i1,',a1)')") itmp
write (fname1,temp1) (myrank+1),'?'
fname1 = trim(fname1)
intfromfile=0
call readheader(descriptor,fname1//char(0),intfromfile,
& ithree,'integer'//char(0),iotype)
nshg2=intfromfile(1)
ndofybar=intfromfile(2)
!lstep=intfromfile(3)
if(ndofybar .ne. 0) then
allocate( ybar(nshg,ndofybar) )
ybar(:,:) = -9.87654321e32
allocate( qread(nshg2,ndofybar) )
iqsiz=nshg2*ndofybar
call readdatablock(descriptor,fname1//char(0) ,qread,iqsiz,
& 'double'//char(0),iotype)
ybar(1:nshg2,1:ndofybar)=qread(1:nshg2,1:ndofybar)
deallocate(qread)
else
write(*,*) 'WARNING: ybar is missing in the restart files'
iybar = 0
endif
endif
c
c Read the errors
c
ndoferrors=0
if(ierror == 1) then
write (temp1,"('(''errors@'',i',i1,',a1)')")
& itmp
write (fname1,temp1) (myrank+1),'?'
fname1 = trim(fname1)
intfromfile=0
call readheader(descriptor,fname1//char(0),intfromfile,
& ithree,'integer'//char(0),iotype)
nshg2=intfromfile(1)
ndoferrors=intfromfile(2)
!lstep=intfromfile(3)
if(ndoferrors .ne. 0) then
allocate( errors(nshg,ndoferrors) )
errors(:,:) = -9.87654321e32
allocate( qread(nshg2,ndoferrors) )
iqsiz=nshg2*ndoferrors
call readdatablock(descriptor,fname1//char(0),qread,iqsiz,
& 'double'//char(0),iotype)
errors(1:nshg2,1:ndoferrors)=qread(1:nshg2,1:ndoferrors)
deallocate(qread)
else
if(myrank==0) then
write(*,*) 'WARNING: errors is missing in the restart files'
endif
ierror = 0
endif
endif
!
! Read the phase_average fields
!
ndofyphbar=0
if(numphavg .gt. 0) then
do iphavg = 1,numphavg
itmp = int(log10(float(myrank+1)))+1
itmp2 = int(log10(float(iphavg)))+1
write (temp1,
& "('(''phase_average'',i',i1,',''@'',i',i1,',A1)')")
& itmp2, itmp
write (fname1,temp1) iphavg,(myrank+1),'?'
fname1 = trim(fname1)
intfromfile=0
call readheader(descriptor,fname1//char(0),intfromfile,
& ithree,'integer'//char(0),iotype)
nshg2=intfromfile(1)
ndofyphbar=intfromfile(2)
!lstep=intfromfile(3)
if(ndofyphbar.ne.0) then
! Allocate some memory for the first ts only
if(iphavg==1) then
allocate( yphbar(nshg,ndofyphbar,numphavg) )
yphbar(:,:,:) = -9.87654321e32
endif
allocate( qread(nshg2,ndofyphbar) )
iqsiz = nshg2*ndofyphbar
call readdatablock(descriptor,fname1//char(0),qread,iqsiz,
& 'double'//char(0),iotype)
yphbar(1:nshg2,1:ndofyphbar,iphavg) =
& qread(1:nshg2,1:ndofyphbar)
deallocate(qread)
else
if(myrank==0) then
write(*,*)'WARNING: phase_average is missing '//
& 'in the restart files'
endif
numphavg = 0
if(iphavg > 1) then
deallocate(yphbar)
endif
exit
endif
enddo
endif
!
! follow the usual convention for loading the vorticity field
!
ndofvort=0
if(ivort == 1) then
itmp = int(log10(float(myrank+1)))+1
write (temp1,"('(''vorticity@'',i',i1,',a1)')") itmp
write (fname1,temp1) (myrank+1),'?'
fname1 = trim(fname1)
intfromfile=0
call readheader(descriptor,fname1//char(0),intfromfile,
& ithree,'integer'//char(0),iotype)
nshg2=intfromfile(1)
ndofvort=intfromfile(2)
!lstep=intfromfile(3)
if(ndofvort .ne. 0) then
allocate(vort(nshg,ndofvort))
vort(:,:) = -9.87654321e32
allocate(qread(nshg2,ndofvort))
iqsiz = nshg2*ndofvort
call readdatablock(descriptor,fname1//char(0),qread,iqsiz,
& 'double'//char(0),iotype)
vort(1:nshg2,1:ndofvort)=qread(1:nshg2,1:ndofvort)
deallocate(qread)
else
if(myrank==0) then
write(*,*) 'WARNING: vorticity is missing '//
& 'in the restart files'
endif
ivort = 0
endif
endif
c
c Read the dwal
c
ndofdwal=0
if(idwal==1) then
write (temp1,"('(''dwal@'',i',i1,',a1)')") itmp
write (fname1,temp1) (myrank+1),'?'
fname1 = trim(fname1)
intfromfile=0
call readheader(descriptor,fname1//char(0),intfromfile,
& ithree,'integer'//char(0),iotype)
nshg2=intfromfile(1)
ndofdwal=intfromfile(2)
if(ndofdwal .ne. 0) then
if(ndofdwal.ne.1) then
warning='WARNING: ndofdwal not equal 1'
write(*,*) warning, ndofdwal
endif
allocate( dwal(nshg) )
dwal(:) = -9.87654321e32
allocate( qread1(nshg2) )
iqsiz=nshg2*1
call readdatablock(descriptor,fname1//char(0),qread1,iqsiz,
& 'double'//char(0),iotype)
dwal(1:nshg2)=qread1(1:nshg2)
deallocate(qread1)
else
if(myrank==0) then
write(*,*) 'WARNING: dwal is missing in the restart files'
endif
idwal = 0
endif
endif
!
!.... close c-binary files
!
call closefile( descriptor, "read"//char(0) )
call finalizephmpiio( descriptor )
c.... ----------------------> Communication tasks <--------------------
c
if(numpe > 1) then
call mpi_barrier(mpi_comm_world, ierr)
if(myrank == 0) then
write(*,*) 'Reading the geombc-dat files again for ilwork'
endif
color = int(myrank/(numparts/nfiles)) !Should call the color routine in SyncIO here
itmp2 = int(log10(float(color+1)))+1
write (temp2,"('(''geombcRed-dat.'',i',i1,')')") itmp2
write (fnamer,temp2) (color+1)
fnamer = trim(fnamer)//char(0)
ieleven=11
ione=1
itmp = int(log10(float(myrank+1)))+1
call queryphmpiio(fnamer, nfields, nppf);
if (myrank == 0) then
write(*,*) 'Number of fields in geombcRed-dat: ',nfields
write(*,*) 'Number of parts per file geombcRed-dat: ',nppf
endif
call initphmpiio( nfields, nppf, nfiles, igeom,
& 'read'//char(0))
call openfile( fnamer, 'read'//char(0), igeom )
write (temp1,"('(''size of ilwork array@'',i',i1,',A1)')") itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0),nlwork,ione,
& 'integer' // char(0) ,iotype)
write (temp1,"('(''ilwork@'',i',i1,',A1)')") itmp
write (fname2,temp1) (myrank+1),'?'
call readheader(igeom,fname2//char(0) ,nlwork,ione,
& 'integer'//char(0) , iotype)
allocate( point2ilwork(nlwork) )
allocate( ilworkread(nlwork) )
call readdatablock(igeom,fname2//char(0),ilworkread,
& nlwork,'integer'//char(0) , iotype)
point2ilwork = ilworkread
deallocate(ilworkread)
call closefile( igeom, "read"//char(0) )
call finalizephmpiio( igeom )
call ctypes (point2ilwork)
else
nlwork=1
allocate( point2ilwork(1))
nshg0 = nshg
endif
c
c.... --------------------> communications <-------------------------
c
call mpi_barrier(mpi_comm_world, ierr) ! make sure every rank is synced here
if(myrank == 0) then
write(*,*) 'Updating the vertices on the part boundaries'
endif
if (numpe > 1) then
! solution
call commuMax (qold, point2ilwork, ndof, 'in '//char(0))
call commuMax (qold, point2ilwork, ndof, 'out'//char(0))
call mpi_barrier(mpi_comm_world, ierr) ! make sure everybody is done with ilwork
! ybar
if(iybar == 1) then
call commuMax (ybar, point2ilwork, ndofybar, 'in '//char(0))
call commuMax (ybar, point2ilwork, ndofybar, 'out'//char(0))
call mpi_barrier(mpi_comm_world, ierr) ! make sure everybody is done with ilwork
endif
! errors
if(ierror == 1) then
call commuMax (errors, point2ilwork, ndoferrors,
& 'in '//char(0))
call commuMax (errors, point2ilwork, ndoferrors,
& 'out'//char(0))
call mpi_barrier(mpi_comm_world, ierr) ! make sure everybody is done with ilwork
endif
! phase_average
if(numphavg .gt. 0) then
do iphavg = 1,numphavg
call commuMax (yphbar(:,:,iphavg), point2ilwork,
& ndofyphbar, 'in '//char(0))
call commuMax (yphbar(:,:,iphavg), point2ilwork,
& ndofyphbar, 'out'//char(0))
call mpi_barrier(mpi_comm_world, ierr) ! make sure everybody is done with ilwork
enddo
endif
! vorticity
if(ivort == 1) then
call commuMax (vort, point2ilwork, ndofvort, 'in '//char(0))
call commuMax (vort, point2ilwork, ndofvort, 'out'//char(0))
call mpi_barrier(mpi_comm_world, ierr) ! make sure everybody is done with ilwork
endif
! dwal
if(idwal == 1) then
call commuMax (dwal, point2ilwork, 1, 'in '//char(0))
call commuMax (dwal, point2ilwork, 1, 'out'//char(0))
call mpi_barrier(mpi_comm_world, ierr) ! make sure everybody is done with ilwork
endif
endif
c
c.... --------------------> Print Min and Max of each field <-------------------------
c
call mpi_barrier(mpi_comm_world, ierr)
if (myrank == 0) then
write(*,*) 'Printing min and max of each field component'
write(*,*) ''
endif
! qold
do idof=1,ndof
call mpi_allreduce(maxval(qold(:,idof)),globmax,1,MPI_DOUBLE,
& MPI_MAX, mpi_comm_world, ierr )
call mpi_allreduce(minval(qold(:,idof)),globmin,1,MPI_DOUBLE,
& MPI_MIN, mpi_comm_world, ierr )
if (myrank == 0) then
write(*,925) 'max/min qold(',idof,'): ',globmax,globmin
endif
enddo
if (myrank == 0) then
write(*,*) ''
endif
! ybar
if(iybar == 1) then
do idof=1,ndofybar
call mpi_allreduce(maxval(ybar(:,idof)),globmax,1,MPI_DOUBLE,
& MPI_MAX, mpi_comm_world, ierr )
call mpi_allreduce(minval(ybar(:,idof)),globmin,1,MPI_DOUBLE,
& MPI_MIN, mpi_comm_world, ierr )
if (myrank == 0) then
write(*,925) 'max/min ybar(',idof,'): ',globmax,globmin
endif
enddo
if (myrank == 0) then
write(*,*) ''
endif
endif
! errors
if(ierror == 1) then
do idof=1,ndoferrors
call mpi_allreduce(maxval(errors(:,idof)),globmax,1,
& MPI_DOUBLE,MPI_MAX, mpi_comm_world, ierr )
call mpi_allreduce(minval(errors(:,idof)),globmin,1,
& MPI_DOUBLE,MPI_MIN, mpi_comm_world, ierr )
if (myrank == 0) then
write(*,925) 'max/min errors(',idof,'): ',globmax,globmin
endif
enddo
if (myrank == 0) then
write(*,*) ''
endif
endif
! phase_average
if(numphavg .gt. 0) then
do iphavg = 1,numphavg
do idof=1,ndofyphbar
call mpi_allreduce(maxval(yphbar(:,idof,iphavg)), globmax,1,
& MPI_DOUBLE, MPI_MAX, mpi_comm_world, ierr )
call mpi_allreduce(minval(yphbar(:,idof,iphavg)), globmin,1,
& MPI_DOUBLE, MPI_MIN, mpi_comm_world, ierr )
if (myrank == 0) then
write(*,926) 'max/min yphbar(',idof,iphavg,'):',
& globmax,globmin
endif
enddo
if (myrank == 0) then
write(*,*) ''
endif
enddo
endif
! vorticity
if(ivort == 1) then
do idof=1,ndofvort
call mpi_allreduce(maxval(vort(:,idof)),globmax,1,
& MPI_DOUBLE,MPI_MAX, mpi_comm_world, ierr )
call mpi_allreduce(minval(vort(:,idof)),globmin,1,
& MPI_DOUBLE,MPI_MIN, mpi_comm_world, ierr )
if (myrank == 0) then
write(*,925) 'max/min vort(',idof,'): ',globmax,globmin
endif
enddo
if (myrank == 0) then
write(*,*) ''
endif
endif
! dwal
if(idwal == 1) then
call mpi_allreduce(maxval(dwal(:)), globmax, 1, MPI_DOUBLE,
& MPI_MAX, mpi_comm_world, ierr )
call mpi_allreduce(minval(dwal(:)), globmin, 1, MPI_DOUBLE,
& MPI_MIN, mpi_comm_world, ierr )
if (myrank == 0) then
write(*,925) 'max/min dwal(',1,'):',globmax,globmin
write(*,*) ''
endif
endif
925 format(A,i2,A,2(e24.17,1x))
926 format(A,i2,i2,A,2(e24.17,1x))
c
c.... e-------------------> Write data to disks <-------------------------
c
call mpi_barrier(mpi_comm_world, ierr)
if(myrank == 0) then
write(*,*) 'Writing the reduced restartRed-dat files'
endif
! call Write_M2NFixBnd(myrank, lstep, nshg,
! & ndof, ndofybar, ndoferrors,
! & qold, ybar, errors, dwal)
nsynciofieldswriterestart = 1+iybar+ierror+numphavg+ivort+idwal
call Write_M2NFixBnd_SolOnly(myrank, lstep, nshg,
& ndof, qold)
deallocate(qold)
! ybar
if(iybar == 1) then
call Write_Field(myrank,'a','ybar',4,ybar,'d',
& nshg,ndofybar,lstep)
deallocate(ybar)
endif
! errors
if(ierror == 1) then
call Write_Field(myrank,'a','errors',6,errors,'d',
& nshg,ndoferrors,lstep)
deallocate(errors)
endif
! phase_average
if(numphavg .gt. 0) then
do iphavg=1,numphavg
call write_phavg2(myrank,'a','phase_average',13,
& iphavg,numphavg,yphbar(:,:,iphavg),'d',
& nshg,ndofyphbar,lstep)
enddo
deallocate(yphbar)
endif
! vorticity
if(ivort == 1) then
call Write_Field(myrank,'a','vorticity',9,vort,'d',
& nshg,ndofvort,lstep)
deallocate(vort)
endif
! dwal
if(idwal == 1) then
call Write_Field(myrank,'a','dwal',4,dwal,'d',
& nshg,1,lstep)
deallocate(dwal)
endif
!
! Deallocate some remaining memory
!
if(numpe.gt.1) then
deallocate(point2ilwork)
endif
return
c
994 call error ('input ','opening ', igeom)
995 call error ('input ','opening ', igeom)
997 call error ('input ','end file', igeom)
998 call error ('input ','end file', igeom)
c
end
| bsd-3-clause |
khsk2/inc3d | module_param_diagp.f90 | 1 | 7018 | module variables
use decomp_2d, only : mytype
! Boundary conditions : ncl = 2 --> Dirichlet
! Boundary conditions : ncl = 1 --> Free-slip
! Boundary conditions : ncl = 0 --> Periodic
! l: power of 2,3,4,5 and 6
! if ncl = 1 or 2, --> n = 2l+ 1
! --> nm = n - 1
! --> m = n + 1
! If ncl = 0, --> n = 2*l
! --> nm = n
! --> m = n + 2
!nstat = size arrays for statistic collection
!2-->every 2 mesh nodes
!4-->every 4 mesh nodes
!nvisu = size for visualization collection
integer,parameter :: nx=128,ny=129,nz=128
integer,parameter :: nstat=1,nvisu=1
integer,parameter :: p_row=4,p_col=4
integer,parameter :: nxm=nx,nym=ny-1,nzm=nz
real(mytype) :: re
!end module variables
!module derivative
real(mytype), dimension(nx) :: ffx,fcx,fbx,sfx,scx,sbx,fsx,fwx,ssx,swx
real(mytype), dimension(nx) :: ffxp,fsxp,fwxp,sfxp,ssxp,swxp
real(mytype), dimension(ny) :: ffy,fcy,fby,sfy,scy,sby,fsy,fwy,ssy,swy
real(mytype), dimension(ny) :: ffyp,fsyp,fwyp,sfyp,ssyp,swyp
real(mytype), dimension(nz) :: ffz,fcz,fbz,sfz,scz,sbz,fsz,fwz,ssz,swz
real(mytype), dimension(nz) :: ffzp,fszp,fwzp,sfzp,sszp,swzp
real(mytype), save, allocatable, dimension(:,:) :: sx,vx
real(mytype), save, allocatable, dimension(:,:) :: sy,vy
real(mytype), save, allocatable, dimension(:,:) :: sz,vz
!module pressure
real(mytype), save, allocatable, dimension(:,:) :: dpdyx1,dpdyxn,dpdzx1,dpdzxn
real(mytype), save, allocatable, dimension(:,:) :: dpdxy1,dpdxyn,dpdzy1,dpdzyn
real(mytype), save, allocatable, dimension(:,:) :: dpdxz1,dpdxzn,dpdyz1,dpdyzn
!module solid_body
integer,parameter :: nxfin=(nx-1)*10+1,nyfin=ny*10,nzfin=(nz-1)*10+1
integer,dimension(ny,nz) :: nobjx
integer,dimension(nx,nz) :: nobjy
integer,dimension(nx,ny) :: nobjz
real(mytype),dimension(20,ny,nz) :: xi,xf
real(mytype),dimension(20,nx,nz) :: yi,yf
real(mytype),dimension(20,nx,ny) :: zi,zf
!module inflow
real(mytype), save, allocatable, dimension(:,:) :: bxx1,bxy1,bxz1,bxxn,bxyn,bxzn,bxo,byo,bzo
real(mytype), save, allocatable, dimension(:,:) :: byx1,byy1,byz1,byxn,byyn,byzn
real(mytype), save, allocatable, dimension(:,:) :: bzx1,bzy1,bzz1,bzxn,bzyn,bzzn
!module derpres
real(mytype),dimension(nxm) :: cfx6,ccx6,cbx6,cfxp6,ciwxp6,csxp6,&
cwxp6,csx6,cwx6,cifx6,cicx6,cisx6
real(mytype),dimension(nxm) :: cibx6,cifxp6,cisxp6,ciwx6
real(mytype),dimension(nx) :: cfi6,cci6,cbi6,cfip6,csip6,cwip6,csi6,&
cwi6,cifi6,cici6,cibi6,cifip6
real(mytype),dimension(nx) :: cisip6,ciwip6,cisi6,ciwi6
real(mytype),dimension(nym) :: cfy6,ccy6,cby6,cfyp6,csyp6,cwyp6,csy6
real(mytype),dimension(nym) :: cwy6,cify6,cicy6,ciby6,cifyp6,cisyp6,&
ciwyp6,cisy6,ciwy6
real(mytype),dimension(ny) :: cfi6y,cci6y,cbi6y,cfip6y,csip6y,cwip6y,&
csi6y,cwi6y,cifi6y,cici6y
real(mytype),dimension(ny) :: cibi6y,cifip6y,cisip6y,ciwip6y,cisi6y,ciwi6y
real(mytype),dimension(nzm) :: cfz6,ccz6,cbz6,cfzp6,cszp6,cwzp6,csz6
real(mytype),dimension(nzm) :: cwz6,cifz6,cicz6,cibz6,cifzp6,ciszp6,&
ciwzp6,cisz6,ciwz6
real(mytype),dimension(nz) :: cfi6z,cci6z,cbi6z,cfip6z,csip6z,cwip6z,&
csi6z,cwi6z,cifi6z,cici6z
real(mytype),dimension(nz) :: cibi6z,cifip6z,cisip6z,ciwip6z,cisi6z,ciwi6z
!module waves
complex(mytype), dimension(nz/2+1) :: zkz,zk2,ezs
complex(mytype), dimension(ny) :: yky,yk2,eys
complex(mytype), dimension(nx) :: xkx,xk2,exs
!module mesh
real(mytype), dimension(ny) :: ppy,pp2y,pp4y
real(mytype), dimension(ny) :: ppyi,pp2yi,pp4yi
real(mytype), dimension(ny) :: yp,ypi
real(mytype), dimension(ny) :: yeta,yetai
real(mytype) :: alpha,beta
real(mytype), dimension(nx) :: xx
real(mytype), dimension(nz) :: zz
end module variables
module param
use decomp_2d, only : mytype
integer :: nclx,ncly,nclz
integer :: ifft, ivirt,istret,iforc_entree,iturb
integer :: itype, iskew, iin, nscheme, ifirst, ilast, iles
integer :: isave,ilit,idebmod, imodulo, idemarre, icommence, irecord
integer :: iscalar
integer :: nxboite, istat,iread,iadvance_time
real(mytype) :: xlx,yly,zlz,dx,dy,dz,dx2,dy2,dz2
real(mytype) :: dt,xnu,noise,noise1,pi,twopi,u1,u2,sc
real(mytype) :: t,xxk1,xxk2,re_tau
integer :: itr,itime
character :: filesauve*80, filenoise*80, &
nchamp*80,filepath*80, fileturb*80, filevisu*80
character(len=200) :: datdir
character(len=200) :: outdir
real(mytype), dimension(5) :: adt,bdt,cdt,gdt
end module param
module derivX
use decomp_2d, only : mytype
real(mytype) :: alcaix6,acix6,bcix6
real(mytype) :: ailcaix6,aicix6,bicix6,cicix6
real(mytype) :: alfa1x,af1x,bf1x,cf1x,df1x,alfa2x,af2x,alfanx,afnx,bfnx
real(mytype) :: cfnx,dfnx,alfamx,afmx,alfaix,afix,bfix,alsa1x,as1x,bs1x
real(mytype) :: cs1x,ds1x,alsa2x,as2x,alsanx,asnx,bsnx,csnx,dsnx,alsamx
real(mytype) :: asmx,alsaix,asix,bsix,csix,alsa3x,as3x,bs3x,alsatx,astx,bstx
end module derivX
module derivY
use decomp_2d, only : mytype
real(mytype) :: alcaiy6,aciy6,bciy6
real(mytype) :: ailcaiy6,aiciy6,biciy6,ciciy6
real(mytype) :: alfa1y,af1y,bf1y,cf1y,df1y,alfa2y,af2y,alfany,afny,bfny
real(mytype) :: cfny,dfny,alfamy,afmy,alfajy,afjy,bfjy,alsa1y,as1y,bs1y
real(mytype) :: cs1y,ds1y,alsa2y,as2y,alsany,asny,bsny,csny,dsny,alsamy
real(mytype) :: asmy,alsajy,asjy,bsjy,csjy,alsa3y,as3y,bs3y,alsaty,asty,bsty
end module derivY
module derivZ
use decomp_2d, only : mytype
real(mytype) :: alcaiz6,aciz6,bciz6
real(mytype) :: ailcaiz6,aiciz6,biciz6,ciciz6
real(mytype) :: alfa1z,af1z,bf1z,cf1z,df1z,alfa2z,af2z,alfanz,afnz,bfnz
real(mytype) :: cfnz,dfnz,alfamz,afmz,alfakz,afkz,bfkz,alsa1z,as1z,bs1z
real(mytype) :: cs1z,ds1z,alsa2z,as2z,alsanz,asnz,bsnz,csnz,dsnz,alsamz
real(mytype) :: asmz,alsakz,askz,bskz,cskz,alsa3z,as3z,bs3z,alsatz,astz,bstz
end module derivZ
module parfiX
use decomp_2d, only : mytype
real(mytype) :: fia1x, fib1x, fic1x, fid1x, fie1x, fia2x, fib2x, fic2x, fid2x
real(mytype) :: fie2x, fia3x, fib3x, fic3x, fid3x, fie3x, fianx, fibnx, ficnx, fidnx
real(mytype) :: fienx, fiamx, fibmx, ficmx, fidmx, fiemx, fiapx, fibpx, ficpx, fidpx
real(mytype) :: fiepx, fiaix, fibix, ficix, fidix, fialx, fibex, fih1x, fih2x, fih3x,fih4x
end module parfiX
!
module parfiY
use decomp_2d, only : mytype
real(mytype) :: fia1y, fib1y, fic1y, fid1y, fie1y, fia2y, fib2y, fic2y, fid2y
real(mytype) :: fie2y, fia3y, fib3y, fic3y, fid3y, fie3y, fiany, fibny, ficny, fidny
real(mytype) :: fieny, fiamy, fibmy, ficmy, fidmy, fiemy, fiapy, fibpy, ficpy, fidpy
real(mytype) :: fiepy, fiaiy, fibiy, ficiy, fidiy, fialy, fibey, fih1y, fih2y, fih3y,fih4y
end module parfiY
module parfiZ
use decomp_2d, only : mytype
real(mytype) :: fia1z, fib1z, fic1z, fid1z, fie1z, fia2z, fib2z, fic2z, fid2z
real(mytype) :: fie2z, fia3z, fib3z, fic3z, fid3z, fie3z, fianz, fibnz, ficnz, fidnz
real(mytype) :: fienz, fiamz, fibmz, ficmz, fidmz, fiemz, fiapz, fibpz, ficpz, fidpz
real(mytype) :: fiepz, fiaiz, fibiz, ficiz, fidiz, fialz, fibez, fih1z, fih2z, fih3z,fih4z
end module parfiZ
| gpl-3.0 |
QEF/q-e_schrodinger | HP/src/hp_summary_q.f90 | 2 | 6652 | !
! Copyright (C) 2001-2018 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
SUBROUTINE hp_summary_q
!-----------------------------------------------------------------------
!
! This routine writes on output the quantities which have been read
! from the punch file, and the quantities computed in hp_setup_q.
! If iverbosity = 1 only a partial summary is done.
!
USE kinds, ONLY : DP
USE io_global, ONLY : stdout
USE cell_base, ONLY : at
USE klist, ONLY : lgauss, smearing, degauss, nkstot, xk, wk
USE fft_base, ONLY : dfftp
USE gvect, ONLY : gcutm, ngm
USE gvecs, ONLY : doublegrid, dual, gcutms, ngms
USE gvecw, ONLY : ecutwfc
USE fft_base, ONLY : dffts
USE symm_base, ONLY : s, sr, ft, sname
USE funct, ONLY : write_dft_name
USE control_flags, ONLY : iverbosity
USE lr_symm_base, ONLY : irotmq, minus_q, nsymq
USE ldaU_hp, ONLY : conv_thr_chi
IMPLICIT NONE
!
INTEGER :: i, ipol, apol, na, nt, isymq, isym, ik, nsymtot
! generic counter
! counter on polarizations
! counter on polarizations
! counter on atoms
! counter on atomic types
! counter on symmetries
! counter on symmetries
! counter on k points
!
REAL(DP) :: ft1, ft2, ft3, xkg(3)
! fractionary translations
! k point in crystal coordinates
!
WRITE( stdout, '(/,19x,"WRITING LINEAR-RESPONSE SUMMARY:",/)')
!
! Now print the information specific for every q point
!
! Description of symmetries for a given q point
!
IF (nsymq.le.1.and..not.minus_q) THEN
WRITE( stdout, '(5x,"No symmetry (except the identity)!")')
ELSE
WRITE( stdout, '(/5x,"Number of symmetries in the small group of q, nsymq = ",i2)') nsymq
IF (minus_q) WRITE( stdout, '(5x," + the symmetry q -> -q+G ")')
ENDIF
!
! Description of the symmetry matrices (and vectors of fractional
! translations if f/=0) of the small group of q
!
IF (iverbosity > 1) THEN
!
WRITE( stdout, '(/5x,"Symmetry matrices (and vectors of fractional translations if f/=0):")')
!
IF (minus_q) THEN
nsymtot = nsymq + 1
ELSE
nsymtot = nsymq
ENDIF
!
DO isymq = 1, nsymtot
!
IF (isymq.GT.nsymq) THEN
isym = irotmq
WRITE( stdout, '(/5x,"This transformation sends q -> -q+G")')
ELSE
isym = isymq
ENDIF
!
WRITE( stdout, '(/5x,"isym = ",i2,5x,a45/)') isymq, sname (isym)
!
IF ( ft(1,isym)**2 + ft(2,isym)**2 + ft(3,isym)**2 > 1.0d-8 ) THEN
!
ft1 = at (1, 1) * ft(1, isym) + &
at (1, 2) * ft(2, isym) + &
at (1, 3) * ft(3, isym)
ft2 = at (2, 1) * ft(1, isym) + &
at (2, 2) * ft(2, isym) + &
at (2, 3) * ft(3, isym)
ft3 = at (3, 1) * ft(1, isym) + &
at (3, 2) * ft(2, isym) + &
at (3, 3) * ft(3, isym)
!
WRITE( stdout, '(5x,"cryst.",3x,"s(",i2,") = (",3(i6,5x)," ) f =( ",f10.7," )")') &
& isymq, (s(1,ipol,isym), ipol=1,3), ft(1,isym)
WRITE( stdout, '(21x," (",3(i6,5x), " ) ( ",f10.7," )")') &
& (s(2,ipol,isym), ipol=1,3), ft(2,isym)
WRITE( stdout, '(21x," (",3(i6,5x)," ) ( ",f10.7," )"/)') &
& (s(3,ipol,isym), ipol=1,3), ft(3,isym)
WRITE( stdout, '(5x,"cart.",4x,"s(",i2,") = (",3f11.7, " ) f =( ",f10.7," )")') &
& isymq, (sr(1,ipol,isym), ipol=1,3), ft1
WRITE( stdout, '(21x," (",3f11.7, " ) ( ",f10.7," )")') &
& (sr(2,ipol,isym), ipol=1,3), ft2
WRITE( stdout, '(21x," (",3f11.7, " ) ( ",f10.7," )"/)') &
& (sr(3,ipol,isym), ipol=1,3), ft3
!
ELSE
!
WRITE( stdout, '(5x,"cryst.",3x,"s(",i2,") = (",3(i6,5x), " )")') &
& isymq, (s(1,ipol,isym), ipol=1,3)
WRITE( stdout, '(21x," (",3(i6,5x)," )")') &
& (s (2,ipol,isym), ipol=1,3)
WRITE( stdout, '(21x," (",3(i6,5x)," )"/)') &
& (s(3,ipol,isym), ipol=1,3)
WRITE( stdout, '(5x,"cart.",4x,"s(",i2,") = (",3f11.7, " )")') &
& isymq, (sr(1,ipol,isym), ipol=1,3)
WRITE( stdout, '(21x," (",3f11.7," )")') &
& (sr(2,ipol,isym), ipol=1,3)
WRITE( stdout, '(21x," (",3f11.7," )"/)') &
& (sr(3,ipol,isym), ipol=1,3)
!
ENDIF
!
ENDDO ! isymq
!
ENDIF
!
! Description of the G cutoff and the FFT grid
!
WRITE( stdout, '(/5x,"G cutoff =",f10.4," (",i7," G-vectors)", &
& " FFT grid: (",i3,",",i3,",",i3,")")') &
& gcutm, ngm, dfftp%nr1, dfftp%nr2, dfftp%nr3
!
IF (doublegrid) &
WRITE( stdout, '(5x,"G cutoff =",f10.4," (", i7," G-vectors)", &
& " smooth grid: (",i3, ",",i3,",",i3,")")') &
& gcutms, ngms, dffts%nr1, dffts%nr2, dffts%nr3
!
! Number of k (and k+q if q/=0) points
!
IF (.NOT.lgauss) THEN
WRITE( stdout, '(/5x,"Number of k (and k+q if q/=0) points =",i6,/)') nkstot
ELSE
WRITE( stdout, '(/5x,"Number of k (and k+q if q/=0) points =", i6, 2x, &
& a," smearing, width (Ry) =",f8.4,/)') &
& nkstot, TRIM(smearing), degauss
ENDIF
!
! Coordinates of the k (and k+q if q/=0) points
!
IF ( iverbosity > 1 .OR. (nkstot<100) ) THEN
!
! cartesian coordinates
!
WRITE( stdout, '(23x,"cart. coord. (in units 2pi/alat)")')
DO ik = 1, nkstot
WRITE( stdout, '(8x,"k (",i5,") = (",3f12.7,"), wk =",f10.7)') &
& ik, (xk(ipol,ik), ipol=1,3), wk(ik)
ENDDO
!
! crystal coordinates
!
WRITE( stdout, '(/23x,"cryst. coord.")')
DO ik = 1, nkstot
DO ipol = 1, 3
xkg (ipol) = at (1, ipol) * xk (1, ik) + &
at (2, ipol) * xk (2, ik) + &
at (3, ipol) * xk (3, ik)
ENDDO
WRITE( stdout, '(8x,"k (",i5,") = (",3f12.7,"), wk =",f10.7)') &
& ik, (xkg(ipol), ipol=1,3), wk(ik)
ENDDO
!
ENDIF
!
RETURN
!
END SUBROUTINE hp_summary_q
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/typebound_operator_15.f90 | 141 | 1943 | ! { dg-do run }
!
! PR fortran/53255
!
! Contributed by Reinhold Bader.
!
! Before TYPE(ext)'s .tr. wrongly called the base type's trace
! instead of ext's trace_ext.
!
module mod_base
implicit none
private
integer, public :: base_cnt = 0
type, public :: base
private
real :: r(2,2) = reshape( (/ 1.0, 2.0, 3.0, 4.0 /), (/ 2, 2 /))
contains
procedure, private :: trace
generic :: operator(.tr.) => trace
end type base
contains
complex function trace(this)
class(base), intent(in) :: this
base_cnt = base_cnt + 1
! write(*,*) 'executing base'
trace = this%r(1,1) + this%r(2,2)
end function trace
end module mod_base
module mod_ext
use mod_base
implicit none
private
integer, public :: ext_cnt = 0
public :: base, base_cnt
type, public, extends(base) :: ext
private
real :: i(2,2) = reshape( (/ 1.0, 1.0, 1.0, 1.5 /), (/ 2, 2 /))
contains
procedure, private :: trace => trace_ext
end type ext
contains
complex function trace_ext(this)
class(ext), intent(in) :: this
! the following should be executed through invoking .tr. p below
! write(*,*) 'executing override'
ext_cnt = ext_cnt + 1
trace_ext = .tr. this%base + (0.0, 1.0) * ( this%i(1,1) + this%i(2,2) )
end function trace_ext
end module mod_ext
program test_override
use mod_ext
implicit none
type(base) :: o
type(ext) :: p
real :: r
! Note: ext's ".tr." (trace_ext) calls also base's "trace"
! write(*,*) .tr. o
! write(*,*) .tr. p
if (base_cnt /= 0 .or. ext_cnt /= 0) call abort ()
r = .tr. o
if (base_cnt /= 1 .or. ext_cnt /= 0) call abort ()
r = .tr. p
if (base_cnt /= 2 .or. ext_cnt /= 1) call abort ()
if (abs(.tr. o - 5.0 ) < 1.0e-6 .and. abs( .tr. p - (5.0,2.5)) < 1.0e-6) &
then
if (base_cnt /= 4 .or. ext_cnt /= 2) call abort ()
! write(*,*) 'OK'
else
call abort()
! write(*,*) 'FAIL'
end if
end program test_override
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/char_result_8.f90 | 188 | 1068 | ! Related to PR 15326. Compare functions that return string pointers with
! functions that return strings.
! { dg-do run }
program main
implicit none
character (len = 30), target :: string
call test (f1 (), 30)
call test (f2 (50), 50)
call test (f3 (), 30)
call test (f4 (70), 70)
call indirect (100)
contains
function f1 ()
character (len = 30) :: f1
f1 = ''
end function f1
function f2 (i)
integer :: i
character (len = i) :: f2
f2 = ''
end function f2
function f3 ()
character (len = 30), pointer :: f3
f3 => string
end function f3
function f4 (i)
integer :: i
character (len = i), pointer :: f4
f4 => string
end function f4
subroutine indirect (i)
integer :: i
call test (f1 (), 30)
call test (f2 (i), i)
call test (f3 (), 30)
call test (f4 (i), i)
end subroutine indirect
subroutine test (string, length)
character (len = *) :: string
integer, intent (in) :: length
if (len (string) .ne. length) call abort
end subroutine test
end program main
| gpl-2.0 |
piyush0609/scipy | scipy/linalg/src/id_dist/src/idd_house.f | 100 | 6886 | c this file contains the following user-callable routines:
c
c
c routine idd_house calculates the vector and scalar
c needed to apply the Householder tranformation reflecting
c a given vector into its first component.
c
c routine idd_houseapp applies a Householder matrix to a vector.
c
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c
c
c
subroutine idd_houseapp(n,vn,u,ifrescal,scal,v)
c
c applies the Householder matrix
c identity_matrix - scal * vn * transpose(vn)
c to the vector u, yielding the vector v;
c
c scal = 2/(1 + vn(2)^2 + ... + vn(n)^2)
c when vn(2), ..., vn(n) don't all vanish;
c
c scal = 0
c when vn(2), ..., vn(n) do all vanish
c (including when n = 1).
c
c input:
c n -- size of vn, u, and v, though the indexing on vn goes
c from 2 to n
c vn -- components 2 to n of the Householder vector vn;
c vn(1) is assumed to be 1
c u -- vector to be transformed
c ifrescal -- set to 1 to recompute scal from vn(2), ..., vn(n);
c set to 0 to use scal as input
c scal -- see the entry for ifrescal in the decription
c of the input
c
c output:
c scal -- see the entry for ifrescal in the decription
c of the input
c v -- result of applying the Householder matrix to u;
c it's O.K. to have v be the same as u
c in order to apply the matrix to the vector in place
c
c reference:
c Golub and Van Loan, "Matrix Computations," 3rd edition,
c Johns Hopkins University Press, 1996, Chapter 5.
c
implicit none
save
integer n,k,ifrescal
real*8 vn(2:*),scal,u(n),v(n),fact,sum
c
c
c Get out of this routine if n = 1.
c
if(n .eq. 1) then
v(1) = u(1)
return
endif
c
c
if(ifrescal .eq. 1) then
c
c
c Calculate (vn(2))^2 + ... + (vn(n))^2.
c
sum = 0
do k = 2,n
sum = sum+vn(k)**2
enddo ! k
c
c
c Calculate scal.
c
if(sum .eq. 0) scal = 0
if(sum .ne. 0) scal = 2/(1+sum)
c
c
endif
c
c
c Calculate fact = scal * transpose(vn) * u.
c
fact = u(1)
c
do k = 2,n
fact = fact+vn(k)*u(k)
enddo ! k
c
fact = fact*scal
c
c
c Subtract fact*vn from u, yielding v.
c
v(1) = u(1) - fact
c
do k = 2,n
v(k) = u(k) - fact*vn(k)
enddo ! k
c
c
return
end
c
c
c
c
subroutine idd_house(n,x,rss,vn,scal)
c
c constructs the vector vn with vn(1) = 1
c and the scalar scal such that
c H := identity_matrix - scal * vn * transpose(vn) is orthogonal
c and Hx = +/- e_1 * the root-sum-square of the entries of x
c (H is the Householder matrix corresponding to x).
c
c input:
c n -- size of x and vn, though the indexing on vn goes
c from 2 to n
c x -- vector to reflect into its first component
c
c output:
c rss -- first entry of the vector resulting from the application
c of the Householder matrix to x;
c its absolute value is the root-sum-square
c of the entries of x
c vn -- entries 2 to n of the Householder vector vn;
c vn(1) is assumed to be 1
c scal -- scalar multiplying vn * transpose(vn);
c
c scal = 2/(1 + vn(2)^2 + ... + vn(n)^2)
c when vn(2), ..., vn(n) don't all vanish;
c
c scal = 0
c when vn(2), ..., vn(n) do all vanish
c (including when n = 1)
c
c reference:
c Golub and Van Loan, "Matrix Computations," 3rd edition,
c Johns Hopkins University Press, 1996, Chapter 5.
c
implicit none
save
integer n,k
real*8 x(n),rss,sum,v1,scal,vn(2:*),x1
c
c
x1 = x(1)
c
c
c Get out of this routine if n = 1.
c
if(n .eq. 1) then
rss = x1
scal = 0
return
endif
c
c
c Calculate (x(2))^2 + ... (x(n))^2
c and the root-sum-square value of the entries in x.
c
c
sum = 0
do k = 2,n
sum = sum+x(k)**2
enddo ! k
c
c
c Get out of this routine if sum = 0;
c flag this case as such by setting v(2), ..., v(n) all to 0.
c
if(sum .eq. 0) then
c
rss = x1
do k = 2,n
vn(k) = 0
enddo ! k
scal = 0
c
return
c
endif
c
c
rss = x1**2 + sum
rss = sqrt(rss)
c
c
c Determine the first component v1
c of the unnormalized Householder vector
c v = x - rss * (1 0 0 ... 0 0)^T.
c
c If x1 <= 0, then form x1-rss directly,
c since that expression cannot involve any cancellation.
c
if(x1 .le. 0) v1 = x1-rss
c
c If x1 > 0, then use the fact that
c x1-rss = -sum / (x1+rss),
c in order to avoid potential cancellation.
c
if(x1 .gt. 0) v1 = -sum / (x1+rss)
c
c
c Compute the vector vn and the scalar scal such that vn(1) = 1
c in the Householder transformation
c identity_matrix - scal * vn * transpose(vn).
c
do k = 2,n
vn(k) = x(k)/v1
enddo ! k
c
c scal = 2
c / ( vn(1)^2 + vn(2)^2 + ... + vn(n)^2 )
c
c = 2
c / ( 1 + vn(2)^2 + ... + vn(n)^2 )
c
c = 2*v(1)^2
c / ( v(1)^2 + (v(1)*vn(2))^2 + ... + (v(1)*vn(n))^2 )
c
c = 2*v(1)^2
c / ( v(1)^2 + (v(2)^2 + ... + v(n)^2) )
c
scal = 2*v1**2 / (v1**2+sum)
c
c
return
end
c
c
c
c
subroutine idd_housemat(n,vn,scal,h)
c
c fills h with the Householder matrix
c identity_matrix - scal * vn * transpose(vn).
c
c input:
c n -- size of vn and h, though the indexing of vn goes
c from 2 to n
c vn -- entries 2 to n of the vector vn;
c vn(1) is assumed to be 1
c scal -- scalar multiplying vn * transpose(vn)
c
c output:
c h -- identity_matrix - scal * vn * transpose(vn)
c
implicit none
save
integer n,j,k
real*8 vn(2:*),h(n,n),scal,factor1,factor2
c
c
c Fill h with the identity matrix.
c
do j = 1,n
do k = 1,n
c
if(j .eq. k) h(k,j) = 1
if(j .ne. k) h(k,j) = 0
c
enddo ! k
enddo ! j
c
c
c Subtract from h the matrix scal*vn*transpose(vn).
c
do j = 1,n
do k = 1,n
c
if(j .eq. 1) factor1 = 1
if(j .ne. 1) factor1 = vn(j)
c
if(k .eq. 1) factor2 = 1
if(k .ne. 1) factor2 = vn(k)
c
h(k,j) = h(k,j) - scal*factor1*factor2
c
enddo ! k
enddo ! j
c
c
return
end
| bsd-3-clause |
crazyleen/msp430-gdb-7.2a | gdb/testsuite/gdb.fortran/array-element.f | 5 | 1071 | c Copyright 2005, 2010 Free Software Foundation, Inc.
c This program is free software; you can redistribute it and/or modify
c it under the terms of the GNU General Public License as published by
c the Free Software Foundation; either version 3 of the License, or
c (at your option) any later version.
c
c This program is distributed in the hope that it will be useful,
c but WITHOUT ANY WARRANTY; without even the implied warranty of
c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
c GNU General Public License for more details.
c
c You should have received a copy of the GNU General Public License
c along with this program. If not, see <http://www.gnu.org/licenses/>.
c Ihis file is the F77 source file for array-element.exp. It was written
c by Wu Zhou. (woodzltc@cn.ibm.com)
dimension a(10)
write(*,*) 'This is a test.'
call sub(a,10)
write(*,*) a
stop
end
subroutine sub(a,n)
dimension a(n)
do 100 i = 1, n
a(i) = i
100 continue
return
end
| gpl-2.0 |
LucasGandel/ITK | Modules/ThirdParty/VNL/src/vxl/v3p/netlib/minpack/fdjac2.f | 173 | 3340 | subroutine fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa)
integer m,n,ldfjac,iflag
double precision epsfcn
double precision x(n),fvec(m),fjac(ldfjac,n),wa(m)
c **********
c
c subroutine fdjac2
c
c this subroutine computes a forward-difference approximation
c to the m by n jacobian matrix associated with a specified
c problem of m functions in n variables.
c
c the subroutine statement is
c
c subroutine fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa)
c
c where
c
c fcn is the name of the user-supplied subroutine which
c calculates the functions. fcn must be declared
c in an external statement in the user calling
c program, and should be written as follows.
c
c subroutine fcn(m,n,x,fvec,iflag)
c integer m,n,iflag
c double precision x(n),fvec(m)
c ----------
c calculate the functions at x and
c return this vector in fvec.
c ----------
c return
c end
c
c the value of iflag should not be changed by fcn unless
c the user wants to terminate execution of fdjac2.
c in this case set iflag to a negative integer.
c
c m is a positive integer input variable set to the number
c of functions.
c
c n is a positive integer input variable set to the number
c of variables. n must not exceed m.
c
c x is an input array of length n.
c
c fvec is an input array of length m which must contain the
c functions evaluated at x.
c
c fjac is an output m by n array which contains the
c approximation to the jacobian matrix evaluated at x.
c
c ldfjac is a positive integer input variable not less than m
c which specifies the leading dimension of the array fjac.
c
c iflag is an integer variable which can be used to terminate
c the execution of fdjac2. see description of fcn.
c
c epsfcn is an input variable used in determining a suitable
c step length for the forward-difference approximation. this
c approximation assumes that the relative errors in the
c functions are of the order of epsfcn. if epsfcn is less
c than the machine precision, it is assumed that the relative
c errors in the functions are of the order of the machine
c precision.
c
c wa is a work array of length m.
c
c subprograms called
c
c user-supplied ...... fcn
c
c minpack-supplied ... dpmpar
c
c fortran-supplied ... dabs,dmax1,dsqrt
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer i,j
double precision eps,epsmch,h,temp,zero
double precision dpmpar
data zero /0.0d0/
c
c epsmch is the machine precision.
c
epsmch = dpmpar(1)
c
eps = dsqrt(dmax1(epsfcn,epsmch))
do 20 j = 1, n
temp = x(j)
h = eps*dabs(temp)
if (h .eq. zero) h = eps
x(j) = temp + h
call fcn(m,n,x,wa,iflag)
if (iflag .lt. 0) go to 30
x(j) = temp
do 10 i = 1, m
fjac(i,j) = (wa(i) - fvec(i))/h
10 continue
20 continue
30 continue
return
c
c last card of subroutine fdjac2.
c
end
| apache-2.0 |
QEF/q-e_schrodinger | UtilXlib/nvtx_wrapper.f90 | 2 | 4160 | !MIT License
!Copyright (c) 2019 maxcuda
!This module has been downloaded and adapted from
! https://github.com/maxcuda/NVTX_example
!
! Permission is hereby granted, free of charge, to any person obtaining a copy
! of this software and associated documentation files (the "Software"), to deal
! in the Software without restriction, including without limitation the rights
! to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
! copies of the Software, and to permit persons to whom the Software is
! furnished to do so, subject to the following conditions:
! The above copyright notice and this permission notice shall be included in all
! copies or substantial portions of the Software.
! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
! SOFTWARE.
! ----
! nvtx
! ----
module nvtx
use iso_c_binding
#ifdef __CUDA
use cudafor
#endif
implicit none
#ifdef __PROFILE_NVTX
integer,private :: col(7) = [ Z'0000ff00', Z'000000ff', Z'00ffff00',Z'00ff00ff',Z'0000ffff', &
Z'00ff0000', Z'00ffffff']
character(len=256),private :: tempName
! logical, save :: __PROFILE_NVTX=.false.
type, bind(C):: nvtxEventAttributes
integer(C_INT16_T):: version=1
integer(C_INT16_T):: size=48 !
integer(C_INT):: category=0
integer(C_INT):: colorType=1 ! NVTX_COLOR_ARGB = 1
integer(C_INT):: color
integer(C_INT):: payloadType=0 ! NVTX_PAYLOAD_UNKNOWN = 0
integer(C_INT):: reserved0
integer(C_INT64_T):: payload ! union uint,int,double
integer(C_INT):: messageType=1 ! NVTX_MESSAGE_TYPE_ASCII = 1
type(C_PTR):: message ! ascii char
end type nvtxEventAttributes
interface nvtxRangePush
! push range with custom label and standard color
subroutine nvtxRangePushA(name) bind(C, name='nvtxRangePushA')
use iso_c_binding
character(kind=C_CHAR,len=*) :: name
end subroutine nvtxRangePushA
! push range with custom label and custom color
subroutine nvtxRangePushEx(event) bind(C, name='nvtxRangePushEx')
use iso_c_binding
import:: nvtxEventAttributes
type(nvtxEventAttributes):: event
end subroutine nvtxRangePushEx
end interface nvtxRangePush
interface nvtxRangePop
subroutine nvtxRangePop() bind(C, name='nvtxRangePop')
end subroutine nvtxRangePop
end interface nvtxRangePop
#endif
contains
subroutine nvtxStartRange(name,id)
character(kind=c_char,len=*) :: name
integer, optional:: id
#ifdef __PROFILE_NVTX
type(nvtxEventAttributes):: event
#if defined(__CUDA) && defined(__SYNC_NVPROF)
integer :: istat
istat = cudaDeviceSynchronize()
#endif
tempName=trim(name)//c_null_char
if ( .not. present(id)) then
call nvtxRangePush(tempName)
else
event%color=col(mod(id,7)+1)
event%message=c_loc(tempName)
call nvtxRangePushEx(event)
end if
#endif
end subroutine nvtxStartRange
subroutine nvtxStartRangeAsync(name,id)
character(kind=c_char,len=*) :: name
integer, optional:: id
#ifdef __PROFILE_NVTX
type(nvtxEventAttributes):: event
tempName=trim(name)//c_null_char
if ( .not. present(id)) then
call nvtxRangePush(tempName)
else
event%color=col(mod(id,7)+1)
event%message=c_loc(tempName)
call nvtxRangePushEx(event)
end if
#endif
end subroutine nvtxStartRangeAsync
subroutine nvtxEndRange
#ifdef __PROFILE_NVTX
#if defined(__CUDA) && defined(__SYNC_NVPROF)
integer :: istat
istat = cudaDeviceSynchronize()
#endif
call nvtxRangePop
#endif
end subroutine nvtxEndRange
subroutine nvtxEndRangeAsync
#ifdef __PROFILE_NVTX
call nvtxRangePop
#endif
end subroutine nvtxEndRangeAsync
end module nvtx
| gpl-2.0 |
QEF/q-e_schrodinger | TDDFPT/src/environ_td_module.f90 | 2 | 2447 | !----------------------------------------------------------------------------------------
!>
!!
!----------------------------------------------------------------------------------------
MODULE environ_td_module
!------------------------------------------------------------------------------------
#if defined (__ENVIRON)
!
USE environ_base_module, ONLY: environ
!
USE kinds, ONLY: DP
USE io_global, ONLY: stdout
!
USE fft_base, ONLY: dfftp
!
USE lsda_mod, ONLY: nspin
USE lr_variables, ONLY: davidson
!
!------------------------------------------------------------------------------------
!
IMPLICIT NONE
!
PRIVATE
!
PUBLIC :: calc_environ_dpotential
!
!------------------------------------------------------------------------------------
CONTAINS
!------------------------------------------------------------------------------------
!>
!!
!------------------------------------------------------------------------------------
SUBROUTINE calc_environ_dpotential(drho, dv)
!--------------------------------------------------------------------------------
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: drho(dfftp%nnr, nspin)
!
REAL(DP), INTENT(INOUT) :: dv(dfftp%nnr, nspin)
!
!--------------------------------------------------------------------------------
!
IF (.NOT. davidson) WRITE (stdout, 1000)
!
IF (environ%setup%optical_permittivity == 1.D0) WRITE (stdout, 1002)
!
CALL environ%main%update_response(dfftp%nnr, drho(:, 1))
!
CALL environ%calc%dpotential(dfftp%nnr, dv(:, 1))
!
!--------------------------------------------------------------------------------
!
1000 FORMAT(5X, "Calculate Environ contribution to response potential")
!
1002 FORMAT("Warning: permittivity is set to 1.0 - no Environ contribution")
!
!--------------------------------------------------------------------------------
END SUBROUTINE calc_environ_dpotential
!------------------------------------------------------------------------------------
!
#endif
!------------------------------------------------------------------------------------
END MODULE environ_td_module
!----------------------------------------------------------------------------------------
| gpl-2.0 |
yangf4/phasta | phSolver/incompressible/soldir.f | 5 | 3630 | subroutine SolDir (y, ac, yold, acold,
& x,
& iBC, BC,
& res,
& iper, ilwork,
& shp, shgl, shpb, shglb)
c
c----------------------------------------------------------------------
c direct solver
c----------------------------------------------------------------------
c
use pointer_data
include "common.h"
include "mpif.h"
include "auxmpi.h"
c
dimension y(nshg,ndof), ac(nshg,ndof),
& yold(nshg,ndof), acold(nshg,ndof),
& x(numnp,nsd),
& iBC(nshg), BC(nshg,ndofBC),
& res(nshg,nflow),
& ilwork(nlwork), iper(nshg)
c
dimension shp(MAXTOP,maxsh,MAXQPT),
& shgl(MAXTOP,nsd,maxsh,MAXQPT),
& shpb(MAXTOP,maxsh,MAXQPT),
& shglb(MAXTOP,nsd,maxsh,MAXQPT)
real*8 yAlpha(nshg,5), acAlpha(nshg,5)
c
dimension dyf(4*nshg), indx(4*nshg), solinc(nshg,4)
dimension globMas(4*nshg,4*nshg)
write (*,*) 'Warning: using direct solver...'
c
c.... set the element matrix flag
c
lhs = 1 ! always
c
c.... compute solution at n+alpha
c
call itrYAlpha( yold, acold, y, ac, yAlpha, acAlpha)
c
c.... *******************>> Element Data Formation <<******************
c
c.... form the LHS matrices, the residual vector
c
call ElmGMR (yAlpha, acAlpha, x,
& shp, shgl, iBC,
& BC, shpb, shglb,
& res, iper, ilwork,
& rowp, colm, lhsK,
& lhsP, rerr )
globMas = zero
npro = numel
c
cccc need to assemble here!
c
call bc3Global(globMas, iBC)
c
cDEBUG: write the global matrix (nonzero blocks)
c
do i=1,nshg
i0 = (i-1)*4
do j=1,nshg
j0 = (j-1)*4
if (globMas(i0+1,j0+1) .ne. 0) then
write (544,21) i,j
do ii=1,4
write(543,20) (globMas(i0+ii,j0+kk), kk=1,4)
enddo
endif
enddo
enddo
20 format (4(2x,e14.7))
21 format (2(2x,i8))
c$$$ stop
c
c.... LU factor the mass matrix
c
indx = 0
call ludcmp(globMas, 4*nshg, 4*nshg, indx, d)
write(543,*) 'rhs'
do i=1, nshg
i0 = 4*(i-1)
dyf(i0+1) = res(i,1)
dyf(i0+2) = res(i,2)
dyf(i0+3) = res(i,3)
dyf(i0+4) = res(i,4)
write(543,20) (dyf(i0+j),j=1,4)
enddo
c
c.... back-substitute to find dY
c
call lubksb(globMas, 4*nshg, 4*nshg, indx, dyf)
c
write(543,*) 'soln'
do i=1,nshg
i0 = 4*(i-1)
solinc(i,1) = dyf(i0+1)
solinc(i,2) = dyf(i0+2)
solinc(i,3) = dyf(i0+3)
solinc(i,4) = dyf(i0+4)
enddo
c
c
c.... Now, you satisfy the boundary conditions to newly
c obtained p,u,v,w
c
c
c You have to set boundary conditions first so Dy distributes
c
call itrCorrect ( y, ac, solinc, iBC)
call itrBC (y, ac, iBC, BC, iper, ilwork)
c
c.... output the statistics
c
call rstatic (res, y, solinc)
c
c.... end
c
return
end
| bsd-3-clause |
yangf4/phasta | phSolver/compressible/i3ldu.f | 4 | 6535 | subroutine i3LDU (Diag, r, code)
c
c----------------------------------------------------------------------
c
c This routine preforms a Cholesky factorization/solve of a set of
c symmetric matrices for 3-D computations, used for block diagonal
c preconditioning in the iterative driver.
c
c input:
c Diag (numnp,nsymdf) : block diagonal (symmetric storage)
c r (numnp,nflow) : residual
c code : operation code
c .eq. 'LDU_Fact', Cholesky Factor
c .eq. 'forward ', forward reduction
c .eq. 'backward', backward substitution
c .eq. 'product ', product Diag.r
c
c output:
c Diag (numnp,nsymdf) : Cholesky decomp. of block diagonal
c r (numnp,nflow) : reduced residual
c
c
c Note: the formulation used here to reduce the diagonal block to
c symmetric Cholesky triangle is taken from Golub's "Matrix
c Computations" Book, pages 89 algorithm 5.2-1. Followed by
c standard solve.
c
c
c Diag(1) Diag(2) Diag(4) Diag(7) Diag(11)
c T 0 Diag(3) Diag(5) Diag(8) Diag(12)
c L = U = 0 0 Diag(6) Diag(9) Diag(13)
c 0 0 0 Diag(10) Diag(14)
c 0 0 0 0 Diag(15)
c
c The diagonal terms 1, 3, 6, 10 and 15 are stored in inverted form.
c
c Farzin Shakib, Spring 1987.
c Zdenek Johan, Fall 1989. (Modified for option 'product')
c Zdenek Johan, Winter 1991. (Fortran 90)
c----------------------------------------------------------------------
c
include "common.h"
c
dimension Diag(nshg,nsymdf), r(nshg,nflow)
c
character*8 code
c
c.... perform Cholesky decomposition with the Diagonal terms inverted
c
if (code .eq. 'LDU_Fact') then
c
Diag(:, 1) = one / sqrt (Diag(:, 1))
c
Diag(:, 2) = Diag(:, 1) * Diag(:, 2)
Diag(:, 3) = Diag(:, 3) - Diag(:, 2) * Diag(:, 2)
Diag(:, 3) = one / sqrt (Diag(:, 3))
c
Diag(:, 4) = Diag(:, 1) * Diag(:, 4)
Diag(:, 5) = Diag(:, 3) * (Diag(:, 5)
& - Diag(:, 4) * Diag(:, 2))
Diag(:, 6) = Diag(:, 6) - Diag(:, 4) * Diag(:, 4)
& - Diag(:, 5) * Diag(:, 5)
Diag(:, 6) = one / sqrt (Diag(:, 6))
c
Diag(:, 7) = Diag(:, 1) * Diag(:, 7)
Diag(:, 8) = Diag(:, 3) * (Diag(:, 8)
& - Diag(:, 7) * Diag(:, 2))
Diag(:, 9) = Diag(:, 6) * (Diag(:, 9)
& - Diag(:, 7) * Diag(:, 4)
& - Diag(:, 8) * Diag(:, 5))
c
Diag(:,10) = Diag(:,10) - Diag(:, 7) * Diag(:, 7)
& - Diag(:, 8) * Diag(:, 8)
& - Diag(:, 9) * Diag(:, 9)
Diag(:,10) = one / sqrt (Diag(:,10))
c
Diag(:,11) = Diag(:, 1) * Diag(:,11)
Diag(:,12) = Diag(:, 3) * (Diag(:,12)
& - Diag(:,11) * Diag(:, 2))
Diag(:,13) = Diag(:, 6) * (Diag(:,13)
& - Diag(:,11) * Diag(:, 4)
& - Diag(:,12) * Diag(:, 5))
Diag(:,14) = Diag(:,10) * (Diag(:,14)
& - Diag(:,11) * Diag(:, 7)
& - Diag(:,12) * Diag(:, 8)
& - Diag(:,13) * Diag(:, 9))
c
Diag(:,15) = Diag(:,15) - Diag(:,11) * Diag(:,11)
& - Diag(:,12) * Diag(:,12)
& - Diag(:,13) * Diag(:,13)
& - Diag(:,14) * Diag(:,14)
Diag(:,15) = one / sqrt (Diag(:,15))
c
c.... flop count
c
! flops = flops + 110*nshg
c
return
endif
c
c.... perform forward reduction
c
if (code .eq. 'forward ') then
c
r(:,1) = Diag(:, 1) * r(:,1)
r(:,2) = Diag(:, 3) * ( r(:,2)
& - r(:,1) * Diag(:, 2) )
r(:,3) = Diag(:, 6) * ( r(:,3)
& - r(:,1) * Diag(:, 4)
& - r(:,2) * Diag(:, 5) )
r(:,4) = Diag(:,10) * ( r(:,4)
& - r(:,1) * Diag(:, 7)
& - r(:,2) * Diag(:, 8)
& - r(:,3) * Diag(:, 9) )
r(:,5) = Diag(:,15) * ( r(:,5)
& - r(:,1) * Diag(:,11)
& - r(:,2) * Diag(:,12)
& - r(:,3) * Diag(:,13)
& - r(:,4) * Diag(:,14) )
c
c.... flop count
c
! flops = flops + 25*nshg
c
return
endif
c
c.... perform backward substitution
c
if (code .eq. 'backward') then
c
r(:,5) = Diag(:,15) * r(:,5)
r(:,4) = Diag(:,10) * ( r(:,4)
& - r(:,5) * Diag(:,14) )
r(:,3) = Diag(:, 6) * ( r(:,3)
& - r(:,5) * Diag(:,13)
& - r(:,4) * Diag(:, 9) )
r(:,2) = Diag(:, 3) * ( r(:,2)
& - r(:,5) * Diag(:,12)
& - r(:,4) * Diag(:, 8)
& - r(:,3) * Diag(:, 5) )
r(:,1) = Diag(:, 1) * ( r(:,1)
& - r(:,5) * Diag(:,11)
& - r(:,4) * Diag(:, 7)
& - r(:,3) * Diag(:, 4)
& - r(:,2) * Diag(:, 2) )
c
c.... flop count
c
! flops = flops + 25*nshg
c
return
endif
c
c.... perform product U.r
c
if (code .eq. 'product ') then
c
r(:,1) = r(:,1) / Diag(:, 1) + r(:,2) * Diag(:, 2) +
& r(:,3) * Diag(:, 4) + r(:,4) * Diag(:, 7) +
& r(:,5) * Diag(:,11)
r(:,2) = r(:,2) / Diag(:, 3) + r(:,3) * Diag(:, 5) +
& r(:,4) * Diag(:, 8) + r(:,5) * Diag(:,12)
r(:,3) = r(:,3) / Diag(:, 6) + r(:,4) * Diag(:, 9) +
& r(:,5) * Diag(:,13)
r(:,4) = r(:,4) / Diag(:,10) + r(:,5) * Diag(:,14)
r(:,5) = r(:,5) / Diag(:,15)
c
c.... flop count
c
! flops = flops + 40*nshg
c
return
endif
c
call error ('i3LDU ', code, 0)
c
c.... return
c
return
end
| bsd-3-clause |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/coarray/image_index_2.f90 | 147 | 2047 | ! { dg-do run }
!
! Scalar coarray
!
! Run-time test for IMAGE_INDEX with cobounds only known at
! the compile time, suitable for any number of NUM_IMAGES()
! For compile-time cobounds, the -fcoarray=lib version still
! needs to run-time evalulation if image_index returns > 1
! as image_index is 0 if the index would exceed num_images().
!
! Please set num_images() to >= 13, if possible.
!
! PR fortran/18918
!
program test_image_index
implicit none
integer :: index1, index2, index3
logical :: one
integer, save :: d[-1:3, *]
integer, save :: e[-1:-1, 3:*]
one = num_images() == 1
index1 = image_index(d, [-1, 1] )
index2 = image_index(d, [0, 1] )
if (one .and. (index1 /= 1 .or. index2 /= 0)) &
call abort()
if (.not. one .and. (index1 /= 1 .or. index2 /= 2)) &
call abort()
index1 = image_index(e, [-1, 3] )
index2 = image_index(e, [-1, 4] )
if (one .and. (index1 /= 1 .or. index2 /= 0)) &
call abort()
if (.not. one .and. (index1 /= 1 .or. index2 /= 2)) &
call abort()
call test(1, e, d, e)
call test(2, e, d, e)
contains
subroutine test(n, a, b, c)
integer :: n
integer :: a[3*n:3*n, -4*n:-3*n, 88*n:*], b[-1*n:0*n,0*n:*], c[*]
index1 = image_index(a, [3*n, -4*n, 88*n] )
index2 = image_index(b, [-1, 0] )
index3 = image_index(c, [1] )
if (n == 1) then
if (index1 /= 1 .or. index2 /= 1 .or. index3 /= 1) call abort()
else if (num_images() == 1) then
if (index1 /= 1 .or. index2 /= 0 .or. index3 /= 1) call abort()
else
if (index1 /= 1 .or. index2 /= 2 .or. index3 /= 1) call abort()
end if
index1 = image_index(a, [3*n, -3*n, 88*n] )
index2 = image_index(b, [0, 0] )
index3 = image_index(c, [2] )
if (one .and. (index1 /= 0 .or. index2 /= 0 .or. index3 /= 0)) &
call abort()
if (n == 1 .and. num_images() == 2) then
if (index1 /= 2 .or. index2 /= 2 .or. index3 /= 2) &
call abort()
else if (n == 2 .and. num_images() == 2) then
if (index1 /= 0 .or. index2 /= 0 .or. index3 /= 2) &
call abort()
end if
end subroutine test
end program test_image_index
| gpl-2.0 |
kbai/specfem3d | utils/Cubit_or_Gmsh/convert_tetra_mesh_to_hexa_mesh_THex.f90 | 1 | 13971 | !=====================================================================
!
! S p e c f e m 3 D V e r s i o n 3 . 0
! ---------------------------------------
!
! Main historical authors: Dimitri Komatitsch and Jeroen Tromp
! Princeton University, USA
! and CNRS / University of Marseille, France
! (there are currently many more authors!)
! (c) Princeton University and CNRS / University of Marseille, July 2012
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 2 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along
! with this program; if not, write to the Free Software Foundation, Inc.,
! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
!
!=====================================================================
! read an external mesh file (list of points and list of elements) composed of tetrahedra
! and create a mesh of hexahedra by cutting each tetrahedron into four hexahedra
! using the middle of each edge, each face and the barycenter.
! For a picture of what this gives, see e.g. http://www.tetgen.org/figs/Delaunay-Voronoi-3D.gif
! (or a copy of it in utils/Cubit_or_Gmsh/logo_of_TetGen_showing_Delaunay_Voronoi_3D_how_to_cut_a_tetra_into_four_hexas.gif)
! Dimitri Komatitsch, CNRS, Marseille, France, June 2015.
program convert_tetra_mesh_to_hexa_mesh
implicit none
!
! work in single or in double precision (4 or 8 bytes)
!
integer, parameter :: CUSTOM_REAL = 4 ! 8
! read list of elements stored in new Gmsh 2.9.3 format or in old Gmsh 2.4.2 format (the old one has one extra dummy value)
logical, parameter :: USE_OLD_GMSH_MESH_FORMAT = .true. ! .false.
real(kind=CUSTOM_REAL), parameter :: ONE_THIRD = 1._CUSTOM_REAL / 3._CUSTOM_REAL
integer :: nglob,ntet,nelem_in_file
integer :: i,k,ihexa,iread,itype,idummy1,idummy2,idummy3,ivolume
real(kind=CUSTOM_REAL) :: xread,yread,zread
real(kind=CUSTOM_REAL), allocatable, dimension(:) :: x,y,z
integer, dimension(15) :: number_of_points_per_element_type
integer, dimension(0:3) :: inode_read
! coordinates of nodes in the middle of the tetrahedron edges
real(kind=CUSTOM_REAL) :: mid_0_1_x,mid_0_2_x,mid_0_3_x,mid_1_2_x,mid_1_3_x,mid_2_3_x
real(kind=CUSTOM_REAL) :: mid_0_1_y,mid_0_2_y,mid_0_3_y,mid_1_2_y,mid_1_3_y,mid_2_3_y
real(kind=CUSTOM_REAL) :: mid_0_1_z,mid_0_2_z,mid_0_3_z,mid_1_2_z,mid_1_3_z,mid_2_3_z
! coordinates of nodes in the middle of the tetrahedron faces
real(kind=CUSTOM_REAL) :: mid_face_0_1_2_x,mid_face_0_1_3_x,mid_face_0_2_3_x,mid_face_1_2_3_x
real(kind=CUSTOM_REAL) :: mid_face_0_1_2_y,mid_face_0_1_3_y,mid_face_0_2_3_y,mid_face_1_2_3_y
real(kind=CUSTOM_REAL) :: mid_face_0_1_2_z,mid_face_0_1_3_z,mid_face_0_2_3_z,mid_face_1_2_3_z
! coordinates of the barycenter of the tetrahedron
real(kind=CUSTOM_REAL) :: barycenter_x,barycenter_y,barycenter_z
integer :: iglob_0,iglob_1,iglob_2,iglob_3
integer :: iglob_mid_0_1,iglob_mid_0_2,iglob_mid_0_3,iglob_mid_1_2,iglob_mid_1_3,iglob_mid_2_3,iglob_barycenter
integer :: iglob_mid_face_0_1_2,iglob_mid_face_0_1_3,iglob_mid_face_0_2_3,iglob_mid_face_1_2_3
number_of_points_per_element_type(:) = 0
! for Gmsh element types (from http://geuz.org/gmsh/doc/texinfo/gmsh.html#Low-order-elements )
number_of_points_per_element_type(1) = 2 ! 2-node line
number_of_points_per_element_type(2) = 3 ! 3-node triangle
number_of_points_per_element_type(4) = 4 ! 4-node tetrahedron
number_of_points_per_element_type(15) = 1 ! 1-node point
! point numbering convention for tetrahedra in Gmsh (from http://geuz.org/gmsh/doc/texinfo/gmsh.html#Low-order-elements )
!
! Tetrahedron4: Tetrahedron10:
! v
! .
! ,/
! /
! 2 2
! ,/|`\ ,/|`\
! ,/ | `\ ,/ | `\
! ,/ '. `\ ,6 '. `5
! ,/ | `\ ,/ 8 `\
! ,/ | `\ ,/ | `\
! 0-----------'.--------1 --> u 0--------4--'.--------1
! `\. | ,/ `\. | ,/
! `\. | ,/ `\. | ,9
! `\. '. ,/ `7. '. ,/
! `\. |/ `\. |/
! `3 `3
! `\.
! ` w
!
! --------- read mesh points ---------
open(unit=10,file='points.txt',status='old',action='read')
read(10,*) nglob
print *,'reading ',nglob,' mesh points from the Gmsh database'
allocate(x(nglob))
allocate(y(nglob))
allocate(z(nglob))
do i = 1,nglob
read(10,*) iread,xread,yread,zread
if(iread < 1 .or. iread > nglob) stop 'incorrect point read'
x(iread) = xread
y(iread) = yread
z(iread) = zread
enddo
close(10)
print *
print *,'x min max read = ',minval(x),maxval(x)
print *,'y min max read = ',minval(y),maxval(y)
print *,'z min max read = ',minval(z),maxval(z)
print *
! --------- read mesh points ---------
open(unit=10,file='elements.txt',status='old',action='read')
read(10,*) nelem_in_file
print *,'reading ',nelem_in_file,' mesh elements of any geometrical kind from the Gmsh database'
ntet = 0
do i = 1,nelem_in_file
inode_read(:) = 0
! read list of elements stored in new Gmsh 2.9.3 format or in old Gmsh 2.4.2 format (the old one has one extra dummy value)
if(USE_OLD_GMSH_MESH_FORMAT) then
read(10,*) iread,itype,idummy1,idummy2,ivolume,idummy3,(inode_read(k), k=0,number_of_points_per_element_type(itype)-1)
else
read(10,*) iread,itype,idummy1,idummy2,ivolume,(inode_read(k), k=0,number_of_points_per_element_type(itype)-1)
endif
if(number_of_points_per_element_type(itype) <= 0) stop 'incorrect element type read'
if(iread < 1 .or. iread > nelem_in_file) stop 'incorrect element read'
if(itype == 4) then
ntet = ntet + 1
endif
enddo
close(10)
print *
print *,'number of tetrahedra read = ',ntet
! writing the database for the hexahedral mesh
print *
print *,'writing the database for the new mesh consisting of hexahedra...'
! create the subdirectory to store the mesh if it does not exist
call system('mkdir -p MESH')
open(unit=9,file='points.txt',status='old',action='read')
open(unit=10,file='elements.txt',status='old',action='read')
! file with hexahedra points (four hexahedra created out of each tetrahedron)
open(unit=14,file='MESH/nodes_coords_file',status='unknown',action='write')
! file with hexahedra (four hexahedra created out of each tetrahedron)
open(unit=15,file='MESH/mesh_file',status='unknown',action='write')
read(10,*) nelem_in_file
! we need to copy the existing list of points and then add 11 new points in each tetrahedron
write(14,*) nglob + 11*ntet
! out of each tetrahedron we create four hexahedra
write(15,*) 4*ntet
print *
print *,'the mesh of hexahedra will have ',nglob + 11*ntet,' points'
print *,'and ',4*ntet,' elements'
print *
read(9,*) nglob
do i = 1,nglob
read(9,*) iread,xread,yread,zread
write(14,*) iread,xread,yread,zread
enddo
ntet = 0
ihexa = 0
do i = 1,nelem_in_file
inode_read(:) = 0
! read list of elements stored in new Gmsh 2.9.3 format or in old Gmsh 2.4.2 format (the old one has one extra dummy value)
if(USE_OLD_GMSH_MESH_FORMAT) then
read(10,*) iread,itype,idummy1,idummy2,ivolume,idummy3,(inode_read(k), k=0,number_of_points_per_element_type(itype)-1)
else
read(10,*) iread,itype,idummy1,idummy2,ivolume,(inode_read(k), k=0,number_of_points_per_element_type(itype)-1)
endif
if(number_of_points_per_element_type(itype) <= 0) stop 'incorrect element type read'
if(iread < 1 .or. iread > nelem_in_file) stop 'incorrect element read'
! processing only the elements that are tetrahedra
if(itype == 4) then
ntet = ntet + 1
! now let us cut each tetrahedron into four hexahedra using the middle of each edge, each face and the barycenter.
! For a picture of what this gives, see e.g. http://www.tetgen.org/figs/Delaunay-Voronoi-3D.gif
! (or a copy of it in utils/Cubit_or_Gmsh/logo_of_TetGen_showing_Delaunay_Voronoi_3D_how_to_cut_a_tetra_into_four_hexas.gif)
! new points located in the middle of the edges
mid_0_1_x = 0.5_CUSTOM_REAL * (x(inode_read(0)) + x(inode_read(1)))
mid_0_2_x = 0.5_CUSTOM_REAL * (x(inode_read(0)) + x(inode_read(2)))
mid_0_3_x = 0.5_CUSTOM_REAL * (x(inode_read(0)) + x(inode_read(3)))
mid_1_2_x = 0.5_CUSTOM_REAL * (x(inode_read(1)) + x(inode_read(2)))
mid_1_3_x = 0.5_CUSTOM_REAL * (x(inode_read(1)) + x(inode_read(3)))
mid_2_3_x = 0.5_CUSTOM_REAL * (x(inode_read(2)) + x(inode_read(3)))
mid_0_1_y = 0.5_CUSTOM_REAL * (y(inode_read(0)) + y(inode_read(1)))
mid_0_2_y = 0.5_CUSTOM_REAL * (y(inode_read(0)) + y(inode_read(2)))
mid_0_3_y = 0.5_CUSTOM_REAL * (y(inode_read(0)) + y(inode_read(3)))
mid_1_2_y = 0.5_CUSTOM_REAL * (y(inode_read(1)) + y(inode_read(2)))
mid_1_3_y = 0.5_CUSTOM_REAL * (y(inode_read(1)) + y(inode_read(3)))
mid_2_3_y = 0.5_CUSTOM_REAL * (y(inode_read(2)) + y(inode_read(3)))
mid_0_1_z = 0.5_CUSTOM_REAL * (z(inode_read(0)) + z(inode_read(1)))
mid_0_2_z = 0.5_CUSTOM_REAL * (z(inode_read(0)) + z(inode_read(2)))
mid_0_3_z = 0.5_CUSTOM_REAL * (z(inode_read(0)) + z(inode_read(3)))
mid_1_2_z = 0.5_CUSTOM_REAL * (z(inode_read(1)) + z(inode_read(2)))
mid_1_3_z = 0.5_CUSTOM_REAL * (z(inode_read(1)) + z(inode_read(3)))
mid_2_3_z = 0.5_CUSTOM_REAL * (z(inode_read(2)) + z(inode_read(3)))
! new points located in the middle of the faces
mid_face_0_1_2_x = ONE_THIRD * (x(inode_read(0)) + x(inode_read(1)) + x(inode_read(2)))
mid_face_0_1_3_x = ONE_THIRD * (x(inode_read(0)) + x(inode_read(1)) + x(inode_read(3)))
mid_face_0_2_3_x = ONE_THIRD * (x(inode_read(0)) + x(inode_read(2)) + x(inode_read(3)))
mid_face_1_2_3_x = ONE_THIRD * (x(inode_read(1)) + x(inode_read(2)) + x(inode_read(3)))
mid_face_0_1_2_y = ONE_THIRD * (y(inode_read(0)) + y(inode_read(1)) + y(inode_read(2)))
mid_face_0_1_3_y = ONE_THIRD * (y(inode_read(0)) + y(inode_read(1)) + y(inode_read(3)))
mid_face_0_2_3_y = ONE_THIRD * (y(inode_read(0)) + y(inode_read(2)) + y(inode_read(3)))
mid_face_1_2_3_y = ONE_THIRD * (y(inode_read(1)) + y(inode_read(2)) + y(inode_read(3)))
mid_face_0_1_2_z = ONE_THIRD * (z(inode_read(0)) + z(inode_read(1)) + z(inode_read(2)))
mid_face_0_1_3_z = ONE_THIRD * (z(inode_read(0)) + z(inode_read(1)) + z(inode_read(3)))
mid_face_0_2_3_z = ONE_THIRD * (z(inode_read(0)) + z(inode_read(2)) + z(inode_read(3)))
mid_face_1_2_3_z = ONE_THIRD * (z(inode_read(1)) + z(inode_read(2)) + z(inode_read(3)))
! new point located in the middle of the element (i.e. at its barycenter)
barycenter_x = 0.25_CUSTOM_REAL * (x(inode_read(0)) + x(inode_read(1)) + x(inode_read(2)) + x(inode_read(3)))
barycenter_y = 0.25_CUSTOM_REAL * (y(inode_read(0)) + y(inode_read(1)) + y(inode_read(2)) + y(inode_read(3)))
barycenter_z = 0.25_CUSTOM_REAL * (z(inode_read(0)) + z(inode_read(1)) + z(inode_read(2)) + z(inode_read(3)))
! write these new points in the database of points
iglob_mid_0_1 = nglob + 1
iglob_mid_0_2 = nglob + 2
iglob_mid_0_3 = nglob + 3
iglob_mid_1_2 = nglob + 4
iglob_mid_1_3 = nglob + 5
iglob_mid_2_3 = nglob + 6
iglob_mid_face_0_1_2 = nglob + 7
iglob_mid_face_0_1_3 = nglob + 8
iglob_mid_face_0_2_3 = nglob + 9
iglob_mid_face_1_2_3 = nglob + 10
iglob_barycenter = nglob + 11
write(14,*) iglob_mid_0_1,mid_0_1_x,mid_0_1_y,mid_0_1_z
write(14,*) iglob_mid_0_2,mid_0_2_x,mid_0_2_y,mid_0_2_z
write(14,*) iglob_mid_0_3,mid_0_3_x,mid_0_3_y,mid_0_3_z
write(14,*) iglob_mid_1_2,mid_1_2_x,mid_1_2_y,mid_1_2_z
write(14,*) iglob_mid_1_3,mid_1_3_x,mid_1_3_y,mid_1_3_z
write(14,*) iglob_mid_2_3,mid_2_3_x,mid_2_3_y,mid_2_3_z
write(14,*) iglob_mid_face_0_1_2,mid_face_0_1_2_x,mid_face_0_1_2_y,mid_face_0_1_2_z
write(14,*) iglob_mid_face_0_1_3,mid_face_0_1_3_x,mid_face_0_1_3_y,mid_face_0_1_3_z
write(14,*) iglob_mid_face_0_2_3,mid_face_0_2_3_x,mid_face_0_2_3_y,mid_face_0_2_3_z
write(14,*) iglob_mid_face_1_2_3,mid_face_1_2_3_x,mid_face_1_2_3_y,mid_face_1_2_3_z
write(14,*) iglob_barycenter,barycenter_x,barycenter_y,barycenter_z
nglob = nglob + 11 ! because we have added eleven points
! define some useful aliases for the four existing points
iglob_0 = inode_read(0)
iglob_1 = inode_read(1)
iglob_2 = inode_read(2)
iglob_3 = inode_read(3)
! write the four new elements in the database of elements
ihexa = ihexa + 1
write(15,"(9i12)") ihexa,iglob_1,iglob_mid_1_2,iglob_mid_face_0_1_2,iglob_mid_0_1, &
iglob_mid_1_3,iglob_mid_face_1_2_3,iglob_barycenter,iglob_mid_face_0_1_3
ihexa = ihexa + 1
write(15,"(9i12)") ihexa,iglob_mid_1_2,iglob_2,iglob_mid_0_2,iglob_mid_face_0_1_2, &
iglob_mid_face_1_2_3,iglob_mid_2_3,iglob_mid_face_0_2_3,iglob_barycenter
ihexa = ihexa + 1
write(15,"(9i12)") ihexa,iglob_0,iglob_mid_0_1,iglob_mid_face_0_1_2,iglob_mid_0_2, &
iglob_mid_0_3,iglob_mid_face_0_1_3,iglob_barycenter,iglob_mid_face_0_2_3
ihexa = ihexa + 1
write(15,"(9i12)") ihexa,iglob_mid_face_0_1_3,iglob_mid_1_3,iglob_mid_face_1_2_3,iglob_barycenter, &
iglob_mid_0_3,iglob_3,iglob_mid_2_3,iglob_mid_face_0_2_3
endif
enddo
close(9)
close(10)
close(14)
close(15)
end program convert_tetra_mesh_to_hexa_mesh
| gpl-2.0 |
kbai/specfem3d | utils/small_SEM_solvers_in_Fortran_and_C_without_MPI_to_learn/mesher_for_serial/add_missing_nodes.f90 | 6 | 5562 | !=====================================================================
!
! S p e c f e m 3 D G l o b e V e r s i o n 4 . 0
! --------------------------------------------------
!
! Main authors: Dimitri Komatitsch and Jeroen Tromp
! Seismological Laboratory, California Institute of Technology, USA
! and University of Pau / CNRS / INRIA, France
! (c) California Institute of Technology and University of Pau / CNRS / INRIA
! February 2008
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 2 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along
! with this program; if not, write to the Free Software Foundation, Inc.,
! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
!
!=====================================================================
! compute the missing nodes of a 27-node element when only the 8 corners have been given
! the topology of the nodes is described in file hex_nodes.f90 as well as in
! UTILS/chunk_notes_scanned/numbering_convention_27_nodes.*
subroutine add_missing_nodes(offset_x,offset_y,offset_z)
implicit none
include "constants.h"
double precision, dimension(NGNOD) :: offset_x,offset_y,offset_z
! list of corners defining the edges and the faces
integer, parameter :: NEDGES = 12, NFACES = 6
integer, dimension(NEDGES,2) :: list_corners_edge
integer, dimension(NFACES,4) :: list_corners_face
integer :: iedge,iface,ignod
! list of corners defining the edges
! the edge number is sorted according to the numbering convention defined in file hex_nodes.f90
! as well as in DATA/util/YYYYYYYYYYYYYYYYYYYYYYYYYYY DK DK UGLY YYYYYYYYYYYYYYYYYYY
list_corners_edge( 1,1) = 1
list_corners_edge( 1,2) = 2
list_corners_edge( 2,1) = 2
list_corners_edge( 2,2) = 3
list_corners_edge( 3,1) = 3
list_corners_edge( 3,2) = 4
list_corners_edge( 4,1) = 4
list_corners_edge( 4,2) = 1
list_corners_edge( 5,1) = 1
list_corners_edge( 5,2) = 5
list_corners_edge( 6,1) = 2
list_corners_edge( 6,2) = 6
list_corners_edge( 7,1) = 3
list_corners_edge( 7,2) = 7
list_corners_edge( 8,1) = 4
list_corners_edge( 8,2) = 8
list_corners_edge( 9,1) = 5
list_corners_edge( 9,2) = 6
list_corners_edge(10,1) = 6
list_corners_edge(10,2) = 7
list_corners_edge(11,1) = 7
list_corners_edge(11,2) = 8
list_corners_edge(12,1) = 8
list_corners_edge(12,2) = 5
! list of corners defining the faces
! the face number is sorted according to the numbering convention defined in file hex_nodes.f90
! as well as in DATA/util/YYYYYYYYYYYYYYYYYYYYYYYYYYY DK DK UGLY YYYYYYYYYYYYYYYYYYY
list_corners_face(1,1) = 1
list_corners_face(1,2) = 2
list_corners_face(1,3) = 3
list_corners_face(1,4) = 4
list_corners_face(2,1) = 1
list_corners_face(2,2) = 2
list_corners_face(2,3) = 6
list_corners_face(2,4) = 5
list_corners_face(3,1) = 2
list_corners_face(3,2) = 3
list_corners_face(3,3) = 7
list_corners_face(3,4) = 6
list_corners_face(4,1) = 4
list_corners_face(4,2) = 3
list_corners_face(4,3) = 7
list_corners_face(4,4) = 8
list_corners_face(5,1) = 1
list_corners_face(5,2) = 4
list_corners_face(5,3) = 8
list_corners_face(5,4) = 5
list_corners_face(6,1) = 5
list_corners_face(6,2) = 6
list_corners_face(6,3) = 7
list_corners_face(6,4) = 8
! midside nodes (nodes located in the middle of an edge)
do iedge = 1,NEDGES
! node numbers for edge centers start at 9
ignod = (iedge - 1) + 9
offset_x(ignod) = (offset_x(list_corners_edge(iedge,1)) + offset_x(list_corners_edge(iedge,2))) / 2.d0
offset_y(ignod) = (offset_y(list_corners_edge(iedge,1)) + offset_y(list_corners_edge(iedge,2))) / 2.d0
offset_z(ignod) = (offset_z(list_corners_edge(iedge,1)) + offset_z(list_corners_edge(iedge,2))) / 2.d0
enddo
! side center nodes (nodes located in the middle of a face)
do iface = 1,NFACES
! node numbers for face centers start at 21
ignod = (iface - 1) + 21
offset_x(ignod) = (offset_x(list_corners_face(iface,1)) + &
offset_x(list_corners_face(iface,2)) + &
offset_x(list_corners_face(iface,3)) + &
offset_x(list_corners_face(iface,4))) / 4.d0
offset_y(ignod) = (offset_y(list_corners_face(iface,1)) + &
offset_y(list_corners_face(iface,2)) + &
offset_y(list_corners_face(iface,3)) + &
offset_y(list_corners_face(iface,4))) / 4.d0
offset_z(ignod) = (offset_z(list_corners_face(iface,1)) + &
offset_z(list_corners_face(iface,2)) + &
offset_z(list_corners_face(iface,3)) + &
offset_z(list_corners_face(iface,4))) / 4.d0
enddo
! center node (barycenter of the eight corners)
offset_x(27) = sum(offset_x(1:NGNOD_EIGHT_CORNERS)) / dble(NGNOD_EIGHT_CORNERS)
offset_y(27) = sum(offset_y(1:NGNOD_EIGHT_CORNERS)) / dble(NGNOD_EIGHT_CORNERS)
offset_z(27) = sum(offset_z(1:NGNOD_EIGHT_CORNERS)) / dble(NGNOD_EIGHT_CORNERS)
end subroutine add_missing_nodes
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/transfer_assumed_size_1.f90 | 136 | 1340 | ! { dg-do run }
! Tests the fix for the regression PR34080, in which the character
! length of the assumed length arguments to TRANSFER were getting
! lost.
!
! Drew McCormack <drewmccormack@mac.com>
!
module TransferBug
type ByteType
private
character(len=1) :: singleByte
end type
type (ByteType), save :: BytesPrototype(1)
contains
function StringToBytes(v) result (bytes)
character(len=*), intent(in) :: v
type (ByteType) :: bytes(size(transfer(v, BytesPrototype)))
bytes = transfer(v, BytesPrototype)
end function
subroutine BytesToString(bytes, string)
type (ByteType), intent(in) :: bytes(:)
character(len=*), intent(out) :: string
character(len=1) :: singleChar(1)
integer :: numChars
numChars = size(transfer(bytes,singleChar))
string = ''
string = transfer(bytes, string)
string(numChars+1:) = ''
end subroutine
end module
program main
use TransferBug
character(len=100) :: str
call BytesToString( StringToBytes('Hi'), str )
if (trim(str) .ne. "Hi") call abort ()
end program
| gpl-2.0 |
QEF/q-e_schrodinger | PHonon/PH/solve_e.f90 | 1 | 11512 | !
! Copyright (C) 2001-2018 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine solve_e
!-----------------------------------------------------------------------
!! This routine is a driver for the solution of the linear system which
!! defines the change of the wavefunction due to an electric field.
!! It performs the following tasks:
!! a) computes the bare potential term times \(|\psi\rangle \);
!! b) adds to it the screening term \(\Delta V_\text{SCF}|psi\rangle\).
!! If \(\text{lda_plus_u}=\text{TRUE}\) compute also the SCF part
!! of the response Hubbard potential;
!! c) applies \(P_c^+\) (orthogonalization to valence states);
!! d) calls \(\texttt{cgsolve_all}\) to solve the linear system;
!! e) computes \(\Delta \rho\), \(\Delta V_\text{SCF}|psi\rangle\) and
!! symmetrizes them;
!! f) if \(\text{lda_plus_u}=\text{TRUE}\) compute also the response
!! occupation matrices dnsscf.
!! Step b, c, d are done in \(\text{sternheimer_kernel}\).
!
USE kinds, ONLY : DP
USE ions_base, ONLY : nat
USE io_global, ONLY : stdout, ionode
USE io_files, ONLY : diropn
USE mp, ONLY : mp_sum
USE mp_pools, ONLY : inter_pool_comm
USE mp_bands, ONLY : intra_bgrp_comm
USE klist, ONLY : ltetra, lgauss, xk, ngk, igk_k
USE gvecs, ONLY : doublegrid
USE fft_base, ONLY : dfftp, dffts
USE lsda_mod, ONLY : nspin, lsda, current_spin, isk
USE wvfct, ONLY : nbnd, npwx
USE check_stop, ONLY : check_stop_now
USE buffers, ONLY : get_buffer
USE wavefunctions, ONLY : evc
USE uspp, ONLY : okvan, vkb
USE uspp_param, ONLY : nhm
USE noncollin_module, ONLY : noncolin, npol, nspin_mag, domag
USE scf, ONLY : rho
USE paw_variables, ONLY : okpaw
USE paw_onecenter, ONLY : paw_dpotential
USE paw_symmetry, ONLY : paw_desymmetrize
USE units_ph, ONLY : lrdrho, iudrho, lrebar, iuebar
USE units_lr, ONLY : iuwfc, lrwfc
USE output, ONLY : fildrho
USE control_ph, ONLY : ext_recover, rec_code, &
lnoloc, convt, tr2_ph, nmix_ph, &
alpha_mix, lgamma_gamma, niter_ph, &
flmixdpot, rec_code_read
USE recover_mod, ONLY : read_rec, write_rec
USE lrus, ONLY : int3_paw
USE qpoint, ONLY : nksq, ikks
USE control_lr, ONLY : lgamma
USE dv_of_drho_lr, ONLY : dv_of_drho
USE fft_interfaces, ONLY : fft_interpolate
USE ldaU, ONLY : lda_plus_u
USE apply_dpot_mod, ONLY : apply_dpot_allocate, apply_dpot_deallocate
USE response_kernels, ONLY : sternheimer_kernel
USE uspp_init, ONLY : init_us_2
!
IMPLICIT NONE
!
LOGICAL :: exst
!!
LOGICAL :: all_conv
!! True if sternheimer_kernel is converged at all k points and perturbations
INTEGER :: ikk, npw, kter, iter0, ipol, iter, ik, is, ndim
!! counters
REAL(DP) :: thresh
!! convergence threshold
REAL(DP) :: averlt
!! average number of iterations
REAL(DP) :: dr2
!! self-consistency error
REAL(DP) :: tcpu, get_clock
!! timing variables
COMPLEX(DP), ALLOCATABLE, TARGET :: dvscfin (:,:,:)
!! change of the scf potential (input)
COMPLEX(DP), POINTER :: dvscfins (:,:,:)
!! change of the scf potential (smooth)
COMPLEX(DP), ALLOCATABLE :: dvscfout (:,:,:)
!! change of the scf potential (output)
COMPLEX(DP), ALLOCATABLE :: dbecsum(:,:,:,:)
!! the becsum with dpsi
COMPLEX(DP), ALLOCATABLE :: dbecsum_nc(:,:,:,:,:)
!! the becsum with dpsi
COMPLEX(DP), ALLOCATABLE :: mixin(:), mixout(:)
!! auxiliary for paw mixing
!
call start_clock ('solve_e')
!
! This routine is task group aware
!
allocate (dvscfin( dfftp%nnr, nspin_mag, 3))
dvscfin=(0.0_DP,0.0_DP)
if (doublegrid) then
allocate (dvscfins(dffts%nnr, nspin_mag, 3))
else
dvscfins => dvscfin
endif
allocate (dvscfout(dfftp%nnr, nspin_mag, 3))
IF (okpaw) THEN
ALLOCATE (mixin(dfftp%nnr*nspin_mag*3+(nhm*(nhm+1)*nat*nspin_mag*3)/2) )
ALLOCATE (mixout(dfftp%nnr*nspin_mag*3+(nhm*(nhm+1)*nat*nspin_mag*3)/2) )
mixin=(0.0_DP,0.0_DP)
ENDIF
allocate (dbecsum( nhm*(nhm+1)/2, nat, nspin_mag, 3))
IF (noncolin) allocate (dbecsum_nc (nhm, nhm, nat, nspin, 3))
CALL apply_dpot_allocate()
if (rec_code_read == -20.AND.ext_recover) then
! restarting in Electric field calculation
IF (okpaw) THEN
CALL read_rec(dr2, iter0, 3, dvscfin, dvscfins, dvscfout, dbecsum)
CALL setmixout(3*dfftp%nnr*nspin_mag,(nhm*(nhm+1)*nat*nspin_mag*3)/2, &
mixin, dvscfin, dbecsum, ndim, -1 )
ELSE
CALL read_rec(dr2, iter0, 3, dvscfin, dvscfins)
ENDIF
else if (rec_code_read > -20 .AND. rec_code_read <= -10) then
! restarting in Raman: proceed
convt = .true.
else
convt = .false.
iter0 = 0
endif
!
IF ( ionode .AND. fildrho /= ' ') THEN
INQUIRE (UNIT = iudrho, OPENED = exst)
IF (exst) CLOSE (UNIT = iudrho, STATUS='keep')
CALL diropn (iudrho, TRIM(fildrho)//'.E', lrdrho, exst)
end if
IF (rec_code_read > -20) convt=.TRUE.
!
if (convt) go to 155
!
! if q=0 for a metal: allocate and compute local DOS at Ef
!
if ( (lgauss .or. ltetra) .or..not.lgamma) call errore ('solve_e', &
'called in the wrong case', 1)
!
! Compute P_c^+ x psi for all polarization and k points and store in buffer
!
DO ik = 1, nksq
DO ipol = 1, 3
ikk = ikks(ik)
npw = ngk(ikk)
IF (lsda) current_spin = isk(ikk)
!
! reads unperturbed wavefunctions psi_k in G_space, for all bands
!
IF (nksq > 1) THEN
CALL get_buffer(evc, lrwfc, iuwfc, ikk)
ENDIF
!
CALL init_us_2(npw, igk_k(1, ikk), xk(1, ikk), vkb)
!
! computes P_c^+ x psi_kpoint, written to buffer iuebar.
!
CALL dvpsi_e(ik, ipol)
!
ENDDO ! ipol
ENDDO ! ik
!
! The outside loop is over the iterations
!
do kter = 1, niter_ph
!
FLUSH( stdout )
iter = kter + iter0
!
dvscfout = (0.d0,0.d0)
dbecsum = (0.d0,0.d0)
IF (noncolin) dbecsum_nc = (0.d0,0.d0)
!
! DFPT+U: at each iteration calculate dnsscf,
! i.e. the scf variation of the occupation matrix ns.
!
IF (lda_plus_u .AND. (iter /= 1)) CALL dnsq_scf(3, .false., 0, 1, .false.)
!
! set threshold for the iterative solution of the linear system
!
IF (iter == 1) THEN
thresh = 1.d-2
IF (lnoloc) thresh = 1.d-5
ELSE
thresh = MIN(0.1d0 * SQRT(dr2), 1.0d-2)
ENDIF
!
! Compute dvscfout, the charge density response to the total potential
!
CALL sternheimer_kernel(iter==1, .FALSE., 3, lrebar, iuebar, thresh, dvscfins, &
all_conv, averlt, dvscfout, dbecsum, dbecsum_nc)
!
! The calculation of dbecsum is distributed across processors
! (see addusdbec) - we sum over processors the contributions
! coming from each slice of bands
!
IF (noncolin) THEN
call mp_sum ( dbecsum_nc, intra_bgrp_comm )
ELSE
call mp_sum ( dbecsum, intra_bgrp_comm )
END IF
if (doublegrid) then
do is=1,nspin_mag
do ipol=1,3
call fft_interpolate (dffts, dvscfout(:,is,ipol), dfftp, dvscfout(:,is,ipol))
enddo
enddo
endif
!
IF (noncolin.and.okvan) CALL set_dbecsum_nc(dbecsum_nc, dbecsum, 3)
!
call addusddense (dvscfout, dbecsum)
!
! dvscfout contains the (unsymmetrized) linear charge response
! for the three polarizations - symmetrize it
!
call mp_sum ( dvscfout, inter_pool_comm )
IF (okpaw) call mp_sum ( dbecsum, inter_pool_comm )
if (.not.lgamma_gamma) then
call psyme (dvscfout)
IF ( noncolin.and.domag ) CALL psym_dmage(dvscfout)
endif
!
! save the symmetrized linear charge response to file
! calculate the corresponding linear potential response
!
do ipol=1,3
if (fildrho.ne.' ') call davcio_drho(dvscfout(1,1,ipol),lrdrho, &
iudrho,ipol,+1)
IF (lnoloc) then
dvscfout(:,:,ipol)=(0.d0,0.d0)
ELSE
call dv_of_drho (dvscfout (1, 1, ipol), .false.)
ENDIF
enddo
!
! mix the new potential with the old
!
IF (okpaw) THEN
!
! In this case we mix also dbecsum
!
call setmixout(3*dfftp%nnr*nspin_mag,(nhm*(nhm+1)*nat*nspin_mag*3)/2, &
mixout, dvscfout, dbecsum, ndim, -1 )
call mix_potential (2*3*dfftp%nnr*nspin_mag+2*ndim, mixout, mixin, &
alpha_mix(kter), dr2, 3*tr2_ph/npol, iter, &
nmix_ph, flmixdpot, convt)
call setmixout(3*dfftp%nnr*nspin_mag,(nhm*(nhm+1)*nat*nspin_mag*3)/2, &
mixin, dvscfin, dbecsum, ndim, 1 )
ELSE
call mix_potential (2*3*dfftp%nnr*nspin_mag, dvscfout, dvscfin, alpha_mix ( &
kter), dr2, 3 * tr2_ph / npol, iter, nmix_ph, flmixdpot, convt)
ENDIF
if (doublegrid) then
do is=1,nspin_mag
do ipol = 1, 3
call fft_interpolate (dfftp, dvscfin(:,is,ipol), dffts, dvscfins(:,is,ipol))
enddo
enddo
endif
IF (okpaw) THEN
IF (noncolin) THEN
! call PAW_dpotential(dbecsum_nc,becsum_nc,int3_paw,3)
ELSE
!
! The presence of c.c. in the formula gives a factor 2.0
!
dbecsum=2.0_DP * dbecsum
IF (.NOT. lgamma_gamma) CALL PAW_desymmetrize(dbecsum)
call PAW_dpotential(dbecsum,rho%bec,int3_paw,3)
ENDIF
ENDIF
call newdq(dvscfin,3)
tcpu = get_clock ('PHONON')
WRITE( stdout, '(/,5x," iter # ",i3," total cpu time :",f8.1, &
& " secs av.it.: ",f5.1)') iter, tcpu, averlt
dr2 = dr2 / 3
WRITE( stdout, "(5x,' thresh=',es10.3, ' alpha_mix = ',f6.3, &
& ' |ddv_scf|^2 = ',es10.3 )") thresh, alpha_mix (kter), dr2
!
FLUSH( stdout )
!
! rec_code: state of the calculation
! rec_code=-20 Electric Field
!
rec_code=-20
IF (okpaw) THEN
CALL write_rec('solve_e...', 0, dr2, iter, convt, 3, dvscfin, &
dvscfout, dbecsum)
ELSE
CALL write_rec('solve_e...', 0, dr2, iter, convt, 3, dvscfin)
ENDIF
if (check_stop_now()) call stop_smoothly_ph (.false.)
if (convt) goto 155
enddo
155 continue
!
CALL apply_dpot_deallocate()
deallocate (dbecsum)
deallocate (dvscfout)
IF (okpaw) THEN
DEALLOCATE(mixin)
DEALLOCATE(mixout)
ENDIF
if (doublegrid) deallocate (dvscfins)
deallocate (dvscfin)
if (noncolin) deallocate(dbecsum_nc)
call stop_clock ('solve_e')
return
end subroutine solve_e
| gpl-2.0 |
davidandrewnew/uclales | src/modnudge.f90 | 1 | 12306 | !> \file modnudge.f90
!! Nudges theta_l and q_t profiles to the initial profiles on a timescale tnudgeT
!>
!>
!! Nudges theta_l and q_t profiles to the initial profiles on a timescale tnudgeT
!>
!! \author Thijs Heus,MPI-M
!! \par Revision list
!! \todo Documentation
! This file is part of DALES.
!
! DALES is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 3 of the License, or
! (at your option) any later version.
!
! DALES is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
!
! Copyright 1993-2009 Delft University of Technology, Wageningen University, Utrecht University, KNMI
!
module modnudge
implicit none
PRIVATE
PUBLIC :: nudge,lnudge,tnudgefac, qfloor, zfloor, znudgemin, znudgeplus, nudge_bound, lnudge_bound
SAVE
real, dimension(:,:), allocatable :: tnudge,unudge,vnudge,wnudge,thlnudge,qtnudge
real, dimension(:,:), allocatable :: tuvnudge ! DAN
real, dimension(:) , allocatable :: timenudge
real :: tnudgefac = 1., qfloor = -1., zfloor = 1200., znudgemin = -1., znudgeplus = -1.
logical :: lnudge,lunudge,lvnudge,lwnudge,lthlnudge,lqtnudge
integer :: ntnudge = 100
logical :: firsttime = .true.
! LINDA, b
! arrays for nuding
logical :: lnudge_bound = .false.
! arrays for initial values
real, dimension(:),allocatable::tn,rn,un,vn,wn
real, allocatable :: rlx(:,:)
real::coef=1./60.
! LINDA, e
contains
subroutine initnudge(time)
use grid, only : nzp,zt,th00,umean,vmean
use mpi_interface, only : myid
use defs, only : pi
implicit none
integer :: ierr,k,t,ifinput = 19
real,allocatable,dimension(:) :: height
real, intent(in) :: time
character(1) :: chmess1
real :: highheight,highqtnudge,highthlnudge,highunudge,highvnudge,highwnudge,hightnudge
real :: lowheight,lowqtnudge,lowthlnudge,lowunudge,lowvnudge,lowwnudge,lowtnudge
real :: fac
real :: hightuvnudge, lowtuvnudge ! DAN
allocate(tnudge(nzp,ntnudge),unudge(nzp,ntnudge),vnudge(nzp,ntnudge),wnudge(nzp,ntnudge),thlnudge(nzp,ntnudge),qtnudge(nzp,ntnudge))
allocate(timenudge(0:ntnudge), height(nzp))
allocate(tuvnudge(nzp,ntnudge)) ! DAN
tnudge = 0
tuvnudge = 0 ! DAN
unudge=0
vnudge=0
wnudge=0
thlnudge=0
qtnudge=0
timenudge=0
height = 0.
if (.not. lnudge) return
t = 0
open (ifinput,file='nudge_in')
ierr = 0
readloop: do
t = t + 1
chmess1 = "#"
ierr = 1 ! not zero
do while (.not.(chmess1 == "#" .and. ierr ==0)) !search for the next line consisting of "# time", from there onwards the profiles will be read
read(ifinput,*,iostat=ierr) chmess1,timenudge(t)
if (ierr < 0) exit readloop
end do
! DAN
! write(6,*) ' height t_nudge u_nudge v_nudge w_nudge thl_nudge qt_nudge'
! read (ifinput,*) lowheight , lowtnudge , lowunudge , lowvnudge , lowwnudge , lowthlnudge, lowqtnudge
! read (ifinput,*) highheight , hightnudge , highunudge , highvnudge , highwnudge , highthlnudge, highqtnudge
write(6,*) ' height t_nudge tuv_nudge u_nudge v_nudge w_nudge thl_nudge qt_nudge'
read (ifinput,*) lowheight , lowtnudge , lowtuvnudge , lowunudge , lowvnudge , lowwnudge , lowthlnudge, lowqtnudge
read (ifinput,*) highheight , hightnudge , hightuvnudge , highunudge , highvnudge , highwnudge , highthlnudge, highqtnudge
do k=2,nzp-1
! Christopher: bug fix (analog in modtimedep.f90)
!if (highheight<zt(k)) then
! lowheight = highheight
! lowtnudge = hightnudge
! lowunudge = highunudge
! lowvnudge = highvnudge
! lowwnudge = highwnudge
! lowthlnudge= highthlnudge
! lowqtnudge=highqtnudge
! read (ifinput,*) highheight , hightnudge , highunudge , highvnudge , highwnudge , highthlnudge, highqtnudge
!end if
do
if (highheight>=zt(k)) exit
lowheight = highheight
lowtnudge = hightnudge
lowtuvnudge = hightuvnudge ! DAN
lowunudge = highunudge
lowvnudge = highvnudge
lowwnudge = highwnudge
lowthlnudge= highthlnudge
lowqtnudge=highqtnudge
! DAN
! read (ifinput,*) highheight , hightnudge , highunudge , highvnudge , highwnudge , highthlnudge, highqtnudge
read (ifinput,*) highheight , hightnudge , hightuvnudge , highunudge , highvnudge , highwnudge , highthlnudge, highqtnudge
end do
fac = (highheight-zt(k))/(highheight - lowheight)
tnudge(k,t) = fac*lowtnudge + (1-fac)*hightnudge
tuvnudge(k,t) = fac*lowtuvnudge + (1.-fac)*hightuvnudge ! DAN
unudge(k,t) = fac*lowunudge + (1-fac)*highunudge
vnudge(k,t) = fac*lowvnudge + (1-fac)*highvnudge
wnudge(k,t) = fac*lowwnudge + (1-fac)*highwnudge
thlnudge(k,t) = fac*lowthlnudge + (1-fac)*highthlnudge
qtnudge(k,t) = fac*lowqtnudge + (1-fac)*highqtnudge
end do
if (myid == 0) then
do k=nzp-1,1,-1
write (6,'(2f10.1,6e12.4)') &
zt (k), &
height (k), &
tnudge (k,t), &
tuvnudge(k,t), & ! DAN
unudge (k,t), &
vnudge (k,t), &
wnudge (k,t), &
thlnudge(k,t), &
qtnudge(k,t)
end do
end if
end do readloop
close(ifinput)
if (znudgemin>0) then
do k = 1,nzp-1
if (zt(k)<=znudgemin) then
tnudge(k,:) = 1e10
else if (zt(k)<=znudgeplus) then
tnudge(k,:) = 2.*tnudgefac/(1-cos(pi*(zt(k)-znudgemin)/(znudgeplus-znudgemin)))
else
tnudge(k,:) = tnudgefac
end if
end do
else
tnudge = tnudgefac*tnudge
end if
thlnudge = thlnudge - th00
unudge = unudge - umean
vnudge = vnudge - vmean
lunudge = any(abs(unudge)>1e-8)
lvnudge = any(abs(vnudge)>1e-8)
lwnudge = any(abs(wnudge)>1e-8)
lthlnudge = any(abs(thlnudge)>1e-8)
lqtnudge = any(abs(qtnudge)>1e-8)
end subroutine initnudge
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine nudge(timein)
use grid, only : dt, nxp, nyp, nzp, a_ut, a_vt, a_wt, a_tt, a_rt, a_up,a_vp,a_tp,a_rp,zt,a_wp
use util, only : get_avg3
implicit none
real, intent (in) :: timein
integer k,t,i,j
real :: dtm,dtp,currtnudge, nudgefac
real, dimension(nzp) :: uav, vav, tav, qav
if (firsttime) then
firsttime = .false.
call initnudge(timein)
end if
if (.not.(lnudge)) return
t=1
do while(timein>timenudge(t))
t=t+1
end do
if (timein/=timenudge(1)) then
t=t-1
end if
dtm = ( timein-timenudge(t) ) / ( timenudge(t+1)-timenudge(t) )
dtp = ( timenudge(t+1)-timein)/ ( timenudge(t+1)-timenudge(t) )
call get_avg3(nzp, nxp, nyp,a_up,uav)
call get_avg3(nzp, nxp, nyp,a_vp,vav)
call get_avg3(nzp, nxp, nyp,a_tp,tav)
call get_avg3(nzp, nxp, nyp,a_rp,qav)
do j=3,nyp-2
do i=3,nxp-2
do k=2,nzp-1
! DAN
! currtnudge = max(dt,tnudge(k,t)*dtp+tnudge(k,t+1)*dtm)
currtnudge = max(dt,tuvnudge(k,t)*dtp+tuvnudge(k,t+1)*dtm)
if(lunudge ) a_ut(k,i,j)=a_ut(k,i,j)-&
(uav(k)-(unudge (k,t)*dtp+unudge (k,t+1)*dtm))/currtnudge
if(lvnudge ) a_vt(k,i,j)=a_vt(k,i,j)-&
(vav(k)-(vnudge (k,t)*dtp+vnudge (k,t+1)*dtm))/currtnudge
end do
end do
end do
do j=3,nyp-2
do i=3,nxp-2
do k=2,nzp-1
currtnudge = max(dt,tnudge(k,t)*dtp+tnudge(k,t+1)*dtm)
if(lthlnudge ) a_tt(k,i,j)=a_tt(k,i,j)-&
(tav(k) - (thlnudge (k,t)*dtp+thlnudge (k,t+1)*dtm))/currtnudge
if(lqtnudge ) then
if (qav(k) < qfloor .and. zt(k) < zfloor) then
nudgefac = qfloor
! currtnudge = 3600.
else
nudgefac = qtnudge (k,t)*dtp+qtnudge (k,t+1)*dtm
end if
a_rt(k,i,j)= a_rt(k,i,j) - (qav(k)-nudgefac)/currtnudge
end if
end do
end do
end do
end subroutine nudge
! LINDA, b
!--------------------------------------------------------------------------!
!This routine nudges simulated values of temperature, humidity !
!and horizontal and vertical wind speed back to their initial state at a !
!time scale tau. The nudging is only done in a small zone at the Eastern !
!and Western edge of the domain. !
!The effect of the nudging is to obtain relaxation boundary conditions !
!which can e.g. be used to model the development of a squall line !
! !
! Linda Schlemmer, December 2011 !
!--------------------------------------------------------------------------!
subroutine nudge_bound
use grid, only: nxp,nyp,nzp,a_tt,a_tp,a_rt,a_rp,&
a_ut,a_up,a_vt,a_vp,a_wt,a_wp,liquid
use mpi_interface, only : myid
IMPLICIT NONE
integer:: k,t,i,j
if (firsttime) then
firsttime = .false.
allocate(rlx(nxp,nyp))
allocate(tn(nzp),rn(nzp),un(nzp),vn(nzp),wn(nzp))
rlx(:,:)=0.0
call initnudge_bound
end if
! relax towards initial conditions
do k=1,nzp
do i=1,nxp
do j=1,nyp
a_tt(k,i,j)=a_tt(k,i,j)-(a_tp(k,i,j)-tn(k))*coef*rlx(i,j)
a_rt(k,i,j)=a_rt(k,i,j)-(a_rp(k,i,j)-rn(k))*coef*rlx(i,j)
a_ut(k,i,j)=a_ut(k,i,j)-(a_up(k,i,j)-un(k))*coef*rlx(i,j)
a_vt(k,i,j)=a_vt(k,i,j)-(a_vp(k,i,j)-vn(k))*coef*rlx(i,j)
a_wt(k,i,j)=a_wt(k,i,j)-(a_wp(k,i,j)-wn(k))*coef*rlx(i,j)
enddo
enddo
enddo
end subroutine nudge_bound
!--------------------------------------------------------------------------
subroutine initnudge_bound
use mpi_interface, only : myid,nxprocs,nyprocs
use grid, only: nxp,nyp,nzp,a_tp,a_rp,a_up,a_vp,a_wp,deltax
use defs, only: pi
IMPLICIT NONE
integer k,t,i,j
real::eps=0.01
integer:: nnudge ! number of points where relaxation is done
real:: xnudge ! relaxation zone [km], to be tested
real:: rnudge ! relaxation zone [points]
logical::flg
flg=.false.
xnudge=10.0
rnudge=xnudge*1000.0/deltax
nnudge=int(rnudge)
if (nnudge>nxp) flg=.true.
! western boundary
if (mod(myid,nxprocs)<eps) then
print*,'western boundary, myid=',myid
if (flg) nnudge=nxp
do i=1,nnudge
! rlx(i,:)=1.0 ! step function
rlx(i,:)=(cos(real(i)*pi/(rnudge*2)))**2!cos2-function
enddo
endif
! relaxation zone extends over more than one processor
if ((myid>0).and.(mod(myid-1,nxprocs)<eps).and.(flg)) then
print*,'western boundary, 2nd proc, myid=',myid
do i=1,nnudge-nxp+4
! rlx(i,:)=1.0 ! step function
rlx(i,:)=(cos(real(i+nxp-4)*pi/(rnudge*2)))**2!cos2-function
enddo
endif
! eastern boundary
if (mod(myid+1,nxprocs)<eps) then
print*,'eastern boundary, myid=',myid
if (flg) nnudge=nxp
do i=nxp-nnudge+1,nxp
! rlx(i,:)=1.0! step function
rlx(i,:)=(cos(real(nxp-i+1)*pi/(rnudge*2)))**2!cos2-function
enddo
endif
! relaxation zone extends over more than one processor
if ((mod(myid+2,nxprocs)<eps).and.(flg)) then
print*,'eastern boundary, 2nd proc, myid=',myid
do i=2*nxp-nnudge+1-4,nxp
! rlx(i,:)=1.0 ! step function
rlx(i,:)=(cos(real(2*nxp-i+1-4)*pi/(rnudge*2)))**2!cos2-function
enddo
endif
! read in/save initial conditions
do k=1,nzp
tn(k)=a_tp(k,3,3)
rn(k)=a_rp(k,3,3)
un(k)=a_up(k,3,3)
vn(k)=a_vp(k,3,3)
wn(k)=0.0
enddo
end subroutine initnudge_bound
! LINDA, e
end module
| gpl-3.0 |
yangf4/phasta | M2NFixBnd/src/commuMax.f | 5 | 9995 | subroutine commuMax (global, ilwork, n, code)
c---------------------------------------------------------------------
c
c This subroutine is responsible for interprocessor communication of
c the residual and solution vectors.
c
c input:
c global(nshg,n): global vector to be communicated. Note that
c this vector is local to the processor, (i.e.
c not distributed across processors)
c ilwork(nlwork): this is the local interprocessor work array.
c This array is local to the processor, (i.e.
c each processor has a unique ilwork array.
c n: second dimension of the array to be communicated
c code: = 'in' for communicating with the residual
c = 'out' for cummunicating the solution
c
c---------------------------------------------------------------------
c
c The array ilwork describes the details of the communications.
c Each communication step (call of this routine) consists of a
c sequence of "tasks", where a task is defined as a communication
c between two processors where data is exchanged. This would imply
c that for a given processor, there will be as many tasks as there
c are processors with which it must communicate. Details of the
c ilwork array appear below.
c
c---------------------------------------------------------------------
c
include "commonM2NFixBnd.h"
include "mpif.h"
include "auxmpiM2NFixBnd.h"
integer status(MPI_STATUS_SIZE), ierr
integer stat(MPI_STATUS_SIZE, 2*maxtask), req(2*maxtask)
real*8 rDelISend, rDelIRecv, rDelWaitAll
dimension global(nshg,n),
& rtemp(maxfront*n,maxtask),
& ilwork(nlwork)
character*3 code
if(impistat2.eq.1) call MPI_BARRIER (MPI_COMM_WORLD, ierr)
if(impistat.eq.1) rDelIRecv = zero
if(impistat.eq.1) rDelISend = zero
if(impistat.eq.1) rDelWaitAll = zero
if (code .ne. 'in ' .and. code .ne. 'out')
& call error ('commu ','code ',0)
if (n .eq. 1) then ! like a scalar
kdof = 1
elseif (n .eq. nsd) then ! like the normal vectors
kdof = 2
elseif (n .eq. ndof) then ! res, y, ac, krylov vectors....
kdof = 3
elseif (n .eq. nflow*nflow) then ! bdiag
kdof = 4
elseif (n .eq. (nflow-1)*nsd) then ! qres
kdof = 5
elseif (n .eq. nflow) then
kdof = 6
elseif (n .eq. 24 ) then
kdof = 7
elseif (n .eq. 9) then
kdof = 8
elseif (n .eq. 11 ) then
kdof = 9
elseif (n .eq. 7 ) then
kdof = 10
! elseif (n .eq. 33 ) then ! hack
elseif (n .eq. 13 ) then ! for error
kdof = 11
! elseif (n .eq. 22 ) then
elseif (n .eq. 17 ) then
kdof = 12
elseif (n .eq. 16 ) then
kdof = 13
elseif (n .eq. 10 ) then
kdof = 14
elseif (n .eq. nflow*nsd ) then !surface tension + qres
kdof = 15
else
call error ('commuMax','n ',n)
endif
c... Note that when adding another kdof to the above set, we must
c... also make changes in ctypes.f and auxmpi.h
c---------------------------------------------------------------------
c ilwork(1): number of tasks
c
c The following information is contained in ilwork for each task:
c itag: tag of the communication
c iacc: == 0 if task is a send
c == 1 if task is a recieve
c iother: rank of processor with which this communication occurs
c numseg: number of data "segments" to be sent or recieved. A
c segment is defined as a continuous section of the global
c vector to be communicated, (i.e. a group of nodes (or,
c rather, "shape function coefficients") which occur
c sequentially in the array global(nshg,n)).
c isbeg: location of the first segment in the array owned by the
c current processor.
c
c The two types of communication are 'in', where the residual is being
c communicated, and 'out', where the solution is being communicated.
c Note that when the type is 'out', senders recieve and recievers send.
c
c The following comment pertains to a communication of type 'in':
c
c If the task is a send, then all of the numseg segments are
c sent with a single call to MPI_SEND. Where these segments live in
c the array is built into the array sevsegtype, which is a common
c array constructed in the subroutine "ctypes.f". In other words,
c sevsegtype is a data type that describes the indices of the blocks
c to be sent, in terms of there beginning index, and the length of
c each segment. Using this, we can make a single send to take care of
c all the segments for this task.
c
c If the task is a recieve, then once the vector is recieved, the
c recieved segments must be added to the correct locations in the
c current array. These locations are described in ilwork as the
c beginning position, then the length of the segment.
c
c---------------------------------------------------------------------
numtask = ilwork(1)
itkbeg = 1
m = 0
idl=0
DO itask = 1, numtask
m = m + 1
itag = ilwork (itkbeg + 1)
iacc = ilwork (itkbeg + 2)
iother = ilwork (itkbeg + 3)
numseg = ilwork (itkbeg + 4)
isgbeg = ilwork (itkbeg + 5)
c
c.... if iacc == 0, then this task is a send.
c slave
c
if (iacc .EQ. 0) then
c
c.... residual communication
c
if (code .eq. 'in ') then
if(impistat.eq.1) iISend = iISend+1
if(impistat.eq.1) rmpitmr = TMRC()
call MPI_ISEND(global(isgbeg, 1), 1, sevsegtype(itask,kdof),
& iother, itag, MPI_COMM_WORLD, req(m), ierr)
if(impistat.eq.1) rDelISend = TMRC()-rmpitmr
if(impistat.eq.1) rISend = rISend+rDelISend
endif
c
c.... solution communication
c
if (code .eq. 'out') then
if(impistat.eq.1) iIRecv = iIRecv+1
if(impistat.eq.1) rmpitmr = TMRC()
call MPI_IRECV(global(isgbeg, 1), 1, sevsegtype(itask,kdof),
& iother, itag, MPI_COMM_WORLD, req(m), ierr)
if(impistat.eq.1) rDelIRecv = TMRC()-rmpitmr
if(impistat.eq.1) rIRecv = rIRecv+rDelIRecv
endif
c
c.... if iacc == 1, then this task is a recieve.
c master
c
else
if (code .eq. 'in ') then
c
c.... determine the number of total number of nodes involved in this
c communication (lfront), including all segments
c
lfront = 0
do is = 1,numseg
lenseg = ilwork (itkbeg + 4 + 2*is)
lfront = lfront + lenseg
enddo
c
c.... recieve all segments for this task in a single step
c
idl=idl+1 ! stands for i Do Later, the number to fix later
if(impistat.eq.1) iIRecv = iIRecv+1
if(impistat.eq.1) rmpitmr = TMRC()
call MPI_IRECV(rtemp(1,idl), lfront*n, MPI_DOUBLE_PRECISION,
& iother, itag, MPI_COMM_WORLD, req(m), ierr)
if(impistat.eq.1) rDelIRecv = TMRC()-rmpitmr
if(impistat.eq.1) rIRecv = rIRecv+rDelIRecv
endif
if (code .eq. 'out') then
if(impistat.eq.1) iISend = iISend+1
if(impistat.eq.1) rmpitmr = TMRC()
call MPI_ISEND(global(isgbeg, 1), 1, sevsegtype(itask,kdof),
& iother, itag, MPI_COMM_WORLD, req(m), ierr)
if(impistat.eq.1) rDelISend = TMRC()-rmpitmr
if(impistat.eq.1) rISend = rISend+rDelISend
endif
endif
itkbeg = itkbeg + 4 + 2*numseg
enddo !! end tasks loop
if(impistat.eq.1) iWaitAll = iWaitAll+1
if(impistat.eq.1) rmpitmr = TMRC()
call MPI_WAITALL(m, req, stat, ierr)
if(impistat.eq.1) rDelWaitAll = TMRC()-rmpitmr
if(impistat.eq.1) rWaitAll = rWaitAll+rDelWaitAll
if(impistat.eq.1) rCommu = rCommu+rDelIRecv+rDelISend+rDelWaitAll
c
c Stuff added below is a delayed assembly of that which was communicated
c above but due to the switch to non-blocking receivves could not be
c assembled until after the waitall. Only necessary for commu "in"
c
if(code .eq. 'in ') then
itkbeg=1
jdl=0
do j=1,numtask ! time to do all the segments that needed to be
! assembled into the global vector
iacc = ilwork (itkbeg + 2)
numseg = ilwork (itkbeg + 4)
isgbeg = ilwork (itkbeg + 5)
if(iacc.eq.1) then
jdl=jdl+1 ! keep track of order of rtemp's
c
c... add the recieved data to the global array on the current processor.
c Note that this involves splitting up the chunk of recieved data
c into its correct segment locations for the current processor.
c
itemp = 1
do idof = 1,n
do is = 1,numseg
isgbeg = ilwork (itkbeg + 3 + 2*is)
lenseg = ilwork (itkbeg + 4 + 2*is)
isgend = isgbeg + lenseg - 1
c global(isgbeg:isgend,idof) = global(isgbeg:isgend,idof)
c & + rtemp (itemp:itemp+lenseg-1,jdl)
do k=isgbeg,isgend ! break this into an explicit loop an max instead of accumulate
global(k,idof) = max(global(k,idof),rtemp (itemp,jdl))
itemp=itemp+1 ! advance this index one at a time instead of in lenseg jumps
enddo
c itemp = itemp + lenseg
enddo
enddo
endif ! end of receive (iacc=1)
itkbeg = itkbeg + 4 + 2*numseg
enddo
endif ! commu "in"
return
end
| bsd-3-clause |
kbai/specfem3d | utils/ADJOINT_TOMOGRAPHY_TOOLS/iterate_adj/SEM2D_iterate/gji_paper/codes_18_06Aug2006/wave2d_constants.f90 | 7 | 6934 | module wave2d_constants
!
! GRID, TIME-STEP, AND SOURCE PARAMETERS
!
! NFRAME : number of frames to save
! NSAVE : timestep increment to save the wavefield
! NSTEP : number of timesteps
integer, parameter :: NFRAME = 10 ! 10,12,17
integer, parameter :: NSAVE = 400 ! 400
integer, parameter :: NSTEP = NFRAME*NSAVE
! time step in seconds
double precision, parameter :: DT = 6.0d-02 ! (0.02)
! temporal properties of source (source time function)
integer, parameter :: ISRC_TIME = 1 ! type (1)
double precision, parameter :: hdur = 10.0 ! HALF-duration (s)
double precision, parameter :: tshift = 2.*DT*NSAVE ! time shift (s)
!double precision, parameter :: tshift = 8.*hdur
logical, parameter :: SRC_TAPER = .true.
! spatial properties of sources
! (1) point source, (2) finite segment, (3) CA shelf boundary, (4) CA coast, (5) finite circle
! (6) a point source EVENT
integer, parameter :: ISRC_SPACE = 6 ! see wave2d.f90
! spatial properties of receivers
! IREC_SPACE
! (1) individual station(s)
! (2) SoCal (used for GJI paper)
! (3) regular mesh on land
! (4) regular mesh
! NMESH_REC : determines the number of receivers in a regular mesh (IREC_SPACE=3)
! STATION_GRID_BUFFER : exclude stations within this distance from edge of grid
! STATION_COAST_BUFFER : exclude stations within this distance from edge of coast
integer, parameter :: IREC_SPACE = 2 ! see wave2d.f90
integer, parameter :: NMESH_REC = 10
double precision, parameter :: SOURCE_GRID_BUFFER = 4.0d+03 ! m
double precision, parameter :: STATION_GRID_BUFFER = 15.0d+03 ! m
double precision, parameter :: STATION_COAST_BUFFER = 0.0d+03 ! m
! model specification for c(th,ph)
! (0) het map, (1) homo map, (2) checkerboard, (3) read in
!integer, parameter :: IMODEL = 3
! bounds for bandpass filter (in seconds), see also below (fmin,etc)
double precision, parameter :: hwid = 3.0 ! HALF-width of window
double precision, parameter :: tmin = 2.*hdur-hwid
double precision, parameter :: tmax = 2.*hdur+hwid
! mesh specifications
double precision, parameter :: LENGTH = 480.0d+03 ! m (200)
double precision, parameter :: HEIGHT = 480.0d+03 ! m (80)
integer, parameter :: NEX = 40 !40
integer, parameter :: NEZ = 40 !40
double precision, parameter :: LAT_MIN = 32.0d0
double precision, parameter :: LON_MIN = -120.d0
! boolean parameters
! IKER: (0) waveform
! (1) traveltime, cross-correlation, misfit
! (2) amplitude, cross-correlation, misfit
! (3) traveltime, multitaper
! (4) amplitude, multitaper
! (5) traveltime, cross-correlation, sampling
! (6) amplitude, cross-correlation, sampling
integer, parameter :: IKER = 1
integer, parameter :: ISURFACE = 1, NCOMP = 1, NABSORB = 4 ! surface waves
! integer, parameter :: ISURFACE = 0, NCOMP = 3, NABSORB = 3 ! body waves
! iteration and smoothing parameters
! logical, parameter :: IUPDATE = .false.
integer, parameter :: NITERATION = 0
integer, parameter :: POLY_ORDER = 2 ! 2 (equally good) or 3
!double precision, parameter :: SIGMA = 10.0d+03 ! m
! parameters controlling what to write to file
! NOTE: for the tomography simulations, ALL of these can be .false.
logical, parameter :: WRITE_STF_F = .false.
logical, parameter :: WRITE_SEISMO_F = .false. ! true
logical, parameter :: WRITE_SPECTRA_F = .false.
logical, parameter :: WRITE_SPECTRAL_MAP_F = .false.
logical, parameter :: WRITE_STF_A = .false.
logical, parameter :: WRITE_SEISMO_A = .false.
logical, parameter :: WRITE_SPECTRA_A = .false.
logical, parameter :: WRITE_SPECTRAL_MAP_A = .false.
logical, parameter :: WRITE_KERNELS = .false. ! kernel snapshots
logical, parameter :: WRITE_SNAPSHOTS = .false. ! wavefield snapshots
! MODEL (S.I. units)
double precision, parameter :: DENSITY = 2.6d+03 ! kg/m^3
double precision, parameter :: INCOMPRESSIBILITY = 5.2d+10 ! Pa
double precision, parameter :: RIGIDITY = 2.66d+10 ! Pa
!---------------------------------------------------------------
! CHT: do not change these
! UTM zone for Southern California region
! integer, parameter :: UTM_PROJECTION_ZONE = 11
! to suppress UTM projection for SCEC benchmarks
logical, parameter :: SUPPRESS_UTM_PROJECTION = .false.
! flag for projection from latitude/longitude to UTM, and back
integer, parameter :: ILONGLAT2UTM = 0, IUTM2LONGLAT = 1
! flag for projection from latitude/longitude to mesh-UTM, and back
integer, parameter :: ILONLAT2MESH = 0, IMESH2LONLAT = 1
! max number of fake receivers
integer, parameter :: MAX_SR_FAKE = 1000
! max number of events, receivers, and phass
integer, parameter :: MAX_EVENT = 50
integer, parameter :: MAX_SR = 1400
integer, parameter :: MAX_PHASE = 1
integer, parameter :: MAX_COMP = NCOMP
! parameter for FFTW
integer, parameter :: NOUT = NSTEP/2 + 1
! filter parameters for bandpass
double precision, parameter :: fmin = 1./tmax, fmax = 1./tmin
double precision, parameter :: trbdndw = 0.3, a = 30.
integer, parameter :: passes = 2, iord = 4
!---------------------------------------------------------------
!
! GRID AND GLL POINTS
!
integer, parameter :: NELE = MAX(NEX,NEZ)
integer, parameter :: NSPEC = NEX*NEZ
! number of GLL points (polynomial degree plus one)
integer, parameter :: NGLLX = 5
integer, parameter :: NGLLZ = 5
integer, parameter :: NGLL = MAX(NGLLX,NGLLZ)
! number of points per surface element
integer, parameter :: NGLLSQUARE = NGLLX * NGLLZ
! number of global points
integer, parameter :: NGLOB = ((NGLLX-1)*NEX + 1)*((NGLLZ-1)*NEZ +1)
! number of local points
integer, parameter :: NLOCAL = NGLLX * NGLLZ * NSPEC
! number of nodes for 2D and 3D shape functions for hexahedra
! we use 8-node mesh bricks, which are more stable than 27-node elements
integer, parameter :: NGNOD = 8, NGNOD2D = 4
! number of iterations to solve the system for xi and eta
integer, parameter :: NUM_ITER = 1
! very large and very small values
double precision, parameter :: HUGEVAL = 1.d+30, TINYVAL = 1.d-9
! for the Gauss-Lobatto-Legendre points and weights
double precision, parameter :: GAUSSALPHA = 0.d0,GAUSSBETA = 0.d0
!
! CONSTANTS
!
! pi
double precision, parameter :: PI = 3.141592653589793d+00
double precision, parameter :: FOUR_THIRDS = 4.d0/3.d0
double precision, parameter :: ONE_THIRD = 1.d0/3.d0
double precision, parameter :: ONEOVERTWO = 0.5d0
double precision, parameter :: EPS = 1.0d-35
double precision, parameter :: DEG = 180./PI
! normalization factor of point source force
double precision, parameter :: FNORM = 1.0d10
! factors from the multitaper method
integer, parameter :: MAXTAPER=5, NDIM=8000*4, lnpt=14, npt=2**lnpt
double precision, parameter :: wtr=0.02, ZZIGN=-1.0
end module wave2d_constants
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/interface_3.f90 | 155 | 1587 | ! { dg-do compile }
! Tests the fix for PR20880, which was due to failure to the failure
! to detect the USE association of a nameless interface for a
! procedure with the same name as the encompassing scope.
!
! Contributed by Joost VandeVondele <jv244@cam.ac.uk>
!
! Modified for PR fortran/34657
!
module test_mod
interface
subroutine my_sub (a)
real a
end subroutine
end interface
interface
function my_fun (a)
real a, my_fun
end function
end interface
end module
module test_mod2
interface
function my_fun (a)
real a, my_fun
end function
end interface
end module
! This is the original PR, excepting that the error requires the symbol
! to be referenced.
subroutine my_sub (a)
use test_mod ! { dg-error "is also the name of the current program unit" }
real a
call my_sub (a) ! { dg-error "ambiguous reference" }
print *, a
end subroutine
integer function my_fun (a)
use test_mod ! { dg-error "is also the name of the current program unit" }
real a
print *, a
my_fun = 1 ! { dg-error "ambiguous reference" }
end function
! This was found whilst investigating => segfault
subroutine thy_sub (a)
interface
subroutine thy_sub (a) ! { dg-error "enclosing procedure" }
real a
end subroutine
end interface
real a
print *, a
end subroutine
subroutine thy_fun (a)
use test_mod
use test_mod2 ! OK because there is no reference to my_fun
print *, a
end subroutine thy_fun
subroutine his_fun (a)
use test_mod
use test_mod2
print *, my_fun (a) ! { dg-error "ambiguous reference" }
end subroutine his_fun
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/implicit_2.f90 | 157 | 1088 | ! { dg-do compile }
module implicit_2
! This should cause an error if function types are resolved from the
! module namespace.
implicit none
type t
integer i
end type
contains
! This caused an ICE because we were trying to apply the implicit type
! after we had applied the explicit type.
subroutine test()
implicit type (t) (v)
type (t) v1, v2
v1%i = 1
call foo (v2%i)
end subroutine
! A similar error because we failed to apply the implicit type to a function.
! This is a contained function to check we lookup the type in the function
! namespace, not it's parent.
function f() result (val)
implicit type (t) (v)
val%i = 1
end function
! And again for a result variable.
function fun()
implicit type (t) (f)
fun%i = 1
end function
! intrinsic types are resolved later than derived type, so check those as well.
function test2()
implicit integer (t)
test2 = 42
end function
subroutine bar()
! Check that implicit types are applied to names already known to be
! variables.
implicit type(t) (v)
save v
v%i = 42
end subroutine
end module
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/aliasing_array_result_1.f90 | 136 | 3787 | ! { dg-do run }
! Tests the fic for PR44582, where gfortran was found to
! produce an incorrect result when the result of a function
! was aliased by a host or use associated variable, to which
! the function is assigned. In these cases a temporary is
! required in the function assignments. The check has to be
! rather restrictive. Whilst the cases marked below might
! not need temporaries, the TODOs are going to be tough.
!
! Reported by Yin Ma <yin@absoft.com> and
! elaborated by Tobias Burnus <burnus@gcc.gnu.org>
!
module foo
INTEGER, PARAMETER :: ONE = 1
INTEGER, PARAMETER :: TEN = 10
INTEGER, PARAMETER :: FIVE = TEN/2
INTEGER, PARAMETER :: TWO = 2
integer :: foo_a(ONE)
integer :: check(ONE) = TEN
LOGICAL :: abort_flag = .false.
contains
function foo_f()
integer :: foo_f(ONE)
foo_f = -FIVE
foo_f = foo_a - foo_f
end function foo_f
subroutine bar
foo_a = FIVE
! This aliases 'foo_a' by host association.
foo_a = foo_f ()
if (any (foo_a .ne. check)) call myabort (0)
end subroutine bar
subroutine myabort(fl)
integer :: fl
print *, fl
abort_flag = .true.
end subroutine myabort
end module foo
function h_ext()
use foo
integer :: h_ext(ONE)
h_ext = -FIVE
h_ext = FIVE - h_ext
end function h_ext
function i_ext() result (h)
use foo
integer :: h(ONE)
h = -FIVE
h = FIVE - h
end function i_ext
subroutine tobias
use foo
integer :: a(ONE)
a = FIVE
call sub1(a)
if (any (a .ne. check)) call myabort (1)
contains
subroutine sub1(x)
integer :: x(ONE)
! 'x' is aliased by host association in 'f'.
x = f()
end subroutine sub1
function f()
integer :: f(ONE)
f = ONE
f = a + FIVE
end function f
end subroutine tobias
program test
use foo
implicit none
common /foo_bar/ c
integer :: a(ONE), b(ONE), c(ONE), d(ONE)
interface
function h_ext()
use foo
integer :: h_ext(ONE)
end function h_ext
end interface
interface
function i_ext() result (h)
use foo
integer :: h(ONE)
end function i_ext
end interface
a = FIVE
! This aliases 'a' by host association
a = f()
if (any (a .ne. check)) call myabort (2)
a = FIVE
if (any (f() .ne. check)) call myabort (3)
call bar
foo_a = FIVE
! This aliases 'foo_a' by host association.
foo_a = g ()
if (any (foo_a .ne. check)) call myabort (4)
a = FIVE
a = h() ! TODO: Needs no temporary
if (any (a .ne. check)) call myabort (5)
a = FIVE
a = i() ! TODO: Needs no temporary
if (any (a .ne. check)) call myabort (6)
a = FIVE
a = h_ext() ! Needs no temporary - was OK
if (any (a .ne. check)) call myabort (15)
a = FIVE
a = i_ext() ! Needs no temporary - was OK
if (any (a .ne. check)) call myabort (16)
c = FIVE
! This aliases 'c' through the common block.
c = j()
if (any (c .ne. check)) call myabort (7)
call aaa
call tobias
if (abort_flag) call abort
contains
function f()
integer :: f(ONE)
f = -FIVE
f = a - f
end function f
function g()
integer :: g(ONE)
g = -FIVE
g = foo_a - g
end function g
function h()
integer :: h(ONE)
h = -FIVE
h = FIVE - h
end function h
function i() result (h)
integer :: h(ONE)
h = -FIVE
h = FIVE - h
end function i
function j()
common /foo_bar/ cc
integer :: j(ONE), cc(ONE)
j = -FIVE
j = cc - j
end function j
subroutine aaa()
d = TEN - TWO
! This aliases 'd' through 'get_d'.
d = bbb()
if (any (d .ne. check)) call myabort (8)
end subroutine aaa
function bbb()
integer :: bbb(ONE)
bbb = TWO
bbb = bbb + get_d()
end function bbb
function get_d()
integer :: get_d(ONE)
get_d = d
end function get_d
end program test
| gpl-2.0 |
khsk2/inc3d | io_diagp.f90 | 1 | 27717 | !=======================================================================
! This is part of the 2DECOMP&FFT library
!
! 2DECOMP&FFT is a software framework for general-purpose 2D (pencil)
! decomposition. It also implements a highly scalable distributed
! three-dimensional Fast Fourier Transform (FFT).
!
! Copyright (C) 2009-2013 Ning Li, the Numerical Algorithms Group (NAG)
!
!=======================================================================
! This module provides parallel IO facilities for applications based on
! 2D decomposition.
module decomp_2d_io
use decomp_2d
use MPI
#ifdef T3PIO
use t3pio
#endif
implicit none
private ! Make everything private unless declared public
public :: decomp_2d_write_one, decomp_2d_read_one, &
decomp_2d_write_var, decomp_2d_read_var, &
decomp_2d_write_scalar, decomp_2d_read_scalar, &
decomp_2d_write_plane, decomp_2d_write_every, &
decomp_2d_write_subdomain
! Generic interface to handle multiple data types
interface decomp_2d_write_one
module procedure write_one_real
module procedure write_one_complex
module procedure mpiio_write_real_coarse
end interface decomp_2d_write_one
interface decomp_2d_read_one
module procedure read_one_real
module procedure read_one_complex
end interface decomp_2d_read_one
interface decomp_2d_write_var
module procedure write_var_real
module procedure write_var_complex
end interface decomp_2d_write_var
interface decomp_2d_read_var
module procedure read_var_real
module procedure read_var_complex
end interface decomp_2d_read_var
interface decomp_2d_write_scalar
module procedure write_scalar_real
module procedure write_scalar_complex
module procedure write_scalar_integer
module procedure write_scalar_logical
end interface decomp_2d_write_scalar
interface decomp_2d_read_scalar
module procedure read_scalar_real
module procedure read_scalar_complex
module procedure read_scalar_integer
module procedure read_scalar_logical
end interface decomp_2d_read_scalar
interface decomp_2d_write_plane
module procedure write_plane_3d_real
module procedure write_plane_3d_complex
! module procedure write_plane_2d
end interface decomp_2d_write_plane
interface decomp_2d_write_every
module procedure write_every_real
module procedure write_every_complex
end interface decomp_2d_write_every
interface decomp_2d_write_subdomain
module procedure write_subdomain
end interface decomp_2d_write_subdomain
contains
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Using MPI-IO library to write a single 3D array to a file
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine write_one_real(ipencil,var,filename,opt_decomp)
implicit none
integer, intent(IN) :: ipencil
real(mytype), dimension(:,:,:), intent(IN) :: var
character(len=*), intent(IN) :: filename
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
TYPE(DECOMP_INFO) :: decomp
integer(kind=MPI_OFFSET_KIND) :: filesize, disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: ierror, newtype, fh, data_type, info, gs
data_type = real_type
#include "io_write_one.f90"
return
end subroutine write_one_real
subroutine write_one_complex(ipencil,var,filename,opt_decomp)
implicit none
integer, intent(IN) :: ipencil
complex(mytype), dimension(:,:,:), intent(IN) :: var
character(len=*), intent(IN) :: filename
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
TYPE(DECOMP_INFO) :: decomp
integer(kind=MPI_OFFSET_KIND) :: filesize, disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: ierror, newtype, fh, data_type, info, gs
data_type = complex_type
#include "io_write_one.f90"
return
end subroutine write_one_complex
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Using MPI-IO library to read from a file a single 3D array
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine read_one_real(ipencil,var,filename,opt_decomp)
implicit none
integer, intent(IN) :: ipencil
real(mytype), dimension(:,:,:), intent(INOUT) :: var
character(len=*), intent(IN) :: filename
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
TYPE(DECOMP_INFO) :: decomp
integer(kind=MPI_OFFSET_KIND) :: disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: ierror, newtype, fh, data_type
data_type = real_type
#include "io_read_one.f90"
return
end subroutine read_one_real
subroutine read_one_complex(ipencil,var,filename,opt_decomp)
implicit none
integer, intent(IN) :: ipencil
complex(mytype), dimension(:,:,:), intent(INOUT) :: var
character(len=*), intent(IN) :: filename
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
TYPE(DECOMP_INFO) :: decomp
integer(kind=MPI_OFFSET_KIND) :: disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: ierror, newtype, fh, data_type
data_type = complex_type
#include "io_read_one.f90"
return
end subroutine read_one_complex
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Write a 3D array as part of a big MPI-IO file, starting from
! displacement 'disp'; 'disp' will be updated after the writing
! operation to prepare the writing of next chunk of data.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine write_var_real(fh,disp,ipencil,var,opt_decomp)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: ipencil
real(mytype), dimension(:,:,:), intent(IN) :: var
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
TYPE(DECOMP_INFO) :: decomp
integer, dimension(3) :: sizes, subsizes, starts
integer :: ierror, newtype, data_type
data_type = real_type
#include "io_write_var.f90"
return
end subroutine write_var_real
subroutine write_var_complex(fh,disp,ipencil,var,opt_decomp)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: ipencil
complex(mytype), dimension(:,:,:), intent(IN) :: var
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
TYPE(DECOMP_INFO) :: decomp
integer, dimension(3) :: sizes, subsizes, starts
integer :: ierror, newtype, data_type
data_type = complex_type
#include "io_write_var.f90"
return
end subroutine write_var_complex
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Read a 3D array as part of a big MPI-IO file, starting from
! displacement 'disp'; 'disp' will be updated after the reading
! operation to prepare the reading of next chunk of data.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine read_var_real(fh,disp,ipencil,var,opt_decomp)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: ipencil
real(mytype), dimension(:,:,:), intent(INOUT) :: var
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
TYPE(DECOMP_INFO) :: decomp
integer, dimension(3) :: sizes, subsizes, starts
integer :: ierror, newtype, data_type
data_type = real_type
#include "io_read_var.f90"
return
end subroutine read_var_real
subroutine read_var_complex(fh,disp,ipencil,var,opt_decomp)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: ipencil
complex(mytype), dimension(:,:,:), intent(INOUT) :: var
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
TYPE(DECOMP_INFO) :: decomp
integer, dimension(3) :: sizes, subsizes, starts
integer :: ierror, newtype, data_type
data_type = complex_type
#include "io_read_var.f90"
return
end subroutine read_var_complex
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Write scalar variables as part of a big MPI-IO file, starting from
! displacement 'disp'; 'disp' will be updated after the reading
! operation to prepare the reading of next chunk of data.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine write_scalar_real(fh,disp,n,var)
implicit none
integer, intent(IN) :: fh ! file handle
integer(KIND=MPI_OFFSET_KIND), &
intent(INOUT) :: disp ! displacement
integer, intent(IN) :: n ! number of scalars
real(mytype), dimension(n), &
intent(IN) :: var ! array of scalars
integer :: m, ierror
call MPI_FILE_SET_VIEW(fh,disp,real_type, &
real_type,'native',MPI_INFO_NULL,ierror)
if (nrank==0) then
m = n ! only one rank needs to write
else
m = 0
end if
call MPI_FILE_WRITE_ALL(fh, var, m, real_type, &
MPI_STATUS_IGNORE, ierror)
disp = disp + n*mytype_bytes
return
end subroutine write_scalar_real
subroutine write_scalar_complex(fh,disp,n,var)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: n
complex(mytype), dimension(n), intent(IN) :: var
integer :: m, ierror
call MPI_FILE_SET_VIEW(fh,disp,complex_type, &
complex_type,'native',MPI_INFO_NULL,ierror)
if (nrank==0) then
m = n
else
m = 0
end if
call MPI_FILE_WRITE_ALL(fh, var, m, complex_type, &
MPI_STATUS_IGNORE, ierror)
disp = disp + n*mytype_bytes*2
return
end subroutine write_scalar_complex
subroutine write_scalar_integer(fh,disp,n,var)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: n
integer, dimension(n), intent(IN) :: var
integer :: m, ierror
call MPI_FILE_SET_VIEW(fh,disp,MPI_INTEGER, &
MPI_INTEGER,'native',MPI_INFO_NULL,ierror)
if (nrank==0) then
m = n
else
m = 0
end if
call MPI_FILE_WRITE_ALL(fh, var, m, MPI_INTEGER, &
MPI_STATUS_IGNORE, ierror)
call MPI_TYPE_SIZE(MPI_INTEGER,m,ierror)
disp = disp + n*m
return
end subroutine write_scalar_integer
subroutine write_scalar_logical(fh,disp,n,var)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: n
logical, dimension(n), intent(IN) :: var
integer :: m, ierror
call MPI_FILE_SET_VIEW(fh,disp,MPI_LOGICAL, &
MPI_LOGICAL,'native',MPI_INFO_NULL,ierror)
if (nrank==0) then
m = n
else
m = 0
end if
call MPI_FILE_WRITE_ALL(fh, var, m, MPI_LOGICAL, &
MPI_STATUS_IGNORE, ierror)
call MPI_TYPE_SIZE(MPI_LOGICAL,m,ierror)
disp = disp + n*m
return
end subroutine write_scalar_logical
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Read scalar variables as part of a big MPI-IO file, starting from
! displacement 'disp'; 'disp' will be updated after the reading
! operation to prepare the reading of next chunk of data.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine read_scalar_real(fh,disp,n,var)
implicit none
integer, intent(IN) :: fh ! file handle
integer(KIND=MPI_OFFSET_KIND), &
intent(INOUT) :: disp ! displacement
integer, intent(IN) :: n ! number of scalars
real(mytype), dimension(n), &
intent(INOUT) :: var ! array of scalars
integer :: ierror
call MPI_FILE_SET_VIEW(fh,disp,real_type, &
real_type,'native',MPI_INFO_NULL,ierror)
call MPI_FILE_READ_ALL(fh, var, n, real_type, &
MPI_STATUS_IGNORE, ierror)
disp = disp + n*mytype_bytes
return
end subroutine read_scalar_real
subroutine read_scalar_complex(fh,disp,n,var)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: n
complex(mytype), dimension(n), intent(INOUT) :: var
integer :: ierror
call MPI_FILE_SET_VIEW(fh,disp,complex_type, &
complex_type,'native',MPI_INFO_NULL,ierror)
call MPI_FILE_READ_ALL(fh, var, n, complex_type, &
MPI_STATUS_IGNORE, ierror)
disp = disp + n*mytype_bytes*2
return
end subroutine read_scalar_complex
subroutine read_scalar_integer(fh,disp,n,var)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: n
integer, dimension(n), intent(INOUT) :: var
integer :: m, ierror
call MPI_FILE_SET_VIEW(fh,disp,MPI_INTEGER, &
MPI_INTEGER,'native',MPI_INFO_NULL,ierror)
call MPI_FILE_READ_ALL(fh, var, n, MPI_INTEGER, &
MPI_STATUS_IGNORE, ierror)
call MPI_TYPE_SIZE(MPI_INTEGER,m,ierror)
disp = disp + n*m
return
end subroutine read_scalar_integer
subroutine read_scalar_logical(fh,disp,n,var)
implicit none
integer, intent(IN) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(INOUT) :: disp
integer, intent(IN) :: n
logical, dimension(n), intent(INOUT) :: var
integer :: m, ierror
call MPI_FILE_SET_VIEW(fh,disp,MPI_LOGICAL, &
MPI_LOGICAL,'native',MPI_INFO_NULL,ierror)
call MPI_FILE_READ_ALL(fh, var, n, MPI_LOGICAL, &
MPI_STATUS_IGNORE, ierror)
call MPI_TYPE_SIZE(MPI_LOGICAL,m,ierror)
disp = disp + n*m
return
end subroutine read_scalar_logical
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Write a 2D slice of the 3D data to a file
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine write_plane_3d_real(ipencil,var,iplane,n,filename, &
opt_decomp)
implicit none
integer, intent(IN) :: ipencil !(x-pencil=1; y-pencil=2; z-pencil=3)
real(mytype), dimension(:,:,:), intent(IN) :: var
integer, intent(IN) :: iplane !(x-plane=1; y-plane=2; z-plane=3)
integer, intent(IN) :: n ! which plane to write (global coordinate)
character(len=*), intent(IN) :: filename
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
real(mytype), allocatable, dimension(:,:,:) :: wk, wk2
real(mytype), allocatable, dimension(:,:,:) :: wk2d
TYPE(DECOMP_INFO) :: decomp
integer(kind=MPI_OFFSET_KIND) :: filesize, disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: i,j,k, ierror, newtype, fh, data_type
data_type = real_type
#include "io_write_plane.f90"
return
end subroutine write_plane_3d_real
subroutine write_plane_3d_complex(ipencil,var,iplane,n, &
filename,opt_decomp)
implicit none
integer, intent(IN) :: ipencil !(x-pencil=1; y-pencil=2; z-pencil=3)
complex(mytype), dimension(:,:,:), intent(IN) :: var
integer, intent(IN) :: iplane !(x-plane=1; y-plane=2; z-plane=3)
integer, intent(IN) :: n ! which plane to write (global coordinate)
character(len=*), intent(IN) :: filename
TYPE(DECOMP_INFO), intent(IN), optional :: opt_decomp
complex(mytype), allocatable, dimension(:,:,:) :: wk, wk2
complex(mytype), allocatable, dimension(:,:,:) :: wk2d
TYPE(DECOMP_INFO) :: decomp
integer(kind=MPI_OFFSET_KIND) :: filesize, disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: i,j,k, ierror, newtype, fh, data_type
data_type = complex_type
#include "io_write_plane.f90"
return
end subroutine write_plane_3d_complex
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Write a 2D array to a file
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!************** TO DO ***************
!* Consider handling distributed 2D data set
! subroutine write_plane_2d(ipencil,var,filename)
! integer, intent(IN) :: ipencil !(x-pencil=1; y-pencil=2; z-pencil=3)
! real(mytype), dimension(:,:), intent(IN) :: var ! 2D array
! character(len=*), intent(IN) :: filename
!
! if (ipencil==1) then
! ! var should be defined as var(xsize(2)
!
! else if (ipencil==2) then
!
! else if (ipencil==3) then
!
! end if
!
! return
! end subroutine write_plane_2d
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Write 3D array data for every specified mesh point
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine write_every_real(ipencil,var,iskip,jskip,kskip, &
filename, from1)
implicit none
integer, intent(IN) :: ipencil !(x-pencil=1; y-pencil=2; z-pencil=3)
real(mytype), dimension(:,:,:), intent(IN) :: var
integer, intent(IN) :: iskip,jskip,kskip
character(len=*), intent(IN) :: filename
logical, intent(IN) :: from1 ! .true. - save 1,n+1,2n+1...
! .false. - save n,2n,3n...
real(mytype), allocatable, dimension(:,:,:) :: wk, wk2
integer(kind=MPI_OFFSET_KIND) :: filesize, disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: i,j,k, ierror, newtype, fh, key,color,newcomm, data_type
integer, dimension(3) :: xsz,ysz,zsz,xst,yst,zst,xen,yen,zen,skip
data_type = real_type
#include "io_write_every.f90"
return
end subroutine write_every_real
subroutine write_every_complex(ipencil,var,iskip,jskip,kskip, &
filename, from1)
implicit none
integer, intent(IN) :: ipencil !(x-pencil=1; y-pencil=2; z-pencil=3)
complex(mytype), dimension(:,:,:), intent(IN) :: var
integer, intent(IN) :: iskip,jskip,kskip
character(len=*), intent(IN) :: filename
logical, intent(IN) :: from1 ! .true. - save 1,n+1,2n+1...
! .false. - save n,2n,3n...
complex(mytype), allocatable, dimension(:,:,:) :: wk, wk2
integer(kind=MPI_OFFSET_KIND) :: filesize, disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: i,j,k, ierror, newtype, fh, key,color,newcomm, data_type
integer, dimension(3) :: xsz,ysz,zsz,xst,yst,zst,xen,yen,zen,skip
data_type = complex_type
#include "io_write_every.f90"
return
end subroutine write_every_complex
subroutine mpiio_write_real_coarse(ipencil,var,filename,icoarse)
USE param
USE variables
implicit none
integer, intent(IN) :: ipencil !(x-pencil=1; y-pencil=2; z-pencil=3)
integer, intent(IN) :: icoarse !(nstat=1; nvisu=2)
real(mytype), dimension(:,:,:), intent(IN) :: var
character(len=*) :: filename
integer (kind=MPI_OFFSET_KIND) :: filesize, disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: i,j,k, ierror, newtype, fh
if (icoarse==1) then
sizes(1) = xszS(1)
sizes(2) = yszS(2)
sizes(3) = zszS(3)
if (ipencil == 1) then
subsizes(1) = xszS(1)
subsizes(2) = xszS(2)
subsizes(3) = xszS(3)
starts(1) = xstS(1)-1 ! 0-based index
starts(2) = xstS(2)-1
starts(3) = xstS(3)-1
else if (ipencil == 2) then
subsizes(1) = yszS(1)
subsizes(2) = yszS(2)
subsizes(3) = yszS(3)
starts(1) = ystS(1)-1
starts(2) = ystS(2)-1
starts(3) = ystS(3)-1
else if (ipencil == 3) then
subsizes(1) = zszS(1)
subsizes(2) = zszS(2)
subsizes(3) = zszS(3)
starts(1) = zstS(1)-1
starts(2) = zstS(2)-1
starts(3) = zstS(3)-1
endif
endif
if (icoarse==2) then
sizes(1) = xszV(1)
sizes(2) = yszV(2)
sizes(3) = zszV(3)
if (ipencil == 1) then
subsizes(1) = xszV(1)
subsizes(2) = xszV(2)
subsizes(3) = xszV(3)
starts(1) = xstV(1)-1 ! 0-based index
starts(2) = xstV(2)-1
starts(3) = xstV(3)-1
else if (ipencil == 2) then
subsizes(1) = yszV(1)
subsizes(2) = yszV(2)
subsizes(3) = yszV(3)
starts(1) = ystV(1)-1
starts(2) = ystV(2)-1
starts(3) = ystV(3)-1
else if (ipencil == 3) then
subsizes(1) = zszV(1)
subsizes(2) = zszV(2)
subsizes(3) = zszV(3)
starts(1) = zstV(1)-1
starts(2) = zstV(2)-1
starts(3) = zstV(3)-1
endif
endif
call MPI_TYPE_CREATE_SUBARRAY(3, sizes, subsizes, starts, &
MPI_ORDER_FORTRAN, real_type, newtype, ierror)
call MPI_TYPE_COMMIT(newtype,ierror)
call MPI_FILE_OPEN(MPI_COMM_WORLD, filename, &
MPI_MODE_CREATE+MPI_MODE_WRONLY, MPI_INFO_NULL, &
fh, ierror)
filesize = 0_MPI_OFFSET_KIND
call MPI_FILE_SET_SIZE(fh,filesize,ierror) ! guarantee overwriting
disp = 0_MPI_OFFSET_KIND
call MPI_FILE_SET_VIEW(fh,disp,real_type, &
newtype,'native',MPI_INFO_NULL,ierror)
call MPI_FILE_WRITE_ALL(fh, var, &
subsizes(1)*subsizes(2)*subsizes(3), &
real_type, MPI_STATUS_IGNORE, ierror)
call MPI_FILE_CLOSE(fh,ierror)
call MPI_TYPE_FREE(newtype,ierror)
return
end subroutine mpiio_write_real_coarse
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Write a 3D data set covering a smaller sub-domain only
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine write_subdomain(ipencil,var,is,ie,js,je,ks,ke,filename)
implicit none
integer, intent(IN) :: ipencil !(x-pencil=1; y-pencil=2; z-pencil=3)
real(mytype), dimension(:,:,:), intent(IN) :: var
integer, intent(IN) :: is, ie, js, je, ks, ke
character(len=*), intent(IN) :: filename
real(mytype), allocatable, dimension(:,:,:) :: wk, wk2
integer(kind=MPI_OFFSET_KIND) :: filesize, disp
integer, dimension(3) :: sizes, subsizes, starts
integer :: color, key, errorcode, newcomm, ierror
integer :: newtype, fh, data_type, i, j, k
integer :: i1, i2, j1, j2, k1, k2
data_type = real_type
! validate the input paramters
if (is<1 .OR. ie>nx_global .OR. js<1 .OR. je>ny_global .OR. &
ks<1 .OR. ke>nz_global) then
errorcode = 10
call decomp_2d_abort(errorcode, &
'Invalid subdomain specified in I/O')
end if
! create a communicator for all those MPI ranks containing the subdomain
color = 1
key = 1
if (ipencil==1) then
if (xstart(1)>ie .OR. xend(1)<is .OR. xstart(2)>je .OR. xend(2)<js &
.OR. xstart(3)>ke .OR. xend(3)<ks) then
color = 2
end if
else if (ipencil==2) then
if (ystart(1)>ie .OR. yend(1)<is .OR. ystart(2)>je .OR. yend(2)<js &
.OR. ystart(3)>ke .OR. yend(3)<ks) then
color = 2
end if
else if (ipencil==3) then
if (zstart(1)>ie .OR. zend(1)<is .OR. zstart(2)>je .OR. zend(2)<js &
.OR. zstart(3)>ke .OR. zend(3)<ks) then
color = 2
end if
end if
call MPI_COMM_SPLIT(MPI_COMM_WORLD,color,key,newcomm,ierror)
if (color==1) then ! only ranks in this group do IO collectively
! generate MPI-IO subarray information
! global size of the sub-domain to write
sizes(1) = ie - is + 1
sizes(2) = je - js + 1
sizes(3) = ke - ks + 1
! 'subsizes' & 'starts' as required by MPI_TYPE_CREATE_SUBARRAY
! note the special code whe subdomain only occupy part of the pencil
if (ipencil==1) then
subsizes(1) = xsize(1)
starts(1) = xstart(1) - is
if (xend(1)>ie .AND. xstart(1)<is) then
subsizes(1) = ie - is + 1
starts(1) = 0
else if (xstart(1)<is) then
subsizes(1) = xend(1) - is + 1
starts(1) = 0
else if (xend(1)>ie) then
subsizes(1) = ie - xstart(1) + 1
end if
subsizes(2) = xsize(2)
starts(2) = xstart(2) - js
if (xend(2)>je .AND. xstart(2)<js) then
subsizes(2) = je - js + 1
starts(2) = 0
else if (xstart(2)<js) then
subsizes(2) = xend(2) - js + 1
starts(2) = 0
else if (xend(2)>je) then
subsizes(2) = je - xstart(2) + 1
end if
subsizes(3) = xsize(3)
starts(3) = xstart(3) - ks
if (xend(3)>ke .AND. xstart(3)<ks) then
subsizes(3) = ke - ks + 1
starts(3) = 0
else if (xstart(3)<ks) then
subsizes(3) = xend(3) - ks + 1
starts(3) = 0
else if (xend(3)>ke) then
subsizes(3) = ke - xstart(3) + 1
end if
else if (ipencil==2) then
! TODO
else if (ipencil==3) then
! TODO
end if
! copy data from orginal to a temp array
! pay attention to blocks only partially cover the sub-domain
if (ipencil==1) then
if (xend(1)>ie .AND. xstart(1)<is) then
i1 = is
i2 = ie
else if (xend(1)>ie) then
i1 = xstart(1)
i2 = ie
else if (xstart(1)<is) then
i1 = is
i2 = xend(1)
else
i1 = xstart(1)
i2 = xend(1)
end if
if (xend(2)>je .AND. xstart(2)<js) then
j1 = js
j2 = je
else if (xend(2)>je) then
j1 = xstart(2)
j2 = je
else if (xstart(2)<js) then
j1 = js
j2 = xend(2)
else
j1 = xstart(2)
j2 = xend(2)
end if
if (xend(3)>ke .AND. xstart(3)<ks) then
k1 = ks
k2 = ke
else if (xend(3)>ke) then
k1 = xstart(3)
k2 = ke
else if (xstart(3)<ks) then
k1 = ks
k2 = xend(3)
else
k1 = xstart(3)
k2 = xend(3)
end if
allocate(wk(i1:i2, j1:j2, k1:k2))
allocate(wk2(xstart(1):xend(1),xstart(2):xend(2),xstart(3):xend(3)))
wk2 = var
do k=k1,k2
do j=j1,j2
do i=i1,i2
wk(i,j,k) = wk2(i,j,k)
end do
end do
end do
else if (ipencil==2) then
! TODO
else if (ipencil==3) then
! TODO
end if
deallocate(wk2)
! MPI-IO
call MPI_TYPE_CREATE_SUBARRAY(3, sizes, subsizes, starts, &
MPI_ORDER_FORTRAN, data_type, newtype, ierror)
call MPI_TYPE_COMMIT(newtype,ierror)
call MPI_FILE_OPEN(newcomm, filename, &
MPI_MODE_CREATE+MPI_MODE_WRONLY, MPI_INFO_NULL, &
fh, ierror)
filesize = 0_MPI_OFFSET_KIND
call MPI_FILE_SET_SIZE(fh,filesize,ierror) ! guarantee overwriting
disp = 0_MPI_OFFSET_KIND
call MPI_FILE_SET_VIEW(fh,disp,data_type, &
newtype,'native',MPI_INFO_NULL,ierror)
call MPI_FILE_WRITE_ALL(fh, wk, &
subsizes(1)*subsizes(2)*subsizes(3), &
data_type, MPI_STATUS_IGNORE, ierror)
call MPI_FILE_CLOSE(fh,ierror)
call MPI_TYPE_FREE(newtype,ierror)
deallocate(wk)
end if
return
end subroutine write_subdomain
end module decomp_2d_io
| gpl-3.0 |
QEF/q-e_schrodinger | Modules/suscept_laue.f90 | 2 | 20583 | !
! Copyright (C) 2016 National Institute of Advanced Industrial Science and Technology (AIST)
! [ This code is written by Satomichi Nishihara. ]
!
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!---------------------------------------------------------------------------
SUBROUTINE suscept_laue(rism1t, rismlt, alpha, lhand, ierr)
!---------------------------------------------------------------------------
!
! ... create inter-site susceptibility for Laue-RISM (from 1D-RISM)
! ...
! ... 1 / inf
! ... x21(gxy,z'-z) = ---- | dgz [ w21(g) + rho2 * h21(g) ] * cos(gz*(z'-z))
! ... pi / 0
! ...
! ... x21 depends on norm of gxy, and is even along z'-z.
!
USE constants, ONLY : pi, sqrtpi, eps12
USE cell_base, ONLY : alat, tpiba2
USE err_rism, ONLY : IERR_RISM_NULL, IERR_RISM_INCORRECT_DATA_TYPE, &
& IERR_RISM_1DRISM_IS_NOT_AVAIL, IERR_RISM_LARGE_LAUE_BOX
USE io_files, ONLY : tmp_dir, prefix
USE io_global, ONLY : ionode
USE kinds, ONLY : DP
USE mp, ONLY : mp_size, mp_rank, mp_max, mp_sum, mp_get, mp_gather, mp_bcast, mp_barrier
USE rism, ONLY : rism_type, ITYPE_1DRISM, ITYPE_LAUERISM
USE solvavg, ONLY : solvavg_init, solvavg_clear, solvavg_print, solvavg_put
USE solvmol, ONLY : nsolV, solVs, get_nsite_in_solVs, get_nuniq_in_solVs, &
& iuniq_to_nsite, iuniq_to_isite, isite_to_isolV, isite_to_iatom
USE splinelib, ONLY : spline, splint
!
IMPLICIT NONE
!
TYPE(rism_type), INTENT(IN) :: rism1t
TYPE(rism_type), INTENT(INOUT) :: rismlt
REAL(DP), INTENT(IN) :: alpha ! in bohr
LOGICAL, INTENT(IN) :: lhand ! if true, right-hand. if false, left-hand.
INTEGER, INTENT(OUT) :: ierr
!
INTEGER :: nv
INTEGER :: nq
INTEGER :: iq1, iq2
INTEGER :: iv1, iv2
INTEGER :: iw1, iw2
INTEGER :: isolV1, isolV2
INTEGER :: iatom1, iatom2
CHARACTER(LEN=6) :: satom1, satom2
INTEGER :: iiq2
INTEGER :: nv2, iiv2
REAL(DP) :: qv2
INTEGER :: ivv
INTEGER :: irz
INTEGER :: igz
INTEGER :: igxy
INTEGER :: jgxy
INTEGER :: irank
INTEGER :: nproc
INTEGER, ALLOCATABLE :: rank_map(:,:)
INTEGER, ALLOCATABLE :: root_spline(:)
REAL(DP) :: rfft_1d
REAL(DP) :: rfft_laue
REAL(DP) :: rho2
REAL(DP) :: rz
REAL(DP) :: gz, ggz
REAL(DP) :: ggxy
REAL(DP) :: gs
REAL(DP) :: gsmax
REAL(DP) :: dg
REAL(DP) :: pidg
REAL(DP) :: xgs
REAL(DP) :: dxg0
REAL(DP) :: ddxg0
REAL(DP), ALLOCATABLE :: xg_1d(:)
REAL(DP), ALLOCATABLE :: xg_spl(:)
REAL(DP), ALLOCATABLE :: xg_d2y(:)
REAL(DP), ALLOCATABLE :: gs_t(:,:)
REAL(DP), ALLOCATABLE :: xg_t(:,:)
REAL(DP), ALLOCATABLE :: xg_0(:,:)
REAL(DP), ALLOCATABLE :: xgs21(:)
REAL(DP), ALLOCATABLE :: cosgz(:,:)
!
REAL(DP), PARAMETER :: LAUE_BOX_SCALE = 1.2_DP
!
EXTERNAL :: dgemm
!
! ... number of sites in solvents
nv = get_nsite_in_solVs()
nq = get_nuniq_in_solVs()
!
IF (rism1t%itype /= ITYPE_1DRISM) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rism1t%nr /= rism1t%ng) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rism1t%nsite < (nv * (nv + 1) / 2)) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rism1t%rfft%ngrid < rism1t%mp_task%nvec) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (.NOT. rism1t%avail) THEN
ierr = IERR_RISM_1DRISM_IS_NOT_AVAIL
RETURN
END IF
!
! ... check data type of Laue-RISM
IF (rismlt%itype /= ITYPE_LAUERISM) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rismlt%mp_site%nsite < nq) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rismlt%ngs < rismlt%lfft%nglxy) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
IF (rismlt%nrzl < rismlt%lfft%nrz) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
! ... check alpha
IF (alpha <= 0.0_DP) THEN
ierr = IERR_RISM_INCORRECT_DATA_TYPE
RETURN
END IF
!
! ... check FFT-range
rfft_1d = rism1t%rfft%rgrid(rism1t%rfft%ngrid)
rfft_laue = (rismlt%lfft%zright - rismlt%lfft%zleft) * alat
IF ((LAUE_BOX_SCALE * rfft_laue) > rfft_1d) THEN
ierr = IERR_RISM_LARGE_LAUE_BOX
RETURN
END IF
!
! ... allocate working memory
ALLOCATE(rank_map(3, nq))
ALLOCATE(root_spline(nq))
ALLOCATE(xg_1d(rism1t%ng))
ALLOCATE(xg_spl(rism1t%mp_task%nvec))
ALLOCATE(xg_d2y(rism1t%mp_task%nvec))
IF ((rism1t%rfft%ngrid * rismlt%lfft%nglxy) > 0) THEN
ALLOCATE(gs_t(rism1t%rfft%ngrid, rismlt%lfft%nglxy))
END IF
IF ((rism1t%rfft%ngrid * rismlt%lfft%nglxy) > 0) THEN
ALLOCATE(xg_t(rism1t%rfft%ngrid, rismlt%lfft%nglxy))
END IF
IF (rismlt%nsite > 0) THEN
ALLOCATE(xg_0(rismlt%nsite, nq))
END IF
IF ((rismlt%nrzl * rismlt%ngs) > 0) THEN
ALLOCATE(xgs21(rismlt%nrzl * rismlt%ngs))
END IF
IF ((rism1t%rfft%ngrid * rismlt%lfft%nrz) > 0) THEN
ALLOCATE(cosgz(rism1t%rfft%ngrid, rismlt%lfft%nrz))
END IF
!
! ... setup roots to prepare spline
DO iq1 = 1, nq
rank_map(1, iq1) = mp_rank(rismlt%intra_comm)
rank_map(2, iq1) = 0
rank_map(3, iq1) = 0
!
root_spline(iq1) = 0
IF (rismlt%mp_site%isite_start <= iq1 .AND. iq1 <= rismlt%mp_site%isite_end) THEN
IF (rismlt%mp_site%me_sitg == rismlt%mp_site%root_sitg) THEN
rank_map(2, iq1) = rank_map(1, iq1) + 1
IF (rism1t%is_intra) THEN
root_spline(iq1) = rism1t%mp_task%me_task + 1
END IF
END IF
END IF
!
CALL mp_max(rank_map(2, iq1), rismlt%intra_comm)
rank_map(2, iq1) = rank_map(2, iq1) - 1
!
CALL mp_max(root_spline(iq1), rismlt%intra_comm)
root_spline(iq1) = root_spline(iq1) - 1
IF (root_spline(iq1) < 0) THEN
root_spline(iq1) = rism1t%mp_task%root_task
END IF
!
IF (rism1t%is_intra .AND. rism1t%mp_task%me_task == root_spline(iq1)) THEN
rank_map(3, iq1) = rank_map(1, iq1) + 1
END IF
!
CALL mp_max(rank_map(3, iq1), rismlt%intra_comm)
rank_map(3, iq1) = rank_map(3, iq1) - 1
END DO
!
! ... set variables
gsmax = rism1t%rfft%ggrid(rism1t%rfft%ngrid)
dg = rism1t%rfft%ggrid(2) - rism1t%rfft%ggrid(1)
pidg = dg / pi
!
! ... calculate list of gs
DO igxy = 1, rismlt%lfft%nglxy
ggxy = tpiba2 * rismlt%lfft%glxy(igxy)
!$omp parallel do default(shared) private(igz, gz, ggz, gs)
DO igz = 1, rism1t%rfft%ngrid
gz = rism1t%rfft%ggrid(igz)
ggz = gz * gz
gs = SQRT(ggxy + ggz)
gs_t(igz, igxy) = gs
END DO
!$omp end parallel do
END DO
!
! ... calculate cos(gz*rz)
cosgz = 0.0_DP
irank = mp_rank(rismlt%intra_comm)
nproc = mp_size(rismlt%intra_comm)
!
DO irz = 1, rismlt%lfft%nrz
IF (irank /= MOD(irz - 1, nproc)) THEN
CYCLE
END IF
!
rz = alat * DBLE(irz - 1) * rismlt%lfft%zstep
!$omp parallel do default(shared) private(igz, gz)
DO igz = 1, rism1t%rfft%ngrid
gz = rism1t%rfft%ggrid(igz)
cosgz(igz, irz) = COS(gz * rz)
END DO
!$omp end parallel do
cosgz(1, irz) = 0.5_DP * cosgz(1, irz)
END DO
!
CALL mp_sum(cosgz, rismlt%intra_comm)
!
! ... calculate susceptibility
DO iq1 = 1, nq
! ... properties of unique site1
iv1 = iuniq_to_isite(1, iq1)
!
DO iq2 = 1, nq
! ... properties of unique site2
nv2 = iuniq_to_nsite(iq2)
IF (rismlt%mp_site%isite_start <= iq2 .AND. iq2 <= rismlt%mp_site%isite_end) THEN
iiq2 = iq2 - rismlt%mp_site%isite_start + 1
ELSE
iiq2 = 0
END IF
!
IF (iiq2 > 0) THEN
IF (rismlt%nsite > 0) THEN
xg_0(iiq2, iq1) = 0.0_DP
END IF
IF ((rismlt%nrzl * rismlt%ngs) > 0) THEN
xgs21(:) = 0.0_DP
END IF
END IF
!
DO iiv2 = 1, nv2
! ... properties of a site2
iv2 = iuniq_to_isite(iiv2, iq2)
isolV2 = isite_to_isolV(iv2)
IF (lhand) THEN
rho2 = solVs(isolV2)%density
ELSE
rho2 = solVs(isolV2)%subdensity
END IF
!
iw1 = MAX(iv1, iv2)
iw2 = MIN(iv1, iv2)
ivv = iw1 * (iw1 - 1) / 2 + iw2
!
! ... create h21(g) or x21(g) of 1D-RISM
IF (rism1t%is_intra) THEN
IF (iv1 == iv2) THEN
xg_1d(:) = rho2 * rism1t%hg(:, ivv)
ELSE
xg_1d(:) = rism1t%wg(:, ivv) + rho2 * rism1t%hg(:, ivv)
END IF
CALL mp_gather(xg_1d, xg_spl, rism1t%mp_task%ilen_vecs, rism1t%mp_task%idis_vecs, &
& root_spline(iq2), rism1t%mp_task%itask_comm)
END IF
!
IF (rank_map(2, iq2) /= rank_map(3, iq2)) THEN
CALL mp_get(xg_spl, xg_spl, rank_map(1, iq2), &
& rank_map(2, iq2), rank_map(3, iq2), ivv, rismlt%intra_comm)
END IF
!
IF (iiq2 > 0) THEN
! ... prepare spline correction
IF (rismlt%mp_site%me_sitg == rismlt%mp_site%root_sitg) THEN
CALL suscept_g0(rism1t%mp_task%nvec, rism1t%rfft%ggrid, xg_spl, dxg0, ddxg0)
CALL spline(rism1t%rfft%ggrid(1:rism1t%mp_task%nvec), xg_spl, dxg0, ddxg0, xg_d2y)
END IF
!
CALL mp_bcast(xg_spl, rismlt%mp_site%root_sitg, rismlt%mp_site%intra_sitg_comm)
CALL mp_bcast(xg_d2y, rismlt%mp_site%root_sitg, rismlt%mp_site%intra_sitg_comm)
!
! ... perform spline correction fitting h21(g) or x21(g) from 1D-RISM to Laue-RISM
DO igxy = 1, rismlt%lfft%nglxy
!$omp parallel do default(shared) private(igz, gs, xgs)
DO igz = 1, rism1t%rfft%ngrid
gs = gs_t(igz, igxy)
IF (gs <= (gsmax + eps12)) THEN
xgs = splint(rism1t%rfft%ggrid(1:rism1t%mp_task%nvec), xg_spl, xg_d2y, gs)
xg_t(igz, igxy) = xgs
ELSE
xg_t(igz, igxy) = 0.0_DP
END IF
END DO
!$omp end parallel do
END DO
!
! ... calculate x21(rz,gxy)
IF (rismlt%nsite > 0) THEN
IF (iv1 == iv2) THEN
xg_0(iiq2, iq1) = xg_0(iiq2, iq1) + xg_spl(1) + 1.0_DP
ELSE
xg_0(iiq2, iq1) = xg_0(iiq2, iq1) + xg_spl(1)
END IF
END IF
!
IF ((rismlt%nrzl * rismlt%ngs) > 0) THEN
CALL dgemm('T', 'N', rismlt%lfft%nrz, rismlt%lfft%nglxy, rism1t%rfft%ngrid, &
& pidg, cosgz, rism1t%rfft%ngrid, xg_t, rism1t%rfft%ngrid, &
& 1.0_DP, xgs21, rismlt%nrzl)
END IF
!
IF (iv1 == iv2) THEN
DO igxy = 1, rismlt%lfft%nglxy
jgxy = (igxy - 1) * rismlt%nrzl
ggxy = tpiba2 * rismlt%lfft%glxy(igxy)
!$omp parallel do default(shared) private(irz, rz)
DO irz = 1, rismlt%lfft%nrz
rz = alat * DBLE(irz - 1) * rismlt%lfft%zstep
xgs21(irz + jgxy) = xgs21(irz + jgxy) + &
& EXP(-rz * rz / alpha / alpha - 0.25_DP * alpha * alpha * ggxy) / alpha / sqrtpi
END DO
!$omp end parallel do
END DO
END IF
END IF
!
CALL mp_barrier(rismlt%intra_comm)
!
END DO
!
IF (iiq2 > 0) THEN
IF ((rismlt%nrzl * rismlt%ngs) > 0) THEN
IF (lhand) THEN
rismlt%xgs(:, iiq2, iq1) = xgs21(:)
ELSE
rismlt%ygs(:, iiq2, iq1) = xgs21(:)
END IF
END IF
END IF
!
END DO
END DO
!
! ... renormalize at G = 0
CALL renormalize_g0()
!
! ... correct at Gxy = 0
CALL correct_gxy0()
!
! ... print data
CALL print_x21()
!
! ... deallocate working memory
DEALLOCATE(rank_map)
DEALLOCATE(root_spline)
DEALLOCATE(xg_1d)
DEALLOCATE(xg_spl)
DEALLOCATE(xg_d2y)
IF ((rism1t%rfft%ngrid * rismlt%lfft%nglxy) > 0) THEN
DEALLOCATE(gs_t)
END IF
IF ((rism1t%rfft%ngrid * rismlt%lfft%nglxy) > 0) THEN
DEALLOCATE(xg_t)
END IF
IF (rismlt%nsite > 0) THEN
DEALLOCATE(xg_0)
END IF
IF ((rismlt%nrzl * rismlt%ngs) > 0) THEN
DEALLOCATE(xgs21)
END IF
IF ((rism1t%rfft%ngrid * rismlt%lfft%nrz) > 0) THEN
DEALLOCATE(cosgz)
END IF
!
! ... normally done
ierr = IERR_RISM_NULL
!
CONTAINS
!
SUBROUTINE renormalize_g0()
IMPLICIT NONE
!
REAL(DP), ALLOCATABLE :: msol(:)
REAL(DP), ALLOCATABLE :: qsol(:)
REAL(DP) :: qtot
REAL(DP) :: qsqr
!
ALLOCATE(msol(nsolV))
ALLOCATE(qsol(nsolV))
!
DO iq1 = 1, nq
!
! ... sum numbers and charges of solvent atoms in a molecule
msol = 0.0_DP
qsol = 0.0_DP
!
DO iq2 = rismlt%mp_site%isite_start, rismlt%mp_site%isite_end
iiq2 = iq2 - rismlt%mp_site%isite_start + 1
iv2 = iuniq_to_isite(1, iq2)
nv2 = iuniq_to_nsite(iq2)
isolV2 = isite_to_isolV(iv2)
iatom2 = isite_to_iatom(iv2)
qv2 = solVs(isolV2)%charge(iatom2)
!
msol(isolV2) = msol(isolV2) + xg_0(iiq2, iq1)
qsol(isolV2) = qsol(isolV2) + DBLE(nv2) * qv2
END DO
!
CALL mp_sum(msol, rismlt%mp_site%inter_sitg_comm)
CALL mp_sum(qsol, rismlt%mp_site%inter_sitg_comm)
!
DO isolV2 = 1, nsolV
IF (solVs(isolV2)%natom > 0) THEN
msol(isolV2) = msol(isolV2) / DBLE(solVs(isolV2)%natom)
qsol(isolV2) = qsol(isolV2) / DBLE(solVs(isolV2)%natom)
ELSE
msol(isolV2) = 0.0_DP
qsol(isolV2) = 0.0_DP
END IF
END DO
!
! ... renormalize: to correct stoichiometry
DO iq2 = rismlt%mp_site%isite_start, rismlt%mp_site%isite_end
iiq2 = iq2 - rismlt%mp_site%isite_start + 1
iv2 = iuniq_to_isite(1, iq2)
nv2 = iuniq_to_nsite(iq2)
isolV2 = isite_to_isolV(iv2)
!
xg_0(iiq2, iq1) = DBLE(nv2) * msol(isolV2)
END DO
!
! ... total charge and square sum of charge
qtot = 0.0_DP
qsqr = 0.0_DP
!
DO iq2 = rismlt%mp_site%isite_start, rismlt%mp_site%isite_end
iiq2 = iq2 - rismlt%mp_site%isite_start + 1
iv2 = iuniq_to_isite(1, iq2)
nv2 = iuniq_to_nsite(iq2)
isolV2 = isite_to_isolV(iv2)
!
qtot = qtot + qsol(isolV2) * xg_0(iiq2, iq1)
qsqr = qsqr + DBLE(nv2) * qsol(isolV2) * qsol(isolV2)
END DO
!
CALL mp_sum(qtot, rismlt%mp_site%inter_sitg_comm)
CALL mp_sum(qsqr, rismlt%mp_site%inter_sitg_comm)
!
! ... renormalize: to correct total charge
IF (ABS(qtot) > eps12) THEN
IF (ABS(qsqr) <= eps12) THEN ! will not be occurred
CALL errore('renormalize_g0', 'qsqr is zero', 1)
END IF
!
DO iq2 = rismlt%mp_site%isite_start, rismlt%mp_site%isite_end
iiq2 = iq2 - rismlt%mp_site%isite_start + 1
iv2 = iuniq_to_isite(1, iq2)
nv2 = iuniq_to_nsite(iq2)
isolV2 = isite_to_isolV(iv2)
!
xg_0(iiq2, iq1) = xg_0(iiq2, iq1) - DBLE(nv2) * qsol(isolV2) * qtot / qsqr
END DO
END IF
!
END DO
!
DEALLOCATE(msol)
DEALLOCATE(qsol)
!
END SUBROUTINE renormalize_g0
!
SUBROUTINE correct_gxy0()
IMPLICIT NONE
REAL(DP) :: dz
REAL(DP) :: xg_int
REAL(DP) :: xg_scale
!
dz = alat * rismlt%lfft%zstep
!
DO iq1 = 1, nq
DO iq2 = rismlt%mp_site%isite_start, rismlt%mp_site%isite_end
iiq2 = iq2 - rismlt%mp_site%isite_start + 1
!
IF (rismlt%lfft%gxystart > 1) THEN
!
! ... integrate at Gxy = 0
IF (lhand) THEN
xg_int = 0.0_DP
!$omp parallel do default(shared) private(irz) reduction(+:xg_int)
DO irz = 2, rismlt%lfft%nrz
xg_int = xg_int + 2.0_DP * dz * rismlt%xgs(irz, iiq2, iq1)
END DO
!$omp end parallel do
xg_int = xg_int + dz * rismlt%xgs(1, iiq2, iq1)
ELSE
xg_int = 0.0_DP
!$omp parallel do default(shared) private(irz) reduction(+:xg_int)
DO irz = 2, rismlt%lfft%nrz
xg_int = xg_int + 2.0_DP * dz * rismlt%ygs(irz, iiq2, iq1)
END DO
!$omp end parallel do
xg_int = xg_int + dz * rismlt%ygs(1, iiq2, iq1)
END IF
!
! ... rescale x21 at Gxy = 0
IF (ABS(xg_int) > eps12) THEN
xg_scale = xg_0(iiq2, iq1) / xg_int
IF (lhand) THEN
!$omp parallel do default(shared) private(irz)
DO irz = 1, rismlt%lfft%nrz
rismlt%xgs(irz, iiq2, iq1) = rismlt%xgs(irz, iiq2, iq1) * xg_scale
END DO
!$omp end parallel do
ELSE
!$omp parallel do default(shared) private(irz)
DO irz = 1, rismlt%lfft%nrz
rismlt%ygs(irz, iiq2, iq1) = rismlt%ygs(irz, iiq2, iq1) * xg_scale
END DO
!$omp end parallel do
END IF
END IF
!
END IF
END DO
END DO
!
END SUBROUTINE correct_gxy0
!
SUBROUTINE print_x21()
IMPLICIT NONE
#if defined (__DEBUG_RISM)
INTEGER :: ista
INTEGER :: my_group_id
INTEGER :: io_group_id
INTEGER :: owner_group_id
COMPLEX(DP), ALLOCATABLE :: xtmp(:)
!
! ... get process info.
my_group_id = mp_rank(rismlt%mp_site%inter_sitg_comm)
!
! ... find the index of the group which includes ionode
io_group_id = 0
IF (ionode) THEN
io_group_id = my_group_id
END IF
CALL mp_sum(io_group_id, rismlt%mp_site%intra_sitg_comm)
CALL mp_sum(io_group_id, rismlt%mp_site%inter_sitg_comm)
!
! ... init solvavg
IF (my_group_id == io_group_id) THEN
CALL solvavg_init(rismlt%lfft, rismlt%mp_site%intra_sitg_comm, .TRUE.)
END IF
!
! ... put data to solvavg
ALLOCATE(xtmp(rismlt%nrzl * rismlt%ngs))
!
DO iq1 = 1, nq
iv1 = iuniq_to_isite(1, iq1)
isolV1 = isite_to_isolV(iv1)
iatom1 = isite_to_iatom(iv1)
satom1 = ADJUSTL(solVs(isolV1)%aname(iatom1))
!
DO iq2 = 1, nq
iv2 = iuniq_to_isite(1, iq2)
isolV2 = isite_to_isolV(iv2)
iatom2 = isite_to_iatom(iv2)
satom2 = ADJUSTL(solVs(isolV2)%aname(iatom2))
!
IF (rismlt%mp_site%isite_start <= iq2 .AND. iq2 <= rismlt%mp_site%isite_end) THEN
owner_group_id = my_group_id
IF (lhand) THEN
xtmp = rismlt%xgs(:, iq2 - rismlt%mp_site%isite_start + 1, iq1)
ELSE
xtmp = rismlt%ygs(:, iq2 - rismlt%mp_site%isite_start + 1, iq1)
END IF
ELSE
owner_group_id = 0
xtmp = CMPLX(0.0_DP, 0.0_DP, kind=DP)
END IF
!
CALL mp_sum(owner_group_id, rismlt%mp_site%inter_sitg_comm)
CALL mp_get(xtmp, xtmp, my_group_id, io_group_id, &
& owner_group_id, iq2, rismlt%mp_site%inter_sitg_comm)
!
IF (my_group_id == io_group_id) THEN
CALL solvavg_put('x_' // TRIM(satom2) // ':' // TRIM(satom1), .FALSE., xtmp, rismlt%nrzl, .TRUE.)
END IF
!
CALL mp_barrier(rismlt%mp_site%inter_sitg_comm)
END DO
END DO
!
DEALLOCATE(xtmp)
!
! ... print solvavg
IF (my_group_id == io_group_id) THEN
IF (lhand) THEN
CALL solvavg_print(TRIM(tmp_dir) // TRIM(prefix) // '.rism1_x21', 'solvent susceptibility', ista)
ELSE
CALL solvavg_print(TRIM(tmp_dir) // TRIM(prefix) // '.rism1_y21', 'solvent susceptibility', ista)
END IF
ista = ABS(ista)
ELSE
ista = 0
END IF
!
IF (ista /= 0) THEN
CALL errore('print_x21', 'cannot write file', ista)
END IF
!
! ... finalize solvavg
IF (my_group_id == io_group_id) THEN
CALL solvavg_clear()
END IF
!
#endif
END SUBROUTINE print_x21
!
END SUBROUTINE suscept_laue
| gpl-2.0 |
kbai/specfem3d | utils/EXTERNAL_CODES_coupled_with_SPECFEM3D/DSM_for_SPECFEM3D/Notes_Olds_and_Utils/OLD--VM_mesher_now_handled_by_meshfem3d/mesh_chunk.f90 | 3 | 36091 | !
!
! MAILLAGE D'UN CHUNK POUR INTERFACE SPECFEM/DSM
! !!!!!!! cas 8 noeuds
!
! Vadim Monteiler, Fevrier 2013
!
!
! J'ai une convention propre pour le mapping de la sphere cubique (a completer ... ) !!!!!!
!
program mesh_chunk
implicit none
integer nel_lat,nel_lon,nel_depth,NX,NY,NZ,Ndepth
integer NGLLX,NGLLY,NGLLZ,NGNOD,NDIM
parameter(NGLLX=5,NGLLY=5,NGLLZ=5,NGNOD=8,NDIM=3)
integer ilat,ilon,ispec,iz,i,j,k,nspec,ia
integer ispec2Dxmin,ispec2Dxmax,ispec2Dymin,ispec2Dymax,ispec2Dzmin,ispec2Dzmax
double precision ratio_eta,ratio_xi,ratio_depth,theta,colat
double precision ANGULAR_WIDTH_ETA_RAD,ANGULAR_WIDTH_XI_RAD
double precision lat_center_chunk, lon_center_chunk, chunk_depth,chunk_azi
double precision R_EARTH,deg2rad,PI, TINYVAL,ZERO
double precision x,y,z,px,py,pz
double precision long,lati,x_bot,y_bot,z_bot,rayon
double precision rotation_matrix(3,3), vector_ori(3), vector_rotated(3)
double precision xelm(NGNOD),yelm(NGNOD),zelm(NGNOD)
double precision xstore(NGLLX,NGLLY,NGLLZ),ystore(NGLLX,NGLLY,NGLLZ),zstore(NGLLX,NGLLY,NGLLZ)
! 3D shape functions and their derivatives
double precision shape3D(NGNOD,NGLLX,NGLLY,NGLLZ),dershape3D(NDIM,NGNOD,NGLLX,NGLLY,NGLLZ)
! Gauss-Lobatto-Legendre points and weights of integration
double precision xigll(NGLLX),yigll(NGLLY),zigll(NGLLZ),wxgll(NGLLX),wygll(NGLLY),wzgll(NGLLZ)
integer nglob,kglob,ilocnum,ieoff,npointot
double precision, allocatable :: xp(:),yp(:),zp(:),xgrid(:,:,:,:),ygrid(:,:,:,:), zgrid(:,:,:,:)
integer, allocatable :: inum_loc(:,:,:,:),iglob(:),loc(:),current_layer(:)
logical, allocatable :: ifseg(:)
double precision z_bottom
integer iaddx(NGNOD),iaddy(NGNOD),iaddz(NGNOD)
! boundary locator
logical, dimension(:,:), allocatable :: iboun
! nb couches dans modele iasp91 ou ak135 ou prem
integer nlayer
parameter (nlayer=12) ! 1 couche de plus que le modele
double precision zlayer(nlayer),vpv(nlayer,4),vsv(nlayer,4),density(nlayer,4)
double precision, dimension(:,:), allocatable :: ProfForGemini
double precision Z_DEPTH_BLOCK,UTM_X_MIN,UTM_X_MAX
double precision, parameter :: GAUSSALPHA = 0.d0,GAUSSBETA = 0.d0
integer, parameter :: myrank=0
integer ilayer_current,ilayer
logical test
double precision, allocatable :: lon_zmin(:,:),lat_zmin(:,:)
integer nlat_dsm,nlon_dsm
integer iii,jjj,kkk,izshift,index_mat
logical,parameter :: RUN_BENCHMARK=.false.
character(len=100) line
character(len=250) model1D_file
!! CONVENTION : (lon,lat) -> (xi,eta) (k=6 avec -z pour le mapping sphere cubique (cf Chervot 2012)
! on definit le maillage d'un chunk dans la sphere cubique-------------------------------------------------------
PI = 3.141592653589793d0
deg2rad = 3.141592653589793d0/180.d0
R_EARTH=6371000.d0
TINYVAL = 1.d-9
ZERO=0.d0
open(49,file='output_mesher_chunk.txt')
if (RUN_BENCHMARK) then
! parametres codes en du pour le moment
ANGULAR_WIDTH_ETA_RAD = deg2rad * 10.d0 ! latitude 2.5
ANGULAR_WIDTH_XI_RAD = deg2rad * 20.d0 ! longitude 2.
! centre du chunk
lat_center_chunk= 0.d0 !42.35d0 !42.5d0 !* deg2rad
lon_center_chunk=60.d0 ! 1.3d0 ! 1.2d0 !* deg2rad
! azimuth
chunk_azi=0.d0 !90.d0 !80.d0 !10.d0 !* deg2rad
! depth
chunk_depth = 1000.d0 *1000.d0 ! 250.d0 * 1000.d0
! nb d'elements
nel_lat = 20 !120
nel_lon = 40 !96
nel_depth = 20 !100
!nel_lat = 15
!nel_lon = 15
!nel_depth = 10
else
open(10,file='ParFileMeshChunk')
read(10,'(a)') line
read(10,*) ANGULAR_WIDTH_XI_RAD,ANGULAR_WIDTH_ETA_RAD
read(10,'(a)') line
read(10,*) lon_center_chunk,lat_center_chunk,chunk_azi
read(10,'(a)') line
read(10,*) chunk_depth
read(10,'(a)') line
read(10,*) nel_lon,nel_lat,nel_depth
read(10,'(a)') line
read(10,'(a)') model1D_file
close(10)
ANGULAR_WIDTH_XI_RAD = deg2rad * ANGULAR_WIDTH_XI_RAD
ANGULAR_WIDTH_ETA_RAD = deg2rad * ANGULAR_WIDTH_ETA_RAD
chunk_depth = chunk_depth * 1000.d0
endif !?????chunk????????,??ParFileMeshChunk??
NX = nel_lon
NY = nel_lat
NZ = nel_depth
!--------------------------------------------------------------------------------
!! TO DO : il faut que le chunk de refernece soit tout le temps symetrique (EW) et (NS)
nlon_dsm=(ngllx-1)*NX+1
nlat_dsm=(nglly-1)*NY+1
nglob=(nel_lat+1)*(nel_lon+1)*(nel_depth+1)
nspec= (nel_lat) * (nel_lon ) * (nel_depth )
npointot=8*nspec
allocate(xp(npointot),yp(npointot),zp(npointot))
allocate(iglob(npointot),loc(npointot))
allocate(ifseg(npointot))
allocate(ProfForGemini(0:NZ-1,3))
allocate(current_layer(0:NZ-1))
allocate(inum_loc(2,2,2,nspec))
allocate(xgrid(2,2,2,nspec),ygrid(2,2,2,nspec),zgrid(2,2,2,nspec))
allocate(lon_zmin(nlon_dsm,nlat_dsm),lat_zmin(nlon_dsm,nlat_dsm))
! boundary locator
allocate(iboun(6,nspec))
iboun(:,:)=.false.
iaddx(1)=0
iaddy(1)=0
iaddz(1)=0
iaddx(2)=1
iaddy(2)=0
iaddz(2)=0
iaddx(3)=1
iaddy(3)=1
iaddz(3)=0
iaddx(4)=0
iaddy(4)=1
iaddz(4)=0
iaddx(5)=0
iaddy(5)=0
iaddz(5)=1
iaddx(6)=1
iaddy(6)=0
iaddz(6)=1
iaddx(7)=1
iaddy(7)=1
iaddz(7)=1
iaddx(8)=0
iaddy(8)=1
iaddz(8)=1
! -------------------------------------------------------------------------------------------------------------------------------------
! set up coordinates of the Gauss-Lobatto-Legendre points
call zwgljd(xigll,wxgll,NGLLX,GAUSSALPHA,GAUSSBETA)
call zwgljd(yigll,wygll,NGLLY,GAUSSALPHA,GAUSSBETA)
call zwgljd(zigll,wzgll,NGLLZ,GAUSSALPHA,GAUSSBETA)
! if number of points is odd, the middle abscissa is exactly zero
if(mod(NGLLX,2) /= 0) xigll((NGLLX-1)/2+1) = ZERO
if(mod(NGLLY,2) /= 0) yigll((NGLLY-1)/2+1) = ZERO
if(mod(NGLLZ,2) /= 0) zigll((NGLLZ-1)/2+1) = ZERO
! get the 3-D shape functions
call get_shape3D(myrank,shape3D,dershape3D,xigll,yigll,zigll,NGNOD,NGLLX,NGLLY,NGLLZ)
! matrice de rotation pour passes en coordoennees geographique
!call euler_angles(rotation_matrix, lon_center_chunk,lat_center_chunk, chunk_azi)
! nouvelle matrice de rotation
call compute_rotation_matrix(rotation_matrix, lon_center_chunk,lat_center_chunk, chunk_azi)
!call ReadIasp91(vpv,vsv,density,zlayer,nlayer)
call Read_dsm_model(model1D_file,vpv,vsv,density,zlayer,nlayer)
! calcul de la discretisation verticale des layers
Z_DEPTH_BLOCK=chunk_depth /1000.d0 !!!! je passe en km
call CalGridProf(ProfForGemini,current_layer,zlayer,nlayer,NZ,Z_DEPTH_BLOCK)
!stop
!---------------------------------------------- GRILLE DU MAILLAGE -------------------------------------------------
izshift=0
ispec = 0
kglob = 0
Ndepth=0
ispec2Dxmin=0;ispec2Dxmax=0;ispec2Dymin=0;ispec2Dymax=0;ispec2Dzmin=0;;ispec2Dzmax=0
! fichier interface DSM - SPECFEM3D
open(27,file='.recdepth') ! recepteurs sur la verticale
open(28,file='stxmin');write(28,*) nlat_dsm ! face xmin
open(29,file='stxmax');write(29,*) nlat_dsm ! face xmax
open(30,file='stymin');write(30,*) nlon_dsm ! face ymin
open(31,file='stymax'); write(31,*) nlon_dsm ! face ymax
open(38,file='IgXmin')
open(39,file='IgXmax')
open(40,file='IgYmin')
open(41,file='IgYmax')
open(42,file='IgZmin')
! MESH pour SPECFEM3D
open(86,file='nummaterial_velocity_file')
open(87,file='materials_file')
!open(88,file='model_1D.in')
open(89,file='flags_boundary.txt')
open(90,file='Nb_ielm_faces.txt')
open(88,file='OrigRepSpecfm')
write(88,*) lon_center_chunk,lat_center_chunk
write(88,*) chunk_azi, ANGULAR_WIDTH_XI_RAD/deg2rad,ANGULAR_WIDTH_ETA_RAD/deg2rad
close(88)
!open(32,file='gll_zmin')
!open(125,file='ggl_elemts')
! boucle sur la grille des elements spectraux
ilayer=0
index_mat=0
do iz =0,nel_depth-1
ilayer_current=current_layer(iz)-1 ! attention entre piquets et intervalles !!!!!
if (iz/=0) then
if (current_layer(iz-1)/=current_layer(iz)) then
izshift=izshift+1 ! on repete le point sur l'interface pour DSM
index_mat=index_mat-1
write(86,'(a1,2x,i10,2x,a10,2x,a7,2x,a20,2x,a1)') &
'2',index_mat,'tomography','elastic','tomography_model.xyz','1'
endif
else
! on ecrit le premier materiau
index_mat=index_mat-1
write(86,'(a1,2x,i10,2x,a10,2x,a7,2x,a20,2x,a1)') &
'2',index_mat,'tomography','elastic','tomography_model.xyz','1'
endif
do ilat=0,nel_lat-1
do ilon=0,nel_lon-1
ispec = ispec + 1
! mateiral file
write(87 ,*) ispec,index_mat
! get boundary
!on boundary 1: x=xmin
if(ilon == 0 ) then
iboun(1,ispec)=.true.
ispec2Dxmin=ispec2Dxmin+1
write(89,*) ispec,ispec2Dxmin,1
endif
! on boundary 2: xmax
if(ilon == nel_lon-1) then
iboun(2,ispec)=.true.
ispec2Dxmax=ispec2Dxmax+1
!write(*,*) '------ TOZ',ispec,ilon
write(89,*) ispec,ispec2Dxmax,2
endif
! on boundary 3: ymin
if(ilat == 0) then
iboun(3,ispec)=.true.
ispec2Dymin=ispec2Dymin+1
write(89,*) ispec,ispec2Dymin,3
endif
! on boundary 4: ymax
if(ilat == nel_lat-1 ) then
iboun(4,ispec) =.true.
ispec2Dymax=ispec2Dymax+1
write(89,*) ispec,ispec2Dymax,4
endif
! on boundary 5: bottom
if(iz == 0) then
iboun(5,ispec)=.true.
ispec2Dzmin=ispec2Dzmin+1
write(89,*) ispec,ispec2Dzmin,5
endif
! on boundary 6: top
if(iz == nel_depth-1) then
ispec2Dzmax= ispec2Dzmax+1
iboun(6,ispec)=.true.
endif
! 8 sommet de l'element ispec
do ia=1,NGNOD
i=iaddx(ia)
j=iaddy(ia)
k=iaddz(ia)
z = 1000d0*ProfForGemini(iz,1+k)
! longitude
ratio_xi = (dble(ilon+i)) / dble(NX)
x = 2.d0*ratio_xi-1.d0
x = tan((ANGULAR_WIDTH_XI_RAD/2.d0) * x)
! latitude
ratio_eta = (dble(ilat+j)) / dble(NY)
y = 2.d0*ratio_eta-1.d0
y = tan((ANGULAR_WIDTH_ETA_RAD/2.d0) * y)
!if (ilat==0.and.iz==0) write(49,*) ia,i,ratio_xi
!mapping sphere cubique (k=5) (Chevrot et al 2012) (il y a un signe oppose)
!pz = z/dsqrt(1.d0 + y*y + x*x)
!px = x*pz
!py = y*pz
! mapping qui permet d'avoir le chunk au pole Nord
! mapping sphere cubique (k=6, Chevrot at al 2012, avec -z)
pz= z/dsqrt(1.d0 + y*y + x*x) !(=r/s)
px= pz * x !(tan(xi) * r/s)
py= pz * y !(tan(eta) * r/s)
! ancienne version
xgrid(i+1,j+1,k+1,ispec) = px !px
ygrid(i+1,j+1,k+1,ispec) = py !py
zgrid(i+1,j+1,k+1,ispec) = pz
!xgrid(i+1,j+1,k+1,ispec) = py ! long
!ygrid(i+1,j+1,k+1,ispec) = pz ! lat
!zgrid(i+1,j+1,k+1,ispec) = px ! prof
xelm(ia)=xgrid(i+1,j+1,k+1,ispec)
yelm(ia)=ygrid(i+1,j+1,k+1,ispec)
zelm(ia)=zgrid(i+1,j+1,k+1,ispec)
enddo
! INTERFACE POUR DSM ------
! recepteurs verticaux
if (ilat==0 .and. ilon==0) then
call calc_gll_points(xelm,yelm,zelm,xstore,ystore,zstore,shape3D,NGNOD,NGLLX,NGLLY,NGLLZ)
call write_gllz_points(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,current_layer,nel_depth,ilayer,iz,Ndepth)
endif
! recepteurs horizontaux
! stxmin
if (ilon==0.and.iz==nel_depth-1) then
call calc_gll_points(xelm,yelm,zelm,xstore,ystore,zstore,shape3D,NGNOD,NGLLX,NGLLY,NGLLZ)
if (ilat==nel_lat-1) then ! ce test sert a rajouter le dernier point GLL
test=.true.
else
test=.false.
endif
call write_stxmin(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,test)
endif
if (ilon==0) call write_Igm_file(38,ispec2Dxmin,NGLLY,NGLLZ,ilat,iz,izshift,ilayer_current)
! stxmax
if (ilon==nel_lon - 1 .and. iz==nel_depth-1) then
call calc_gll_points(xelm,yelm,zelm,xstore,ystore,zstore,shape3D,NGNOD,NGLLX,NGLLY,NGLLZ)
if (ilat==nel_lat-1) then ! ce test sert a rajouter le dernier point GLL
test=.true.
else
test=.false.
endif
call write_stxmax(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,test)
endif
if (ilon==nel_lon-1) call write_Igm_file(39,ispec2Dxmax,NGLLY,NGLLZ,ilat,iz,izshift,ilayer_current)
! stymin
if (ilat==0.and. iz==nel_depth-1) then
call calc_gll_points(xelm,yelm,zelm,xstore,ystore,zstore,shape3D,NGNOD,NGLLX,NGLLY,NGLLZ)
if (ilon==nel_lon-1) then ! ce test sert a rajouter le dernier point GLL
test=.true.
else
test=.false.
endif
call write_stymin(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,test)
endif
if (ilat==0) call write_Igm_file(40,ispec2Dymin,NGLLX,NGLLZ,ilon,iz,izshift,ilayer_current)
! stymax
if (ilat==nel_lat-1.and. iz==nel_depth-1) then
call calc_gll_points(xelm,yelm,zelm,xstore,ystore,zstore,shape3D,NGNOD,NGLLX,NGLLY,NGLLZ)
if (ilon==nel_lon-1) then ! ce test sert a rajouter le dernier point GLL
test=.true.
else
test=.false.
endif
call write_stymax(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,test)
endif
if (ilat==nel_lat-1) call write_Igm_file(41,ispec2Dymax,NGLLX,NGLLZ,ilon,iz,izshift,ilayer_current)
! stzmin
if (iz==0) then ! pas besoin du test comme precedemment car je stocke tout dans des tableaux et c'est pas
! grave si on recrit les memes choses
call calc_gll_points(xelm,yelm,zelm,xstore,ystore,zstore,shape3D,NGNOD,NGLLX,NGLLY,NGLLZ)
call write_Igm_file(42,ispec2Dzmin,NGLLX,NGLLY,ilon,ilat,0,ilayer_current)
!open(125,file='ggl_elemts')
!!$ do kkk=1,1!NGLLZ
!!$ do jjj=1,NGLLY
!!$ do iii=1,NGLLX
!!$ write(125,'(3f20.10)') xstore(iii,jjj,kkk)/1000.d0, ystore(iii,jjj,kkk)/1000.d0, zstore(iii,jjj,kkk)/1000.d0
!!$ !write(*,*) xstore
!!$ enddo
!!$ enddo
!!$ enddo
!close(125)
! read(*,*) ia
call store_zmin_points(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,&
lon_zmin,lat_zmin,nlon_dsm,nlat_dsm,ilon,ilat,nel_lon,nel_lat)
endif
enddo
enddo
enddo
close(27)
close(28)
close(29)
close(30)
close(31)
!close(32)
! ecriture des profondeurs de calcul pour DSM
call write_recdepth_dsm(Ndepth,R_EARTH)
! ecriture de stzmin
call write_stzmin(lon_zmin,lat_zmin,nlon_dsm,nlat_dsm)
!
z_bottom = minval(zgrid(:,:,:,:))
zgrid(:,:,:,:) = zgrid(:,:,:,:) - z_bottom
UTM_X_MIN=minval(xgrid)
UTM_X_MAX=maxval(xgrid)
! modele 1D
open(88,file='model_1D.in')
write(88,*) nlayer,4
do i=1,nlayer
write(88,*) zlayer(i)
write(88,'(4f20.10)') vpv(i,:)
write(88,'(4f20.10)') vsv(i,:)
write(88,'(4f20.10)') density(i,:)
enddo
write(88,*) z_bottom
write(88,*) lon_center_chunk, lat_center_chunk, chunk_azi
close(88)
!-------------------------------------------- NUMEROTATION DES POINTS DE LA GRILLE ---------------------------------------------------------------
! on stocke touts les points de tous les elements
do ispec=1,nspec
ieoff = 8 * (ispec - 1)
ilocnum = 0
do k=1,2
do j=1,2
do i=1,2
ilocnum = ilocnum + 1
xp(ilocnum + ieoff)= xgrid(i,j,k,ispec)
yp(ilocnum + ieoff)= ygrid(i,j,k,ispec)
zp(ilocnum + ieoff)= zgrid(i,j,k,ispec)
enddo
enddo
enddo
enddo
! on identifie les points semblables et on les numerote
call get_global1(nspec,xp,yp,zp,iglob,loc,ifseg,nglob,npointot,UTM_X_MIN,UTM_X_MAX)
deallocate(xp,yp,zp)
allocate(xp(nglob),yp(nglob),zp(nglob))
! on ne stocke que les points de la grille et leur numeros
do ispec=1,nspec
ieoff = 8 * (ispec - 1)
ilocnum = 0
do k=1,2
do j=1,2
do i=1,2
ilocnum=ilocnum+1
inum_loc(i,j,k,ispec) = iglob(ilocnum+ieoff)
xp(iglob(ilocnum+ieoff)) = xgrid(i,j,k,ispec)
yp(iglob(ilocnum+ieoff)) = ygrid(i,j,k,ispec)
zp(iglob(ilocnum+ieoff)) = zgrid(i,j,k,ispec)
enddo
enddo
enddo
enddo
!---------------------------------------------------------------------------------------------------------------------------------------------------------------------
write(90,*) ispec2Dxmin
write(90,*) ispec2Dxmax
write(90,*) ispec2Dymin
write(90,*) ispec2Dymax
write(90,*) ispec2Dzmin
close(27)
close(28)
close(29)
close(30)
close(31)
close(32)
close(37)
close(38)
close(39)
close(40)
close(41)
close(42)
close(81)
close(82)
close(83)
close(84)
close(85)
close(86)
close(87)
close(88)
close(89)
close(90)
!stop
! -------------------------------- SAUVEGARDE DES MESH FILES --------------------------------------------------------------------------------
open(27,file='nodes_coords_file')
write(27,*) nglob ! nb de sommets
do kglob=1,nglob
write(27,'(i14,3x,3(f20.5,1x))') kglob,xp(kglob),yp(kglob),zp(kglob)
enddo
close(27)
open(27,file='mesh_file')
write(27,*) nspec
do ispec=1,nspec
write(27,'(9i15)') ispec,inum_loc(1,1,1,ispec),inum_loc(2,1,1,ispec),&
inum_loc(2,2,1,ispec),inum_loc(1,2,1,ispec),&
inum_loc(1,1,2,ispec),inum_loc(2,1,2,ispec),&
inum_loc(2,2,2,ispec),inum_loc(1,2,2,ispec)
enddo
close(27)
!
open(27,file='absorbing_surface_file_xmin')
write(27,*) ispec2Dxmin
do ispec=1,nspec
if (iboun(1,ispec)) write(27,'(5(i10,1x))') ispec,inum_loc(1,1,1,ispec),inum_loc(1,2,1,ispec),&
inum_loc(1,2,2,ispec),inum_loc(1,1,2,ispec)
enddo
close(27)
open(27,file='absorbing_surface_file_xmax')
write(27,*) ispec2Dxmax
do ispec=1,nspec
if (iboun(2,ispec)) write(27,'(5(i10,1x))') ispec,inum_loc(2,1,1,ispec),inum_loc(2,2,1,ispec),&
inum_loc(2,2,2,ispec),inum_loc(2,1,2,ispec)
enddo
close(27)
open(27,file='absorbing_surface_file_ymin')
write(27,*) ispec2Dymin
do ispec=1,nspec
if (iboun(3,ispec)) write(27,'(5(i10,1x))') ispec,inum_loc(1,1,1,ispec),inum_loc(2,1,1,ispec),&
inum_loc(2,1,2,ispec),inum_loc(1,1,2,ispec)
enddo
close(27)
open(27,file='absorbing_surface_file_ymax')
write(27,*) ispec2Dymax
do ispec=1,nspec
if (iboun(4,ispec)) write(27,'(5(i10,1x))') ispec,inum_loc(1,2,1,ispec),inum_loc(2,2,1,ispec),&
inum_loc(2,2,2,ispec),inum_loc(1,2,2,ispec)
enddo
close(27)
open(27,file='absorbing_surface_file_bottom')
write(27,*) ispec2Dzmin
do ispec=1,nspec
if (iboun(5,ispec)) write(27,'(5(i10,1x))') ispec,inum_loc(1,1,1,ispec),inum_loc(1,2,1,ispec),&
inum_loc(2,2,1,ispec),inum_loc(2,1,1,ispec)
enddo
close(27)
open(27,file='free_surface')
write(27,*) ispec2Dzmax
do ispec=1,nspec
if (iboun(1,ispec)) write(27,'(5(i10,1x))') ispec,inum_loc(1,1,2,ispec),inum_loc(1,2,2,ispec),&
inum_loc(2,2,2,ispec),inum_loc(2,1,2,ispec)
enddo
close(27)
close(49)
write(*,*) 'END '
stop
end program mesh_chunk
!=====================================================================
! compute the Euler angles and the associated rotation matrix
subroutine euler_angles(rotation_matrix,CENTER_LONGITUDE_IN_DEGREES,CENTER_LATITUDE_IN_DEGREES,GAMMA_ROTATION_AZIMUTH)
implicit none
!include "constants.h"
double precision rotation_matrix(3,3)
double precision CENTER_LONGITUDE_IN_DEGREES,CENTER_LATITUDE_IN_DEGREES,GAMMA_ROTATION_AZIMUTH
double precision alpha,beta,gamma
double precision sina,cosa,sinb,cosb,sing,cosg
double precision DEGREES_TO_RADIANS
DEGREES_TO_RADIANS = 3.141592653589793d0/180.d0
! compute colatitude and longitude and convert to radians
alpha = CENTER_LONGITUDE_IN_DEGREES * DEGREES_TO_RADIANS
beta = (90.0d0 - CENTER_LATITUDE_IN_DEGREES) * DEGREES_TO_RADIANS
gamma = GAMMA_ROTATION_AZIMUTH * DEGREES_TO_RADIANS
sina = dsin(alpha)
cosa = dcos(alpha)
sinb = dsin(beta)
cosb = dcos(beta)
sing = dsin(gamma)
cosg = dcos(gamma)
! define rotation matrix
rotation_matrix(1,1) = cosg*cosb*cosa-sing*sina
rotation_matrix(1,2) = -sing*cosb*cosa-cosg*sina
rotation_matrix(1,3) = sinb*cosa
rotation_matrix(2,1) = cosg*cosb*sina+sing*cosa
rotation_matrix(2,2) = -sing*cosb*sina+cosg*cosa
rotation_matrix(2,3) = sinb*sina
rotation_matrix(3,1) = -cosg*sinb
rotation_matrix(3,2) = sing*sinb
rotation_matrix(3,3) = cosb
end subroutine euler_angles
subroutine write_gllz_points(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,current_layer,nel_depth,ilayer,iz,Ndepth)
implicit none
integer NGLLX,NGLLY,NGLLZ,nel_depth,iz,Ndepth
double precision xstore(NGLLX,NGLLY,NGLLZ),ystore(NGLLX,NGLLY,NGLLZ),zstore(NGLLX,NGLLY,NGLLZ)
double precision profondeur
integer current_layer(0:nel_depth-1),ilayer,k
!write(*,*) ilayer, current_layer(iz)
!profondeur = dsqrt(xstore(1,1,k)**2 + ystore(1,1,k)**2 + (zstore(1,1,k) )**2 )
!write(27,*) profondeur/1000., ilayer
if (ilayer == current_layer(iz)) then
do k=2,NGLLZ
profondeur = dsqrt(xstore(1,1,k)**2 + ystore(1,1,k)**2 + (zstore(1,1,k) )**2 )
write(27,*) profondeur/1000., ilayer-1,1
Ndepth=Ndepth+1
enddo
else ! new layer
k=1
profondeur = dsqrt(xstore(1,1,k)**2 + ystore(1,1,k)**2 + (zstore(1,1,k) )**2 )
if (ilayer==0) then
ilayer = current_layer(iz)
write(27,*) profondeur/1000., ilayer-1,1
Ndepth=Ndepth+1
else
ilayer = current_layer(iz)
write(27,*) profondeur/1000., ilayer-1,-1
Ndepth=Ndepth+1
endif
do k=2,NGLLZ ! on duplique le dernier point
profondeur = dsqrt(xstore(1,1,k)**2 + ystore(1,1,k)**2 + (zstore(1,1,k) )**2 )
write(27,*) profondeur/1000., ilayer-1,1
Ndepth=Ndepth+1
enddo
endif
end subroutine write_gllz_points
subroutine write_recdepth_dsm(Ndepth,R_EARTH)
implicit none
integer Ndepth,i
double precision R_EARTH,prof
double precision, allocatable :: z(:)
integer, allocatable :: zindex(:),ziflag(:)
integer ilayer,flag
open(27,file='.recdepth')
allocate(zindex(Ndepth),ziflag(Ndepth))
allocate(z(Ndepth))
do i=1,Ndepth
read(27,*) prof,ilayer,flag
z(Ndepth-i+1)=R_EARTH/1000.d0-prof
zindex(Ndepth-i+1)=ilayer
ziflag(Ndepth-i+1)=flag
enddo
close(27)
open(27,file='recdepth')
write(27,*) Ndepth
i=1
write(27,*) z(i),zindex(i),ziflag(i)
do i=2,Ndepth-1
if (ziflag(i-1) == -1 ) then
write(27,*) z(i),zindex(i),-1
else
write(27,*) z(i),zindex(i),1
endif
enddo
i=Ndepth
write(27,*) z(i),zindex(i),ziflag(i)
end subroutine write_recdepth_dsm
subroutine write_stxmin(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,test)
implicit none
integer NDIM,NGLLX,NGLLY,NGLLZ,jgll,i,j,NGLLY_eff
double precision xstore(NGLLX,NGLLY,NGLLZ),ystore(NGLLX,NGLLY,NGLLZ),zstore(NGLLX,NGLLY,NGLLZ)
double precision rotation_matrix(3,3)
double precision vector_ori(3),vector_rotated(3)
double precision rayon,x,y,z,deg2rad,long,lati
logical test
deg2rad=3.141592653589793d0/180.d0
NDIM=3
if (test) then
NGLLY_eff = NGLLY
else
NGLLY_eff = NGLLY - 1
endif
do jgll=1,NGLLY_eff
vector_ori(1)=xstore(1,jgll,NGLLZ)
vector_ori(2)=ystore(1,jgll,NGLLZ)
vector_ori(3)=zstore(1,jgll,NGLLZ)
do i = 1,NDIM
vector_rotated(i) = 0.d0
do j = 1,NDIM
vector_rotated(i) = vector_rotated(i) + rotation_matrix(i,j)*vector_ori(j)
enddo
enddo
x=vector_rotated(1);y=vector_rotated(2);z=vector_rotated(3)
rayon = dsqrt(vector_rotated(1)**2 + vector_rotated(2)**2 + vector_rotated(3)**2)
long=atan2(y,x)
lati=asin(z/rayon)
! passage de geocentique a geographique
!!theta = PI/2.D0 - lati
! convert the geocentric colatitude to a geographic colatitude
!!colat = PI/2.0d0 - datan(1.006760466d0*dcos(theta)/dmax1(TINYVAL,dsin(theta)))
!!lati = PI/2.0d0 - colat
!write(28,*) xstore(1,jgll,NGLLZ), ystore(1,jgll,NGLLZ), zstore(1,jgll,NGLLZ)!x,y !long/deg2rad,lati/deg2rad
write(28,*) long/deg2rad,lati/deg2rad !,rayon/1000
!write(38,'()') 1,(NGLLY-1)*jy_elm+jgll
write(49,*)
write(49,*) vector_ori(:)
write(49,*) vector_rotated(:)
enddo
end subroutine write_stxmin
subroutine write_stxmax(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,test)
implicit none
integer NDIM,NGLLX,NGLLY,NGLLZ,jgll,i,j,NGLLY_eff
double precision xstore(NGLLX,NGLLY,NGLLZ),ystore(NGLLX,NGLLY,NGLLZ),zstore(NGLLX,NGLLY,NGLLZ)
double precision rotation_matrix(3,3)
double precision vector_ori(3),vector_rotated(3)
double precision rayon,x,y,z,deg2rad,long,lati
logical test
if (test) then
NGLLY_eff = NGLLY
else
NGLLY_eff = NGLLY - 1
endif
deg2rad=3.141592653589793d0/180.d0
NDIM=3
do jgll=1,NGLLY_eff
vector_ori(1)=xstore(NGLLX,jgll,NGLLZ)
vector_ori(2)=ystore(NGLLX,jgll,NGLLZ)
vector_ori(3) =zstore(NGLLX,jgll,NGLLZ)
do i = 1,NDIM
vector_rotated(i) = 0.d0
do j = 1,NDIM
vector_rotated(i) = vector_rotated(i) + rotation_matrix(i,j)*vector_ori(j)
enddo
enddo
x=vector_rotated(1);y=vector_rotated(2);z=vector_rotated(3)
rayon = dsqrt(vector_rotated(1)**2 + vector_rotated(2)**2 + vector_rotated(3)**2)
long=atan2(y,x)
lati=asin(z/rayon)
! passage de geocentique a geographique
!!theta = PI/2.D0 - lati
! convert the geocentric colatitude to a geographic colatitude
!!colat = PI/2.0d0 - datan(1.006760466d0*dcos(theta)/dmax1(TINYVAL,dsin(theta)))
!!lati = PI/2.0d0 - colat
!write(28,*) xstore(1,jgll,NGLLZ), ystore(1,jgll,NGLLZ), zstore(1,jgll,NGLLZ)!x,y !long/deg2rad,lati/deg2rad
write(29,*) long/deg2rad,lati/deg2rad !,rayon/1000
enddo
end subroutine write_stxmax
subroutine write_stymin(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,test)
implicit none
integer NDIM,NGLLX,NGLLY,NGLLZ,jgll,i,j,NGLLX_eff
double precision xstore(NGLLX,NGLLY,NGLLZ),ystore(NGLLX,NGLLY,NGLLZ),zstore(NGLLX,NGLLY,NGLLZ)
double precision rotation_matrix(3,3)
double precision vector_ori(3),vector_rotated(3)
double precision rayon,x,y,z,deg2rad,long,lati
logical test
deg2rad=3.141592653589793d0/180.d0
NDIM=3
if (test) then
NGLLX_eff = NGLLX
else
NGLLX_eff = NGLLX - 1
endif
do jgll=1,NGLLX_eff
vector_ori(1)=xstore(jgll,1,NGLLZ)
vector_ori(2)=ystore(jgll,1,NGLLZ)
vector_ori(3) =zstore(jgll,1,NGLLZ)
do i = 1,NDIM
vector_rotated(i) = 0.d0
do j = 1,NDIM
vector_rotated(i) = vector_rotated(i) + rotation_matrix(i,j)*vector_ori(j)
enddo
enddo
x=vector_rotated(1);y=vector_rotated(2);z=vector_rotated(3)
rayon = dsqrt(vector_rotated(1)**2 + vector_rotated(2)**2 + vector_rotated(3)**2)
long=atan2(y,x)
lati=asin(z/rayon)
! passage de geocentique a geographique
!!theta = PI/2.D0 - lati
! convert the geocentric colatitude to a geographic colatitude
!!colat = PI/2.0d0 - datan(1.006760466d0*dcos(theta)/dmax1(TINYVAL,dsin(theta)))
!!lati = PI/2.0d0 - colat
!write(28,*) xstore(1,jgll,NGLLZ), ystore(1,jgll,NGLLZ), zstore(1,jgll,NGLLZ)!x,y !long/deg2rad,lati/deg2rad
write(30,*) long/deg2rad,lati/deg2rad !,rayon/1000
enddo
end subroutine write_stymin
subroutine write_stymax(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,test)
implicit none
integer NDIM,NGLLX,NGLLY,NGLLZ,jgll,i,j,NGLLX_eff
double precision xstore(NGLLX,NGLLY,NGLLZ),ystore(NGLLX,NGLLY,NGLLZ),zstore(NGLLX,NGLLY,NGLLZ)
double precision rotation_matrix(3,3)
double precision vector_ori(3),vector_rotated(3)
double precision rayon,x,y,z,deg2rad,long,lati
logical test
if (test) then
NGLLX_eff = NGLLX
else
NGLLX_eff = NGLLX - 1
endif
deg2rad=3.141592653589793d0/180.d0
NDIM=3
do jgll=1,NGLLX_eff
vector_ori(1)=xstore(jgll,NGLLY,NGLLZ)
vector_ori(2)=ystore(jgll,NGLLY,NGLLZ)
vector_ori(3) =zstore(jgll,NGLLY,NGLLZ)
do i = 1,NDIM
vector_rotated(i) = 0.d0
do j = 1,NDIM
vector_rotated(i) = vector_rotated(i) + rotation_matrix(i,j)*vector_ori(j)
enddo
enddo
x=vector_rotated(1);y=vector_rotated(2);z=vector_rotated(3)
rayon = dsqrt(vector_rotated(1)**2 + vector_rotated(2)**2 + vector_rotated(3)**2)
long=atan2(y,x)
lati=asin(z/rayon)
! passage de geocentique a geographique
!!theta = PI/2.D0 - lati
! convert the geocentric colatitude to a geographic colatitude
!!colat = PI/2.0d0 - datan(1.006760466d0*dcos(theta)/dmax1(TINYVAL,dsin(theta)))
!!lati = PI/2.0d0 - colat
!write(28,*) xstore(1,jgll,NGLLZ), ystore(1,jgll,NGLLZ), zstore(1,jgll,NGLLZ)!x,y !long/deg2rad,lati/deg2rad
write(31,*) long/deg2rad,lati/deg2rad !,rayon/1000
enddo
end subroutine write_stymax
subroutine store_zmin_points(xstore,ystore,zstore,NGLLX,NGLLY,NGLLZ,rotation_matrix,&
lon_zmin,lat_zmin,nlon_dsm,nlat_dsm,ilon,ilat,nel_lon,nel_lat)
implicit none
integer NDIM,NGLLX,NGLLY,NGLLZ,igll,jgll,i,j,NGLLX_eff
integer ilon,ilat,nel_lon,nel_lat,iglob,jglob,nlat_dsm,nlon_dsm
double precision xstore(NGLLX,NGLLY,NGLLZ),ystore(NGLLX,NGLLY,NGLLZ),zstore(NGLLX,NGLLY,NGLLZ)
double precision rotation_matrix(3,3)
double precision vector_ori(3),vector_rotated(3)
double precision rayon,x,y,z,deg2rad,long,lati
double precision lon_zmin(nlon_dsm,nlat_dsm),lat_zmin(nlon_dsm,nlat_dsm)
logical test
deg2rad=3.141592653589793d0/180.d0
NDIM=3
do jgll=1,NGLLY
do igll=1,NGLLX
vector_ori(1)=xstore(igll,jgll,1)
vector_ori(2)=ystore(igll,jgll,1)
vector_ori(3) =zstore(igll,jgll,1)
do i = 1,NDIM
vector_rotated(i) = 0.d0
do j = 1,NDIM
vector_rotated(i) = vector_rotated(i) + rotation_matrix(i,j)*vector_ori(j)
enddo
enddo
x=vector_rotated(1);y=vector_rotated(2);z=vector_rotated(3)
rayon = dsqrt(vector_rotated(1)**2 + vector_rotated(2)**2 + vector_rotated(3)**2)
long=atan2(y,x)
lati=asin(z/rayon)
! passage de geocentique a geographique
!!theta = PI/2.D0 - lati
! convert the geocentric colatitude to a geographic colatitude
!!colat = PI/2.0d0 - datan(1.006760466d0*dcos(theta)/dmax1(TINYVAL,dsin(theta)))
!!lati = PI/2.0d0 - colat
!write(28,*) xstore(1,jgll,NGLLZ), ystore(1,jgll,NGLLZ), zstore(1,jgll,NGLLZ)!x,y !long/deg2rad,lati/deg2rad
!write(31,*) long/deg2rad,lati/deg2rad !,rayon/1000
iglob=(ilon)*(NGLLX-1)+igll
jglob=(ilat)*(NGLLY-1)+jgll
lon_zmin(iglob,jglob)= long/deg2rad
lat_zmin(iglob,jglob)= lati/deg2rad
!write(32,'(3f20.10)') xstore(igll,jgll,1)/1000.d0, ystore(igll,jgll,1)/1000.d0,zstore(igll,jgll,1)/1000.d0
!write(32,*) xstore(igll,jgll,NGLLZ), ystore(igll,igll,NGLLZ),zstore(igll,jgll,NGLLZ)
enddo
enddo
end subroutine store_zmin_points
subroutine write_stzmin(x,y,nx,ny)
implicit none
integer i,j,nx,ny
double precision x(nx,ny),y(nx,ny)
open(27,file='stzmin')
write(27,*) nx*ny
do j=1,ny
do i=1,nx
write(27,*) x(i,j),y(i,j)
enddo
enddo
close(27)
end subroutine write_stzmin
subroutine write_Igm_file(iunit,ispec2D,NGLL1,NGLL2,ie,je,js,il)
implicit none
integer iunit,ispec2D,NGLL1,NGLL2,ie,je,js,il
integer i,j
do j=1,NGLL2
do i=1,NGLL1
write(iunit,*) i,j,ispec2D,(NGLL1-1)*ie+i,(NGLL2-1)*je+j+js,il
enddo
enddo
end subroutine write_Igm_file
subroutine compute_rotation_matrix(rotation_matrix, lon_center_chunk,lat_center_chunk, chunk_azi)
implicit none
double precision rotation_matrix(3,3),lon_center_chunk,lat_center_chunk, chunk_azi
double precision R0(3,3),R1(3,3),R2(3,3),axe_rotation(3),R00(3,3)
! je met le chunk en 0,0
axe_rotation(1)=0.d0; axe_rotation(2)=1.d0; axe_rotation(3)=0.d0
call rotation_matrix_axe(R00,axe_rotation,90.d0) ! je ramene le chunk en (0,0)
! rotation de l'azimuth du chunk
axe_rotation(1)=1.d0; axe_rotation(2)=0.d0; axe_rotation(3)=0.d0
call rotation_matrix_axe(R0,axe_rotation,90.-chunk_azi)
! on met le chunk a la bonne latitude
axe_rotation(1)=0.d0; axe_rotation(2)=-1.d0; axe_rotation(3)=0.d0
call rotation_matrix_axe(R1,axe_rotation,lat_center_chunk)
! on met le chunk a la bonne longitude
axe_rotation(1)=0.d0; axe_rotation(2)=0.d0; axe_rotation(3)=1.d0
call rotation_matrix_axe(R2,axe_rotation, lon_center_chunk)
! rotation resultante
call compose4matrix(rotation_matrix,R00,R0,R1,R2)
end subroutine compute_rotation_matrix
!
!
! ROUTINES POUR FAIRE DES ROTATIONS 3D ET DIVERS CHANGEMENTS DE REPERES
!
! Vadim Monteiller Mars 2013
!
!-------------------------------------------------------------------------------
! matrice de rotation 3D d'axe "axe" et d'angle theta (degrees)
! cette matrice est en complexe
subroutine rotation_matrix_axe(R,axe,theta)
implicit none
double precision axe(3),theta,pi,deg2rad
double precision R(3,3)
double precision c,s,ux,uy,uz,norme_axe
integer i,j
pi=3.1415926535897932d0
deg2rad = pi / 180.d0
! on normalise l'axe
norme_axe=dsqrt(axe(1)**2 + axe(2)**2 + axe(3)**2)
! composantes de l'axe
ux=axe(1)/norme_axe
uy=axe(2)/norme_axe
uz=axe(3)/norme_axe
! on calcule le cos et sin
c=dcos(deg2rad * theta);s=dsin(deg2rad * theta)
! matrice de rotation complexe
R(1,1)=(ux**2 + (1.d0-ux**2)*c)
R(1,2)=(ux*uy*(1.d0-c)-uz*s)
R(1,3)=(ux*uy*(1.d0-c)+uy*s)
R(2,1)=(ux*uy*(1.d0-c)+uz*s)
R(2,2)=(uy**2+(1.d0-uy**2)*c)
R(2,3)=(uy*uz*(1.d0-c)-ux*s)
R(3,1)=(ux*uz*(1.d0-c)-uy*s)
R(3,2)=(uy*uz*(1.d0-c)+ux*s)
R(3,3)=(uz**2+(1.d0-uz**2)*c)
write(49,*) ' MATRICE ROTATION '
write(49,*) R(1,:)
write(49,*) R(2,:)
write(49,*) R(3,:)
write(49,*)
end subroutine rotation_matrix_axe
!-------------------------------------------------------------------------------
! R=R2*R1*R0
subroutine compose4matrix(R,R00,R0,R1,R2)
implicit none
double precision R(3,3),R0(3,3),R1(3,3),R2(3,3),R00(3,3),Rtmp(3,3)
integer i,j,k
R(:,:)=0.d0
! multiplication R=R0*R00
do j=1,3
do i=1,3
do k=1,3
R(i,j)=R(i,j) + R0(i,k)*R00(k,j)
enddo
enddo
enddo
! multiplication R=R1*R
Rtmp=R
R(:,:)=0.d0
do j=1,3
do i=1,3
do k=1,3
R(i,j)=R(i,j) + R1(i,k)*Rtmp(k,j)
enddo
enddo
enddo
! multiplication R=R2*R
Rtmp=R
R(:,:)=0.d0
do j=1,3
do i=1,3
do k=1,3
R(i,j)=R(i,j) + R2(i,k)*Rtmp(k,j)
enddo
enddo
enddo
write(49,*) ' MATRICE ROTATION COMPLETE '
write(49,*) R(1,:)
write(49,*) R(2,:)
write(49,*) R(3,:)
write(49,*)
end subroutine compose4matrix
!------------------------------------------------------------------------------
! rotation pour passer d'un repere local a un autre
| gpl-2.0 |
T-J-Teru/binutils-gdb | gdb/testsuite/gdb.fortran/pointer-to-pointer.f90 | 5 | 1072 | ! Copyright 2020-2022 Free Software Foundation, Inc.
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
program allocate_array
type l_buffer
real, dimension(:), pointer :: alpha
end type l_buffer
type(l_buffer), pointer :: buffer
allocate (buffer)
allocate (buffer%alpha (5))
buffer%alpha (1) = 1.5
buffer%alpha (2) = 2.5
buffer%alpha (3) = 3.5
buffer%alpha (4) = 4.5
buffer%alpha (5) = 5.5
print *, buffer%alpha ! Break Here.
end program allocate_array
| gpl-2.0 |
kbai/specfem3d | utils/Cubit_or_Gmsh/multiply_coordinates_of_the_whole_mesh_by_1000.f90 | 4 | 3536 | !=====================================================================
!
! S p e c f e m 3 D V e r s i o n 3 . 0
! ---------------------------------------
!
! Main historical authors: Dimitri Komatitsch and Jeroen Tromp
! Princeton University, USA
! and CNRS / University of Marseille, France
! (there are currently many more authors!)
! (c) Princeton University and CNRS / University of Marseille, July 2012
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 2 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along
! with this program; if not, write to the Free Software Foundation, Inc.,
! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
!
!=====================================================================
! read an external mesh file and multiply its coordinates by 1000,
! for instance when it has been created in kilometers but the user wants it in meters
! Dimitri Komatitsch, CNRS, Marseille, France, June 2015.
program multiply_coordinates_by_1000
implicit none
!
! work in single or in double precision (4 or 8 bytes)
!
integer, parameter :: CUSTOM_REAL = 4 ! 8
!------------------------------------------------------------------------------------------------
integer, parameter :: NGNOD = 8 ! number of control nodes for hexahedral elements (can only be 8 or 27)
character(len=*), parameter :: nodes_coords_file = 'MESH/nodes_coords_file'
character(len=*), parameter :: nodes_coords_file_new = 'MESH/nodes_coords_file_new'
!------------------------------------------------------------------------------------------------
integer :: NGLOB ! number of nodes
integer :: i,iread,ier
real(kind=CUSTOM_REAL) :: xtmp,ytmp,ztmp
if (NGNOD /= 8) then
print *,'error: multiply_coordinates_by_1000 only supports NGNOD == 8 for now'
stop 'error in multiply_coordinates_by_1000'
endif
! read the mesh
print *
print *,'start reading the existing node coordinate file: ',nodes_coords_file(1:len_trim(nodes_coords_file))
print *,'and writing the new one multiplied by 1000: ',nodes_coords_file_new(1:len_trim(nodes_coords_file_new))
open(unit=10,file=nodes_coords_file,status='old',action='read')
open(unit=11,file=nodes_coords_file_new,status='unknown',action='write')
read(10,*) NGLOB
print *,' number of points: ',NGLOB
write(11,*) NGLOB
do i = 1,NGLOB
! gets node ID and position
read(10,*,iostat=ier) iread,xtmp,ytmp,ztmp
! check
if (ier /= 0) then
print *,'error point read:',i,iread,xtmp,ytmp,ztmp
stop 'error while reading points'
endif
! checks if out-of-range
if (iread < 1 .or. iread > NGLOB) then
print *,'error at i,iread = ',i,iread
stop 'wrong ID input for a point'
endif
! write the new values multiplied by 1000
write(11,*) iread,xtmp*1000._CUSTOM_REAL,ytmp*1000._CUSTOM_REAL,ztmp*1000._CUSTOM_REAL
enddo
close(10)
close(11)
end program multiply_coordinates_by_1000
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | gcc/testsuite/gfortran.dg/c_funloc_tests_6.f90 | 30 | 1065 | ! { dg-do compile }
! { dg-options "-std=f2008" }
!
! Check relaxed TS29113 constraints for procedures
! and c_f_*pointer argument checking for c_ptr/c_funptr.
!
use iso_c_binding
implicit none
type(c_ptr) :: cp
type(c_funptr) :: cfp
interface
subroutine sub() bind(C)
end subroutine sub
end interface
integer(c_int), pointer :: int
procedure(sub), pointer :: fsub
integer, external :: noCsub
procedure(integer), pointer :: fint
cp = c_funloc (sub) ! { dg-error "Can't convert TYPE.c_funptr. to TYPE.c_ptr." })
cfp = c_loc (int) ! { dg-error "Can't convert TYPE.c_ptr. to TYPE.c_funptr." }
call c_f_pointer (cfp, int) ! { dg-error "Argument CPTR at .1. to C_F_POINTER shall have the type TYPE.C_PTR." }
call c_f_procpointer (cp, fsub) ! { dg-error "Argument CPTR at .1. to C_F_PROCPOINTER shall have the type TYPE.C_FUNPTR." }
cfp = c_funloc (noCsub) ! { dg-error "TS 29113: Noninteroperable procedure at .1. to C_FUNLOC" }
call c_f_procpointer (cfp, fint) ! { dg-error "TS 29113: Noninteroperable procedure pointer at .1. to C_F_PROCPOINTER" }
end
| gpl-2.0 |
kbai/specfem3d | src/auxiliaries/combine_surf_data.f90 | 4 | 12688 | !=====================================================================
!
! S p e c f e m 3 D V e r s i o n 3 . 0
! ---------------------------------------
!
! Main historical authors: Dimitri Komatitsch and Jeroen Tromp
! Princeton University, USA
! and CNRS / University of Marseille, France
! (there are currently many more authors!)
! (c) Princeton University and CNRS / University of Marseille, July 2012
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 2 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along
! with this program; if not, write to the Free Software Foundation, Inc.,
! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
!
!=====================================================================
program combine_surf_data
! puts the output of SPECFEM3D in ParaView format.
! see http://www.paraview.org for details
! combines the database files on several slices.
! the local database file needs to have been collected onto the frontend (copy_local_database.pl)
use constants
implicit none
integer :: i,j,k,ispec, it
integer :: iproc, proc1, proc2, num_node, node_list(300), nspec, nglob
integer :: np, ne, npp, nee, npoint, nelement, njunk, n1, n2, n3, n4
integer :: numpoin, iglob1, iglob2, iglob3, iglob4, iglob
real(kind=CUSTOM_REAL), dimension(:,:,:,:), allocatable :: data_3D
real(kind=CUSTOM_REAL), dimension(:,:,:), allocatable :: data_2D
! mesh coordinates
real(kind=CUSTOM_REAL),dimension(:),allocatable :: xstore, ystore, zstore
integer, dimension(:,:,:,:),allocatable :: ibool
logical, dimension(:),allocatable :: mask_ibool
integer :: NSPEC_AB,NGLOB_AB
real :: x, y, z
real, dimension(:,:,:,:), allocatable :: dat3D
real, dimension(:,:,:), allocatable :: dat2D
character(len=MAX_STRING_LEN) :: sline, arg(8), filename, indir, outdir, prname, surfname
character(len=MAX_STRING_LEN*2) :: mesh_file, local_file, local_data_file, local_ibool_file
character(len=MAX_STRING_LEN*2) :: local_ibool_surf_file
! integer :: num_ibool(NGLOB_AB)
integer,dimension(:),allocatable :: num_ibool
logical :: HIGH_RESOLUTION_MESH, FILE_ARRAY_IS_3D
integer :: ires, nspec_surf, npoint1, npoint2, ispec_surf, inx, iny, idimval, ier
integer,dimension(:), allocatable :: ibelm_surf
do i = 1, 8
call get_command_argument(i,arg(i))
if (i < 6 .and. trim(arg(i)) == '') then
print *, 'Usage: xcombine_surface start_slice end_slice filename surfacename input_dir output_dir high/low-resolution 3D/2D'
print *, ' or xcombine_surface slice_list filename surfacename input_dir output_dir high/low-resolution 3D/2D'
print *, ' possible filenames are kappastore(NGLLX,NGLLY,NGLLZ,nspec), alpha_kernel(NGLLX,NGLLY,nspec_surf)'
print *, ' possible surface name: moho as in ibelm_moho.bin'
print *, ' files have been collected in input_dir, output mesh file goes to output_dir '
print *, ' give 0 for low resolution and 1 for high resolution'
print *, ' give 0 for 2D and 1 for 3D filenames'
stop ' Reenter command line options'
endif
enddo
! get slice list
if (trim(arg(8)) == '') then
num_node = 0
open(unit = 20, file = trim(arg(1)), status = 'unknown',iostat = ier)
if (ier /= 0) then
print *,'Error opening ',trim(arg(1))
stop
endif
do while (1 == 1)
read(20,'(a)',iostat=ier) sline
if (ier /= 0) exit
read(sline,*,iostat=ier) njunk
if (ier /= 0) exit
num_node = num_node + 1
node_list(num_node) = njunk
enddo
close(20)
filename = arg(2)
surfname = arg(3)
indir= arg(4)
outdir = arg(5)
read(arg(6),*) ires
read(arg(7),*) idimval
else
read(arg(1),*) proc1
read(arg(2),*) proc2
do iproc = proc1, proc2
node_list(iproc - proc1 + 1) = iproc
enddo
num_node = proc2 - proc1 + 1
filename = arg(3)
surfname = arg(4)
indir = arg(5)
outdir = arg(6)
read(arg(7),*) ires
read(arg(8),*) idimval
endif
if (ires == 0) then
HIGH_RESOLUTION_MESH = .false.
inx = NGLLX-1
iny = NGLLY-1
else
HIGH_RESOLUTION_MESH = .true.
inx = 1
iny = 1
endif
if (idimval == 0) then
FILE_ARRAY_IS_3D = .false.
else
FILE_ARRAY_IS_3D = .true.
endif
print *, 'Slice list: '
print *, node_list(1:num_node)
! open paraview output mesh file
mesh_file = trim(outdir) // '/' // trim(filename)//'.surf'
call open_file_create(trim(mesh_file)//char(0))
! nspec = NSPEC_AB
! nglob = NGLOB_AB
np = 0
! ======= loop over all slices, write point and scalar information ======
do it = 1, num_node
iproc = node_list(it)
print *, ' '
print *, 'Reading slice ', iproc
write(prname,'(a,i6.6,a)') trim(indir)//'/proc',iproc,'_'
! gets number of elements and global points for this partition
open(unit=27,file=prname(1:len_trim(prname))//'external_mesh.bin',&
status='old',action='read',form='unformatted',iostat=ier)
read(27) NSPEC_AB
read(27) NGLOB_AB
close(27)
nspec = NSPEC_AB
nglob = NGLOB_AB
! allocates arrays
allocate(ibool(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
mask_ibool(NGLOB_AB), &
num_ibool(NGLOB_AB), &
xstore(NGLOB_AB),ystore(NGLOB_AB),zstore(NGLOB_AB),stat=ier)
if (ier /= 0) stop 'error allocating array ibool etc.'
! surface file
local_ibool_surf_file = trim(prname) // 'ibelm_' //trim(surfname)// '.bin'
open(unit = 28,file = trim(local_ibool_surf_file),status='old', iostat = ier, form='unformatted')
if (ier /= 0) then
print *,'Error opening ',trim(local_ibool_surf_file)
stop
endif
read(28) nspec_surf
read(28) npoint1
read(28) npoint2
if (it == 1) then
allocate(ibelm_surf(nspec_surf),stat=ier)
if (ier /= 0) stop 'error allocating array ibelm_surf'
endif
read(28) ibelm_surf
close(28)
print *, trim(local_ibool_surf_file)
if (it == 1) then
if (FILE_ARRAY_IS_3D) then
allocate(data_3D(NGLLX,NGLLY,NGLLZ,NSPEC_AB),dat3D(NGLLX,NGLLY,NGLLZ,NSPEC_AB),stat=ier)
if (ier /= 0) stop 'error allocating array data_3D'
else
allocate(data_2D(NGLLX,NGLLY,nspec_surf),dat2D(NGLLX,NGLLY,nspec_surf),stat=ier)
if (ier /= 0) stop 'error allocating array data_2D'
endif
endif
! data file
local_data_file = trim(prname) // trim(filename) // '.bin'
open(unit = 27,file = trim(local_data_file),status='old', iostat = ier,form ='unformatted')
if (ier /= 0) then
print *,'Error opening ',trim(local_data_file)
stop
endif
if (FILE_ARRAY_IS_3D) then
read(27) data_3D
dat3D = data_3D
else
read(27) data_2D
dat2D = data_2D
endif
close(27)
print *, trim(local_data_file)
! ibool file
local_ibool_file = trim(prname) // 'ibool' // '.bin'
open(unit = 28,file = trim(local_ibool_file),status='old', iostat = ier, form='unformatted')
if (ier /= 0) then
print *,'Error opening ',trim(local_data_file)
stop
endif
read(28) ibool
close(28)
print *, trim(local_ibool_file)
mask_ibool(:) = .false.
numpoin = 0
if (it == 1) then
if (HIGH_RESOLUTION_MESH) then
npoint = npoint2
else
npoint = npoint1
endif
npp = npoint * num_node
call write_integer(npp)
endif
local_file = trim(prname)//'x.bin'
open(unit = 27,file = trim(prname)//'x.bin',status='old', iostat = ier,form ='unformatted')
if (ier /= 0) then
print *,'Error opening ',trim(local_file)
stop
endif
read(27) xstore
close(27)
local_file = trim(prname)//'y.bin'
open(unit = 27,file = trim(prname)//'y.bin',status='old', iostat = ier,form ='unformatted')
if (ier /= 0) then
print *,'Error opening ',trim(local_file)
stop
endif
read(27) ystore
close(27)
local_file = trim(prname)//'z.bin'
open(unit = 27,file = trim(prname)//'z.bin',status='old', iostat = ier,form ='unformatted')
if (ier /= 0) then
print *,'Error opening ',trim(local_file)
stop
endif
read(27) zstore
close(27)
do ispec_surf=1,nspec_surf
ispec = ibelm_surf(ispec_surf)
k = 1
do j = 1, NGLLY, iny
do i = 1, NGLLX, inx
iglob = ibool(i,j,k,ispec)
if (.not. mask_ibool(iglob)) then
numpoin = numpoin + 1
x = xstore(iglob)
y = ystore(iglob)
z = zstore(iglob)
call write_real(x)
call write_real(y)
call write_real(z)
if (FILE_ARRAY_IS_3D) then
call write_real(dat3D(i,j,k,ispec))
else
call write_real(dat2D(i,j,ispec_surf))
endif
mask_ibool(iglob) = .true.
endif
enddo ! i
enddo ! j
enddo !ispec
if (numpoin /= npoint) stop 'Error: number of points are not consistent'
np = np + npoint
! frees arrays
deallocate(ibool,mask_ibool,num_ibool,xstore,ystore,zstore)
enddo ! all slices for points
if (np /= npp) stop 'Error: Number of total points are not consistent'
print *, 'Total number of points: ', np
print *, ' '
ne = 0
! ============ write element information =====================
do it = 1, num_node
iproc = node_list(it)
print *, 'Reading slice ', iproc
write(prname,'(a,i6.6,a)') trim(indir)//'/proc',iproc,'_'
! gets number of elements and global points for this partition
open(unit=27,file=prname(1:len_trim(prname))//'external_mesh.bin',&
status='old',action='read',form='unformatted',iostat=ier)
read(27) NSPEC_AB
read(27) NGLOB_AB
close(27)
nspec = NSPEC_AB
nglob = NGLOB_AB
! allocates arrays
allocate(ibool(NGLLX,NGLLY,NGLLZ,NSPEC_AB), &
mask_ibool(NGLOB_AB), &
num_ibool(NGLOB_AB),stat=ier)
if (ier /= 0) stop 'error allocating array ibool etc.'
np = npoint * (it-1)
! surface file
local_ibool_surf_file = trim(prname) // 'ibelm_' //trim(surfname)// '.bin'
open(unit = 28,file = trim(local_ibool_surf_file),status='old', iostat = ier, form='unformatted')
read(28) nspec_surf
read(28) njunk
read(28) njunk
read(28) ibelm_surf
close(28)
! ibool file
local_ibool_file = trim(prname) // 'ibool' // '.bin'
open(unit = 28,file = trim(local_ibool_file),status='old', iostat = ier, form='unformatted')
read(28) ibool
close(28)
if (it == 1) then
if (HIGH_RESOLUTION_MESH) then
nelement = nspec_surf * (NGLLX-1) * (NGLLY-1)
else
nelement = nspec_surf
endif
nee = nelement * num_node
call write_integer(nee)
endif
numpoin = 0
mask_ibool = .false.
do ispec_surf=1,nspec_surf
ispec = ibelm_surf(ispec_surf)
k = 1
do j = 1, NGLLY, iny
do i = 1, NGLLX, inx
iglob = ibool(i,j,k,ispec)
if (.not. mask_ibool(iglob)) then
numpoin = numpoin + 1
num_ibool(iglob) = numpoin
mask_ibool(iglob) = .true.
endif
enddo ! i
enddo ! j
enddo !ispec
do ispec_surf = 1, nspec_surf
ispec = ibelm_surf(ispec_surf)
k = 1
do j = 1, NGLLY-1, iny
do i = 1, NGLLX-1, inx
iglob1 = ibool(i,j,k,ispec)
iglob2 = ibool(i+inx,j,k,ispec)
iglob3 = ibool(i+inx,j+iny,k,ispec)
iglob4 = ibool(i,j+iny,k,ispec)
n1 = num_ibool(iglob1)+np-1
n2 = num_ibool(iglob2)+np-1
n3 = num_ibool(iglob3)+np-1
n4 = num_ibool(iglob4)+np-1
call write_integer(n1)
call write_integer(n2)
call write_integer(n3)
call write_integer(n4)
enddo
enddo
enddo
ne = ne + nelement
! frees arrays
deallocate(ibool,mask_ibool,num_ibool)
enddo ! num_node
if (ne /= nee) stop 'Number of total elements are not consistent'
print *, 'Total number of elements: ', ne
call close_file()
print *, 'Done writing '//trim(mesh_file)
end program combine_surf_data
| gpl-2.0 |
skywalker00/sabermod_rom_toolchain | libgfortran/generated/_exp_c10.F90 | 35 | 1484 | ! Copyright (C) 2002-2014 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_COMPLEX_10)
#ifdef HAVE_CEXPL
elemental function _gfortran_specific__exp_c10 (parm)
complex (kind=10), intent (in) :: parm
complex (kind=10) :: _gfortran_specific__exp_c10
_gfortran_specific__exp_c10 = exp (parm)
end function
#endif
#endif
| gpl-2.0 |
prool/ccx_prool | ARPACK/LAPACK/slasr.f | 5 | 11491 | SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
CHARACTER DIRECT, PIVOT, SIDE
INTEGER LDA, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), C( * ), S( * )
* ..
*
* Purpose
* =======
*
* SLASR performs the transformation
*
* A := P*A, when SIDE = 'L' or 'l' ( Left-hand side )
*
* A := A*P', when SIDE = 'R' or 'r' ( Right-hand side )
*
* where A is an m by n real matrix and P is an orthogonal matrix,
* consisting of a sequence of plane rotations determined by the
* parameters PIVOT and DIRECT as follows ( z = m when SIDE = 'L' or 'l'
* and z = n when SIDE = 'R' or 'r' ):
*
* When DIRECT = 'F' or 'f' ( Forward sequence ) then
*
* P = P( z - 1 )*...*P( 2 )*P( 1 ),
*
* and when DIRECT = 'B' or 'b' ( Backward sequence ) then
*
* P = P( 1 )*P( 2 )*...*P( z - 1 ),
*
* where P( k ) is a plane rotation matrix for the following planes:
*
* when PIVOT = 'V' or 'v' ( Variable pivot ),
* the plane ( k, k + 1 )
*
* when PIVOT = 'T' or 't' ( Top pivot ),
* the plane ( 1, k + 1 )
*
* when PIVOT = 'B' or 'b' ( Bottom pivot ),
* the plane ( k, z )
*
* c( k ) and s( k ) must contain the cosine and sine that define the
* matrix P( k ). The two by two plane rotation part of the matrix
* P( k ), R( k ), is assumed to be of the form
*
* R( k ) = ( c( k ) s( k ) ).
* ( -s( k ) c( k ) )
*
* This version vectorises across rows of the array A when SIDE = 'L'.
*
* Arguments
* =========
*
* SIDE (input) CHARACTER*1
* Specifies whether the plane rotation matrix P is applied to
* A on the left or the right.
* = 'L': Left, compute A := P*A
* = 'R': Right, compute A:= A*P'
*
* DIRECT (input) CHARACTER*1
* Specifies whether P is a forward or backward sequence of
* plane rotations.
* = 'F': Forward, P = P( z - 1 )*...*P( 2 )*P( 1 )
* = 'B': Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
*
* PIVOT (input) CHARACTER*1
* Specifies the plane for which P(k) is a plane rotation
* matrix.
* = 'V': Variable pivot, the plane (k,k+1)
* = 'T': Top pivot, the plane (1,k+1)
* = 'B': Bottom pivot, the plane (k,z)
*
* M (input) INTEGER
* The number of rows of the matrix A. If m <= 1, an immediate
* return is effected.
*
* N (input) INTEGER
* The number of columns of the matrix A. If n <= 1, an
* immediate return is effected.
*
* C, S (input) REAL arrays, dimension
* (M-1) if SIDE = 'L'
* (N-1) if SIDE = 'R'
* c(k) and s(k) contain the cosine and sine that define the
* matrix P(k). The two by two plane rotation part of the
* matrix P(k), R(k), is assumed to be of the form
* R( k ) = ( c( k ) s( k ) ).
* ( -s( k ) c( k ) )
*
* A (input/output) REAL array, dimension (LDA,N)
* The m by n matrix A. On exit, A is overwritten by P*A if
* SIDE = 'R' or by A*P' if SIDE = 'L'.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
REAL CTEMP, STEMP, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
INFO = 1
ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
$ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
INFO = 2
ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
$ THEN
INFO = 3
ELSE IF( M.LT.0 ) THEN
INFO = 4
ELSE IF( N.LT.0 ) THEN
INFO = 5
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = 9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLASR ', INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
$ RETURN
IF( LSAME( SIDE, 'L' ) ) THEN
*
* Form P * A
*
IF( LSAME( PIVOT, 'V' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 20 J = 1, M - 1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 10 I = 1, N
TEMP = A( J+1, I )
A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
10 CONTINUE
END IF
20 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 40 J = M - 1, 1, -1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 30 I = 1, N
TEMP = A( J+1, I )
A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
30 CONTINUE
END IF
40 CONTINUE
END IF
ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 60 J = 2, M
CTEMP = C( J-1 )
STEMP = S( J-1 )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 50 I = 1, N
TEMP = A( J, I )
A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
50 CONTINUE
END IF
60 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 80 J = M, 2, -1
CTEMP = C( J-1 )
STEMP = S( J-1 )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 70 I = 1, N
TEMP = A( J, I )
A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
70 CONTINUE
END IF
80 CONTINUE
END IF
ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 100 J = 1, M - 1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 90 I = 1, N
TEMP = A( J, I )
A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
90 CONTINUE
END IF
100 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 120 J = M - 1, 1, -1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 110 I = 1, N
TEMP = A( J, I )
A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
110 CONTINUE
END IF
120 CONTINUE
END IF
END IF
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
* Form A * P'
*
IF( LSAME( PIVOT, 'V' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 140 J = 1, N - 1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 130 I = 1, M
TEMP = A( I, J+1 )
A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
130 CONTINUE
END IF
140 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 160 J = N - 1, 1, -1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 150 I = 1, M
TEMP = A( I, J+1 )
A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
150 CONTINUE
END IF
160 CONTINUE
END IF
ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 180 J = 2, N
CTEMP = C( J-1 )
STEMP = S( J-1 )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 170 I = 1, M
TEMP = A( I, J )
A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
170 CONTINUE
END IF
180 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 200 J = N, 2, -1
CTEMP = C( J-1 )
STEMP = S( J-1 )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 190 I = 1, M
TEMP = A( I, J )
A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
190 CONTINUE
END IF
200 CONTINUE
END IF
ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 220 J = 1, N - 1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 210 I = 1, M
TEMP = A( I, J )
A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
210 CONTINUE
END IF
220 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 240 J = N - 1, 1, -1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 230 I = 1, M
TEMP = A( I, J )
A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
230 CONTINUE
END IF
240 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of SLASR
*
END
| gpl-2.0 |
prool/ccx_prool | CalculiX/ccx_2.8p2/src/e_c3d.f | 2 | 56011 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2015 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
subroutine e_c3d(co,kon,lakonl,p1,p2,omx,bodyfx,nbody,s,sm,
& ff,nelem,nmethod,elcon,nelcon,rhcon,nrhcon,alcon,nalcon,alzero,
& ielmat,ielorien,norien,orab,ntmat_,
& t0,t1,ithermal,vold,iperturb,nelemload,
& sideload,xload,nload,idist,sti,stx,iexpl,plicon,
& nplicon,plkcon,nplkcon,xstiff,npmat_,dtime,
& matname,mi,ncmat_,mass,stiffness,buckling,rhsi,intscheme,
& ttime,time,istep,iinc,coriolis,xloadold,reltime,
& ipompc,nodempc,coefmpc,nmpc,ikmpc,ilmpc,veold,springarea,
& nstate_,xstateini,xstate,ne0,ipkon,thicke,
& integerglob,doubleglob,tieset,istartset,iendset,ialset,ntie,
& nasym,pslavsurf,pmastsurf,mortar,clearini,ielprop,prop)
!
! computation of the element matrix and rhs for the element with
! the topology in konl
!
! ff: rhs without temperature and eigenstress contribution
!
! nmethod=0: check for positive Jacobian
! nmethod=1: stiffness matrix + right hand side
! nmethod=2: stiffness matrix + mass matrix
! nmethod=3: static stiffness + buckling stiffness
! nmethod=4: stiffness matrix + mass matrix
!
implicit none
!
logical mass,stiffness,buckling,rhsi,coriolis
!
character*1 entity
character*8 lakonl
character*20 sideload(*)
character*80 matname(*),amat
character*81 tieset(3,*)
!
integer konl(26),ifaceq(9,6),nelemload(2,*),nbody,nelem,
& mi(*),iloc,jfaces,igauss,mortar,kon(*),ielprop(*),null,
& mattyp,ithermal,iperturb(*),nload,idist,i,j,k,l,i1,i2,j1,
& nmethod,k1,l1,ii,jj,ii1,jj1,id,ipointer,ig,m1,m2,m3,m4,kk,
& nelcon(2,*),nrhcon(*),nalcon(2,*),ielmat(mi(3),*),six,
& ielorien(mi(3),*),ilayer,nlayer,ki,kl,ipkon(*),indexe,
& ntmat_,nope,nopes,norien,ihyper,iexpl,kode,imat,mint2d,
& mint3d,ifacet(7,4),nopev,iorien,istiff,ncmat_,iface,
& ifacew(8,5),intscheme,n,ipointeri,ipointerj,istep,iinc,
& layer,kspt,jltyp,iflag,iperm(60),m,ipompc(*),nodempc(3,*),
& nmpc,ikmpc(*),ilmpc(*),iscale,nstate_,ne0,iselect(6),
& istartset(*),iendset(*),ialset(*),ntie,integerglob(*),nasym,
& nplicon(0:ntmat_,*),nplkcon(0:ntmat_,*),npmat_,nopered
!
real*8 co(3,*),xl(3,26),shp(4,26),xs2(3,7),veold(0:mi(2),*),
& s(100,100),w(3,3),p1(3),p2(3),bodyf(3),bodyfx(3),ff(100),
& bf(3),q(3),shpj(4,26),elcon(0:ncmat_,ntmat_,*),t(3),
& rhcon(0:1,ntmat_,*),xkl(3,3),eknlsign,reltime,prop(*),
& alcon(0:6,ntmat_,*),alzero(*),orab(7,*),t0(*),t1(*),
& anisox(3,3,3,3),voldl(0:mi(2),26),vo(3,3),xloadold(2,*),
& xl2(3,9),xsj2(3),shp2(7,9),vold(0:mi(2),*),xload(2,*),
& xstate(nstate_,mi(1),*),xstateini(nstate_,mi(1),*),
& v(3,3,3,3),springarea(2,*),thickness,tlayer(4),dlayer(4),
& om,omx,e,un,al,um,xi,et,ze,tt,const,xsj,xsjj,sm(100,100),
& sti(6,mi(1),*),stx(6,mi(1),*),s11,s22,s33,s12,s13,s23,s11b,
& s22b,s33b,s12b,s13b,s23b,t0l,t1l,coefmpc(*),xlayer(mi(3),4),
& senergy,senergyb,rho,elas(21),summass,summ,thicke(mi(3),*),
& sume,factorm,factore,alp,elconloc(21),eth(6),doubleglob(*),
& weight,coords(3),dmass,xl1(3,9),term,clearini(3,9,*),
& plicon(0:2*npmat_,ntmat_,*),plkcon(0:2*npmat_,ntmat_,*),
& xstiff(27,mi(1),*),plconloc(802),dtime,ttime,time,tvar(2),
& sax(100,100),ffax(100),gs(8,4),a,stress(6),stre(3,3),
& pslavsurf(3,*),pmastsurf(6,*)
!
data ifaceq /4,3,2,1,11,10,9,12,21,
& 5,6,7,8,13,14,15,16,22,
& 1,2,6,5,9,18,13,17,23,
& 2,3,7,6,10,19,14,18,24,
& 3,4,8,7,11,20,15,19,25,
& 4,1,5,8,12,17,16,20,26/
data ifacet /1,3,2,7,6,5,11,
& 1,2,4,5,9,8,12,
& 2,3,4,6,10,9,13,
& 1,4,3,8,10,7,14/
data ifacew /1,3,2,9,8,7,0,0,
& 4,5,6,10,11,12,0,0,
& 1,2,5,4,7,14,10,13,
& 2,3,6,5,8,15,11,14,
& 4,6,3,1,12,15,9,13/
data iflag /3/
data null /0/
data iperm /13,14,-15,16,17,-18,19,20,-21,22,23,-24,
& 1,2,-3,4,5,-6,7,8,-9,10,11,-12,
& 37,38,-39,40,41,-42,43,44,-45,46,47,-48,
& 25,26,-27,28,29,-30,31,32,-33,34,35,-36,
& 49,50,-51,52,53,-54,55,56,-57,58,59,-60/
!
include "gauss.f"
!
tvar(1)=time
tvar(2)=ttime+time
!
summass=0.d0
!
indexe=ipkon(nelem)
c Bernhardi start
if(lakonl(1:5).eq.'C3D8I') then
nope=11
nopev=8
nopes=4
elseif(lakonl(4:5).eq.'20') then
c Bernhardi end
nope=20
nopev=8
nopes=8
elseif(lakonl(4:4).eq.'2') then
!
! nopes for C3D26 is a default value which can be overwritten
! while integrating over the element faces
!
nope=26
nopev=8
nopes=8
elseif(lakonl(4:4).eq.'8') then
nope=8
nopev=8
nopes=4
elseif(lakonl(4:5).eq.'10') then
nope=10
nopev=4
nopes=6
elseif(lakonl(4:5).eq.'14') then
!
! nopes for C3D14 is a default value which can be overwritten
! while integrating over the element faces
!
nope=14
nopev=4
nopes=6
elseif(lakonl(4:4).eq.'4') then
nope=4
nopev=4
nopes=3
elseif(lakonl(4:5).eq.'15') then
nope=15
nopev=6
elseif(lakonl(4:4).eq.'6') then
nope=6
nopev=6
elseif(lakonl(1:2).eq.'ES') then
if(lakonl(7:7).eq.'C') then
if(mortar.eq.0) then
read(lakonl(8:8),'(i1)') nope
nope=nope+1
konl(nope+1)=kon(indexe+nope+1)
elseif(mortar.eq.1) then
nope=kon(indexe)
endif
else
read(lakonl(8:8),'(i1)') nope
nope=nope+1
endif
endif
!
! material and orientation
!
if(lakonl(7:8).ne.'LC') then
!
imat=ielmat(1,nelem)
amat=matname(imat)
if(norien.gt.0) then
iorien=ielorien(1,nelem)
else
iorien=0
endif
!
if(nelcon(1,imat).lt.0) then
ihyper=1
else
ihyper=0
endif
else
!
! composite materials
!
! determining the number of layers
!
nlayer=0
do k=1,mi(3)
if(ielmat(k,nelem).ne.0) then
nlayer=nlayer+1
endif
enddo
mint2d=4
!
! determining the layer thickness and global thickness
! at the shell integration points
!
iflag=1
do kk=1,mint2d
xi=gauss3d2(1,kk)
et=gauss3d2(2,kk)
call shape8q(xi,et,xl2,xsj2,xs2,shp2,iflag)
tlayer(kk)=0.d0
do i=1,nlayer
thickness=0.d0
do j=1,nopes
thickness=thickness+thicke(i,indexe+j)*shp2(4,j)
enddo
tlayer(kk)=tlayer(kk)+thickness
xlayer(i,kk)=thickness
enddo
enddo
iflag=3
!
ilayer=0
do i=1,4
dlayer(i)=0.d0
enddo
!
endif
!
if(intscheme.eq.0) then
if(lakonl(4:5).eq.'8R') then
mint2d=1
mint3d=1
elseif(lakonl(4:7).eq.'20RB') then
if((lakonl(8:8).eq.'R').or.(lakonl(8:8).eq.'C')) then
mint2d=4
mint3d=50
else
mint2d=4
call beamintscheme(lakonl,mint3d,ielprop(nelem),prop,
& null,xi,et,ze,weight)
endif
elseif((lakonl(4:4).eq.'8').or.(lakonl(4:6).eq.'20R').or.
& (lakonl(4:6).eq.'26R')) then
if(((lakonl(7:7).eq.'A').or.(lakonl(7:7).eq.'S').or.
& (lakonl(7:7).eq.'E')).and.(lakonl(4:6).ne.'26R')) then
mint2d=2
mint3d=4
else
mint2d=4
if(lakonl(7:8).eq.'LC') then
mint3d=8*nlayer
else
mint3d=8
endif
endif
elseif(lakonl(4:4).eq.'2') then
mint2d=9
mint3d=27
elseif((lakonl(4:5).eq.'10').or.(lakonl(4:5).eq.'14')) then
mint2d=3
mint3d=4
elseif(lakonl(4:4).eq.'4') then
mint2d=1
mint3d=1
elseif(lakonl(4:5).eq.'15') then
mint3d=9
elseif(lakonl(4:4).eq.'6') then
mint3d=2
else
mint3d=0
endif
else
if((lakonl(4:4).eq.'8').or.(lakonl(4:4).eq.'2')) then
mint3d=27
if(lakonl(4:4).eq.'8') then
if(lakonl(5:5).eq.'R') then
mint2d=1
else
mint2d=4
endif
else
if(lakonl(6:6).eq.'R') then
mint2d=4
else
mint2d=9
endif
endif
elseif((lakonl(4:5).eq.'10').or.(lakonl(4:4).eq.'4').or.
& (lakonl(4:5).eq.'14')) then
mint3d=15
if((lakonl(4:5).eq.'10').or.(lakonl(4:5).eq.'14')) then
mint2d=3
else
mint2d=1
endif
elseif((lakonl(4:5).eq.'15').or.(lakonl(4:4).eq.'6')) then
mint3d=18
else
mint3d=0
endif
endif
!
! computation of the coordinates of the local nodes
!
do i=1,nope
konl(i)=kon(indexe+i)
do j=1,3
xl(j,i)=co(j,konl(i))
enddo
enddo
!
! initialisation for distributed forces
!
if(rhsi) then
if(idist.ne.0) then
do i=1,3*nope
ff(i)=0.d0
enddo
endif
endif
!
! displacements for 2nd order static and modal theory
!
if(((iperturb(1).eq.1).or.(iperturb(2).eq.1)).and.
& stiffness.and.(.not.buckling)) then
do i1=1,nope
do i2=1,3
voldl(i2,i1)=vold(i2,konl(i1))
enddo
enddo
endif
!
! initialisation of sm
!
if(mass.or.buckling.or.coriolis) then
do i=1,3*nope
do j=1,3*nope
sm(i,j)=0.d0
enddo
enddo
endif
!
! initialisation of s
!
do i=1,3*nope
do j=1,3*nope
s(i,j)=0.d0
enddo
enddo
!
! calculating the stiffness matrix for the contact spring elements
!
if(mint3d.eq.0) then
!
! for a
! first step in a displacement-driven geometrically nonlinear
! calculation or a nonlinear calculation with linear strains
! the next block has to be evaluated
!
if(iperturb(2).eq.0) then
do i1=1,nope
do i2=1,3
voldl(i2,i1)=vold(i2,konl(i1))
enddo
enddo
endif
!
kode=nelcon(1,imat)
if(lakonl(7:7).eq.'A') then
t0l=0.d0
t1l=0.d0
if(ithermal.eq.1) then
t0l=(t0(konl(1))+t0(konl(2)))/2.d0
t1l=(t1(konl(1))+t1(konl(2)))/2.d0
elseif(ithermal.ge.2) then
t0l=(t0(konl(1))+t0(konl(2)))/2.d0
t1l=(vold(0,konl(1))+vold(0,konl(2)))/2.d0
endif
else
!
! as soon as the first contact element is discovered ne0 is
! determined and saved
!
if(ne0.eq.0) ne0=nelem-1
endif
if((lakonl(7:7).eq.'A').or.(mortar.eq.0)) then
call springstiff_n2f(xl,elas,konl,voldl,s,imat,elcon,nelcon,
& ncmat_,ntmat_,nope,lakonl,t1l,kode,elconloc,plicon,
& nplicon,npmat_,iperturb,springarea(1,konl(nope+1)),nmethod,
& mi,ne0,nstate_,xstateini,xstate,reltime,nasym)
elseif(mortar.eq.1) then
iloc=kon(indexe+nope+1)
jfaces=kon(indexe+nope+2)
igauss=kon(indexe+nope+1)
call springstiff_f2f(xl,elas,voldl,s,imat,elcon,nelcon,
& ncmat_,ntmat_,nope,lakonl,t1l,kode,elconloc,plicon,
& nplicon,npmat_,iperturb,springarea(1,iloc),nmethod,
& mi,ne0,nstate_,xstateini,xstate,reltime,
& nasym,iloc,jfaces,igauss,pslavsurf,
& pmastsurf,clearini)
endif
return
endif
!
! computation of the matrix: loop over the Gauss points
!
do kk=1,mint3d
if(intscheme.eq.0) then
if(lakonl(4:5).eq.'8R') then
xi=gauss3d1(1,kk)
et=gauss3d1(2,kk)
ze=gauss3d1(3,kk)
weight=weight3d1(kk)
elseif(lakonl(4:7).eq.'20RB') then
if((lakonl(8:8).eq.'R').or.(lakonl(8:8).eq.'C')) then
xi=gauss3d13(1,kk)
et=gauss3d13(2,kk)
ze=gauss3d13(3,kk)
weight=weight3d13(kk)
else
call beamintscheme(lakonl,mint3d,ielprop(nelem),prop,
& kk,xi,et,ze,weight)
endif
elseif((lakonl(4:4).eq.'8').or.(lakonl(4:6).eq.'20R').or.
& (lakonl(4:6).eq.'26R'))
& then
if(lakonl(7:8).ne.'LC') then
xi=gauss3d2(1,kk)
et=gauss3d2(2,kk)
ze=gauss3d2(3,kk)
weight=weight3d2(kk)
else
kl=mod(kk,8)
if(kl.eq.0) kl=8
!
xi=gauss3d2(1,kl)
et=gauss3d2(2,kl)
ze=gauss3d2(3,kl)
weight=weight3d2(kl)
!
ki=mod(kk,4)
if(ki.eq.0) ki=4
!
if(kl.eq.1) then
ilayer=ilayer+1
if(ilayer.gt.1) then
do i=1,4
dlayer(i)=dlayer(i)+xlayer(ilayer-1,i)
enddo
endif
endif
ze=2.d0*(dlayer(ki)+(ze+1.d0)/2.d0*xlayer(ilayer,ki))/
& tlayer(ki)-1.d0
weight=weight*xlayer(ilayer,ki)/tlayer(ki)
!
! material and orientation
!
imat=ielmat(ilayer,nelem)
amat=matname(imat)
if(norien.gt.0) then
iorien=ielorien(ilayer,nelem)
else
iorien=0
endif
!
if(nelcon(1,imat).lt.0) then
ihyper=1
else
ihyper=0
endif
endif
elseif(lakonl(4:4).eq.'2') then
xi=gauss3d3(1,kk)
et=gauss3d3(2,kk)
ze=gauss3d3(3,kk)
weight=weight3d3(kk)
elseif((lakonl(4:5).eq.'10').or.(lakonl(4:5).eq.'14')) then
xi=gauss3d5(1,kk)
et=gauss3d5(2,kk)
ze=gauss3d5(3,kk)
weight=weight3d5(kk)
elseif(lakonl(4:4).eq.'4') then
xi=gauss3d4(1,kk)
et=gauss3d4(2,kk)
ze=gauss3d4(3,kk)
weight=weight3d4(kk)
elseif(lakonl(4:5).eq.'15') then
xi=gauss3d8(1,kk)
et=gauss3d8(2,kk)
ze=gauss3d8(3,kk)
weight=weight3d8(kk)
elseif(lakonl(4:4).eq.'6') then
xi=gauss3d7(1,kk)
et=gauss3d7(2,kk)
ze=gauss3d7(3,kk)
weight=weight3d7(kk)
endif
else
if((lakonl(4:4).eq.'8').or.(lakonl(4:4).eq.'2')) then
xi=gauss3d3(1,kk)
et=gauss3d3(2,kk)
ze=gauss3d3(3,kk)
weight=weight3d3(kk)
elseif((lakonl(4:5).eq.'10').or.(lakonl(4:4).eq.'4')) then
xi=gauss3d6(1,kk)
et=gauss3d6(2,kk)
ze=gauss3d6(3,kk)
weight=weight3d6(kk)
else
xi=gauss3d9(1,kk)
et=gauss3d9(2,kk)
ze=gauss3d9(3,kk)
weight=weight3d9(kk)
endif
endif
c if(nelem.eq.1) then
c write(*,*) 'kk', kk
c write(*,*) 'coords',xi,et,ze
c write(*,*) 'weight',weight
c write(*,*) 'dlayer',dlayer(ki)
c endif
!
! calculation of the shape functions and their derivatives
! in the gauss point
!
c Bernhardi start
if(lakonl(1:5).eq.'C3D8R') then
call shape8hr(xl,xsj,shp,gs,a)
elseif(lakonl(1:5).eq.'C3D8I') then
call shape8hu(xi,et,ze,xl,xsj,shp,iflag)
elseif(nope.eq.20) then
c Bernhardi end
if(lakonl(7:7).eq.'A') then
call shape20h_ax(xi,et,ze,xl,xsj,shp,iflag)
elseif((lakonl(7:7).eq.'E').or.(lakonl(7:7).eq.'S')) then
call shape20h_pl(xi,et,ze,xl,xsj,shp,iflag)
else
call shape20h(xi,et,ze,xl,xsj,shp,iflag)
endif
elseif(nope.eq.26) then
call shape26h(xi,et,ze,xl,xsj,shp,iflag,konl)
elseif(nope.eq.8) then
call shape8h(xi,et,ze,xl,xsj,shp,iflag)
elseif(nope.eq.10) then
call shape10tet(xi,et,ze,xl,xsj,shp,iflag)
elseif(nope.eq.14) then
call shape14tet(xi,et,ze,xl,xsj,shp,iflag,konl)
elseif(nope.eq.4) then
call shape4tet(xi,et,ze,xl,xsj,shp,iflag)
elseif(nope.eq.15) then
call shape15w(xi,et,ze,xl,xsj,shp,iflag)
else
call shape6w(xi,et,ze,xl,xsj,shp,iflag)
endif
!
! check the jacobian determinant
!
if(xsj.lt.1.d-20) then
write(*,*) '*ERROR in e_c3d: nonpositive jacobian'
write(*,*) ' determinant in element',nelem
write(*,*)
xsj=dabs(xsj)
nmethod=0
endif
!
c if((iperturb(1).ne.0).and.stiffness.and.(.not.buckling))
if(((iperturb(1).eq.1).or.(iperturb(2).eq.1)).and.
& stiffness.and.(.not.buckling))then
!
! stresses for 2nd order static and modal theory
!
s11=sti(1,kk,nelem)
s22=sti(2,kk,nelem)
s33=sti(3,kk,nelem)
s12=sti(4,kk,nelem)
s13=sti(5,kk,nelem)
s23=sti(6,kk,nelem)
endif
!
! calculating the temperature in the integration
! point
!
t0l=0.d0
t1l=0.d0
if(ithermal.eq.1) then
if(lakonl(4:5).eq.'8 ') then
do i1=1,nope
t0l=t0l+t0(konl(i1))/8.d0
t1l=t1l+t1(konl(i1))/8.d0
enddo
elseif((lakonl(4:6).eq.'20 ').or.(lakonl(4:6).eq.'26 '))then
nopered=20
call lintemp(t0,t1,konl,nopered,kk,t0l,t1l)
else
do i1=1,nope
t0l=t0l+shp(4,i1)*t0(konl(i1))
t1l=t1l+shp(4,i1)*t1(konl(i1))
enddo
endif
elseif(ithermal.ge.2) then
if(lakonl(4:5).eq.'8 ') then
do i1=1,nope
t0l=t0l+t0(konl(i1))/8.d0
t1l=t1l+vold(0,konl(i1))/8.d0
enddo
elseif((lakonl(4:6).eq.'20 ').or.(lakonl(4:6).eq.'26 '))then
nopered=20
call lintemp_th(t0,vold,konl,nopered,kk,t0l,t1l,mi)
else
do i1=1,nope
t0l=t0l+shp(4,i1)*t0(konl(i1))
t1l=t1l+shp(4,i1)*vold(0,konl(i1))
enddo
endif
endif
tt=t1l-t0l
!
! calculating the coordinates of the integration point
! for material orientation purposes (for cylindrical
! coordinate systems)
!
if(iorien.gt.0) then
do j=1,3
coords(j)=0.d0
do i1=1,nope
coords(j)=coords(j)+shp(4,i1)*co(j,konl(i1))
enddo
enddo
endif
!
! for deformation plasticity: calculating the Jacobian
! and the inverse of the deformation gradient
! needed to convert the stiffness matrix in the spatial
! frame of reference to the material frame
!
kode=nelcon(1,imat)
!
! material data and local stiffness matrix
!
istiff=1
call materialdata_me(elcon,nelcon,rhcon,nrhcon,alcon,nalcon,
& imat,amat,iorien,coords,orab,ntmat_,elas,rho,
& nelem,ithermal,alzero,mattyp,t0l,t1l,
& ihyper,istiff,elconloc,eth,kode,plicon,
& nplicon,plkcon,nplkcon,npmat_,
& plconloc,mi(1),dtime,nelem,kk,
& xstiff,ncmat_)
!
if(mattyp.eq.1) then
c write(*,*) 'elastic co', elas(1),elas(2)
e=elas(1)
un=elas(2)
um=e/(1.d0+un)
al=un*um/(1.d0-2.d0*un)
um=um/2.d0
elseif(mattyp.eq.2) then
c call orthotropic(elas,anisox)
else
call anisotropic(elas,anisox)
endif
!
! initialisation for the body forces
!
om=omx*rho
if(rhsi) then
if(nbody.ne.0) then
do ii=1,3
bodyf(ii)=bodyfx(ii)*rho
enddo
endif
endif
!
if(buckling) then
!
! buckling stresses
!
s11b=stx(1,kk,nelem)
s22b=stx(2,kk,nelem)
s33b=stx(3,kk,nelem)
s12b=stx(4,kk,nelem)
s13b=stx(5,kk,nelem)
s23b=stx(6,kk,nelem)
!
endif
!
! incorporating the jacobian determinant in the shape
! functions
!
xsjj=dsqrt(xsj)
do i1=1,nope
shpj(1,i1)=shp(1,i1)*xsjj
shpj(2,i1)=shp(2,i1)*xsjj
shpj(3,i1)=shp(3,i1)*xsjj
shpj(4,i1)=shp(4,i1)*xsj
enddo
!
! determination of the stiffness, and/or mass and/or
! buckling matrix
!
if(stiffness.or.mass.or.buckling.or.coriolis) then
!
if(((iperturb(1).ne.1).and.(iperturb(2).ne.1)).or.buckling)
& then
jj1=1
do jj=1,nope
!
ii1=1
do ii=1,jj
!
! all products of the shape functions for a given ii
! and jj
!
do i1=1,3
do j1=1,3
w(i1,j1)=shpj(i1,ii)*shpj(j1,jj)
enddo
enddo
!
! the following section calculates the static
! part of the stiffness matrix which, for buckling
! calculations, is done in a preliminary static
! call
!
if(.not.buckling) then
!
if(mattyp.eq.1) then
!
s(ii1,jj1)=s(ii1,jj1)+(al*w(1,1)+
& um*(2.d0*w(1,1)+w(2,2)+w(3,3)))*weight
!
s(ii1,jj1+1)=s(ii1,jj1+1)+(al*w(1,2)+
& um*w(2,1))*weight
s(ii1,jj1+2)=s(ii1,jj1+2)+(al*w(1,3)+
& um*w(3,1))*weight
s(ii1+1,jj1)=s(ii1+1,jj1)+(al*w(2,1)+
& um*w(1,2))*weight
s(ii1+1,jj1+1)=s(ii1+1,jj1+1)+(al*w(2,2)+
& um*(2.d0*w(2,2)+w(1,1)+w(3,3)))*weight
s(ii1+1,jj1+2)=s(ii1+1,jj1+2)+(al*w(2,3)+
& um*w(3,2))*weight
s(ii1+2,jj1)=s(ii1+2,jj1)+(al*w(3,1)+
& um*w(1,3))*weight
s(ii1+2,jj1+1)=s(ii1+2,jj1+1)+(al*w(3,2)+
& um*w(2,3))*weight
s(ii1+2,jj1+2)=s(ii1+2,jj1+2)+(al*w(3,3)+
& um*(2.d0*w(3,3)+w(2,2)+w(1,1)))*weight
!
elseif(mattyp.eq.2) then
!
s(ii1,jj1)=s(ii1,jj1)+(elas(1)*w(1,1)+
& elas(7)*w(2,2)+elas(8)*w(3,3))*weight
s(ii1,jj1+1)=s(ii1,jj1+1)+(elas(2)*w(1,2)+
& elas(7)*w(2,1))*weight
s(ii1,jj1+2)=s(ii1,jj1+2)+(elas(4)*w(1,3)+
& elas(8)*w(3,1))*weight
s(ii1+1,jj1)=s(ii1+1,jj1)+(elas(7)*w(1,2)+
& elas(2)*w(2,1))*weight
s(ii1+1,jj1+1)=s(ii1+1,jj1+1)+
& (elas(7)*w(1,1)+
& elas(3)*w(2,2)+elas(9)*w(3,3))*weight
s(ii1+1,jj1+2)=s(ii1+1,jj1+2)+
& (elas(5)*w(2,3)+
& elas(9)*w(3,2))*weight
s(ii1+2,jj1)=s(ii1+2,jj1)+
& (elas(8)*w(1,3)+
& elas(4)*w(3,1))*weight
s(ii1+2,jj1+1)=s(ii1+2,jj1+1)+
& (elas(9)*w(2,3)+
& elas(5)*w(3,2))*weight
s(ii1+2,jj1+2)=s(ii1+2,jj1+2)+
& (elas(8)*w(1,1)+
& elas(9)*w(2,2)+elas(6)*w(3,3))*weight
!
else
!
do i1=1,3
do j1=1,3
do k1=1,3
do l1=1,3
s(ii1+i1-1,jj1+j1-1)=
& s(ii1+i1-1,jj1+j1-1)
& +anisox(i1,k1,j1,l1)
& *w(k1,l1)*weight
enddo
enddo
enddo
enddo
!
endif
!
! mass matrix
!
if(mass) then
sm(ii1,jj1)=sm(ii1,jj1)
& +rho*shpj(4,ii)*shp(4,jj)*weight
sm(ii1+1,jj1+1)=sm(ii1,jj1)
sm(ii1+2,jj1+2)=sm(ii1,jj1)
endif
!
! Coriolis matrix
!
if(coriolis) then
dmass=2.d0*
& rho*shpj(4,ii)*shp(4,jj)*weight*dsqrt(omx)
sm(ii1,jj1+1)=sm(ii1,jj1+1)-p2(3)*dmass
sm(ii1,jj1+2)=sm(ii1,jj1+2)+p2(2)*dmass
sm(ii1+1,jj1)=sm(ii1+1,jj1)+p2(3)*dmass
sm(ii1+1,jj1+2)=sm(ii1+1,jj1+2)-p2(1)*dmass
sm(ii1+2,jj1)=sm(ii1+2,jj1)-p2(2)*dmass
sm(ii1+2,jj1+1)=sm(ii1+2,jj1+1)+p2(1)*dmass
endif
!
else
!
! buckling matrix
!
senergyb=
& (s11b*w(1,1)+s12b*(w(1,2)+w(2,1))
& +s13b*(w(1,3)+w(3,1))+s22b*w(2,2)
& +s23b*(w(2,3)+w(3,2))+s33b*w(3,3))*weight
sm(ii1,jj1)=sm(ii1,jj1)-senergyb
sm(ii1+1,jj1+1)=sm(ii1+1,jj1+1)-senergyb
sm(ii1+2,jj1+2)=sm(ii1+2,jj1+2)-senergyb
!
endif
!
ii1=ii1+3
enddo
jj1=jj1+3
enddo
else
!
! stiffness matrix for static and modal
! 2nd order calculations
!
! large displacement stiffness
!
do i1=1,3
do j1=1,3
vo(i1,j1)=0.d0
do k1=1,nope
vo(i1,j1)=vo(i1,j1)+shp(j1,k1)*voldl(i1,k1)
enddo
enddo
enddo
!
if(mattyp.eq.1) then
call wcoef(v,vo,al,um)
endif
!
! calculating the total mass of the element for
! lumping purposes: only for explicit nonlinear
! dynamic calculations
!
if(mass.and.(iexpl.gt.1)) then
summass=summass+rho*xsj
endif
!
jj1=1
do jj=1,nope
!
ii1=1
do ii=1,jj
!
! all products of the shape functions for a given ii
! and jj
!
do i1=1,3
do j1=1,3
w(i1,j1)=shpj(i1,ii)*shpj(j1,jj)
enddo
enddo
!
if(mattyp.eq.1) then
!
do m1=1,3
do m2=1,3
do m3=1,3
do m4=1,3
s(ii1+m2-1,jj1+m1-1)=
& s(ii1+m2-1,jj1+m1-1)
& +v(m4,m3,m2,m1)*w(m4,m3)*weight
enddo
enddo
enddo
enddo
!
elseif(mattyp.eq.2) then
!
call orthonl(w,vo,elas,s,ii1,jj1,weight)
!
else
!
call anisonl(w,vo,elas,s,ii1,jj1,weight)
!
endif
!
! stress stiffness
!
senergy=
& (s11*w(1,1)+s12*(w(1,2)+w(2,1))
& +s13*(w(1,3)+w(3,1))+s22*w(2,2)
& +s23*(w(2,3)+w(3,2))+s33*w(3,3))*weight
s(ii1,jj1)=s(ii1,jj1)+senergy
s(ii1+1,jj1+1)=s(ii1+1,jj1+1)+senergy
s(ii1+2,jj1+2)=s(ii1+2,jj1+2)+senergy
!
! stiffness contribution of centrifugal forces
!
if(mass.and.(om.gt.0.d0)) then
dmass=shpj(4,ii)*shp(4,jj)*weight*om
do m1=1,3
s(ii1+m1-1,jj1+m1-1)=s(ii1+m1-1,jj1+m1-1)-
& dmass
do m2=1,3
s(ii1+m1-1,jj1+m2-1)=s(ii1+m1-1,jj1+m2-1)+
& dmass*p2(m1)*p2(m2)
enddo
enddo
endif
!
! mass matrix
!
if(mass) then
sm(ii1,jj1)=sm(ii1,jj1)
& +rho*shpj(4,ii)*shp(4,jj)*weight
sm(ii1+1,jj1+1)=sm(ii1,jj1)
sm(ii1+2,jj1+2)=sm(ii1,jj1)
endif
!
! Coriolis matrix
!
if(coriolis) then
dmass=2.d0*
& rho*shpj(4,ii)*shp(4,jj)*weight*dsqrt(omx)
sm(ii1,jj1+1)=sm(ii1,jj1+1)-p2(3)*dmass
sm(ii1,jj1+2)=sm(ii1,jj1+2)+p2(2)*dmass
sm(ii1+1,jj1)=sm(ii1+1,jj1)+p2(3)*dmass
sm(ii1+1,jj1+2)=sm(ii1+1,jj1+2)-p2(1)*dmass
sm(ii1+2,jj1)=sm(ii1+2,jj1)-p2(2)*dmass
sm(ii1+2,jj1+1)=sm(ii1+2,jj1+1)+p2(1)*dmass
endif
!
ii1=ii1+3
enddo
jj1=jj1+3
enddo
endif
!
endif
!
! add hourglass control stiffnesses: C3D8R only.
if(lakonl(1:5).eq.'C3D8R') then
call hgstiffness(s,elas,a,gs)
endif
!
! computation of the right hand side
!
if(rhsi) then
!
! distributed body flux
!
if(nload.gt.0) then
call nident2(nelemload,nelem,nload,id)
do
if((id.eq.0).or.(nelemload(1,id).ne.nelem)) exit
if((sideload(id)(1:2).ne.'BX').and.
& (sideload(id)(1:2).ne.'BY').and.
& (sideload(id)(1:2).ne.'BZ')) then
id=id-1
cycle
endif
if(sideload(id)(3:4).eq.'NU') then
do j=1,3
coords(j)=0.d0
do i1=1,nope
coords(j)=coords(j)+
& shp(4,i1)*xl(j,i1)
enddo
enddo
if(sideload(id)(1:2).eq.'BX') then
jltyp=1
elseif(sideload(id)(1:2).eq.'BY') then
jltyp=2
elseif(sideload(id)(1:2).eq.'BZ') then
jltyp=3
endif
iscale=1
call dload(xload(1,id),istep,iinc,tvar,nelem,i,
& layer,kspt,coords,jltyp,sideload(id),vold,co,
& lakonl,konl,ipompc,nodempc,coefmpc,nmpc,ikmpc,
& ilmpc,iscale,veold,rho,amat,mi)
if((nmethod.eq.1).and.(iscale.ne.0))
& xload(1,id)=xloadold(1,id)+
& (xload(1,id)-xloadold(1,id))*reltime
endif
jj1=1
do jj=1,nope
if(sideload(id)(1:2).eq.'BX')
& ff(jj1)=ff(jj1)+xload(1,id)*shpj(4,jj)*weight
if(sideload(id)(1:2).eq.'BY')
& ff(jj1+1)=ff(jj1+1)+xload(1,id)*shpj(4,jj)*weight
if(sideload(id)(1:2).eq.'BZ')
& ff(jj1+2)=ff(jj1+2)+xload(1,id)*shpj(4,jj)*weight
jj1=jj1+3
enddo
id=id-1
enddo
endif
!
! body forces
!
if(nbody.ne.0) then
if(om.gt.0.d0) then
do i1=1,3
!
! computation of the global coordinates of the gauss
! point
!
q(i1)=0.d0
c if(iperturb(1).eq.0) then
if((iperturb(1).ne.1).and.(iperturb(2).ne.1)) then
do j1=1,nope
q(i1)=q(i1)+shp(4,j1)*xl(i1,j1)
enddo
else
do j1=1,nope
q(i1)=q(i1)+shp(4,j1)*
& (xl(i1,j1)+voldl(i1,j1))
enddo
endif
!
q(i1)=q(i1)-p1(i1)
enddo
const=q(1)*p2(1)+q(2)*p2(2)+q(3)*p2(3)
!
! inclusion of the centrifugal force into the body force
!
do i1=1,3
bf(i1)=bodyf(i1)+(q(i1)-const*p2(i1))*om
enddo
else
do i1=1,3
bf(i1)=bodyf(i1)
enddo
endif
jj1=1
do jj=1,nope
ff(jj1)=ff(jj1)+bf(1)*shpj(4,jj)*weight
ff(jj1+1)=ff(jj1+1)+bf(2)*shpj(4,jj)*weight
ff(jj1+2)=ff(jj1+2)+bf(3)*shpj(4,jj)*weight
jj1=jj1+3
enddo
endif
!
endif
!
enddo
!
c write(*,*) nelem
c write(*,'(6(1x,e11.4))') ((s(i1,j1),i1=1,j1),j1=1,60)
c write(*,*)
c
if((.not.buckling).and.(nload.ne.0)) then
!
! distributed loads
!
call nident2(nelemload,nelem,nload,id)
do
if((id.eq.0).or.(nelemload(1,id).ne.nelem)) exit
if(sideload(id)(1:1).ne.'P') then
id=id-1
cycle
endif
read(sideload(id)(2:2),'(i1)') ig
!
! check whether 8 or 9-nodes face
!
if(nope.eq.26) then
if(konl(20+ig).eq.konl(20)) then
nopes=8
else
nopes=9
endif
elseif(nope.eq.14) then
if(konl(10+ig).eq.konl(10)) then
nopes=6
else
nopes=7
endif
endif
!
! treatment of wedge faces
!
if(lakonl(4:4).eq.'6') then
mint2d=1
if(ig.le.2) then
nopes=3
else
nopes=4
endif
endif
if(lakonl(4:5).eq.'15') then
if(ig.le.2) then
mint2d=3
nopes=6
else
mint2d=4
nopes=8
endif
endif
!
c Bernhardi start
if((nope.eq.26).or.(nope.eq.20).or.(nope.eq.8).or.
& (nope.eq.11)) then
c Bernhardi end
c if(iperturb(1).eq.0) then
if((iperturb(1).ne.1).and.(iperturb(2).ne.1)) then
do i=1,nopes
do j=1,3
xl2(j,i)=co(j,konl(ifaceq(i,ig)))
enddo
enddo
else
if(mass) then
do i=1,nopes
do j=1,3
xl1(j,i)=co(j,konl(ifaceq(i,ig)))
enddo
enddo
endif
do i=1,nopes
do j=1,3
xl2(j,i)=co(j,konl(ifaceq(i,ig)))+
& vold(j,konl(ifaceq(i,ig)))
enddo
enddo
endif
elseif((nope.eq.10).or.(nope.eq.4)) then
c if(iperturb(1).eq.0) then
if((iperturb(1).ne.1).and.(iperturb(2).ne.1)) then
do i=1,nopes
do j=1,3
xl2(j,i)=co(j,konl(ifacet(i,ig)))
enddo
enddo
else
if(mass) then
do i=1,nopes
do j=1,3
xl1(j,i)=co(j,konl(ifacet(i,ig)))
enddo
enddo
endif
do i=1,nopes
do j=1,3
xl2(j,i)=co(j,konl(ifacet(i,ig)))+
& vold(j,konl(ifacet(i,ig)))
enddo
enddo
endif
else
c if(iperturb(1).eq.0) then
if((iperturb(1).ne.1).and.(iperturb(2).ne.1)) then
do i=1,nopes
do j=1,3
xl2(j,i)=co(j,konl(ifacew(i,ig)))
enddo
enddo
else
if(mass) then
do i=1,nopes
do j=1,3
xl1(j,i)=co(j,konl(ifacew(i,ig)))
enddo
enddo
endif
do i=1,nopes
do j=1,3
xl2(j,i)=co(j,konl(ifacew(i,ig)))+
& vold(j,konl(ifacew(i,ig)))
enddo
enddo
endif
endif
!
do i=1,mint2d
if((lakonl(4:5).eq.'8R').or.
& ((lakonl(4:4).eq.'6').and.(nopes.eq.4))) then
xi=gauss2d1(1,i)
et=gauss2d1(2,i)
weight=weight2d1(i)
elseif((lakonl(4:4).eq.'8').or.
& (lakonl(4:6).eq.'20R').or.(lakonl(4:6).eq.'26R').or.
& ((lakonl(4:5).eq.'15').and.(nopes.eq.8))) then
xi=gauss2d2(1,i)
et=gauss2d2(2,i)
weight=weight2d2(i)
elseif(lakonl(4:4).eq.'2') then
xi=gauss2d3(1,i)
et=gauss2d3(2,i)
weight=weight2d3(i)
elseif((lakonl(4:5).eq.'10').or.(lakonl(4:5).eq.'14').or.
& ((lakonl(4:5).eq.'15').and.(nopes.eq.6))) then
xi=gauss2d5(1,i)
et=gauss2d5(2,i)
weight=weight2d5(i)
elseif((lakonl(4:4).eq.'4').or.
& ((lakonl(4:4).eq.'6').and.(nopes.eq.3))) then
xi=gauss2d4(1,i)
et=gauss2d4(2,i)
weight=weight2d4(i)
endif
!
if(rhsi) then
if(nopes.eq.9) then
call shape9q(xi,et,xl2,xsj2,xs2,shp2,iflag)
elseif(nopes.eq.8) then
call shape8q(xi,et,xl2,xsj2,xs2,shp2,iflag)
elseif(nopes.eq.4) then
call shape4q(xi,et,xl2,xsj2,xs2,shp2,iflag)
elseif(nopes.eq.6) then
call shape6tri(xi,et,xl2,xsj2,xs2,shp2,iflag)
elseif(nopes.eq.7) then
call shape7tri(xi,et,xl2,xsj2,xs2,shp2,iflag)
else
call shape3tri(xi,et,xl2,xsj2,xs2,shp2,iflag)
endif
!
! for nonuniform load: determine the coordinates of the
! point (transferred into the user subroutine)
!
if(sideload(id)(3:4).eq.'NU') then
do k=1,3
coords(k)=0.d0
do j=1,nopes
coords(k)=coords(k)+xl2(k,j)*shp2(4,j)
enddo
enddo
read(sideload(id)(2:2),'(i1)') jltyp
jltyp=jltyp+20
iscale=1
call dload(xload(1,id),istep,iinc,tvar,nelem,i,layer,
& kspt,coords,jltyp,sideload(id),vold,co,lakonl,
& konl,ipompc,nodempc,coefmpc,nmpc,ikmpc,ilmpc,
& iscale,veold,rho,amat,mi)
if((nmethod.eq.1).and.(iscale.ne.0))
& xload(1,id)=xloadold(1,id)+
& (xload(1,id)-xloadold(1,id))*reltime
elseif(sideload(id)(3:4).eq.'SM') then
!
! submodel boundary: interpolation from the
! global model
!
do k=1,3
coords(k)=0.d0
do j=1,nopes
coords(k)=coords(k)+xl2(k,j)*shp2(4,j)
enddo
enddo
read(sideload(id)(2:2),'(i1)') jltyp
!
entity='T'
six=6
do k=1,6
iselect(k)=k+4
enddo
iface=10*nelem+jltyp
call interpolsubmodel(integerglob,doubleglob,stress,
& coords,iselect,six,iface,tieset,istartset,
& iendset,ialset,ntie,entity)
c write(*,*) 'e_c3d ',(stress(k),k=1,6)
!
! cave: stress order of cgx: xx,yy,zz,xy,yz,xz
!
t(1)=stress(1)*xsj2(1)+stress(4)*xsj2(2)+
& stress(6)*xsj2(3)
t(2)=stress(4)*xsj2(1)+stress(2)*xsj2(2)+
& stress(5)*xsj2(3)
t(3)=stress(6)*xsj2(1)+stress(5)*xsj2(2)+
& stress(3)*xsj2(3)
!
xload(1,id)=-1.d0
do k=1,3
xsj2(k)=t(k)
enddo
endif
!
do k=1,nopes
c Bernhardi start
if((nope.eq.26).or.(nope.eq.20).or.(nope.eq.8).or.
& (nope.eq.11)) then
c Bernhardi end
ipointer=(ifaceq(k,ig)-1)*3
elseif((nope.eq.10).or.(nope.eq.4)) then
ipointer=(ifacet(k,ig)-1)*3
else
ipointer=(ifacew(k,ig)-1)*3
endif
ff(ipointer+1)=ff(ipointer+1)-shp2(4,k)*xload(1,id)
& *xsj2(1)*weight
ff(ipointer+2)=ff(ipointer+2)-shp2(4,k)*xload(1,id)
& *xsj2(2)*weight
ff(ipointer+3)=ff(ipointer+3)-shp2(4,k)*xload(1,id)
& *xsj2(3)*weight
enddo
!
! stiffness contribution of the distributed load
! reference: Dhondt G., The Finite Element Method for
! three-dimensional thermomechanical Applications,
! Wiley, 2004, p 153, eqn. (3.54).
!
c elseif((mass).and.(iperturb(1).ne.0)) then
elseif((mass).and.
& ((iperturb(1).eq.1).or.(iperturb(2).eq.1))) then
if(nopes.eq.9) then
call shape9q(xi,et,xl1,xsj2,xs2,shp2,iflag)
elseif(nopes.eq.8) then
call shape8q(xi,et,xl1,xsj2,xs2,shp2,iflag)
elseif(nopes.eq.4) then
call shape4q(xi,et,xl1,xsj2,xs2,shp2,iflag)
elseif(nopes.eq.6) then
call shape6tri(xi,et,xl1,xsj2,xs2,shp2,iflag)
elseif(nopes.eq.7) then
call shape7tri(xi,et,xl1,xsj2,xs2,shp2,iflag)
else
call shape3tri(xi,et,xl1,xsj2,xs2,shp2,iflag)
endif
!
! for nonuniform load: determine the coordinates of the
! point (transferred into the user subroutine)
!
if(sideload(id)(3:4).eq.'NU') then
do k=1,3
coords(k)=0.d0
do j=1,nopes
coords(k)=coords(k)+xl1(k,j)*shp2(4,j)
enddo
enddo
read(sideload(id)(2:2),'(i1)') jltyp
jltyp=jltyp+20
iscale=1
call dload(xload(1,id),istep,iinc,tvar,nelem,i,layer,
& kspt,coords,jltyp,sideload(id),vold,co,lakonl,
& konl,ipompc,nodempc,coefmpc,nmpc,ikmpc,ilmpc,
& iscale,veold,rho,amat,mi)
if((nmethod.eq.1).and.(iscale.ne.0))
& xload(1,id)=xloadold(1,id)+
& (xload(1,id)-xloadold(1,id))*reltime
elseif(sideload(id)(3:4).eq.'SM') then
!
! submodel boundary: interpolation from the
! global model
!
do k=1,3
coords(k)=0.d0
do j=1,nopes
coords(k)=coords(k)+xl2(k,j)*shp2(4,j)
enddo
enddo
read(sideload(id)(2:2),'(i1)') jltyp
!
entity='T'
six=6
do k=1,6
iselect(k)=k+4
enddo
iface=10*nelem+jltyp
call interpolsubmodel(integerglob,doubleglob,stress,
& coords,iselect,six,iface,tieset,istartset,
& iendset,ialset,ntie,entity)
c write(*,*) 'e_c3d ',(stress(k),k=1,6)
!
stre(1,1)=stress(1)
stre(1,2)=stress(4)
stre(1,3)=stress(6)
stre(2,1)=stress(4)
stre(2,2)=stress(2)
stre(2,3)=stress(5)
stre(3,1)=stress(6)
stre(3,2)=stress(5)
stre(3,3)=stress(3)
endif
!
! calculation of the deformation gradient
!
do k=1,3
do l=1,3
xkl(k,l)=0.d0
do ii=1,nopes
xkl(k,l)=xkl(k,l)+shp2(l,ii)*xl2(k,ii)
enddo
enddo
enddo
!
do ii=1,nopes
c Bernhardi start
if((nope.eq.26).or.(nope.eq.20).or.(nope.eq.8).or.
& (nope.eq.11)) then
c Bernhardi end
ipointeri=(ifaceq(ii,ig)-1)*3
elseif((nope.eq.10).or.(nope.eq.4).or.
& (nope.eq.14))then
ipointeri=(ifacet(ii,ig)-1)*3
else
ipointeri=(ifacew(ii,ig)-1)*3
endif
do jj=1,nopes
c Bernhardi start
if((nope.eq.26).or.(nope.eq.20).or.(nope.eq.8)
& .or.(nope.eq.11)) then
c Bernhardi end
ipointerj=(ifaceq(jj,ig)-1)*3
elseif((nope.eq.10).or.(nope.eq.4).or.
& (nope.eq.14)) then
ipointerj=(ifacet(jj,ig)-1)*3
else
ipointerj=(ifacew(jj,ig)-1)*3
endif
!
! if no submodel: only pressure
! else: complete stress vector
!
if(sideload(id)(3:4).ne.'SM') then
do k=1,3
do l=1,3
if(k.eq.l) cycle
eknlsign=1.d0
if(k*l.eq.2) then
n=3
if(k.lt.l) eknlsign=-1.d0
elseif(k*l.eq.3) then
n=2
if(k.gt.l) eknlsign=-1.d0
else
n=1
if(k.lt.l) eknlsign=-1.d0
endif
term=weight*xload(1,id)*shp2(4,ii)*
& eknlsign*(xsj2(1)*
& (xkl(n,2)*shp2(3,jj)-xkl(n,3)*
& shp2(2,jj))+xsj2(2)*
& (xkl(n,3)*shp2(1,jj)-xkl(n,1)*
& shp2(3,jj))+xsj2(3)*
& (xkl(n,1)*shp2(2,jj)-xkl(n,2)*
& shp2(1,jj)))
s(ipointeri+k,ipointerj+l)=
& s(ipointeri+k,ipointerj+l)+term/2.d0
s(ipointerj+l,ipointeri+k)=
& s(ipointerj+l,ipointeri+k)+term/2.d0
enddo
enddo
else
do kk=1,3
do k=1,3
do l=1,3
if(k.eq.l) cycle
eknlsign=1.d0
if(k*l.eq.2) then
n=3
if(k.lt.l) eknlsign=-1.d0
elseif(k*l.eq.3) then
n=2
if(k.gt.l) eknlsign=-1.d0
else
n=1
if(k.lt.l) eknlsign=-1.d0
endif
term=-weight*stre(kk,k)*shp2(4,ii)*
& eknlsign*(xsj2(1)*
& (xkl(n,2)*shp2(3,jj)-xkl(n,3)*
& shp2(2,jj))+xsj2(2)*
& (xkl(n,3)*shp2(1,jj)-xkl(n,1)*
& shp2(3,jj))+xsj2(3)*
& (xkl(n,1)*shp2(2,jj)-xkl(n,2)*
& shp2(1,jj)))
s(ipointeri+kk,ipointerj+l)=
& s(ipointeri+kk,ipointerj+l)+term/2.d0
s(ipointerj+l,ipointeri+kk)=
& s(ipointerj+l,ipointeri+kk)+term/2.d0
enddo
enddo
enddo
endif
enddo
enddo
!
endif
enddo
!
id=id-1
enddo
endif
!
! for axially symmetric and plane stress/strain elements:
! complete s and sm
!
if(((lakonl(4:5).eq.'8 ').or.
& ((lakonl(4:6).eq.'20R').and.(lakonl(7:8).ne.'BR'))).and.
& ((lakonl(7:7).eq.'A').or.(lakonl(7:7).eq.'S').or.
& (lakonl(7:7).eq.'E'))) then
do i=1,60
do j=i,60
k=abs(iperm(i))
l=abs(iperm(j))
if(k.gt.l) then
m=k
k=l
l=m
endif
sax(i,j)=s(k,l)*iperm(i)*iperm(j)/(k*l)
enddo
enddo
do i=1,60
do j=i,60
s(i,j)=s(i,j)+sax(i,j)
enddo
enddo
!
if((nload.ne.0).or.(nbody.ne.0)) then
do i=1,60
k=abs(iperm(i))
ffax(i)=ff(k)*iperm(i)/k
enddo
do i=1,60
ff(i)=ff(i)+ffax(i)
enddo
endif
!
if(mass) then
summass=2.d0*summass
do i=1,60
do j=i,60
k=abs(iperm(i))
l=abs(iperm(j))
if(k.gt.l) then
m=k
k=l
l=m
endif
sax(i,j)=sm(k,l)*iperm(i)*iperm(j)/(k*l)
enddo
enddo
do i=1,60
do j=i,60
sm(i,j)=sm(i,j)+sax(i,j)
enddo
enddo
endif
endif
!
if(mass.and.(iexpl.gt.1)) then
!
! scaling the diagonal terms of the mass matrix such that the total mass
! is right (LUMPING; for explicit dynamic calculations)
!
sume=0.d0
summ=0.d0
do i=1,3*nopev,3
sume=sume+sm(i,i)
enddo
do i=3*nopev+1,3*nope,3
summ=summ+sm(i,i)
enddo
!
if((nope.eq.26).or.(nope.eq.20)) then
c alp=.2215d0
alp=.2917d0
! maybe alp=.2917d0 is better??
elseif((nope.eq.10).or.(nope.eq.14)) then
alp=0.1203d0
elseif(nope.eq.15) then
alp=0.2141d0
endif
!
if((nope.eq.26).or.(nope.eq.20).or.(nope.eq.10).or.
& (nope.eq.15).or.(nope.eq.14)) then
factore=summass*alp/(1.d0+alp)/sume
factorm=summass/(1.d0+alp)/summ
else
factore=summass/sume
endif
!
do i=1,3*nopev,3
sm(i,i)=sm(i,i)*factore
sm(i+1,i+1)=sm(i,i)
sm(i+2,i+2)=sm(i,i)
enddo
do i=3*nopev+1,3*nope,3
sm(i,i)=sm(i,i)*factorm
sm(i+1,i+1)=sm(i,i)
sm(i+2,i+2)=sm(i,i)
enddo
!
endif
!
c if(nelem.eq.1) then
c write(*,'(8(1x,e11.4))') ((s(i,j),i=1,60),j=1,60)
c endif
return
end
| gpl-2.0 |
prool/ccx_prool | CalculiX/ccx_2.12/src/umat.f | 6 | 2859 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2015 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
subroutine umat(stress,statev,ddsdde,sse,spd,scd,
& rpl,ddsddt,drplde,drpldt,
& stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname,
& ndi,nshr,ntens,nstatv,props,nprops,coords,drot,pnewdt,
& celent,dfgrd0,dfgrd1,noel,npt,layer,kspt,kstep,kinc)
!
! here, an ABAQUS umat routine can be inserted
!
! note that reals should be double precision (REAL*8)
!
implicit none
!
character*80 cmname
!
integer ndi,nshr,ntens,nstatv,nprops,noel,npt,layer,kspt,
& kstep,kinc
!
real*8 stress(ntens),statev(nstatv),
& ddsdde(ntens,ntens),ddsddt(ntens),drplde(ntens),
& stran(ntens),dstran(ntens),time(2),celent,
& props(nprops),coords(3),drot(3,3),dfgrd0(3,3),dfgrd1(3,3),
& sse,spd,scd,rpl,drpldt,dtime,temp,dtemp,predef,dpred,
& pnewdt
!
! START EXAMPLE LINEAR ELASTIC MATERIAL
!
integer i,j
real*8 e,un,al,um,am1,am2
!
c write(*,*) 'noel,npt ',noel,npt
c write(*,*) 'stress ',(stress(i),i=1,6)
c write(*,*) 'stran ',(stran(i),i=1,6)
c write(*,*) 'dstran ',(dstran(i),i=1,6)
c write(*,*) 'drot ',((drot(i,j),i=1,3),j=1,3)
e=props(1)
un=props(2)
al=un*e/(1.d0+un)/(1.d0-2.d0*un)
um=e/2.d0/(1.d0+un)
am1=al+2.d0*um
am2=um
!
! stress
!
stress(1)=stress(1)+am1*dstran(1)+al*(dstran(2)+dstran(3))
stress(2)=stress(2)+am1*dstran(2)+al*(dstran(1)+dstran(3))
stress(3)=stress(3)+am1*dstran(3)+al*(dstran(1)+dstran(2))
stress(4)=stress(4)+am2*dstran(4)
stress(5)=stress(5)+am2*dstran(5)
stress(6)=stress(6)+am2*dstran(6)
!
! stiffness
!
do i=1,6
do j=1,6
ddsdde(i,j)=0.d0
enddo
enddo
ddsdde(1,1)=al+2.d0*um
ddsdde(1,2)=al
ddsdde(2,1)=al
ddsdde(2,2)=al+2.d0*um
ddsdde(1,3)=al
ddsdde(3,1)=al
ddsdde(2,3)=al
ddsdde(3,2)=al
ddsdde(3,3)=al+2.d0*um
ddsdde(4,4)=um
ddsdde(5,5)=um
ddsdde(6,6)=um
!
! END EXAMPLE LINEAR ELASTIC MATERIAL
!
return
end
| gpl-2.0 |
prool/ccx_prool | CalculiX/ccx_2.8p2/src/umat.f | 6 | 2859 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2015 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
subroutine umat(stress,statev,ddsdde,sse,spd,scd,
& rpl,ddsddt,drplde,drpldt,
& stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname,
& ndi,nshr,ntens,nstatv,props,nprops,coords,drot,pnewdt,
& celent,dfgrd0,dfgrd1,noel,npt,layer,kspt,kstep,kinc)
!
! here, an ABAQUS umat routine can be inserted
!
! note that reals should be double precision (REAL*8)
!
implicit none
!
character*80 cmname
!
integer ndi,nshr,ntens,nstatv,nprops,noel,npt,layer,kspt,
& kstep,kinc
!
real*8 stress(ntens),statev(nstatv),
& ddsdde(ntens,ntens),ddsddt(ntens),drplde(ntens),
& stran(ntens),dstran(ntens),time(2),celent,
& props(nprops),coords(3),drot(3,3),dfgrd0(3,3),dfgrd1(3,3),
& sse,spd,scd,rpl,drpldt,dtime,temp,dtemp,predef,dpred,
& pnewdt
!
! START EXAMPLE LINEAR ELASTIC MATERIAL
!
integer i,j
real*8 e,un,al,um,am1,am2
!
c write(*,*) 'noel,npt ',noel,npt
c write(*,*) 'stress ',(stress(i),i=1,6)
c write(*,*) 'stran ',(stran(i),i=1,6)
c write(*,*) 'dstran ',(dstran(i),i=1,6)
c write(*,*) 'drot ',((drot(i,j),i=1,3),j=1,3)
e=props(1)
un=props(2)
al=un*e/(1.d0+un)/(1.d0-2.d0*un)
um=e/2.d0/(1.d0+un)
am1=al+2.d0*um
am2=um
!
! stress
!
stress(1)=stress(1)+am1*dstran(1)+al*(dstran(2)+dstran(3))
stress(2)=stress(2)+am1*dstran(2)+al*(dstran(1)+dstran(3))
stress(3)=stress(3)+am1*dstran(3)+al*(dstran(1)+dstran(2))
stress(4)=stress(4)+am2*dstran(4)
stress(5)=stress(5)+am2*dstran(5)
stress(6)=stress(6)+am2*dstran(6)
!
! stiffness
!
do i=1,6
do j=1,6
ddsdde(i,j)=0.d0
enddo
enddo
ddsdde(1,1)=al+2.d0*um
ddsdde(1,2)=al
ddsdde(2,1)=al
ddsdde(2,2)=al+2.d0*um
ddsdde(1,3)=al
ddsdde(3,1)=al
ddsdde(2,3)=al
ddsdde(3,2)=al
ddsdde(3,3)=al+2.d0*um
ddsdde(4,4)=um
ddsdde(5,5)=um
ddsdde(6,6)=um
!
! END EXAMPLE LINEAR ELASTIC MATERIAL
!
return
end
| gpl-2.0 |
epfl-cosmo/q-e | GWW/pw4gww/mp_wave_parallel.f90 | 9 | 11158 | !
! Copyright (C) 2001-2013 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
MODULE mp_wave_parallel
IMPLICIT NONE
SAVE
CONTAINS
SUBROUTINE mergewfp ( npw,pw, pwt, ngwl, ig_l2g, mpime, nproc, root, comm )
! ... This subroutine merges the pieces of a wave functions (pw) splitted across
! ... processors into a total wave function (pwt) containing al the components
! ... in a pre-defined order (the same as if only one processor is used)
USE kinds
USE parallel_include
USE io_global, ONLY :stdout
IMPLICIT NONE
INTEGER, INTENT(in) :: npw,ngwl
COMPLEX(DP), intent(in) :: PW(npw,nproc)
COMPLEX(DP), intent(out) :: PWT(:)
INTEGER, INTENT(IN) :: mpime ! index of the calling processor ( starting from 0 )
INTEGER, INTENT(IN) :: nproc ! number of processors
INTEGER, INTENT(IN) :: root ! root processor ( the one that should receive the data )
INTEGER, INTENT(IN) :: comm ! communicator
INTEGER, INTENT(IN) :: ig_l2g(:)
INTEGER, ALLOCATABLE :: ig_ip(:)
COMPLEX(DP), ALLOCATABLE :: pw_ip(:)
INTEGER :: ierr, i, ip, ngw_ip, ngw_lmax, itmp, igwx, gid, req
#if defined __MPI
INTEGER :: istatus(MPI_STATUS_SIZE)
#endif
INTEGER :: iorig, idest
!
! ... Subroutine Body
!
igwx = MAXVAL( ig_l2g(1:ngwl) )
#if defined __MPI
gid = comm
! ... Get local and global wavefunction dimensions
CALL MPI_ALLREDUCE( ngwl, ngw_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLREDUCE( igwx, itmp, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
igwx = itmp
#endif
IF( igwx > SIZE( pwt ) ) &
CALL errore(' mergewf ',' wrong size for pwt ',SIZE(pwt) )
#if defined __MPI
ALLOCATE(ig_ip(ngw_lmax))
ALLOCATE(pw_ip(ngw_lmax))
do ip = 0, nproc-1
if( ip/=0) then
! ... In turn each processors send to root the wave components and their indexes in the
! ... global array
idest=mpime+ip
if(idest>nproc-1)idest=idest-nproc
iorig=mpime-ip
if(iorig<0)iorig=iorig+nproc
CALL MPI_ISEND( ig_l2g, ngwl, MPI_INTEGER, idest, IP, gid, req,IERR )
CALL MPI_RECV( ig_ip, ngw_lmax, MPI_INTEGER, iorig, IP, gid, istatus, IERR )
CALL MPI_WAIT(req,istatus,ierr)
CALL MPI_ISEND( pw(1,idest+1), ngwl, MPI_DOUBLE_COMPLEX, idest, IP, gid, req,IERR )
CALL MPI_RECV( pw_ip, ngw_lmax, MPI_DOUBLE_COMPLEX, iorig, IP, gid, istatus, IERR )
CALL MPI_GET_COUNT( istatus, MPI_DOUBLE_COMPLEX, ngw_ip, ierr )
CALL MPI_WAIT(req,istatus,ierr)
DO I = 1, ngw_ip
PWT(ig_ip(i)) = pw_ip(i)
END DO
ELSE
DO I = 1, ngwl
PWT(ig_l2g(i)) = pw(i,mpime+1)
END DO
END IF
CALL MPI_BARRIER( gid, IERR )
END DO
DEALLOCATE(ig_ip)
DEALLOCATE(pw_ip)
#elif ! defined __MPI
DO I = 1, ngwl
PWT( ig_l2g(i) ) = pw(i,1)
END DO
#else
CALL errore(' MERGEWF ',' no communication protocol ',0)
#endif
RETURN
END SUBROUTINE mergewfp
SUBROUTINE splitwfp (npw, pw, pwt, ngwl, ig_l2g, mpime, nproc,root, comm )
! ... This subroutine splits a total wave function (pwt) containing al the components
! ... in a pre-defined order (the same as if only one processor is used), across
! ... processors (pw).
USE kinds
USE parallel_include
USE io_global, ONLY : stdout
IMPLICIT NONE
INTEGER, INTENT(in) :: npw,nproc
COMPLEX(DP), INTENT(OUT) :: PW(npw,nproc)
COMPLEX(DP), INTENT(IN) :: PWT(:)
INTEGER, INTENT(IN) :: mpime, root
INTEGER, INTENT(IN) :: comm ! communicator
INTEGER, INTENT(IN) :: ig_l2g(:)
INTEGER, INTENT(IN) :: ngwl
INTEGER, ALLOCATABLE :: ig_ip(:)
COMPLEX(DP), ALLOCATABLE :: pw_ip(:)
INTEGER ierr, i, ngw_ip, ip, ngw_lmax, gid, igwx, itmp,len, req
#if defined __MPI
integer istatus(MPI_STATUS_SIZE)
#endif
INTEGER :: iorig, idest
!
! ... Subroutine Body
!
igwx = MAXVAL( ig_l2g(1:ngwl) )
#if defined __MPI
gid = comm
! ... Get local and global wavefunction dimensions
CALL MPI_ALLREDUCE(ngwl, ngw_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLREDUCE(igwx, itmp , 1, MPI_INTEGER, MPI_MAX, gid, IERR )
igwx = itmp
#endif
IF( igwx > SIZE( pwt ) ) &
CALL errore(' splitwf ',' wrong size for pwt ',SIZE(pwt) )
#if defined __MPI
ALLOCATE(ig_ip(ngw_lmax))
ALLOCATE(pw_ip(ngw_lmax))
DO ip = 0, nproc-1
idest=mpime+ip
if(idest>nproc-1)idest=idest-nproc
iorig=mpime-ip
if(iorig<0)iorig=iorig+nproc
if(ip/=0) then
CALL MPI_ISEND( ig_l2g, ngwl, MPI_INTEGER, iorig, IP, gid,req,IERR)
CALL MPI_RECV( ig_ip, ngw_lmax, MPI_INTEGER, idest, IP, gid, istatus, IERR )
CALL MPI_GET_COUNT(istatus, MPI_INTEGER, ngw_ip, ierr)
DO i = 1, ngw_ip
pw_ip(i) = PWT(ig_ip(i))
END DO
CALL MPI_WAIT(req,istatus,ierr)
CALL MPI_ISEND( pw_ip, ngw_ip, MPI_DOUBLE_COMPLEX, idest, IP, gid,req, IERR )
CALL MPI_RECV( pw(1,iorig+1), ngwl, MPI_DOUBLE_COMPLEX, iorig, IP, gid, istatus, IERR )
!CALL MPI_GET_COUNT(istatus, MPI_INTEGER, ngw_ip, ierr)
CALL MPI_WAIT(req,istatus,ierr)
ELSE
DO i = 1, ngwl
pw(i,mpime+1) = PWT(ig_l2g(i))
END DO
END IF
CALL MPI_BARRIER(gid, IERR)
END DO
DEALLOCATE(ig_ip)
DEALLOCATE(pw_ip)
#elif ! defined __MPI
DO I = 1, ngwl
pw(i,1) = pwt( ig_l2g(i) )
END DO
#else
CALL errore(' SPLITWF ',' no communication protocol ',0)
#endif
RETURN
END SUBROUTINE splitwfp
END MODULE mp_wave_parallel
SUBROUTINE reorderwfp (nbands,npw1, npw2,pw1,pw2, ngwl1,ngwl2, ig_l2g1,ig_l2g2,n_g,mpime, nproc,root, comm )
USE kinds
USE parallel_include
USE io_global, ONLY : stdout
USE mp_wave_parallel
IMPLICIT NONE
INTEGER, INTENT(in) :: npw1,npw2,nbands
COMPLEX(DP), INTENT(OUT) :: pw1(npw1,nbands),pw2(npw2,nbands)
INTEGER, INTENT(IN) :: mpime, root, nproc
INTEGER, INTENT(IN) :: comm ! communicator
INTEGER, INTENT(IN) :: ig_l2g1(ngwl1),ig_l2g2(ngwl2)
INTEGER, INTENT(IN) :: ngwl1,ngwl2
INTEGER, INTENT(in) :: n_g!global maximum number of G vectors for both grids
COMPLEX(kind=DP), ALLOCATABLE :: cbuf1(:,:),cbuf2(:,:), pwt(:)
INTEGER :: ii, ilast
allocate(cbuf1(npw1,nproc),cbuf2(npw2,nproc))
allocate(pwt(n_g))
cbuf1(:,:)=(0.d0,0.d0)
cbuf2(:,:)=(0.d0,0.d0)
!loop on block of states
do ii=1,nbands,nproc
ilast=min(nbands,ii+nproc-1)
cbuf1(1:npw1,1:(ilast-ii+1))=pw1(1:npw1,ii:ilast)
call mergewfp ( npw1,cbuf1, pwt, ngwl1, ig_l2g1, mpime, nproc, root, comm )
call splitwfp (npw2, cbuf2, pwt, ngwl2, ig_l2g2, mpime, nproc,root, comm )
pw2(1:npw2,ii:ilast)=cbuf2(1:npw2,1:(ilast-ii+1))
enddo
deallocate(cbuf1,cbuf2)
deallocate(pwt)
return
END SUBROUTINE reorderwfp
SUBROUTINE reorderwfp_col (nbands,npw1, npw2,pw1,pw2, ngwl1,ngwl2, ig_l2g1,ig_l2g2,n_g,mpime, nproc, comm )
!routine using collective mpi calls
USE kinds
USE parallel_include
USE io_global, ONLY : stdout
USE mp_wave_parallel
IMPLICIT NONE
INTEGER, INTENT(in) :: npw1,npw2,nbands
COMPLEX(kind=DP) :: pw1(npw1,nbands),pw2(npw2,nbands)
INTEGER, INTENT(IN) :: mpime, nproc
INTEGER, INTENT(IN) :: comm ! communicator
INTEGER, INTENT(IN) :: ig_l2g1(ngwl1),ig_l2g2(ngwl2)
INTEGER, INTENT(IN) :: ngwl1,ngwl2
INTEGER, INTENT(in) :: n_g!global maximum number of G vectors for both grids
INTEGER :: ngwl1_max,ngwl2_max,npw1_max,npw2_max
INTEGER :: gid,ierr
INTEGER, ALLOCATABLE :: npw1_loc(:),npw2_loc(:)
INTEGER, ALLOCATABLE :: ig_l2g1_tot(:,:),ig_l2g2_tot(:,:), itmp(:)
INTEGER :: ii,ip,ilast,iband
COMPLEX(kind=DP), ALLOCATABLE :: pw1_tot(:,:),pw2_tot(:,:)
COMPLEX(kind=DP), ALLOCATABLE :: pw1_tmp(:),pw2_tmp(:), pw_global(:)
gid=comm
#if defined __MPI
allocate(npw1_loc(nproc),npw2_loc(nproc))
!all procs gather correspondance arrays
CALL MPI_ALLREDUCE( ngwl1, ngwl1_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLREDUCE( ngwl2, ngwl2_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLREDUCE( npw1, npw1_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLREDUCE( npw2, npw2_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLGATHER (npw1,1,MPI_INTEGER,npw1_loc,1,MPI_INTEGER,gid,IERR)
CALL MPI_ALLGATHER (npw2,1,MPI_INTEGER,npw2_loc,1,MPI_INTEGER,gid,IERR)
allocate(ig_l2g1_tot(ngwl1_max,nproc),ig_l2g2_tot(ngwl2_max,nproc))
allocate(itmp(ngwl1_max))
itmp(1:ngwl1)=ig_l2g1(1:ngwl1)
CALL MPI_ALLGATHER (itmp,ngwl1_max,MPI_INTEGER,ig_l2g1_tot,ngwl1_max,MPI_INTEGER,gid,IERR)
deallocate(itmp)
allocate(itmp(ngwl2_max))
itmp(1:ngwl2)=ig_l2g2(1:ngwl2)
CALL MPI_ALLGATHER (itmp,ngwl2_max,MPI_INTEGER,ig_l2g2_tot,ngwl2_max,MPI_INTEGER,gid,IERR)
deallocate(itmp)
allocate(pw1_tot(npw1_max,nproc),pw2_tot(npw2_max,nproc))
allocate(pw1_tmp(npw1_max),pw2_tmp(npw2_max))
allocate(pw_global(n_g))
do ii=1,nbands,nproc
ilast=min(nbands,ii+nproc-1)
do iband=ii,ilast
ip=mod(iband,nproc)!ip starts from 1 to nproc-1
pw1_tmp(1:npw1)=pw1(1:npw1,iband)
CALL MPI_GATHER (pw1_tmp,npw1_max,MPI_DOUBLE_COMPLEX,pw1_tot,npw1_max,MPI_DOUBLE_COMPLEX,ip,gid,ierr)
enddo
pw_global=0.d0
do ip=1,nproc
pw_global(ig_l2g1_tot(1:npw1_loc(ip),ip))=pw1_tot(1:npw1_loc(ip),ip)
enddo
do ip=1,nproc
pw2_tot(1:npw2_loc(ip),ip)=pw_global(ig_l2g2_tot(1:npw2_loc(ip),ip))
enddo
do iband=ii,ilast
ip=mod(iband,nproc)
CALL MPI_SCATTER (pw2_tot,npw2_max,MPI_DOUBLE_COMPLEX,pw2_tmp,npw2_max ,MPI_DOUBLE_COMPLEX,ip,gid,ierr)
pw2(1:npw2,iband)=pw2_tmp(1:npw2)
enddo
enddo
deallocate(npw1_loc,npw2_loc)
deallocate(ig_l2g1_tot,ig_l2g2_tot)
deallocate(pw1_tot,pw2_tot)
deallocate(pw1_tmp,pw2_tmp)
deallocate(pw_global)
#endif
return
END SUBROUTINE reorderwfp_col
| gpl-2.0 |
techno/gcc-mist32 | libgfortran/generated/_acosh_r8.F90 | 47 | 1477 | ! Copyright (C) 2002-2015 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_REAL_8)
#ifdef HAVE_ACOSH
elemental function _gfortran_specific__acosh_r8 (parm)
real (kind=8), intent (in) :: parm
real (kind=8) :: _gfortran_specific__acosh_r8
_gfortran_specific__acosh_r8 = acosh (parm)
end function
#endif
#endif
| gpl-2.0 |
prool/ccx_prool | CalculiX/ccx_2.16/src/negativepressure.f | 1 | 1444 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2019 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
subroutine negativepressure(ne0,ne,mi,stx,pressureratio)
!
! calculating the ratio of the smallest pressure to the
! largest pressure for face-to-face contact
! if the pressure is somewhere negative, this ratio will
! be negative
!
implicit none
!
integer ne0,ne,mi(*),i
!
real*8 stx(6,mi(1),*),presmin,presmax,pressureratio
!
presmax=0.d0
presmin=0.d0
!
do i=ne0+1,ne
if(stx(4,1,i).gt.presmax) then
presmax=stx(4,1,i)
elseif(stx(4,1,i).lt.presmin) then
presmin=stx(4,1,i)
endif
enddo
pressureratio=presmin/presmax
!
return
end
| gpl-2.0 |
prool/ccx_prool | CalculiX/ccx_2.11/src/loadadd.f | 6 | 3794 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2015 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
subroutine loadadd(nelement,label,value,nelemload,sideload,
& xload,nload,nload_,iamload,iamplitude,nam,isector,idefload)
!
! adds a facial dload condition to the data base
!
implicit none
!
character*20 label,sideload(*)
!
integer nelemload(2,*),iamload(2,*),nelement,nload,nload_,j,
& iamplitude,nam,isector,id,idefload(*)
!
real*8 xload(2,*),value
!
call nident2(nelemload,nelement,nload,id)
if(id.gt.0) then
!
! it is possible that several *DLOAD, *FILM or
! *RADIATE boundary conditions are applied to one
! and the same element
!
if(nelemload(1,id).eq.nelement) then
do
if (sideload(id).eq.label) then
if(nelemload(2,id).eq.isector) then
!
! loading on same element face and sector
! detected: values are replaced
!
if(idefload(id).eq.0) then
xload(1,id)=value
idefload(id)=1
else
xload(1,id)=xload(1,id)+value
endif
xload(2,id)=0.d0
if(nam.gt.0) then
iamload(1,id)=iamplitude
iamload(2,id)=iamplitude
endif
return
elseif(nelemload(2,id).lt.isector) then
c id=id-1
exit
endif
elseif(sideload(id).lt.label) then
c id=id-1
exit
endif
id=id-1
if((id.eq.0).or.(nelemload(1,id).ne.nelement)) then
c id=id-1
exit
endif
enddo
endif
endif
!
! loading a element face on which no previous loading
! was applied
!
! loading conditions on one and the same element are
! alphabetized based on field sideload
!
! loading conditions on one and the same element and
! of one and the same sideload type are ordered based
! on field nelemload(2,*)
!
nload=nload+1
if(nload.gt.nload_) then
write(*,*) '*ERROR in loadadd: increase nload_'
call exit(201)
endif
!
! shifting existing loading
!
do j=nload,id+2,-1
nelemload(1,j)=nelemload(1,j-1)
nelemload(2,j)=nelemload(2,j-1)
idefload(j)=idefload(j-1)
sideload(j)=sideload(j-1)
xload(1,j)=xload(1,j-1)
xload(2,j)=xload(2,j-1)
if(nam.gt.0) then
iamload(1,j)=iamload(1,j-1)
iamload(2,j)=iamload(2,j-1)
endif
enddo
!
! inserting new loading
!
nelemload(1,id+1)=nelement
nelemload(2,id+1)=isector
idefload(id+1)=1
sideload(id+1)=label
xload(1,id+1)=value
xload(2,id+1)=0.
if(nam.gt.0) then
iamload(1,id+1)=iamplitude
iamload(2,id+1)=0
endif
!
return
end
| gpl-2.0 |
prool/ccx_prool | CalculiX/ccx_2.12/src/loadadd.f | 6 | 3794 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2015 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
subroutine loadadd(nelement,label,value,nelemload,sideload,
& xload,nload,nload_,iamload,iamplitude,nam,isector,idefload)
!
! adds a facial dload condition to the data base
!
implicit none
!
character*20 label,sideload(*)
!
integer nelemload(2,*),iamload(2,*),nelement,nload,nload_,j,
& iamplitude,nam,isector,id,idefload(*)
!
real*8 xload(2,*),value
!
call nident2(nelemload,nelement,nload,id)
if(id.gt.0) then
!
! it is possible that several *DLOAD, *FILM or
! *RADIATE boundary conditions are applied to one
! and the same element
!
if(nelemload(1,id).eq.nelement) then
do
if (sideload(id).eq.label) then
if(nelemload(2,id).eq.isector) then
!
! loading on same element face and sector
! detected: values are replaced
!
if(idefload(id).eq.0) then
xload(1,id)=value
idefload(id)=1
else
xload(1,id)=xload(1,id)+value
endif
xload(2,id)=0.d0
if(nam.gt.0) then
iamload(1,id)=iamplitude
iamload(2,id)=iamplitude
endif
return
elseif(nelemload(2,id).lt.isector) then
c id=id-1
exit
endif
elseif(sideload(id).lt.label) then
c id=id-1
exit
endif
id=id-1
if((id.eq.0).or.(nelemload(1,id).ne.nelement)) then
c id=id-1
exit
endif
enddo
endif
endif
!
! loading a element face on which no previous loading
! was applied
!
! loading conditions on one and the same element are
! alphabetized based on field sideload
!
! loading conditions on one and the same element and
! of one and the same sideload type are ordered based
! on field nelemload(2,*)
!
nload=nload+1
if(nload.gt.nload_) then
write(*,*) '*ERROR in loadadd: increase nload_'
call exit(201)
endif
!
! shifting existing loading
!
do j=nload,id+2,-1
nelemload(1,j)=nelemload(1,j-1)
nelemload(2,j)=nelemload(2,j-1)
idefload(j)=idefload(j-1)
sideload(j)=sideload(j-1)
xload(1,j)=xload(1,j-1)
xload(2,j)=xload(2,j-1)
if(nam.gt.0) then
iamload(1,j)=iamload(1,j-1)
iamload(2,j)=iamload(2,j-1)
endif
enddo
!
! inserting new loading
!
nelemload(1,id+1)=nelement
nelemload(2,id+1)=isector
idefload(id+1)=1
sideload(id+1)=label
xload(1,id+1)=value
xload(2,id+1)=0.
if(nam.gt.0) then
iamload(1,id+1)=iamplitude
iamload(2,id+1)=0
endif
!
return
end
| gpl-2.0 |
prool/ccx_prool | CalculiX/ccx_2.11/src/onedint.f | 6 | 7365 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2015 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
C
C 1. TASK INTERPOLATION OF A FUNCTION DEFINED POINT BY POINT
C ********* THE X COORDINATES ARE USER SPECIFIED.
C THE INTERPOLATION PROCESS CAN BE EITHER CONSTANT,LINEAR
c OR EVEN dOUBLE QUADRATIC WITH EXTRAPOLATION USING THE
c POLYNOM HIGHEST ORDER
C thE DOUBLE QUADRATIC INTERPOLATION IS A 3RD ORDER METHOD
c BY WHICH 2 PARABOLS ENCOMPASSING EACH 3 AND 4 sAMPLING POINTS
c ARE DEFINED.
c THE SOLUTION IS A LINEAR COMBINATION OF THE CONCERNED
c PARABOLS VALUES DEPENDING ON THE DEFINITION OF THE ACTUAL
c SAMPLING POINT INTERVAL
C
C
C 2.INPUT CALL ONEDINT(XE,YE,NE,XA,YA,NA,IART,IEXP,IER)
C *********** XE = ABSCISSE VECTOR OF THE SAMPLING POINTS
C YE = ORDINATE VECTOR OF THE SAMPLING POINTS
C NE = LENGHT OF THE SAMPLING POINT VECTOR
C XA = ASCISSE VECTOR OF THE INTERPOLATION POINT(INPUT)
C YA = ORDINATE VECTOR OF THE INTERPOLATION POINT(OUTPUT)
C NA = LENGTH OF THE INTERPOLATION VECTOR c IART = tYPE OF INTERPOLATION
C =0: CONSTANT
C =1: LINEAR
C =2: DOUBLE QUADRATIC
C IEXP = TYPE OF EXTRAPOLATION
C IEXP = 10*IEX1 + IEXN
C IEX1 EXTRAPOLATIONS BEYOND THE
C 1. SAMPLING POINT IN THE VECTOR
C IEXN EXTRAPOLATION BEYOND THE
C LAST SAMPLING POINT IN THE VECTOR
C SELECTION OF THE EXTRAPOLATION TYPE AS
C FOR IART.
C IER = ERROR CODE
C = 0: NORMAL PROCEEDING
C =-1:PROBLEM IN TH EGIVEN VALUES
C PROGRAMM STOPS.
C
C 3.RESTRICTION ABSCISSE VECTOR XE MUST BE STRICTLY MONOTONIC INCREASING SORTED
C *************** AUTOMATIC CONTROL INSIDE TEH SUBROUTINE:
C NE = 0: ERROR INTERRUPTION
C NE = 1: ONLY CONSTANT INTER- EXTRAPOLATION
C NE = 2: MAXIMAL LINEAR INTER- EXTRAPOLATION
C NE = 3: MAXIMAL QUADRATIC INTER- EXTRAPOLATIO
C THE PARAMETER FOR THE TYPE OF EXTRAPOLATION
c MUST NOT BE GREATER THAN THE ONE FOR TH EINTERPOLATION TYPE
C OTHERWISE THE VALUE IS AUTOMATICALLY ADAPTATED
C
SUBROUTINE ONEDINT(XE,YE,NE,XA,YA,NA,IART,IEXP,IER)
implicit none
INTEGER NE,NA,NA1,NE1,IG,IER,IA,IART,IE2,I,IEXP,IE1,L
REAL*8 XE(NE),YE(NE),XA(NA),YA(NA),ZW1,ZW2,XO,YO,RAB,XD,YD,
& XZ,YZ,XU,YU,EQ,EQD,X
C
C INTERPOLATION FUNCTION
C ------------------------
EQ(X) = YU + YU * (X-XU) / XU +
1 ((YZ-YU)/(XZ-XU) - YU/XU) * (X-XU) * X / XZ
EQD(X) = YZ * X / XZ +
1 (YD / XD - YZ / XZ) * X * (X - XZ) / (XD - XZ)
C
C INPUT/DATA TEST,INTERPOLATION DIVERGENCE,EXTRAPOLATION LIMIT
C----------------------------------------------------------------
NA1 = NA - 1
IF (NA .LE. 0) GO TO 900
NE1 = NE - 1
IF (NE1.lt.0) then
go to 900
elseif(ne1.eq.0) then
go to 22
else
go to 18
endif
18 DO 20 L = 1,NE1
20 IF ((XE(L+1)-XE(L)) .LE. 0) GO TO 900
22 IE1 = IEXP / 10
IE2 = IEXP - 10*IE1
IA = IART
IF (NE1 .LT. IA) IA = NE1
IF (IA .LT. IE1) IE1 = IA
IF (IA .LT. IE2) IE2 = IA
C
C SUCCESSIVE PROCESSING THE INTERPOLATION EXIGENCES
C-------------------------------------------------------
C
C ZUR ERHOEHUNG DER NUMERISCHEN GENAUIGKEIT WIRD EINE
C TRANSLATION VON (XO,YO) IN (0,0) DURCHGEFUEHRT. DIES
C BEWIRKT AUSSERDEM EINE BESCHLEUNIGUNG DES VERFAHRENS.
C
DO 100 I = 1,NA
DO 24 L = 1,NE
IF (XA(I) .LT. XE(L)) GO TO 30
24 CONTINUE
L = NE
IF ((IE2 - 1).lt.0) then
go to 50
elseif((ie2-1).eq.0) then
go to 35
else
go to 70
endif
30 IF (L .GT. 1) GO TO 40
IF ((IE1 - 1).lt.0) then
go to 50
elseif((ie1-1).eq.0) then
go to 25
else
go to 70
endif
40 IF ((IA-1).lt.0) then
go to 45
elseif((ia-1).eq.0) then
go to 60
else
go to 70
endif
C
C CONSTANT INTERPOLATION
C -----------------------
45 L = L - 1
50 YA(I) = YE(L)
GO TO 100
C
C LINEAR EXTRAPOLATION
C ------------------------------
25 IF (IA .EQ. 1) GO TO 60
XO = XE(2)
XU = XE(1) - XO
YO = YE(2)
YU = YE(1) - YO
XZ = XE(3) - XO
YZ = YE(3) - YO
GO TO 38
35 IF (IA .EQ. 1) GO TO 60
XO = XE(NE1)
XZ = XE(NE1-1) - XO
XU = XE(NE) - XO
YO = YE(NE1)
YZ = YE(NE1-1) - YO
YU = YE(NE) - YO
C
C LINEAR EXTRAPOLATION WITH QUADRATIC INTERPOLATION
C -----------------------------------------------------
38 RAB = YU / XU + XU * ((YZ-YU) / (XZ-XU) - YU/XU) / XZ
YA(I) = YU + YO + (XA(I) -XU-XO)*RAB
GO TO 100
C
C LINEAR INTERPOLATION
C ---------------------
60 IG = L - 1
IF (IG .LT. 1) IG = 1
YA(I) = YE(IG) + (XA(I)-XE(IG))*(YE(IG+1)-YE(IG))
1 / (XE(IG+1)-XE(IG))
GO TO 100
70 IF (L .GT. 2) GO TO 80
XO = XE(2)
XU = XE(1) - XO
YO = YE(2)
YU = YE(1) - YO
XZ = XE(3) - XO
YZ = YE(3) - YO
GO TO 85
80 IF (L .LT. NE) GO TO 90
XO = XE(NE1)
XU = XE(NE1-1) - XO
XZ = XE(NE) - XO
YO = YE(NE1)
YU = YE(NE1-1) - YO
YZ = YE(NE) - YO
85 YA(I) = EQ(XA(I)-XO) + YO
GO TO 100
C
C DOUBLE QUADRATIC INTERPOLATION
C ----------------------------------
90 XO = XE(L-1)
XU = XE(L-2) - XO
XZ = XE(L) - XO
XD = XE(L+1) - XO
YO = YE(L-1)
YU = YE(L-2) - YO
YZ = YE(L) - YO
YD = YE(L+1) - YO
ZW1 = EQ(XA(I)-XO)
ZW2 = EQD(XA(I)-XO)
YA(I) = ZW1 + (ZW2 - ZW1) * (XA(I) - XO)/XZ + YO
100 CONTINUE
C
C RETURN BY NORMAL PROCEEDING
C -------------------------------
IER = 0
RETURN
C
C ERROR RETURN
C ------------
900 IER = -1
RETURN
END
| gpl-2.0 |
prool/ccx_prool | CalculiX/ccx_2.11/src/rectcyl.f | 6 | 23567 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2015 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
subroutine rectcyl(co,v,fn,stn,qfn,een,cs,n,icntrl,t,filab,
& imag,mi,emn)
!
! icntrl=1: rectangular to cylindrical coordinates for nodal
! coordinates in field co
! icntrl=-1: cylindrical to rectangular coordinates for nodal
! coordinates in field co
! icntrl=2: rectangular to cylindrical coordinates for fields
! v,fn,stn,een and emn
! icntrl=-2: cylindrical to rectangular coordinates for fields
! v,fn,stn, een and emn
!
! the axis of the cylindrical coordinates is defined by points
! a with coordinates csab(1..3) and b with coordinates csab(4..6).
! Theta=0 (2nd cylindrical coordinate) is defined by the vector t,
! which is perpendicular to the axis. The subroutine should be called
! with icntrl=1 before calling it with icntrl=-1.
!
! for icntrl=2 the imaginary part is extra taken into account if
! imag=1
!
implicit none
!
character*87 filab(*)
integer i,j,n,icntrl,imag,mi(*)
real*8 co(3,*),v(0:mi(2),*),fn(0:mi(2),*),stn(6,*),een(6,*),
& a(3,3),emn(6,*),
& xr,xt,xz,b(3,3),cs(17,*),t(3),u(3),qfn(3,*),csab(7),
& xn(3),r(3),z,theta,rr,c(3,3),ctm,ct,st,ddx,ddy,dd
!
do i=1,7
csab(i)=cs(5+i,1)
enddo
!
if(icntrl.eq.1) then
!
! normal along the cylindrical axis
!
xn(1)=csab(4)-csab(1)
xn(2)=csab(5)-csab(2)
xn(3)=csab(6)-csab(3)
dd=dsqrt(xn(1)*xn(1)+xn(2)*xn(2)+xn(3)*xn(3))
do i=1,3
xn(i)=xn(i)/dd
enddo
!
! normal to the cylindrical axis (vector t)
!
if(dabs(xn(1)).gt.1.d-10) then
t(2)=1.d0
t(3)=0.d0
t(1)=-xn(2)/xn(1)
elseif(dabs(xn(2)).gt.1.d-10) then
t(3)=1.d0
t(1)=0.d0
t(2)=-xn(3)/xn(2)
else
t(1)=1.d0
t(2)=0.d0
t(3)=-xn(1)/xn(3)
endif
dd=dsqrt(t(1)*t(1)+t(2)*t(2)+t(3)*t(3))
do i=1,3
t(i)=t(i)/dd
enddo
!
! normal to xn and t
!
u(1)=xn(2)*t(3)-xn(3)*t(2)
u(2)=-xn(1)*t(3)+xn(3)*t(1)
u(3)=xn(1)*t(2)-xn(2)*t(1)
!
! loop over all nodes to convert
!
do i=1,n
do j=1,3
r(j)=co(j,i)-csab(j)
enddo
z=r(1)*xn(1)+r(2)*xn(2)+r(3)*xn(3)
do j=1,3
r(j)=r(j)-z*xn(j)
enddo
rr=dsqrt(r(1)*r(1)+r(2)*r(2)+r(3)*r(3))
if(dabs(rr).lt.1.d-10) then
theta=0.d0
else
do j=1,3
r(j)=r(j)/rr
enddo
ddx=t(1)*r(1)+t(2)*r(2)+t(3)*r(3)
ddy=u(1)*r(1)+u(2)*r(2)+u(3)*r(3)
theta=datan2(ddy,ddx)
endif
co(1,i)=rr
co(2,i)=theta
co(3,i)=z
enddo
elseif(icntrl.eq.-1) then
!
! normal along the cylindrical axis
!
xn(1)=csab(4)-csab(1)
xn(2)=csab(5)-csab(2)
xn(3)=csab(6)-csab(3)
dd=dsqrt(xn(1)*xn(1)+xn(2)*xn(2)+xn(3)*xn(3))
do i=1,3
xn(i)=xn(i)/dd
enddo
!
! loop over all nodes to convert
!
do i=1,n
rr=co(1,i)
theta=co(2,i)
c write(*,*) 'rectcyl',i,co(2,i)
z=co(3,i)
ct=dcos(theta)
st=dsin(theta)
ctm=1.d0-ct
!
! rotation matrix
!
c(1,1)=ct+ctm*xn(1)*xn(1)
c(1,2)=-st*xn(3)+ctm*xn(1)*xn(2)
c(1,3)=st*xn(2)+ctm*xn(1)*xn(3)
c(2,1)=st*xn(3)+ctm*xn(2)*xn(1)
c(2,2)=ct+ctm*xn(2)*xn(2)
c(2,3)=-st*xn(1)+ctm*xn(2)*xn(3)
c(3,1)=-st*xn(2)+ctm*xn(3)*xn(1)
c(3,2)=st*xn(1)+ctm*xn(3)*xn(2)
c(3,3)=ct+ctm*xn(3)*xn(3)
!
co(1,i)=csab(1)+z*xn(1)+
& rr*(c(1,1)*t(1)+c(1,2)*t(2)+c(1,3)*t(3))
co(2,i)=csab(2)+z*xn(2)+
& rr*(c(2,1)*t(1)+c(2,2)*t(2)+c(2,3)*t(3))
co(3,i)=csab(3)+z*xn(3)+
& rr*(c(3,1)*t(1)+c(3,2)*t(2)+c(3,3)*t(3))
enddo
elseif(icntrl.eq.2) then
do i=1,n
j=i
call transformatrix(csab,co(1,i),a)
!
if((filab(1)(1:3).eq.'U ').or.
& (filab(11)(1:4).eq.'PU')) then
xr=v(1,j)*a(1,1)+v(2,j)*a(2,1)+v(3,j)*a(3,1)
xt=v(1,j)*a(1,2)+v(2,j)*a(2,2)+v(3,j)*a(3,2)
xz=v(1,j)*a(1,3)+v(2,j)*a(2,3)+v(3,j)*a(3,3)
v(1,j)=xr
v(2,j)=xt
v(3,j)=xz
endif
!
if((filab(3)(1:4).eq.'S ').or.
& (filab(18)(1:4).eq.'PHS ')) then
b(1,1)=stn(1,j)*a(1,1)+stn(4,j)*a(2,1)+stn(5,j)*a(3,1)
b(1,2)=stn(1,j)*a(1,2)+stn(4,j)*a(2,2)+stn(5,j)*a(3,2)
b(1,3)=stn(1,j)*a(1,3)+stn(4,j)*a(2,3)+stn(5,j)*a(3,3)
b(2,1)=stn(4,j)*a(1,1)+stn(2,j)*a(2,1)+stn(6,j)*a(3,1)
b(2,2)=stn(4,j)*a(1,2)+stn(2,j)*a(2,2)+stn(6,j)*a(3,2)
b(2,3)=stn(4,j)*a(1,3)+stn(2,j)*a(2,3)+stn(6,j)*a(3,3)
b(3,1)=stn(5,j)*a(1,1)+stn(6,j)*a(2,1)+stn(3,j)*a(3,1)
b(3,2)=stn(5,j)*a(1,2)+stn(6,j)*a(2,2)+stn(3,j)*a(3,2)
b(3,3)=stn(5,j)*a(1,3)+stn(6,j)*a(2,3)+stn(3,j)*a(3,3)
!
stn(1,j)=a(1,1)*b(1,1)+a(2,1)*b(2,1)+a(3,1)*b(3,1)
stn(2,j)=a(1,2)*b(1,2)+a(2,2)*b(2,2)+a(3,2)*b(3,2)
stn(3,j)=a(1,3)*b(1,3)+a(2,3)*b(2,3)+a(3,3)*b(3,3)
stn(4,j)=a(1,1)*b(1,2)+a(2,1)*b(2,2)+a(3,1)*b(3,2)
stn(5,j)=a(1,1)*b(1,3)+a(2,1)*b(2,3)+a(3,1)*b(3,3)
stn(6,j)=a(1,2)*b(1,3)+a(2,2)*b(2,3)+a(3,2)*b(3,3)
endif
!
if(filab(4)(1:4).eq.'E ') then
b(1,1)=een(1,j)*a(1,1)+een(4,j)*a(2,1)+een(5,j)*a(3,1)
b(1,2)=een(1,j)*a(1,2)+een(4,j)*a(2,2)+een(5,j)*a(3,2)
b(1,3)=een(1,j)*a(1,3)+een(4,j)*a(2,3)+een(5,j)*a(3,3)
b(2,1)=een(4,j)*a(1,1)+een(2,j)*a(2,1)+een(6,j)*a(3,1)
b(2,2)=een(4,j)*a(1,2)+een(2,j)*a(2,2)+een(6,j)*a(3,2)
b(2,3)=een(4,j)*a(1,3)+een(2,j)*a(2,3)+een(6,j)*a(3,3)
b(3,1)=een(5,j)*a(1,1)+een(6,j)*a(2,1)+een(3,j)*a(3,1)
b(3,2)=een(5,j)*a(1,2)+een(6,j)*a(2,2)+een(3,j)*a(3,2)
b(3,3)=een(5,j)*a(1,3)+een(6,j)*a(2,3)+een(3,j)*a(3,3)
!
een(1,j)=a(1,1)*b(1,1)+a(2,1)*b(2,1)+a(3,1)*b(3,1)
een(2,j)=a(1,2)*b(1,2)+a(2,2)*b(2,2)+a(3,2)*b(3,2)
een(3,j)=a(1,3)*b(1,3)+a(2,3)*b(2,3)+a(3,3)*b(3,3)
een(4,j)=a(1,1)*b(1,2)+a(2,1)*b(2,2)+a(3,1)*b(3,2)
een(5,j)=a(1,1)*b(1,3)+a(2,1)*b(2,3)+a(3,1)*b(3,3)
een(6,j)=a(1,2)*b(1,3)+a(2,2)*b(2,3)+a(3,2)*b(3,3)
endif
!
if(filab(5)(1:4).eq.'RF ') then
xr=fn(1,j)*a(1,1)+fn(2,j)*a(2,1)+fn(3,j)*a(3,1)
xt=fn(1,j)*a(1,2)+fn(2,j)*a(2,2)+fn(3,j)*a(3,2)
xz=fn(1,j)*a(1,3)+fn(2,j)*a(2,3)+fn(3,j)*a(3,3)
fn(1,j)=xr
fn(2,j)=xt
fn(3,j)=xz
endif
!
if(filab(9)(1:4).eq.'HFL ') then
xr=qfn(1,j)*a(1,1)+qfn(2,j)*a(2,1)+qfn(3,j)*a(3,1)
xt=qfn(1,j)*a(1,2)+qfn(2,j)*a(2,2)+qfn(3,j)*a(3,2)
xz=qfn(1,j)*a(1,3)+qfn(2,j)*a(2,3)+qfn(3,j)*a(3,3)
qfn(1,j)=xr
qfn(2,j)=xt
qfn(3,j)=xz
endif
!
if(filab(32)(1:4).eq.'ME ') then
b(1,1)=emn(1,j)*a(1,1)+emn(4,j)*a(2,1)+emn(5,j)*a(3,1)
b(1,2)=emn(1,j)*a(1,2)+emn(4,j)*a(2,2)+emn(5,j)*a(3,2)
b(1,3)=emn(1,j)*a(1,3)+emn(4,j)*a(2,3)+emn(5,j)*a(3,3)
b(2,1)=emn(4,j)*a(1,1)+emn(2,j)*a(2,1)+emn(6,j)*a(3,1)
b(2,2)=emn(4,j)*a(1,2)+emn(2,j)*a(2,2)+emn(6,j)*a(3,2)
b(2,3)=emn(4,j)*a(1,3)+emn(2,j)*a(2,3)+emn(6,j)*a(3,3)
b(3,1)=emn(5,j)*a(1,1)+emn(6,j)*a(2,1)+emn(3,j)*a(3,1)
b(3,2)=emn(5,j)*a(1,2)+emn(6,j)*a(2,2)+emn(3,j)*a(3,2)
b(3,3)=emn(5,j)*a(1,3)+emn(6,j)*a(2,3)+emn(3,j)*a(3,3)
!
emn(1,j)=a(1,1)*b(1,1)+a(2,1)*b(2,1)+a(3,1)*b(3,1)
emn(2,j)=a(1,2)*b(1,2)+a(2,2)*b(2,2)+a(3,2)*b(3,2)
emn(3,j)=a(1,3)*b(1,3)+a(2,3)*b(2,3)+a(3,3)*b(3,3)
emn(4,j)=a(1,1)*b(1,2)+a(2,1)*b(2,2)+a(3,1)*b(3,2)
emn(5,j)=a(1,1)*b(1,3)+a(2,1)*b(2,3)+a(3,1)*b(3,3)
emn(6,j)=a(1,2)*b(1,3)+a(2,2)*b(2,3)+a(3,2)*b(3,3)
endif
!
! imaginary part for cyclic symmetry frequency calculations
!
if(imag.eq.1) then
!
j=i+n
!
if((filab(1)(1:3).eq.'U ').or.
& (filab(11)(1:4).eq.'PU')) then
xr=v(1,j)*a(1,1)+v(2,j)*a(2,1)+v(3,j)*a(3,1)
xt=v(1,j)*a(1,2)+v(2,j)*a(2,2)+v(3,j)*a(3,2)
xz=v(1,j)*a(1,3)+v(2,j)*a(2,3)+v(3,j)*a(3,3)
v(1,j)=xr
v(2,j)=xt
v(3,j)=xz
endif
!
if((filab(3)(1:4).eq.'S ').or.
& (filab(18)(1:4).eq.'PHS ')) then
b(1,1)=stn(1,j)*a(1,1)+stn(4,j)*a(2,1)+stn(5,j)*a(3,1)
b(1,2)=stn(1,j)*a(1,2)+stn(4,j)*a(2,2)+stn(5,j)*a(3,2)
b(1,3)=stn(1,j)*a(1,3)+stn(4,j)*a(2,3)+stn(5,j)*a(3,3)
b(2,1)=stn(4,j)*a(1,1)+stn(2,j)*a(2,1)+stn(6,j)*a(3,1)
b(2,2)=stn(4,j)*a(1,2)+stn(2,j)*a(2,2)+stn(6,j)*a(3,2)
b(2,3)=stn(4,j)*a(1,3)+stn(2,j)*a(2,3)+stn(6,j)*a(3,3)
b(3,1)=stn(5,j)*a(1,1)+stn(6,j)*a(2,1)+stn(3,j)*a(3,1)
b(3,2)=stn(5,j)*a(1,2)+stn(6,j)*a(2,2)+stn(3,j)*a(3,2)
b(3,3)=stn(5,j)*a(1,3)+stn(6,j)*a(2,3)+stn(3,j)*a(3,3)
!
stn(1,j)=a(1,1)*b(1,1)+a(2,1)*b(2,1)+a(3,1)*b(3,1)
stn(2,j)=a(1,2)*b(1,2)+a(2,2)*b(2,2)+a(3,2)*b(3,2)
stn(3,j)=a(1,3)*b(1,3)+a(2,3)*b(2,3)+a(3,3)*b(3,3)
stn(4,j)=a(1,1)*b(1,2)+a(2,1)*b(2,2)+a(3,1)*b(3,2)
stn(5,j)=a(1,1)*b(1,3)+a(2,1)*b(2,3)+a(3,1)*b(3,3)
stn(6,j)=a(1,2)*b(1,3)+a(2,2)*b(2,3)+a(3,2)*b(3,3)
endif
!
if(filab(4)(1:4).eq.'E ') then
b(1,1)=een(1,j)*a(1,1)+een(4,j)*a(2,1)+een(5,j)*a(3,1)
b(1,2)=een(1,j)*a(1,2)+een(4,j)*a(2,2)+een(5,j)*a(3,2)
b(1,3)=een(1,j)*a(1,3)+een(4,j)*a(2,3)+een(5,j)*a(3,3)
b(2,1)=een(4,j)*a(1,1)+een(2,j)*a(2,1)+een(6,j)*a(3,1)
b(2,2)=een(4,j)*a(1,2)+een(2,j)*a(2,2)+een(6,j)*a(3,2)
b(2,3)=een(4,j)*a(1,3)+een(2,j)*a(2,3)+een(6,j)*a(3,3)
b(3,1)=een(5,j)*a(1,1)+een(6,j)*a(2,1)+een(3,j)*a(3,1)
b(3,2)=een(5,j)*a(1,2)+een(6,j)*a(2,2)+een(3,j)*a(3,2)
b(3,3)=een(5,j)*a(1,3)+een(6,j)*a(2,3)+een(3,j)*a(3,3)
!
een(1,j)=a(1,1)*b(1,1)+a(2,1)*b(2,1)+a(3,1)*b(3,1)
een(2,j)=a(1,2)*b(1,2)+a(2,2)*b(2,2)+a(3,2)*b(3,2)
een(3,j)=a(1,3)*b(1,3)+a(2,3)*b(2,3)+a(3,3)*b(3,3)
een(4,j)=a(1,1)*b(1,2)+a(2,1)*b(2,2)+a(3,1)*b(3,2)
een(5,j)=a(1,1)*b(1,3)+a(2,1)*b(2,3)+a(3,1)*b(3,3)
een(6,j)=a(1,2)*b(1,3)+a(2,2)*b(2,3)+a(3,2)*b(3,3)
endif
!
if(filab(5)(1:4).eq.'RF ') then
xr=fn(1,j)*a(1,1)+fn(2,j)*a(2,1)+fn(3,j)*a(3,1)
xt=fn(1,j)*a(1,2)+fn(2,j)*a(2,2)+fn(3,j)*a(3,2)
xz=fn(1,j)*a(1,3)+fn(2,j)*a(2,3)+fn(3,j)*a(3,3)
fn(1,j)=xr
fn(2,j)=xt
fn(3,j)=xz
endif
!
if(filab(9)(1:4).eq.'HFL ') then
xr=qfn(1,j)*a(1,1)+qfn(2,j)*a(2,1)+qfn(3,j)*a(3,1)
xt=qfn(1,j)*a(1,2)+qfn(2,j)*a(2,2)+qfn(3,j)*a(3,2)
xz=qfn(1,j)*a(1,3)+qfn(2,j)*a(2,3)+qfn(3,j)*a(3,3)
qfn(1,j)=xr
qfn(2,j)=xt
qfn(3,j)=xz
endif
!
if(filab(32)(1:4).eq.'ME ') then
b(1,1)=emn(1,j)*a(1,1)+emn(4,j)*a(2,1)+emn(5,j)*a(3,1)
b(1,2)=emn(1,j)*a(1,2)+emn(4,j)*a(2,2)+emn(5,j)*a(3,2)
b(1,3)=emn(1,j)*a(1,3)+emn(4,j)*a(2,3)+emn(5,j)*a(3,3)
b(2,1)=emn(4,j)*a(1,1)+emn(2,j)*a(2,1)+emn(6,j)*a(3,1)
b(2,2)=emn(4,j)*a(1,2)+emn(2,j)*a(2,2)+emn(6,j)*a(3,2)
b(2,3)=emn(4,j)*a(1,3)+emn(2,j)*a(2,3)+emn(6,j)*a(3,3)
b(3,1)=emn(5,j)*a(1,1)+emn(6,j)*a(2,1)+emn(3,j)*a(3,1)
b(3,2)=emn(5,j)*a(1,2)+emn(6,j)*a(2,2)+emn(3,j)*a(3,2)
b(3,3)=emn(5,j)*a(1,3)+emn(6,j)*a(2,3)+emn(3,j)*a(3,3)
!
emn(1,j)=a(1,1)*b(1,1)+a(2,1)*b(2,1)+a(3,1)*b(3,1)
emn(2,j)=a(1,2)*b(1,2)+a(2,2)*b(2,2)+a(3,2)*b(3,2)
emn(3,j)=a(1,3)*b(1,3)+a(2,3)*b(2,3)+a(3,3)*b(3,3)
emn(4,j)=a(1,1)*b(1,2)+a(2,1)*b(2,2)+a(3,1)*b(3,2)
emn(5,j)=a(1,1)*b(1,3)+a(2,1)*b(2,3)+a(3,1)*b(3,3)
emn(6,j)=a(1,2)*b(1,3)+a(2,2)*b(2,3)+a(3,2)*b(3,3)
endif
endif
enddo
elseif(icntrl.eq.-2) then
do i=1,n
j=i
call transformatrix(csab,co(1,i),a)
!
if((filab(1)(1:3).eq.'U ').or.
& (filab(11)(1:4).eq.'PU')) then
xr=v(1,j)*a(1,1)+v(2,j)*a(1,2)+v(3,j)*a(1,3)
xt=v(1,j)*a(2,1)+v(2,j)*a(2,2)+v(3,j)*a(2,3)
xz=v(1,j)*a(3,1)+v(2,j)*a(3,2)+v(3,j)*a(3,3)
v(1,j)=xr
v(2,j)=xt
v(3,j)=xz
endif
!
if((filab(3)(1:4).eq.'S ').or.
& (filab(18)(1:4).eq.'PHS ')) then
b(1,1)=stn(1,j)*a(1,1)+stn(4,j)*a(1,2)+stn(5,j)*a(1,3)
b(1,2)=stn(1,j)*a(2,1)+stn(4,j)*a(2,2)+stn(5,j)*a(2,3)
b(1,3)=stn(1,j)*a(3,1)+stn(4,j)*a(3,2)+stn(5,j)*a(3,3)
b(2,1)=stn(4,j)*a(1,1)+stn(2,j)*a(1,2)+stn(6,j)*a(1,3)
b(2,2)=stn(4,j)*a(2,1)+stn(2,j)*a(2,2)+stn(6,j)*a(2,3)
b(2,3)=stn(4,j)*a(3,1)+stn(2,j)*a(3,2)+stn(6,j)*a(3,3)
b(3,1)=stn(5,j)*a(1,1)+stn(6,j)*a(1,2)+stn(3,j)*a(1,3)
b(3,2)=stn(5,j)*a(2,1)+stn(6,j)*a(2,2)+stn(3,j)*a(2,3)
b(3,3)=stn(5,j)*a(3,1)+stn(6,j)*a(3,2)+stn(3,j)*a(3,3)
!
stn(1,j)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1)
stn(2,j)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2)
stn(3,j)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3)
stn(4,j)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2)
stn(5,j)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3)
stn(6,j)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3)
endif
!
if(filab(4)(1:4).eq.'E ') then
b(1,1)=een(1,j)*a(1,1)+een(4,j)*a(1,2)+een(5,j)*a(1,3)
b(1,2)=een(1,j)*a(2,1)+een(4,j)*a(2,2)+een(5,j)*a(2,3)
b(1,3)=een(1,j)*a(3,1)+een(4,j)*a(3,2)+een(5,j)*a(3,3)
b(2,1)=een(4,j)*a(1,1)+een(2,j)*a(1,2)+een(6,j)*a(1,3)
b(2,2)=een(4,j)*a(2,1)+een(2,j)*a(2,2)+een(6,j)*a(2,3)
b(2,3)=een(4,j)*a(3,1)+een(2,j)*a(3,2)+een(6,j)*a(3,3)
b(3,1)=een(5,j)*a(1,1)+een(6,j)*a(1,2)+een(3,j)*a(1,3)
b(3,2)=een(5,j)*a(2,1)+een(6,j)*a(2,2)+een(3,j)*a(2,3)
b(3,3)=een(5,j)*a(3,1)+een(6,j)*a(3,2)+een(3,j)*a(3,3)
!
een(1,j)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1)
een(2,j)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2)
een(3,j)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3)
een(4,j)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2)
een(5,j)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3)
een(6,j)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3)
endif
!
if(filab(5)(1:4).eq.'RF ') then
xr=fn(1,j)*a(1,1)+fn(2,j)*a(1,2)+fn(3,j)*a(1,3)
xt=fn(1,j)*a(2,1)+fn(2,j)*a(2,2)+fn(3,j)*a(2,3)
xz=fn(1,j)*a(3,1)+fn(2,j)*a(3,2)+fn(3,j)*a(3,3)
fn(1,j)=xr
fn(2,j)=xt
fn(3,j)=xz
endif
!
if(filab(9)(1:4).eq.'HFL ') then
xr=qfn(1,j)*a(1,1)+qfn(2,j)*a(1,2)+qfn(3,j)*a(1,3)
xt=qfn(1,j)*a(2,1)+qfn(2,j)*a(2,2)+qfn(3,j)*a(2,3)
xz=qfn(1,j)*a(3,1)+qfn(2,j)*a(3,2)+qfn(3,j)*a(3,3)
qfn(1,j)=xr
qfn(2,j)=xt
qfn(3,j)=xz
endif
!
if(filab(32)(1:4).eq.'ME ') then
b(1,1)=emn(1,j)*a(1,1)+emn(4,j)*a(1,2)+emn(5,j)*a(1,3)
b(1,2)=emn(1,j)*a(2,1)+emn(4,j)*a(2,2)+emn(5,j)*a(2,3)
b(1,3)=emn(1,j)*a(3,1)+emn(4,j)*a(3,2)+emn(5,j)*a(3,3)
b(2,1)=emn(4,j)*a(1,1)+emn(2,j)*a(1,2)+emn(6,j)*a(1,3)
b(2,2)=emn(4,j)*a(2,1)+emn(2,j)*a(2,2)+emn(6,j)*a(2,3)
b(2,3)=emn(4,j)*a(3,1)+emn(2,j)*a(3,2)+emn(6,j)*a(3,3)
b(3,1)=emn(5,j)*a(1,1)+emn(6,j)*a(1,2)+emn(3,j)*a(1,3)
b(3,2)=emn(5,j)*a(2,1)+emn(6,j)*a(2,2)+emn(3,j)*a(2,3)
b(3,3)=emn(5,j)*a(3,1)+emn(6,j)*a(3,2)+emn(3,j)*a(3,3)
!
emn(1,j)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1)
emn(2,j)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2)
emn(3,j)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3)
emn(4,j)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2)
emn(5,j)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3)
emn(6,j)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3)
endif
!
! imaginary part for cyclic symmetry frequency calculations
!
if(imag.eq.1) then
!
j=i+n
!
if((filab(1)(1:3).eq.'U ').or.
& (filab(11)(1:4).eq.'PU')) then
xr=v(1,j)*a(1,1)+v(2,j)*a(1,2)+v(3,j)*a(1,3)
xt=v(1,j)*a(2,1)+v(2,j)*a(2,2)+v(3,j)*a(2,3)
xz=v(1,j)*a(3,1)+v(2,j)*a(3,2)+v(3,j)*a(3,3)
v(1,j)=xr
v(2,j)=xt
v(3,j)=xz
endif
!
if((filab(3)(1:4).eq.'S ').or.
& (filab(18)(1:4).eq.'PHS ')) then
b(1,1)=stn(1,j)*a(1,1)+stn(4,j)*a(1,2)+stn(5,j)*a(1,3)
b(1,2)=stn(1,j)*a(2,1)+stn(4,j)*a(2,2)+stn(5,j)*a(2,3)
b(1,3)=stn(1,j)*a(3,1)+stn(4,j)*a(3,2)+stn(5,j)*a(3,3)
b(2,1)=stn(4,j)*a(1,1)+stn(2,j)*a(1,2)+stn(6,j)*a(1,3)
b(2,2)=stn(4,j)*a(2,1)+stn(2,j)*a(2,2)+stn(6,j)*a(2,3)
b(2,3)=stn(4,j)*a(3,1)+stn(2,j)*a(3,2)+stn(6,j)*a(3,3)
b(3,1)=stn(5,j)*a(1,1)+stn(6,j)*a(1,2)+stn(3,j)*a(1,3)
b(3,2)=stn(5,j)*a(2,1)+stn(6,j)*a(2,2)+stn(3,j)*a(2,3)
b(3,3)=stn(5,j)*a(3,1)+stn(6,j)*a(3,2)+stn(3,j)*a(3,3)
!
stn(1,j)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1)
stn(2,j)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2)
stn(3,j)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3)
stn(4,j)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2)
stn(5,j)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3)
stn(6,j)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3)
endif
!
if(filab(4)(1:4).eq.'E ') then
b(1,1)=een(1,j)*a(1,1)+een(4,j)*a(1,2)+een(5,j)*a(1,3)
b(1,2)=een(1,j)*a(2,1)+een(4,j)*a(2,2)+een(5,j)*a(2,3)
b(1,3)=een(1,j)*a(3,1)+een(4,j)*a(3,2)+een(5,j)*a(3,3)
b(2,1)=een(4,j)*a(1,1)+een(2,j)*a(1,2)+een(6,j)*a(1,3)
b(2,2)=een(4,j)*a(2,1)+een(2,j)*a(2,2)+een(6,j)*a(2,3)
b(2,3)=een(4,j)*a(3,1)+een(2,j)*a(3,2)+een(6,j)*a(3,3)
b(3,1)=een(5,j)*a(1,1)+een(6,j)*a(1,2)+een(3,j)*a(1,3)
b(3,2)=een(5,j)*a(2,1)+een(6,j)*a(2,2)+een(3,j)*a(2,3)
b(3,3)=een(5,j)*a(3,1)+een(6,j)*a(3,2)+een(3,j)*a(3,3)
!
een(1,j)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1)
een(2,j)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2)
een(3,j)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3)
een(4,j)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2)
een(5,j)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3)
een(6,j)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3)
endif
!
if(filab(5)(1:4).eq.'RF ') then
xr=fn(1,j)*a(1,1)+fn(2,j)*a(1,2)+fn(3,j)*a(1,3)
xt=fn(1,j)*a(2,1)+fn(2,j)*a(2,2)+fn(3,j)*a(2,3)
xz=fn(1,j)*a(3,1)+fn(2,j)*a(3,2)+fn(3,j)*a(3,3)
fn(1,j)=xr
fn(2,j)=xt
fn(3,j)=xz
endif
!
if(filab(9)(1:4).eq.'HFL ') then
xr=qfn(1,j)*a(1,1)+qfn(2,j)*a(1,2)+qfn(3,j)*a(1,3)
xt=qfn(1,j)*a(2,1)+qfn(2,j)*a(2,2)+qfn(3,j)*a(2,3)
xz=qfn(1,j)*a(3,1)+qfn(2,j)*a(3,2)+qfn(3,j)*a(3,3)
qfn(1,j)=xr
qfn(2,j)=xt
qfn(3,j)=xz
endif
!
if(filab(32)(1:4).eq.'ME ') then
b(1,1)=emn(1,j)*a(1,1)+emn(4,j)*a(1,2)+emn(5,j)*a(1,3)
b(1,2)=emn(1,j)*a(2,1)+emn(4,j)*a(2,2)+emn(5,j)*a(2,3)
b(1,3)=emn(1,j)*a(3,1)+emn(4,j)*a(3,2)+emn(5,j)*a(3,3)
b(2,1)=emn(4,j)*a(1,1)+emn(2,j)*a(1,2)+emn(6,j)*a(1,3)
b(2,2)=emn(4,j)*a(2,1)+emn(2,j)*a(2,2)+emn(6,j)*a(2,3)
b(2,3)=emn(4,j)*a(3,1)+emn(2,j)*a(3,2)+emn(6,j)*a(3,3)
b(3,1)=emn(5,j)*a(1,1)+emn(6,j)*a(1,2)+emn(3,j)*a(1,3)
b(3,2)=emn(5,j)*a(2,1)+emn(6,j)*a(2,2)+emn(3,j)*a(2,3)
b(3,3)=emn(5,j)*a(3,1)+emn(6,j)*a(3,2)+emn(3,j)*a(3,3)
!
emn(1,j)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1)
emn(2,j)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2)
emn(3,j)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3)
emn(4,j)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2)
emn(5,j)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3)
emn(6,j)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3)
endif
endif
!
enddo
endif
!
return
end
| gpl-2.0 |
jabbaqin/p3dfft | build/ftran.F90 | 3 | 24413 | ! This file is part of P3DFFT library
!
! P3DFFT
!
! Software Framework for Scalable Fourier Transforms in Three Dimensions
!
! Copyright (C) 2006-2014 Dmitry Pekurovsky
! Copyright (C) 2006-2014 University of California
! Copyright (C) 2010-2011 Jens Henrik Goebbert
!
! This program is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
!
!
!----------------------------------------------------------------------------
! This is a C wrapper routine
!========================================================
subroutine p3dfft_ftran_r2c_many_w (XgYZ,dim_in,XYZg,dim_out,nv,op) BIND(C,NAME='p3dfft_ftran_r2c_many')
!========================================================
use, intrinsic :: iso_c_binding
real(mytype), TARGET :: XgYZ(nx_fft,jistart:jiend,kjstart:kjend)
#ifdef STRIDE1
complex(mytype), TARGET :: XYZg(nzc,iistart:iiend,jjstart:jjend)
#else
complex(mytype), TARGET :: XYZg(iistart:iiend,jjstart:jjend,nzc)
#endif
integer dim_in,dim_out,nv
character, dimension(*), target :: op
character(4), pointer :: lcl_op
call c_f_pointer(c_loc(op), lcl_op)
call p3dfft_ftran_r2c_many (XgYZ,dim_in,XYZg,dim_out,nv,lcl_op)
end subroutine
! Forward R2C transform of multiple variables (nv)
!========================================================
subroutine p3dfft_ftran_r2c_many (XgYZ,dim_in,XYZg,dim_out,nv,op)
!========================================================
use fft_spec
implicit none
integer dim_in,dim_out
real(mytype), TARGET :: XgYZ(dim_in,nv)
complex(mytype), TARGET :: XYZg(dim_out,nv)
integer x,y,z,i,nx,ny,nz,ierr,dnz,nv,j,err,n1,n2
integer(i8) Nl
character(len=3) op
if(.not. mpi_set) then
print *,'P3DFFT error: call setup before other routines'
return
endif
if(dim_in .lt. nx_fft*jisize*kjsize) then
print *,taskid,': ftran error: input array dimensions are too low: ',dim_in,' while expecting ',nx_fft*jisize*kjsize
endif
if(dim_out .lt. nzc*jjsize*iisize) then
print *,taskid,': ftran error: output array dimensions are too low: ',dim_out,' while expecting ',nzc*jjsize*iisize
endif
! preallocate memory for FFT-Transforms
if(nv .gt. nv_preset) then
nv_preset = nv
deallocate(buf1,buf2,buf)
allocate (buf(nxhp*jisize*(kjsize+padi)*nv), stat=err)
if (err /= 0) then
print *, 'Error ', err, ' allocating array buf'
end if
! initialize buf to avoid "floating point invalid" errors in debug mode
buf = 0.d0
#ifdef USE_EVEN
n1 = nv * IfCntMax * iproc /(mytype*2)
n2 = nv * KfCntMax * jproc / (mytype*2)
n1 = max(n1,n2)
allocate(buf1(n1))
allocate(buf2(n1))
#else
if(taskid .eq. 0) then
print *,'nm=',nm
endif
allocate(buf1(nm*nv))
allocate(buf2(nm*nv))
#endif
endif
nx = nx_fft
ny = ny_fft
nz = nz_fft
! For FFT libraries that require explicit allocation of work space,
! such as ESSL, initialize here
#ifdef DEBUG
print *,taskid,': Enter ftran',nv,nv_preset
#endif
! FFT transform (R2C) in X for all z and y
if(jisize * kjsize .gt. 0) then
call init_f_r2c(XgYZ,nx,buf,nxhp,nx,jisize*kjsize)
timers(5) = timers(5) - MPI_Wtime()
call f_r2c_many(XgYZ,nx,buf,nxhp,nx,jisize*kjsize,dim_in,nv)
timers(5) = timers(5) + MPI_Wtime()
endif
! Exchange data in rows
if(iproc .gt. 1) then
#ifdef DEBUG
print *,taskid,': Calling fcomm1'
#endif
call fcomm1_many(buf,buf,nv,timers(1),timers(6))
#ifdef STRIDE1
else
call reorder_f1_many(buf,buf,buf1,nv)
#endif
endif
! FFT transform (C2C) in Y for all x and z, one Z plane at a time
#ifdef DEBUG
print *,taskid,': Transforming in Y'
#endif
if(iisize * kjsize .gt. 0) then
#ifdef STRIDE1
call init_f_c(buf,1,ny,buf,1,ny,ny,iisize*kjsize)
timers(7) = timers(7) - MPI_Wtime()
call f_c1_many(buf,1,ny,ny,iisize*kjsize,iisize*kjsize*ny,nv)
timers(7) = timers(7) + MPI_Wtime()
#else
call init_f_c(buf,iisize,1,buf,iisize,1,ny,iisize)
timers(7) = timers(7) - MPI_Wtime()
do z=1,kjsize*nv
call ftran_y_zplane(buf,z-1,iisize,kjsize,iisize,1, buf,z-1,iisize,kjsize,iisize,1,ny,iisize)
enddo
timers(7) = timers(7) + MPI_Wtime()
#endif
endif
#ifdef DEBUG
print *,taskid,': Calling fcomm2'
#endif
! Exchange data in columns
if(jproc .gt. 1) then
#ifdef STRIDE1
! For stride1 option combine second transpose with transform in Z
call init_f_c(buf,1,nz, XYZg,1,nz,nz,jjsize,op)
call fcomm2_trans_many(buf,XYZg,buf,dim_out,nv,op,timers(2),timers(8))
#else
! FFT Transform (C2C) in Z for all x and y
dnz = nz - nzc
if(dnz .gt. 0) then
! Transpose y-z
call fcomm2_many(buf,buf,iisize*jjsize*nz,nv,timers(2),timers(8))
! In forward transform we can safely use output array as one of the buffers
! This speeds up FFTW since it is non-stride-1 transform and it is
! faster than done in-place
#ifdef DEBUG
print *,taskid,': Transforming in Z'
#endif
if(iisize * jjsize .gt. 0) then
call ztran_f_same_many(buf,iisize*jjsize,1,nz,iisize*jjsize,iisize*jjsize*nz,nv,op)
call seg_copy_z_f_many(buf,XYZg,1,iisize,1,jjsize,1,nzhc,0,iisize,jjsize,nz,dim_out,nv)
call seg_copy_z_f_many(buf,XYZg,1,iisize,1,jjsize,nzhc+1,nzc,dnz,iisize,jjsize,nz,dim_out,nv)
endif
else
call fcomm2_many(buf,XYZg,dim_out,nv,timers(2),timers(8))
! In forward transform we can safely use output array as one of the buffers
! This speeds up FFTW since it is non-stride-1 transform and it is
! faster than done in-place
#ifdef DEBUG
print *,taskid,': Transforming in Z'
#endif
if(iisize * jjsize .gt. 0) then
call ztran_f_same_many(XYZg,iisize*jjsize,1,nz,iisize*jjsize,dim_out,nv,op)
endif
endif
#endif
else
timers(8) = timers(8) - MPI_Wtime()
#ifdef STRIDE1
call reorder_trans_f2_many(buf,XYZg,buf1,dim_out,nv,op)
#else
Nl = iisize*jjsize*nz
dnz = nz - nzc
if(dnz .gt. 0) then
call ztran_f_same_many(buf,iisize*jjsize,1,nz,iisize*jjsize,iisize*jjsize*nz,nv,op)
call seg_copy_z_f_many(buf,XYZg,1,iisize,1,jjsize,1,nzhc,0,iisize,jjsize,nz,dim_out,nv)
call seg_copy_z_f_many(buf,XYZg,1,iisize,1,jjsize,nzhc+1,nzc,dnz,iisize,jjsize,nz,dim_out,nv)
else
call ar_copy_many(buf,iisize*jjsize*nz,XYZg,dim_out,Nl,nv)
call ztran_f_same_many(XYZg,iisize*jjsize,1,nz,iisize*jjsize,dim_out,nv,op)
endif
#endif
timers(8) = timers(8) + MPI_Wtime()
endif
! deallocate(buf)
return
end subroutine
! This is a C wrapper routine
!========================================================
subroutine p3dfft_ftran_cheby_many_w (XgYZ,dim_in,XYZg,dim_out,nv,Lz) BIND(C,NAME='p3dfft_cheby_many')
!========================================================
real(mytype), TARGET :: XgYZ(nx_fft,jistart:jiend,kjstart:kjend)
#ifdef STRIDE1
complex(mytype), TARGET :: XYZg(nzc,iistart:iiend,jjstart:jjend)
#else
complex(mytype), TARGET :: XYZg(iistart:iiend,jjstart:jjend,nzc)
#endif
integer dim_in,dim_out,nv
real(mytype) Lz
call p3dfft_cheby_many (XgYZ,dim_in,XYZg,dim_out,nv,Lz)
end subroutine
! Chebyshev transform (2D R2C forward FFT + Chebyshev) for multiple variables
!========================================================
subroutine p3dfft_cheby_many(in,dim_in,out,dim_out,nv,Lz)
!========================================================
integer dim_in,dim_out,nv,j
real(mytype) Lz
real(mytype), dimension(dim_in,nv), target :: in
complex(mytype), dimension (dim_out,nv), target :: out
call p3dfft_ftran_r2c_many(in,dim_in,out,dim_out,nv,'ffc')
do j=1,nv
call p3dfft_cheby(in(1,j),out(1,j),Lz)
enddo
return
end subroutine
! This is a C wrapper routine
!========================================================
subroutine p3dfft_cheby_w(in,out,Lz) BIND(C,NAME='p3dfft_cheby')
!========================================================
real(mytype), dimension(nx_fft, &
jisize, &
kjsize), target :: in
#ifdef STRIDE1
complex(mytype), dimension(nzc, &
jjsize,&
iisize), target :: out
#else
complex(mytype), dimension(iisize, &
jjsize, &
nzc), target :: out
#endif
real(mytype) Lz
call p3dfft_cheby(in,out,Lz)
end subroutine
! Chebyshev transform (2D R2C forward FFT + Chebyshev) for a single variable
!==============================================================
subroutine p3dfft_cheby(in,out,Lz)
!========================================================
! ! function args
real(mytype), dimension(nx_fft, &
jisize, &
kjsize), target :: in
#ifdef STRIDE1
complex(mytype), dimension(nzc, &
jjsize,&
iisize), target :: out
complex(mytype) Old, New, Tmp
#else
complex(mytype), dimension(iisize, &
jjsize, &
nzc), target :: out
complex(mytype),dimension(:,:),pointer :: ptrOld, ptrNew, ptrTmp
#endif
real(mytype) :: Lfactor,Lz
integer k,nz,i,j
nz = nzc
call p3dfft_ftran_r2c(in,out,'ffc')
out = out *(1.d0/(dble(nx_fft*ny_fft)*dble(nzc-1)))
! less tmp-memory version (but difficult to read)
Lfactor = 4.d0/dble(Lz)
#ifdef STRIDE1
! first and last cheby-coeff needs to gets multiplied by factor 0.5
! because of relation between cheby and discrete cosinus transforms
do i=1,iisize
do j=1,jjsize
Old = out(nzc-1,j,i)
out(nzc-1,j,i) = Lfactor *dble(nzc-1) *out(nzc,j,i) * 0.5d0
out(nzc,j,i) = cmplx(0.d0,0.d0)
do k = nzc-2, 1, -1
New = out(k,j,i)
out(k,j,i) = Lfactor *dble(k) *Old +out(k+2,j,i)
Tmp = New
New = Old
Old = Tmp
enddo
out(1,j,i) = out(1,j,i) *0.5d0
enddo
enddo
#else
allocate(ptrOld(iisize,jjsize))
allocate(ptrNew(iisize,jjsize))
ptrOld(:,:) = out(:,:,nzc-1)
out(:,:,nzc-1) = Lfactor *dble(nzc-1) *out(:,:,nzc) *0.5d0
out(:,:,nzc ) = cmplx(0.d0,0.d0)
do k = nzc-2, 1, -1
ptrNew(:,:) = out(:,:,k)
out(:,:,k) = Lfactor *dble(k) *ptrOld(:,:) +out(:,:,k+2)
ptrTmp => ptrNew
ptrNew => ptrOld
ptrOld => ptrTmp
enddo
out(:,:,1) = out(:,:,1) *0.5d0
deallocate(ptrOld)
deallocate(ptrNew)
#endif
! ! easy to read version (but more tmp-memory needed)
! Lfactor = 4.d0/Lz
! ctest10 = out
! out(:,:,n3 ) = cmplx(0.d0,0.d0) !ok
! out(:,:,n3-1) = Lfactor *dble(n3-1) *ctest10(:,:,n3) !ok
! do k = n3-2, 1, -1
! out(:,:,k) = Lfactor *dble(k) *ctest10(:,:,k+1) +out(:,:,k+2)
! enddo
! out(:,:,1) = out(:,:,1) *0.5d0
return
end subroutine p3dfft_cheby
! This is a C wrapper routine
!========================================================
subroutine p3dfft_ftran_r2c_w (XgYZ,XYZg,op) BIND(C,NAME='p3dfft_ftran_r2c')
!========================================================
use, intrinsic :: iso_c_binding
real(mytype), TARGET :: XgYZ(nx_fft,jistart:jiend,kjstart:kjend)
#ifdef STRIDE1
complex(mytype), TARGET :: XYZg(nzc,iistart:iiend,jjstart:jjend)
#else
complex(mytype), TARGET :: XYZg(iistart:iiend,jjstart:jjend,nzc)
#endif
integer dim_in,dim_out,nv
character, dimension(*), target :: op
character(4), pointer :: lcl_op
call c_f_pointer(c_loc(op), lcl_op)
call p3dfft_ftran_r2c (XgYZ,XYZg,lcl_op)
end subroutine
! Forward R2C transform of 1 variable
!========================================================
subroutine p3dfft_ftran_r2c (XgYZ,XYZg,op)
!========================================================
use fft_spec
implicit none
real(mytype), TARGET :: XgYZ(nx_fft,jistart:jiend,kjstart:kjend)
#ifdef STRIDE1
complex(mytype), TARGET :: XYZg(nzc,iistart:iiend,jjstart:jjend)
#else
complex(mytype), TARGET :: XYZg(iistart:iiend,jjstart:jjend,nzc)
#endif
integer x,y,z,i,nx,ny,nz,ierr,dnz
integer(i8) Nl
character(len=3) op
if(.not. mpi_set) then
print *,'P3DFFT error: call setup before other routines'
return
endif
nx = nx_fft
ny = ny_fft
nz = nz_fft
! For FFT libraries that require explicit allocation of work space,
! such as ESSL, initialize here
#ifdef DEBUG
print *,taskid,': Enter ftran'
#endif
! FFT transform (R2C) in X for all z and y
if(jisize * kjsize .gt. 0) then
call init_f_r2c(XgYZ,nx,buf,nxhp,nx,jisize*kjsize)
timers(5) = timers(5) - MPI_Wtime()
call exec_f_r2c(XgYZ,nx,buf,nxhp,nx,jisize*kjsize)
timers(5) = timers(5) + MPI_Wtime()
endif
! Exchange data in rows
if(iproc .gt. 1) then
#ifdef DEBUG
print *,taskid,': Calling fcomm1'
#endif
call fcomm1(buf,buf,timers(1),timers(6))
#ifdef STRIDE1
else
call reorder_f1(buf,buf,buf1)
#endif
endif
! FFT transform (C2C) in Y for all x and z, one Z plane at a time
#ifdef DEBUG
print *,taskid,': Transforming in Y'
#endif
if(iisize * kjsize .gt. 0) then
#ifdef STRIDE1
call init_f_c(buf,1,ny,buf,1,ny,ny,iisize*kjsize)
timers(7) = timers(7) - MPI_Wtime()
call exec_f_c1(buf,1,ny,buf,1,ny,ny,iisize*kjsize)
timers(7) = timers(7) + MPI_Wtime()
#else
call init_f_c(buf,iisize,1,buf,iisize,1,ny,iisize)
timers(7) = timers(7) - MPI_Wtime()
do z=1,kjsize
call ftran_y_zplane(buf,z-1,iisize,kjsize,iisize,1, buf,z-1,iisize,kjsize,iisize,1,ny,iisize)
enddo
timers(7) = timers(7) + MPI_Wtime()
#endif
endif
#ifdef DEBUG
print *,taskid,': Calling fcomm2'
#endif
! Exchange data in columns
if(jproc .gt. 1) then
#ifdef STRIDE1
! For stride1 option combine second transpose with transform in Z
call init_f_c(buf,1,nz, XYZg,1,nz,nz,jjsize,op)
call fcomm2_trans(buf,XYZg,buf,op,timers(2),timers(8))
#else
! FFT Transform (C2C) in Z for all x and y
dnz = nz - nzc
if(dnz .gt. 0) then
! Transpose y-z
call fcomm2(buf,buf,timers(2),timers(8))
! In forward transform we can safely use output array as one of the buffers
! This speeds up FFTW since it is non-stride-1 transform and it is
! faster than done in-place
#ifdef DEBUG
print *,taskid,': Transforming in Z'
#endif
if(iisize * jjsize .gt. 0) then
if(op(3:3) == 't' .or. op(3:3) == 'f') then
call init_f_c(buf,iisize*jjsize, 1, buf,iisize*jjsize, 1,nz,iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_f_c2_same(buf,iisize*jjsize, 1,buf,iisize*jjsize, 1,nz,iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 'c') then
call init_ctrans_r2(buf,2*iisize*jjsize, 1, buf,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_ctrans_r2_same(buf,2*iisize*jjsize, 1,buf,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 's') then
call init_strans_r2(buf,2*iisize*jjsize, 1, buf,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_strans_r2_same(buf,2*iisize*jjsize, 1,buf,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) .ne. 'n' .and. op(3:3) .ne. '0') then
print *,'Unknown transform type: ',op(3:3)
call MPI_Abort(MPI_COMM_WORLD,ierr)
endif
call seg_copy_z(buf,XYZg,1,iisize,1,jjsize,1,nzhc,0,iisize,jjsize,nz)
call seg_copy_z(buf,XYZg,1,iisize,1,jjsize,nzhc+1,nzc,dnz,iisize,jjsize,nz)
endif
else
call fcomm2(buf,XYZg,timers(2),timers(8))
! In forward transform we can safely use output array as one of the buffers
! This speeds up FFTW since it is non-stride-1 transform and it is
! faster than done in-place
#ifdef DEBUG
print *,taskid,': Transforming in Z'
#endif
if(iisize * jjsize .gt. 0) then
if(op(3:3) == 't' .or. op(3:3) == 'f') then
call init_f_c(XYZg,iisize*jjsize, 1, XYZg,iisize*jjsize, 1,nz,iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_f_c2_same(XYZg,iisize*jjsize, 1,XYZg,iisize*jjsize, 1,nz,iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 'c') then
call init_ctrans_r2(XYZg,2*iisize*jjsize, 1, XYZg,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_ctrans_r2_same(XYZg,2*iisize*jjsize, 1,XYZg,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 's') then
call init_strans_r2(XYZg,2*iisize*jjsize, 1, XYZg,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_strans_r2_same(XYZg,2*iisize*jjsize, 1,XYZg,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) .ne. 'n' .and. op(3:3) .ne. '0') then
print *,'Unknown transform type: ',op(3:3)
call MPI_Abort(MPI_COMM_WORLD,ierr)
endif
endif
endif
#endif
else
timers(8) = timers(8) - MPI_Wtime()
#ifdef STRIDE1
call reorder_trans_f2(buf,XYZg,buf1,op)
#else
Nl = iisize*jjsize*nz
dnz = nz - nzc
if(dnz .gt. 0) then
if(op(3:3) == 't' .or. op(3:3) == 'f') then
call init_f_c(buf,iisize*jjsize, 1,buf,iisize*jjsize, 1,nz,iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_f_c2_same(buf,iisize*jjsize, 1,buf,iisize*jjsize, 1,nz,iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 'c') then
call init_ctrans_r2(buf,2*iisize*jjsize, 1,buf,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_ctrans_r2_same(buf,2*iisize*jjsize, 1,buf,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 's') then
call init_strans_r2(buf,2*iisize*jjsize, 1,buf,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_strans_r2_same(buf,2*iisize*jjsize, 1,buf,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) /= 'n' .and. op(3:3) /= '0') then
print *,'Unknown transform type: ',op(3:3)
call MPI_Abort(MPI_COMM_WORLD,ierr)
endif
call seg_copy_z(buf,XYZg,1,iisize,1,jjsize,1,nzhc,0,iisize,jjsize,nz)
call seg_copy_z(buf,XYZg,1,iisize,1,jjsize,nzhc+1,nzc,dnz,iisize,jjsize,nz)
else
call ar_copy(buf,XYZg,Nl)
if(op(3:3) == 't' .or. op(3:3) == 'f') then
call init_f_c(XYZg,iisize*jjsize, 1, XYZg,iisize*jjsize, 1,nz,iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_f_c2_same(XYZg,iisize*jjsize, 1,XYZg,iisize*jjsize, 1,nz,iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 'c') then
call init_ctrans_r2(XYZg,2*iisize*jjsize, 1, XYZg,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_ctrans_r2_same(XYZg,2*iisize*jjsize, 1,XYZg,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 's') then
call init_strans_r2(XYZg,2*iisize*jjsize, 1, XYZg,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) - MPI_Wtime()
call exec_strans_r2_same(XYZg,2*iisize*jjsize, 1,XYZg,2*iisize*jjsize, 1,nz,2*iisize*jjsize)
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) /= 'n' .and. op(3:3) /= '0') then
print *,'Unknown transform type: ',op(3:3)
call MPI_Abort(MPI_COMM_WORLD,ierr)
endif
endif
#endif
timers(8) = timers(8) + MPI_Wtime()
endif
return
end subroutine
! --------------------------------------
!
! p3dfft_ftran_r2c_1d(..)
!
! --------------------------------------
subroutine p3dfft_ftran_r2c_1d (rXgYZ, cXgYZ)
use fft_spec
implicit none
real (mytype), target :: rXgYZ (NX_fft, jistart:jiend, kjstart:kjend)
real (mytype), target :: cXgYZ (NX_fft+2, jistart:jiend, kjstart:kjend)
! complex(mytype), allocatable :: XYgZ(:,:,:)
integer x, y, z, i, err, nx, ny, nz
if ( .not. mpi_set) then
print *, 'P3DFFT error: call setup before other routines'
return
end if
nx = NX_fft
ny = NY_fft
nz = NZ_fft
!
! FFT transform (R2C) in X for all z and y
!
if (jisize*kjsize > 0) then
call init_f_r2c (rXgYZ, nx, cXgYZ, nxhp, nx, jisize*kjsize)
call exec_f_r2c (rXgYZ, nx, cXgYZ, nxhp, nx, jisize*kjsize)
end if
end subroutine p3dfft_ftran_r2c_1d
! call f_r2c(XgYZ,nx,buf,nxhp,nx,jisize*kjsize,nv)
subroutine f_r2c_many(source,str1,dest,str2,n,m,dim,nv)
integer str1,str2,n,m,nv,j,dim
real(mytype) source(dim,nv)
complex(mytype) dest(n/2+1,m,nv)
do j=1,nv
call exec_f_r2c(source(1,j),str1,dest(1,1,j),str2,n,m)
enddo
return
end subroutine
subroutine f_c1_many(A,str1,str2,n,m,dim,nv)
integer n,m,nv,j,str1,str2,dim
complex(mytype) A(dim,nv)
do j=1,nv
call exec_f_c1(A(1,j),str1,str2,A(1,j),str1,str2,n,m)
enddo
return
end subroutine
subroutine ztran_f_same_many(A,str1,str2,n,m,dim,nv,op)
integer str1,str2,n,m,nv,j,ierr,dim
complex(mytype) A(dim,nv)
character(len=3) op
if(op(3:3) == 't' .or. op(3:3) == 'f') then
call init_f_c(A,str1,str2,A,str1,str2,n,m)
timers(8) = timers(8) - MPI_Wtime()
do j=1,nv
call exec_f_c2_same(A(1,j),str1,str2,A(1,j),str1,str2,n,m)
enddo
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 'c') then
call init_ctrans_r2(A,str1,str2,A,str1,str2,n,m)
timers(8) = timers(8) - MPI_Wtime()
do j=1,nv
call exec_ctrans_r2_same(A(1,j),2*str1,str2,A(1,j),2*str1,str2,n,2*m)
enddo
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) == 's') then
call init_strans_r2(A,str1,str2,A,str1,str2,n,m)
timers(8) = timers(8) - MPI_Wtime()
do j=1,nv
call exec_strans_r2_same(A(1,j),2*str1,str2,A(1,j),2*str1,str2,n,2*m)
enddo
timers(8) = timers(8) + MPI_Wtime()
else if(op(3:3) .ne. 'n' .and. op(3:3) .ne. '0') then
print *,'Unknown transform type: ',op(3:3)
call MPI_Abort(MPI_COMM_WORLD,ierr)
endif
return
end subroutine
| gpl-3.0 |
prool/ccx_prool | CalculiX/ccx_2.8p2/src/mafillem.f | 4 | 23787 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2015 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
subroutine mafillem(co,nk,kon,ipkon,lakon,ne,nodeboun,ndirboun,
& xboun,nboun,
& ipompc,nodempc,coefmpc,nmpc,nodeforc,ndirforc,xforc,
& nforc,nelemload,sideload,xload,nload,xbody,ipobody,nbody,cgr,
& ad,au,fext,nactdof,icol,jq,irow,neq,nzl,nmethod,
& ikmpc,ilmpc,ikboun,ilboun,elcon,nelcon,rhcon,
& nrhcon,alcon,nalcon,alzero,ielmat,ielorien,norien,orab,ntmat_,
& t0,t1,ithermal,prestr,
& iprestr,vold,iperturb,sti,nzs,stx,adb,aub,iexpl,plicon,
& nplicon,plkcon,nplkcon,xstiff,npmat_,dtime,
& matname,mi,ncmat_,mass,stiffness,buckling,rhsi,intscheme,
& physcon,shcon,nshcon,cocon,ncocon,ttime,time,istep,iinc,
& coriolis,ibody,xloadold,reltime,veold,springarea,nstate_,
& xstateini,xstate,thicke,integerglob,doubleglob,
& tieset,istartset,iendset,ialset,ntie,nasym,iactive,h0,
& pslavsurf,pmastsurf,mortar,clearini,ielprop,prop)
!
! filling the stiffness matrix in spare matrix format (sm)
!
! domain 1: phi-domain (air)
! domain 2: A,V-domain (body)
! domain 3: A-domain (air, the union of domain 2 and 3 should
! be simple connected)
!
implicit none
!
logical mass(2),stiffness,buckling,rhsi,stiffonly(2),coriolis
!
character*8 lakon(*)
character*20 sideload(*)
character*80 matname(*)
character*81 tieset(3,*)
!
integer kon(*),nodeboun(*),ndirboun(*),ipompc(*),nodempc(3,*),
& nodeforc(2,*),ndirforc(*),nelemload(2,*),icol(*),jq(*),ikmpc(*),
& ilmpc(*),ikboun(*),ilboun(*),mi(*),nstate_,ne0,nasym,
& nactdof(0:mi(2),*),konl(26),irow(*),icolumn,ialset(*),
& nelcon(2,*),nrhcon(*),nalcon(2,*),ielmat(mi(3),*),ntie,
& ielorien(mi(3),*),integerglob(*),istartset(*),iendset(*),
& ipkon(*),intscheme,ncocon(2,*),nshcon(*),ipobody(2,*),nbody,
& ibody(3,*),nk,ne,nboun,nmpc,nforc,nload,neq(2),nzl,nmethod,
& ithermal(2),iprestr,iperturb(*),nzs(3),i,j,k,l,m,idist,jj,
& ll,id,id1,id2,ist,ist1,ist2,index,jdof1,jdof2,idof1,idof2,
& mpc1,mpc2,index1,index2,jdof,node1,node2,kflag,icalccg,
& ntmat_,indexe,nope,norien,iexpl,i0,ncmat_,istep,iinc,mortar,
& nplicon(0:ntmat_,*),nplkcon(0:ntmat_,*),npmat_,iactive(3),
& ielprop(*)
!
real*8 co(3,*),xboun(*),coefmpc(*),xforc(*),xload(2,*),p1(3),
& p2(3),ad(*),au(*),bodyf(3),fext(*),xloadold(2,*),reltime,
& t0(*),t1(*),prestr(6,mi(1),*),vold(0:mi(2),*),s(100,100),
& sti(6,mi(1),*),sm(100,100),stx(6,mi(1),*),adb(*),aub(*),
& elcon(0:ncmat_,ntmat_,*),rhcon(0:1,ntmat_,*),springarea(2,*),
& alcon(0:6,ntmat_,*),physcon(*),cocon(0:6,ntmat_,*),ff(100),
& xstate(nstate_,mi(1),*),xstateini(nstate_,mi(1),*),
& shcon(0:3,ntmat_,*),alzero(*),orab(7,*),xbody(7,*),cgr(4,*),
& plicon(0:2*npmat_,ntmat_,*),plkcon(0:2*npmat_,ntmat_,*),
& xstiff(27,mi(1),*),veold(0:mi(2),*),om,valu2,value,dtime,ttime,
& time,thicke(mi(3),*),doubleglob(*),h0(3,*),
& pslavsurf(3,*),pmastsurf(6,*),clearini(3,9,*),prop(*)
!
kflag=2
i0=0
icalccg=0
!
if(stiffness.and.(.not.mass(1))) then
stiffonly(1)=.true.
else
stiffonly(1)=.false.
endif
if(stiffness.and.(.not.mass(2))) then
stiffonly(2)=.true.
else
stiffonly(2)=.false.
endif
!
! determining nzl
!
nzl=0
do i=neq(2),1,-1
if(icol(i).gt.0) then
nzl=i
exit
endif
enddo
!
! initializing the matrices
!
do i=1,neq(2)
ad(i)=0.d0
enddo
do i=1,nzs(3)
au(i)=0.d0
enddo
!
if(rhsi) then
do i=1,neq(2)
fext(i)=0.d0
enddo
endif
!
if(mass(1)) then
do i=1,neq(1)
adb(i)=0.d0
enddo
do i=1,nzs(1)
aub(i)=0.d0
enddo
endif
if(mass(2)) then
do i=neq(1)+1,neq(2)
adb(i)=0.d0
enddo
do i=nzs(1)+1,nzs(2)
aub(i)=0.d0
enddo
endif
!
! electromagnetic force should always be taken into account
!
if(rhsi) idist=1
!
if((ithermal(1).le.1).or.(ithermal(1).eq.3)) then
!
! electromagnetic analysis: loop over all elements
!
ne0=0
do i=1,ne
!
if(ipkon(i).lt.0) cycle
indexe=ipkon(i)
if(lakon(i)(4:5).eq.'20') then
nope=20
elseif(lakon(i)(4:4).eq.'8') then
nope=8
elseif(lakon(i)(4:5).eq.'10') then
nope=10
elseif(lakon(i)(4:4).eq.'4') then
nope=4
elseif(lakon(i)(4:5).eq.'15') then
nope=15
elseif(lakon(i)(4:4).eq.'6') then
nope=6
else
cycle
endif
!
do j=1,nope
konl(j)=kon(indexe+j)
enddo
!
call e_c3d_em(co,konl,lakon(i),s,sm,ff,i,nmethod,
& ielmat,ntmat_,t1,ithermal,vold,
& idist,matname,mi,mass(1),rhsi,
& ncmat_,elcon,nelcon,h0,iactive,
& alcon,nalcon,istartset,iendset,ialset)
!
do jj=1,5*nope
!
j=(jj-1)/5+1
k=jj-5*(j-1)
!
node1=kon(indexe+j)
jdof1=nactdof(k,node1)
!
do ll=jj,5*nope
!
l=(ll-1)/5+1
m=ll-5*(l-1)
!
node2=kon(indexe+l)
jdof2=nactdof(m,node2)
!
! check whether one of the DOF belongs to a SPC or MPC
!
if((jdof1.ne.0).and.(jdof2.ne.0)) then
if(stiffonly(1)) then
call add_sm_st(au,ad,jq,irow,jdof1,jdof2,
& s(jj,ll),jj,ll)
else
call add_sm_ei(au,ad,aub,adb,jq,irow,jdof1,jdof2,
& s(jj,ll),sm(jj,ll),jj,ll)
endif
elseif((jdof1.ne.0).or.(jdof2.ne.0)) then
!
! idof1: genuine DOF
! idof2: nominal DOF of the SPC/MPC
!
if(jdof1.eq.0) then
idof1=jdof2
idof2=(node1-1)*8+k
else
idof1=jdof1
idof2=(node2-1)*8+m
endif
if(nmpc.gt.0) then
call nident(ikmpc,idof2,nmpc,id)
if((id.gt.0).and.(ikmpc(id).eq.idof2)) then
!
! regular DOF / MPC
!
id=ilmpc(id)
ist=ipompc(id)
index=nodempc(3,ist)
if(index.eq.0) cycle
do
idof2=nactdof(nodempc(2,index),nodempc(1,index))
value=-coefmpc(index)*s(jj,ll)/coefmpc(ist)
if(idof1.eq.idof2) value=2.d0*value
if(idof2.ne.0) then
if(stiffonly(1)) then
call add_sm_st(au,ad,jq,irow,idof1,
& idof2,value,i0,i0)
else
valu2=-coefmpc(index)*sm(jj,ll)/
& coefmpc(ist)
c
if(idof1.eq.idof2) valu2=2.d0*valu2
c
call add_sm_ei(au,ad,aub,adb,jq,irow,
& idof1,idof2,value,valu2,i0,i0)
endif
endif
index=nodempc(3,index)
if(index.eq.0) exit
enddo
cycle
endif
endif
!
! regular DOF / SPC
!
if(rhsi) then
elseif(nmethod.eq.2) then
value=s(jj,ll)
call nident(ikboun,idof2,nboun,id)
icolumn=neq(2)+ilboun(id)
call add_bo_st(au,jq,irow,idof1,icolumn,value)
endif
else
idof1=(node1-1)*8+k
idof2=(node2-1)*8+m
mpc1=0
mpc2=0
if(nmpc.gt.0) then
call nident(ikmpc,idof1,nmpc,id1)
if((id1.gt.0).and.(ikmpc(id1).eq.idof1)) mpc1=1
call nident(ikmpc,idof2,nmpc,id2)
if((id2.gt.0).and.(ikmpc(id2).eq.idof2)) mpc2=1
endif
if((mpc1.eq.1).and.(mpc2.eq.1)) then
id1=ilmpc(id1)
id2=ilmpc(id2)
if(id1.eq.id2) then
!
! MPC id1 / MPC id1
!
ist=ipompc(id1)
index1=nodempc(3,ist)
if(index1.eq.0) cycle
do
idof1=nactdof(nodempc(2,index1),
& nodempc(1,index1))
index2=index1
do
idof2=nactdof(nodempc(2,index2),
& nodempc(1,index2))
value=coefmpc(index1)*coefmpc(index2)*
& s(jj,ll)/coefmpc(ist)/coefmpc(ist)
if((idof1.ne.0).and.(idof2.ne.0)) then
if(stiffonly(1)) then
call add_sm_st(au,ad,jq,irow,
& idof1,idof2,value,i0,i0)
else
valu2=coefmpc(index1)*coefmpc(index2)*
& sm(jj,ll)/coefmpc(ist)/coefmpc(ist)
call add_sm_ei(au,ad,aub,adb,jq,
& irow,idof1,idof2,value,valu2,i0,i0)
endif
endif
!
index2=nodempc(3,index2)
if(index2.eq.0) exit
enddo
index1=nodempc(3,index1)
if(index1.eq.0) exit
enddo
else
!
! MPC id1 / MPC id2
!
ist1=ipompc(id1)
index1=nodempc(3,ist1)
if(index1.eq.0) cycle
do
idof1=nactdof(nodempc(2,index1),
& nodempc(1,index1))
ist2=ipompc(id2)
index2=nodempc(3,ist2)
if(index2.eq.0) then
index1=nodempc(3,index1)
if(index1.eq.0) then
exit
else
cycle
endif
endif
do
idof2=nactdof(nodempc(2,index2),
& nodempc(1,index2))
value=coefmpc(index1)*coefmpc(index2)*
& s(jj,ll)/coefmpc(ist1)/coefmpc(ist2)
if(idof1.eq.idof2) value=2.d0*value
if((idof1.ne.0).and.(idof2.ne.0)) then
if(stiffonly(1)) then
call add_sm_st(au,ad,jq,irow,
& idof1,idof2,value,i0,i0)
else
valu2=coefmpc(index1)*coefmpc(index2)*
& sm(jj,ll)/coefmpc(ist1)/coefmpc(ist2)
c
if(idof1.eq.idof2) valu2=2.d0*valu2
c
call add_sm_ei(au,ad,aub,adb,jq,
& irow,idof1,idof2,value,valu2,i0,i0)
endif
endif
!
index2=nodempc(3,index2)
if(index2.eq.0) exit
enddo
index1=nodempc(3,index1)
if(index1.eq.0) exit
enddo
endif
endif
endif
enddo
!
if(rhsi) then
!
! distributed forces
!
if(idist.ne.0) then
if(jdof1.eq.0) then
if(nmpc.ne.0) then
idof1=(node1-1)*8+k
call nident(ikmpc,idof1,nmpc,id)
if((id.gt.0).and.(ikmpc(id).eq.idof1)) then
id=ilmpc(id)
ist=ipompc(id)
index=nodempc(3,ist)
if(index.eq.0) cycle
do
jdof1=nactdof(nodempc(2,index),
& nodempc(1,index))
if(jdof1.ne.0) then
fext(jdof1)=fext(jdof1)
& -coefmpc(index)*ff(jj)
& /coefmpc(ist)
endif
index=nodempc(3,index)
if(index.eq.0) exit
enddo
endif
endif
cycle
endif
fext(jdof1)=fext(jdof1)+ff(jj)
endif
endif
!
enddo
enddo
!
endif
if(ithermal(1).gt.1) then
!
! thermal analysis: loop over all elements
!
do i=1,ne
!
if(ipkon(i).lt.0) cycle
!
! only elements belonging to the A-V-domain should be
! included in the thermal analysis
!
if(int(elcon(2,1,ielmat(1,i))).ne.2) cycle
indexe=ipkon(i)
if(lakon(i)(4:5).eq.'20') then
nope=20
elseif(lakon(i)(4:4).eq.'8') then
nope=8
elseif(lakon(i)(4:5).eq.'10') then
nope=10
elseif(lakon(i)(4:4).eq.'4') then
nope=4
elseif(lakon(i)(4:5).eq.'15') then
nope=15
elseif(lakon(i)(4:4).eq.'6') then
nope=6
elseif((lakon(i)(1:1).eq.'E').and.(lakon(i)(7:7).ne.'A')) then
!
! advection elements
!
read(lakon(i)(8:8),'(i1)') nope
nope=nope+1
elseif(lakon(i)(1:2).eq.'D ') then
!
! asymmetrical contribution -> mafillsmas.f
!
cycle
else
cycle
endif
!
call e_c3d_th(co,nk,kon,lakon(i),s,sm,
& ff,i,nmethod,rhcon,nrhcon,ielmat,ielorien,norien,orab,
& ntmat_,t0,t1,ithermal,vold,iperturb,nelemload,
& sideload,xload,nload,idist,iexpl,dtime,
& matname,mi(1),mass(2),stiffness,buckling,rhsi,intscheme,
& physcon,shcon,nshcon,cocon,ncocon,ttime,time,istep,iinc,
& xstiff,xloadold,reltime,ipompc,nodempc,coefmpc,nmpc,ikmpc,
& ilmpc,springarea,plkcon,nplkcon,npmat_,ncmat_,elcon,nelcon,
& lakon,pslavsurf,pmastsurf,mortar,clearini,plicon,nplicon,
& ipkon,ielprop,prop)
!
do jj=1,nope
!
j=jj
!
node1=kon(indexe+j)
jdof1=nactdof(0,node1)
!
do ll=jj,nope
!
l=ll
!
node2=kon(indexe+l)
jdof2=nactdof(0,node2)
!
! check whether one of the DOF belongs to a SPC or MPC
!
if((jdof1.ne.0).and.(jdof2.ne.0)) then
if(stiffonly(2)) then
call add_sm_st(au,ad,jq,irow,jdof1,jdof2,
& s(jj,ll),jj,ll)
else
call add_sm_ei(au,ad,aub,adb,jq,irow,jdof1,jdof2,
& s(jj,ll),sm(jj,ll),jj,ll)
endif
elseif((jdof1.ne.0).or.(jdof2.ne.0)) then
!
! idof1: genuine DOF
! idof2: nominal DOF of the SPC/MPC
!
if(jdof1.eq.0) then
idof1=jdof2
idof2=(node1-1)*8
else
idof1=jdof1
idof2=(node2-1)*8
endif
if(nmpc.gt.0) then
call nident(ikmpc,idof2,nmpc,id)
if((id.gt.0).and.(ikmpc(id).eq.idof2)) then
!
! regular DOF / MPC
!
id=ilmpc(id)
ist=ipompc(id)
index=nodempc(3,ist)
if(index.eq.0) cycle
do
idof2=nactdof(nodempc(2,index),nodempc(1,index))
value=-coefmpc(index)*s(jj,ll)/coefmpc(ist)
if(idof1.eq.idof2) value=2.d0*value
if(idof2.ne.0) then
if(stiffonly(2)) then
call add_sm_st(au,ad,jq,irow,idof1,
& idof2,value,i0,i0)
else
valu2=-coefmpc(index)*sm(jj,ll)/
& coefmpc(ist)
!
if(idof1.eq.idof2) valu2=2.d0*valu2
!
call add_sm_ei(au,ad,aub,adb,jq,irow,
& idof1,idof2,value,valu2,i0,i0)
endif
endif
index=nodempc(3,index)
if(index.eq.0) exit
enddo
cycle
endif
endif
!
! regular DOF / SPC
!
if(rhsi) then
elseif(nmethod.eq.2) then
value=s(jj,ll)
call nident(ikboun,idof2,nboun,id)
icolumn=neq(2)+ilboun(id)
call add_bo_st(au,jq,irow,idof1,icolumn,value)
endif
else
idof1=(node1-1)*8
idof2=(node2-1)*8
mpc1=0
mpc2=0
if(nmpc.gt.0) then
call nident(ikmpc,idof1,nmpc,id1)
if((id1.gt.0).and.(ikmpc(id1).eq.idof1)) mpc1=1
call nident(ikmpc,idof2,nmpc,id2)
if((id2.gt.0).and.(ikmpc(id2).eq.idof2)) mpc2=1
endif
if((mpc1.eq.1).and.(mpc2.eq.1)) then
id1=ilmpc(id1)
id2=ilmpc(id2)
if(id1.eq.id2) then
!
! MPC id1 / MPC id1
!
ist=ipompc(id1)
index1=nodempc(3,ist)
if(index1.eq.0) cycle
do
idof1=nactdof(nodempc(2,index1),
& nodempc(1,index1))
index2=index1
do
idof2=nactdof(nodempc(2,index2),
& nodempc(1,index2))
value=coefmpc(index1)*coefmpc(index2)*
& s(jj,ll)/coefmpc(ist)/coefmpc(ist)
if((idof1.ne.0).and.(idof2.ne.0)) then
if(stiffonly(2)) then
call add_sm_st(au,ad,jq,irow,
& idof1,idof2,value,i0,i0)
else
valu2=coefmpc(index1)*coefmpc(index2)*
& sm(jj,ll)/coefmpc(ist)/coefmpc(ist)
call add_sm_ei(au,ad,aub,adb,jq,
& irow,idof1,idof2,value,valu2,i0,i0)
endif
endif
!
index2=nodempc(3,index2)
if(index2.eq.0) exit
enddo
index1=nodempc(3,index1)
if(index1.eq.0) exit
enddo
else
!
! MPC id1 / MPC id2
!
ist1=ipompc(id1)
index1=nodempc(3,ist1)
if(index1.eq.0) cycle
do
idof1=nactdof(nodempc(2,index1),
& nodempc(1,index1))
ist2=ipompc(id2)
index2=nodempc(3,ist2)
if(index2.eq.0) then
index1=nodempc(3,index1)
if(index1.eq.0) then
exit
else
cycle
endif
endif
do
idof2=nactdof(nodempc(2,index2),
& nodempc(1,index2))
value=coefmpc(index1)*coefmpc(index2)*
& s(jj,ll)/coefmpc(ist1)/coefmpc(ist2)
if(idof1.eq.idof2) value=2.d0*value
if((idof1.ne.0).and.(idof2.ne.0)) then
if(stiffonly(2)) then
call add_sm_st(au,ad,jq,irow,
& idof1,idof2,value,i0,i0)
else
valu2=coefmpc(index1)*coefmpc(index2)*
& sm(jj,ll)/coefmpc(ist1)/coefmpc(ist2)
!
if(idof1.eq.idof2) valu2=2.d0*valu2
!
call add_sm_ei(au,ad,aub,adb,jq,
& irow,idof1,idof2,value,valu2,i0,i0)
endif
endif
!
index2=nodempc(3,index2)
if(index2.eq.0) exit
enddo
index1=nodempc(3,index1)
if(index1.eq.0) exit
enddo
endif
endif
endif
enddo
!
if(rhsi) then
!
! distributed forces
!
if(idist.ne.0) then
if(jdof1.eq.0) then
if(nmpc.ne.0) then
idof1=(node1-1)*8
call nident(ikmpc,idof1,nmpc,id)
if((id.gt.0).and.(ikmpc(id).eq.idof1)) then
id=ilmpc(id)
ist=ipompc(id)
index=nodempc(3,ist)
if(index.eq.0) cycle
do
jdof1=nactdof(nodempc(2,index),
& nodempc(1,index))
if(jdof1.ne.0) then
fext(jdof1)=fext(jdof1)
& -coefmpc(index)*ff(jj)
& /coefmpc(ist)
endif
index=nodempc(3,index)
if(index.eq.0) exit
enddo
endif
endif
cycle
endif
fext(jdof1)=fext(jdof1)+ff(jj)
endif
endif
!
enddo
enddo
!
endif
!
return
end
| gpl-2.0 |
epfl-cosmo/q-e | PHonon/PH/dvqpsi_us.f90 | 7 | 6447 | !
! Copyright (C) 2001-2016 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!----------------------------------------------------------------------
subroutine dvqpsi_us (ik, uact, addnlcc)
!----------------------------------------------------------------------
!
! This routine calculates dV_bare/dtau * psi for one perturbation
! with a given q. The displacements are described by a vector u.
! The result is stored in dvpsi. The routine is called for each k point
! and for each pattern u. It computes simultaneously all the bands.
! It implements Eq. B29 of PRB 64, 235118 (2001). The contribution
! of the local pseudopotential is calculated here, that of the nonlocal
! pseudopotential in dvqpsi_us_only.
!
!
USE kinds, only : DP
USE ions_base, ONLY : nat, ityp
USE cell_base, ONLY : tpiba
USE fft_base, ONLY : dfftp, dffts
USE fft_interfaces, ONLY: fwfft, invfft
USE gvect, ONLY : eigts1, eigts2, eigts3, mill, g, nl, &
ngm
USE gvecs, ONLY : ngms, doublegrid, nls
USE lsda_mod, ONLY : lsda, isk
USE noncollin_module, ONLY : npol
use uspp_param,ONLY : upf
USE wvfct, ONLY : nbnd, npwx
USE wavefunctions_module, ONLY: evc
USE nlcc_ph, ONLY : drc
USE uspp, ONLY : nlcc_any
USE eqv, ONLY : dvpsi, dmuxc, vlocq
USE qpoint, ONLY : xq, eigqts, ikqs, ikks
USE klist, ONLY : ngk, igk_k
implicit none
!
! The dummy variables
!
integer, intent(in) :: ik
! input: the k point
complex(DP) :: uact (3 * nat)
! input: the pattern of displacements
logical :: addnlcc
!
! And the local variables
!
integer :: npw, npwq, na, mu, ikq, ikk, iks, ig, nt, ibnd, ir, is, ip
! counter on atoms
! counter on modes
! the point k
! counter on G vectors
! the type of atom
! counter on bands
! counter on real mesh
complex(DP) :: gtau, gu, fact, u1, u2, u3, gu0
complex(DP) , allocatable, target :: aux (:)
complex(DP) , allocatable :: aux1 (:), aux2 (:)
complex(DP) , pointer :: auxs (:)
call start_clock ('dvqpsi_us')
if (nlcc_any.and.addnlcc) then
allocate (aux( dfftp%nnr))
if (doublegrid) then
allocate (auxs(dffts%nnr))
else
auxs => aux
endif
endif
allocate (aux1(dffts%nnr))
allocate (aux2(dffts%nnr))
!
! We start by computing the contribution of the local potential.
! The computation of the derivative of the local potential is done in
! reciprocal space while the product with the wavefunction is done in
! real space
!
dvpsi(:,:) = (0.d0, 0.d0)
aux1(:) = (0.d0, 0.d0)
do na = 1, nat
fact = tpiba * (0.d0, -1.d0) * eigqts (na)
mu = 3 * (na - 1)
if (abs (uact (mu + 1) ) + abs (uact (mu + 2) ) + abs (uact (mu + &
3) ) .gt.1.0d-12) then
nt = ityp (na)
u1 = uact (mu + 1)
u2 = uact (mu + 2)
u3 = uact (mu + 3)
gu0 = xq (1) * u1 + xq (2) * u2 + xq (3) * u3
do ig = 1, ngms
gtau = eigts1 (mill(1,ig), na) * eigts2 (mill(2,ig), na) * &
eigts3 (mill(3,ig), na)
gu = gu0 + g (1, ig) * u1 + g (2, ig) * u2 + g (3, ig) * u3
aux1 (nls (ig) ) = aux1 (nls (ig) ) + vlocq (ig, nt) * gu * &
fact * gtau
enddo
endif
enddo
!
! add NLCC when present
!
if (nlcc_any.and.addnlcc) then
aux(:) = (0.d0, 0.d0)
do na = 1,nat
fact = tpiba*(0.d0,-1.d0)*eigqts(na)
mu = 3*(na-1)
if (abs(uact(mu+1))+abs(uact(mu+2)) &
+abs(uact(mu+3)).gt.1.0d-12) then
nt=ityp(na)
u1 = uact(mu+1)
u2 = uact(mu+2)
u3 = uact(mu+3)
gu0 = xq(1)*u1 +xq(2)*u2+xq(3)*u3
if (upf(nt)%nlcc) then
do ig = 1,ngm
gtau = eigts1(mill(1,ig),na)* &
eigts2(mill(2,ig),na)* &
eigts3(mill(3,ig),na)
gu = gu0+g(1,ig)*u1+g(2,ig)*u2+g(3,ig)*u3
aux(nl(ig))=aux(nl(ig))+drc(ig,nt)*gu*fact*gtau
enddo
endif
endif
enddo
CALL invfft ('Dense', aux, dfftp)
if (.not.lsda) then
do ir=1,dfftp%nnr
aux(ir) = aux(ir) * dmuxc(ir,1,1)
end do
else
is=isk(ikk)
do ir=1,dfftp%nnr
aux(ir) = aux(ir) * 0.5d0 * &
(dmuxc(ir,is,1)+dmuxc(ir,is,2))
enddo
endif
CALL fwfft ('Dense', aux, dfftp)
if (doublegrid) then
auxs(:) = (0.d0, 0.d0)
do ig=1,ngms
auxs(nls(ig)) = aux(nl(ig))
enddo
endif
aux1(:) = aux1(:) + auxs(:)
endif
!
! Now we compute dV_loc/dtau in real space
!
ikk = ikks(ik)
ikq = ikqs(ik)
npw = ngk(ikk)
npwq= ngk(ikq)
CALL invfft ('Smooth', aux1, dffts)
do ibnd = 1, nbnd
do ip=1,npol
aux2(:) = (0.d0, 0.d0)
if (ip==1) then
do ig = 1, npw
aux2 (nls (igk_k (ig,ikk) ) ) = evc (ig, ibnd)
enddo
else
do ig = 1, npw
aux2 (nls (igk_k (ig,ikk) ) ) = evc (ig+npwx, ibnd)
enddo
end if
!
! This wavefunction is computed in real space
!
CALL invfft ('Wave', aux2, dffts)
do ir = 1, dffts%nnr
aux2 (ir) = aux2 (ir) * aux1 (ir)
enddo
!
! and finally dV_loc/dtau * psi is transformed in reciprocal space
!
CALL fwfft ('Wave', aux2, dffts)
if (ip==1) then
do ig = 1, npwq
dvpsi (ig, ibnd) = aux2 (nls (igk_k (ig,ikq) ) )
enddo
else
do ig = 1, npwq
dvpsi (ig+npwx, ibnd) = aux2 (nls (igk_k (ig,ikq) ) )
enddo
end if
enddo
enddo
!
deallocate (aux2)
deallocate (aux1)
if (nlcc_any.and.addnlcc) then
deallocate (aux)
if (doublegrid) deallocate (auxs)
endif
!
! We add the contribution of the nonlocal potential in the US form
! First a term similar to the KB case.
! Then a term due to the change of the D coefficients.
!
call dvqpsi_us_only (ik, uact)
call stop_clock ('dvqpsi_us')
return
end subroutine dvqpsi_us
| gpl-2.0 |
prool/ccx_prool | CalculiX/ccx_2.10/src/dfluxs.f | 4 | 9170 | !
! CalculiX - A 3-dimensional finite element program
! Copyright (C) 1998-2015 Guido Dhondt
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation(version 2);
!
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
subroutine dfluxs(inpc,textpart,set,istartset,iendset,
& ialset,nset,nelemload,sideload,xload,nload,nload_,
& ielmat,ntmat_,iamload,
& amname,nam,lakon,ne,dflux_flag,istep,istat,n,iline,ipol,inl,
& ipoinp,inp,nam_,namtot_,namta,amta,ipoinpc,mi,idefload)
!
! reading the input deck: *DFLUX
!
implicit none
!
logical dflux_flag
!
character*1 inpc(*)
character*8 lakon(*)
character*20 sideload(*),label
character*80 amname(*),amplitude
character*81 set(*),elset
character*132 textpart(16)
!
integer istartset(*),iendset(*),ialset(*),nelemload(2,*),mi(*),
& ielmat(mi(3),*),nset,nload,nload_,ntmat_,istep,istat,n,i,j,l,
& key,idefload(*),
& iamload(2,*),nam,iamplitude,ipos,ne,iline,ipol,inl,ipoinp(2,*),
& inp(3,*),nam_,namtot,namtot_,namta(3,*),idelay,isector,
& ipoinpc(0:*)
!
real*8 xload(2,*),xmagnitude,amta(2,*)
!
iamplitude=0
idelay=0
isector=0
!
if(istep.lt.1) then
write(*,*) '*ERROR in dfluxes: *DFLUX should only be used'
write(*,*) ' within a STEP'
call exit(201)
endif
!
do i=2,n
if((textpart(i)(1:6).eq.'OP=NEW').and.(.not.dflux_flag)) then
do j=1,nload
if((sideload(j)(1:1).eq.'S').or.
& (sideload(j)(1:2).eq.'BF')) then
xload(1,j)=0.d0
endif
enddo
elseif(textpart(i)(1:10).eq.'AMPLITUDE=') then
read(textpart(i)(11:90),'(a80)') amplitude
do j=nam,1,-1
if(amname(j).eq.amplitude) then
iamplitude=j
exit
endif
enddo
if(j.eq.0) then
write(*,*)'*ERROR in dfluxes: nonexistent amplitude'
write(*,*) ' '
call inputerror(inpc,ipoinpc,iline,
&"*DFLUX%")
call exit(201)
endif
iamplitude=j
elseif(textpart(i)(1:10).eq.'TIMEDELAY=') THEN
if(idelay.ne.0) then
write(*,*) '*ERROR in dfluxes: the parameter TIME DELAY'
write(*,*) ' is used twice in the same keyword'
write(*,*) ' '
call inputerror(inpc,ipoinpc,iline,
&"*DFLUX%")
call exit(201)
else
idelay=1
endif
nam=nam+1
if(nam.gt.nam_) then
write(*,*) '*ERROR in dfluxes: increase nam_'
call exit(201)
endif
amname(nam)='
& '
if(iamplitude.eq.0) then
write(*,*) '*ERROR in dfluxes: time delay must be'
write(*,*) ' preceded by the amplitude parameter'
call exit(201)
endif
namta(3,nam)=sign(iamplitude,namta(3,iamplitude))
iamplitude=nam
if(nam.eq.1) then
namtot=0
else
namtot=namta(2,nam-1)
endif
namtot=namtot+1
if(namtot.gt.namtot_) then
write(*,*) '*ERROR dfluxes: increase namtot_'
call exit(201)
endif
namta(1,nam)=namtot
namta(2,nam)=namtot
read(textpart(i)(11:30),'(f20.0)',iostat=istat)
& amta(1,namtot)
if(istat.gt.0) call inputerror(inpc,ipoinpc,iline,
&"*DFLUX%")
else
write(*,*)
& '*WARNING in dfluxes: parameter not recognized:'
write(*,*) ' ',
& textpart(i)(1:index(textpart(i),' ')-1)
call inputwarning(inpc,ipoinpc,iline,
&"*DFLUX%")
endif
enddo
!
do
call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl,
& ipoinp,inp,ipoinpc)
if((istat.lt.0).or.(key.eq.1)) return
!
read(textpart(2)(1:20),'(a20)',iostat=istat) label
!
! compatibility with ABAQUS for shells
!
if(label(2:4).eq.'NEG') label(2:4)='1 '
if(label(2:4).eq.'POS') label(2:4)='2 '
if(label(2:2).eq.'N') label(2:2)='5'
if(label(2:2).eq.'P') label(2:2)='6'
!
read(textpart(3)(1:20),'(f20.0)',iostat=istat) xmagnitude
!
if(istat.gt.0) call inputerror(inpc,ipoinpc,iline,
&"*DFLUX%")
if(((label(1:2).ne.'S1').and.(label(1:2).ne.'S2').and.
& (label(1:2).ne.'S3').and.(label(1:2).ne.'S4').and.
& (label(1:2).ne.'S5').and.(label(1:2).ne.'S6').and.
& (label(1:2).ne.'BF').and.(label(1:2).ne.'S ')).or.
& ((label(3:4).ne.' ').and.(label(3:4).ne.'NU'))) then
call inputerror(inpc,ipoinpc,iline,
&"*DFLUX%")
endif
!
read(textpart(1)(1:10),'(i10)',iostat=istat) l
if(istat.eq.0) then
if(l.gt.ne) then
write(*,*) '*ERROR in dfluxes: element ',l
write(*,*) ' is not defined'
call exit(201)
endif
!
if((lakon(l)(1:2).eq.'CP').or.
& (lakon(l)(2:2).eq.'A').or.
& (lakon(l)(7:7).eq.'E').or.
& (lakon(l)(7:7).eq.'S').or.
& (lakon(l)(7:7).eq.'A')) then
if(label(1:2).eq.'S1') then
label(1:2)='S3'
elseif(label(1:2).eq.'S2') then
label(1:2)='S4'
elseif(label(1:2).eq.'S3') then
label(1:2)='S5'
elseif(label(1:2).eq.'S4') then
label(1:2)='S6'
elseif(label(1:2).eq.'S5') then
label(1:2)='S1'
elseif(label(1:2).eq.'S6') then
label(1:2)='S2'
endif
elseif((lakon(l)(1:1).eq.'B').or.
& (lakon(l)(7:7).eq.'B')) then
elseif((lakon(l)(1:1).eq.'S').or.
& (lakon(l)(7:7).eq.'L')) then
endif
call loadadd(l,label,xmagnitude,nelemload,sideload,
& xload,nload,nload_,iamload,iamplitude,
& nam,isector,idefload)
else
read(textpart(1)(1:80),'(a80)',iostat=istat) elset
elset(81:81)=' '
ipos=index(elset,' ')
elset(ipos:ipos)='E'
do i=1,nset
if(set(i).eq.elset) exit
enddo
if(i.gt.nset) then
elset(ipos:ipos)=' '
write(*,*) '*ERROR in dfluxes: element set ',elset
write(*,*) ' has not yet been defined. '
call inputerror(inpc,ipoinpc,iline,
&"*DFLUX%")
call exit(201)
endif
!
l=ialset(istartset(i))
if((lakon(l)(1:2).eq.'CP').or.
& (lakon(l)(2:2).eq.'A').or.
& (lakon(l)(7:7).eq.'E').or.
& (lakon(l)(7:7).eq.'S').or.
& (lakon(l)(7:7).eq.'A')) then
if(label(1:2).eq.'S1') then
label(1:2)='S3'
elseif(label(1:2).eq.'S2') then
label(1:2)='S4'
elseif(label(1:2).eq.'S3') then
label(1:2)='S5'
elseif(label(1:2).eq.'S4') then
label(1:2)='S6'
endif
elseif((lakon(l)(1:1).eq.'B').or.
& (lakon(l)(7:7).eq.'B')) then
if(label(1:2).eq.'S2') label(1:2)='S5'
elseif((lakon(l)(1:1).eq.'S').or.
& (lakon(l)(7:7).eq.'L')) then
label(1:2)='S1'
endif
!
do j=istartset(i),iendset(i)
if(ialset(j).gt.0) then
l=ialset(j)
call loadadd(l,label,xmagnitude,nelemload,sideload,
& xload,nload,nload_,iamload,iamplitude,
& nam,isector,idefload)
else
l=ialset(j-2)
do
l=l-ialset(j)
if(l.ge.ialset(j-1)) exit
call loadadd(l,label,xmagnitude,nelemload,
& sideload,xload,nload,nload_,
& iamload,iamplitude,nam,isector,idefload)
enddo
endif
enddo
endif
enddo
!
return
end
| gpl-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.