repo_name
stringlengths 7
81
| path
stringlengths 4
224
| copies
stringclasses 221
values | size
stringlengths 4
7
| content
stringlengths 975
1.04M
| license
stringclasses 15
values |
---|---|---|---|---|---|
SamKChang/abinit-7.10.5_multipole | src/42_libpaw/m_pawdij.F90 | 1 | 170132 | !{\src2tex{textfont=tt}}
!!****m* ABINIT/m_pawdij
!! NAME
!! m_pawdij
!!
!! FUNCTION
!! This module contains several routines used to compute the PAW pseudopotential
!! strengths Dij. The Dijs define the non-local PAW operator:
!! VNL = Sum_ij [ Dij |pi><pj| ], with pi, pj= projectors
!!
!! COPYRIGHT
!! Copyright (C) 2013-2014 ABINIT group (MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!!
!! OUTPUT
!!
!! PARENTS
!!
!! CHILDREN
!!
!! SOURCE
#if defined HAVE_CONFIG_H
#include "config.h"
#endif
#include "abi_common.h"
MODULE m_pawdij
use defs_basis
use m_profiling_abi
use m_errors
use m_paral_atom, only : get_my_atmtab, free_my_atmtab
use m_xmpi, only : xcomm_size, xmpi_sum, xmpi_allgatherv, xmpi_self
use m_pawio, only : pawio_print_ij
use m_pawang, only : pawang_type
use m_pawrad, only : pawrad_type, pawrad_deducer0, simp_gen, nderiv_gen
use m_pawtab, only : pawtab_type
use m_paw_an, only : paw_an_type
use m_paw_ij, only : paw_ij_type, paw_ij_print
use m_pawfgrtab, only : pawfgrtab_type
use m_pawrhoij, only : pawrhoij_type
use m_paw_finegrid, only : pawgylm, pawexpiqr
implicit none
private
!public procedures.
public :: pawdij ! Dij total
public :: pawdijhartree ! Dij Hartree
public :: pawdijxc ! Dij eXchange-Correlation (using (l,m) moments)
public :: pawdijxcm ! Dij eXchange-Correlation (using (r,theta,phi) grid)
public :: pawdijhat ! Dij^hat (compensation charge contribution)
public :: pawdiju ! Dij LDA+U
public :: pawdijso ! Dij spin-orbit
public :: pawdijexxc ! Dij local exact-exchange
public :: pawdijfr ! 1st-order frozen Dij
public :: pawpupot ! On-site LDA+U potential
public :: pawxpot ! On-site local exact-exchange potential
public :: symdij ! Symmetrize total Dij or one part of it
public :: symdij_all ! Symmetrize all contributions to Dij
!!***
CONTAINS
!===========================================================
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawdij
!! NAME
!! pawdij
!!
!! FUNCTION
!! Compute the pseudopotential strengths Dij of the PAW non local operator as sum of
!! several contributions. Can compute first-order strenghts Dij for RF calculations.
!! This routine is a driver calling, for each contribution to Dij, a specific
!! routines.
!! Within standard PAW formalism, Dij can be decomposd as follows:
!! Dij = Dij_atomic + Dij_Hartree + Dij_XC + Dij^hat
!! In case of additional approximations, several other terms can appear:
!! Dij_LDA+U, Dij_spin-orbit, Dij_exact-exchange, ...
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (MT, FJ)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! cplex=(RF calculations only) - 1 if RF 1st-order quantities are REAL, 2 if COMPLEX
!! gprimd(3,3)=dimensional primitive translations for reciprocal space
!! enunit=choice for units of output Dij
!! ipert=index of perturbation (used only for RF calculation ; set ipert<=0 for GS calculations.
!! my_natom=number of atoms treated by current processor
!! natom=total number of atoms in cell
!! nfft=number of real space grid points (for current proc)
!! nfftot=total number of real space grid points
!! nspden=number of spin-density components
!! ntypat=number of types of atoms in unit cell.
!! paw_an(my_natom) <type(paw_an_type)>=paw arrays given on angular mesh
!! paw_ij(my_natom) <type(paw_ij_type)>=paw arrays given on (i,j) channels
!! pawang <type(pawang_type)>=paw angular mesh and related data
!! pawfgrtab(my_natom) <type(pawfgrtab_type)>=atomic data given on fine rectangular grid
!! pawprtvol=control print volume and debugging output for PAW
!! pawrad(ntypat) <type(pawrad_type)>=paw radial mesh and related data
!! pawrhoij(my_natom) <type(pawrhoij_type)>= paw rhoij occupancies and related data
!! pawspnorb=flag: 1 if spin-orbit coupling is activated
!! pawtab(ntypat) <type(pawtab_type)>=paw tabulated starting data
!! pawxcdev=Choice of XC development (0=no dev. (use of angular mesh) ; 1 or 2=dev. on moments)
!! qphon(3)=wavevector of the phonon
!! spnorbscl=scaling factor for spin-orbit coupling
!! ucvol=unit cell volume
!! vtrial(cplex*nfft,nspden)=GS potential on real space grid
!! vxc(cplex*nfft,nspden)=XC potential (Hartree) on real space grid
!! xred(3,my_natom)= reduced atomic coordinates
!! ======== Optional arguments ==============
!! Parallelism over atomic sites:
!! mpi_atmtab(:)=indexes of the atoms treated by current proc
!! mpi_comm_atom=MPI communicator over atoms
!! mpi_comm_grid=MPI communicator over real space grid points
!! Application of a potential energy shift on atomic sites:
!! natvshift=number of atomic potential energy shifts (per atom) ; default=0
!! atvshift(natvshift,nsppol,natom)=potential energy shift for lm channel & spin & atom
!! fatvshift=factor that multiplies atvshift
!! Electrons-positron 2-component DFT:
!! electronpositron_calctype=type of calculation for electron-positron 2component-DFT:
!! 0: standard DFT (no positron) ; default value
!! 1: positron in the constant electrons potential
!! 2: electrons in the constant positron potential
!! electronpositron_pawrhoij(my_natom) <type(pawrhoij_type)>=
!! PAW occupation matrix of the "constant" particle(s)
!! (electrons if calctype=1, positron if calctype=2)
!! electronpositron_lmselect(lmmax,my_natom)=
!! Flags selecting the non-zero LM-moments of on-site densities
!! for the "constant" particle(s)
!! (electrons if calctype=1, positron if calctype=2)
!!
!! OUTPUT
!! paw_ij(iatom)%dij(cplex_dij*lmn2_size,ndij)= total Dij terms (GS calculation, ipert=0)
!! total 1st-order Dij terms (RF ccalc., ipert>0)
!! May be complex if cplex_dij=2
!! dij(:,:,1) contains Dij^up-up
!! dij(:,:,2) contains Dij^dn-dn
!! dij(:,:,3) contains Dij^up-dn (only if nspinor=2)
!! dij(:,:,4) contains Dij^dn-up (only if nspinor=2)
!! May also compute paw_ij(iatom)%dij0,paw_ij(iatom)%dijhartree,paw_ij(iatom)%dijxc,
!! paw_ij(iatom)%dijxc_hat,paw_ij(iatom)%dijxc_val,
!! paw_ij(iatom)%dijhat,paw_ij(iatom)dijso,
!! paw_ij(iatom)%dijU,paw_ij(iatom)%dijexxc
!!
!! NOTES
!! Response function calculations:
!! In order to compute first-order Dij, paw_an (resp. paw_ij) datastructures
!! must contain first-order quantities, namely paw_an1 (resp. paw_ij1).
!!
!! PARENTS
!! bethe_salpeter,respfn,scfcv,scfcv3,screening,sigma
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawdij(cplex,enunit,gprimd,ipert,my_natom,natom,nfft,nfftot,nspden,ntypat,&
& paw_an,paw_ij,pawang,pawfgrtab,pawprtvol,pawrad,pawrhoij,pawspnorb,pawtab,&
& pawxcdev,qphon,spnorbscl,ucvol,charge,vtrial,vxc,xred,&
& electronpositron_calctype,electronpositron_pawrhoij,electronpositron_lmselect,&
& atvshift,fatvshift,natvshift,&
& mpi_atmtab,mpi_comm_atom,mpi_comm_grid)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawdij'
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: cplex,enunit,ipert,my_natom,natom,nfft,nfftot
integer,intent(in) :: nspden,ntypat,pawprtvol,pawspnorb,pawxcdev
integer,optional,intent(in) :: electronpositron_calctype
integer,optional,intent(in) :: mpi_comm_atom,mpi_comm_grid,natvshift
real(dp),intent(in) :: spnorbscl,ucvol,charge
real(dp),intent(in),optional ::fatvshift
type(pawang_type),intent(in) :: pawang
!arrays
integer,optional,target,intent(in) :: mpi_atmtab(:)
logical,optional,intent(in) :: electronpositron_lmselect(:,:)
real(dp),intent(in) :: gprimd(3,3),qphon(3)
real(dp),intent(in) :: vxc(:,:),xred(3,natom)
real(dp),intent(in),target :: vtrial(cplex*nfft,nspden)
real(dp),intent(in),optional :: atvshift(:,:,:)
type(paw_an_type),intent(in) :: paw_an(my_natom)
type(paw_ij_type),target,intent(inout) :: paw_ij(my_natom)
type(pawfgrtab_type),intent(inout) :: pawfgrtab(my_natom)
type(pawrad_type),intent(in) :: pawrad(ntypat)
type(pawrhoij_type),intent(inout) :: pawrhoij(my_natom)
type(pawrhoij_type),intent(in),optional :: electronpositron_pawrhoij(:)
type(pawtab_type),intent(in) :: pawtab(ntypat)
!Local variables ---------------------------------------
!scalars
integer :: cplex_dij,iatom,iatom_tot,idij,ipositron,itypat,klmn,klmn1,lm_size,lmn2_size
integer :: lpawu,my_comm_atom,my_comm_grid,natvshift_,ndij,nsploop,nsppol,usexcnhat
logical :: dij_available,dij_need,dij_prereq
logical :: dij0_available,dij0_need,dij0_prereq
logical :: dijexxc_available,dijexxc_need,dijexxc_prereq
logical :: dijhartree_available,dijhartree_need,dijhartree_prereq
logical :: dijhat_available,dijhat_need,dijhat_prereq
logical :: dijhatfr_available,dijhatfr_need,dijhatfr_prereq
logical :: dijso_available,dijso_need,dijso_prereq
logical :: dijxc_available,dijxc_need,dijxc_prereq
logical :: dijxchat_available,dijxchat_need,dijxchat_prereq
logical :: dijxcval_available,dijxcval_need,dijxcval_prereq
logical :: dijU_available,dijU_need,dijU_prereq
logical :: my_atmtab_allocated
logical :: need_to_print,paral_atom,v_dijhat_allocated
character(len=500) :: msg
!arrays
integer,pointer :: my_atmtab(:)
logical,allocatable :: lmselect(:)
real(dp),allocatable :: dij0(:),dijhartree(:),dijhat(:,:),dijexxc(:,:),dijpawu(:,:)
real(dp),allocatable :: dijso(:,:),dijxc(:,:),dij_ep(:),dijxchat(:,:),dijxcval(:,:)
real(dp),pointer :: v_dijhat(:,:),vpawu(:,:,:,:),vpawx(:,:,:)
! *************************************************************************
DBG_ENTER("COLL")
!------------------------------------------------------------------------
!----- Check consistency of arguments
!------------------------------------------------------------------------
! === Check optional arguments ===
natvshift_=0;if (present(natvshift)) natvshift_=natvshift
if (natvshift_>0) then
if ((.not.present(atvshift)).or.(.not.present(fatvshift))) then
msg='when natvshift>0, atvshift and fatvshift arguments must be present!'
MSG_BUG(msg)
end if
end if
ipositron=0;if (present(electronpositron_calctype)) ipositron=electronpositron_calctype
if (ipositron/=0) then
if ((.not.present(electronpositron_pawrhoij)).or.&
& (.not.present(electronpositron_lmselect))) then
msg='ep_pawrhoij and ep_lmselect must be present for electron-positron calculations!'
MSG_BUG(msg)
end if
end if
! === Check complex character of arguments ===
if (nspden==4.and.cplex==2) then
msg='nspden=4 probably not compatible with cplex=2!'
MSG_BUG(msg)
end if
if (my_natom>0) then
if (paw_ij(1)%ndij==4.and.paw_ij(1)%cplex_dij/=2) then
msg='invalid cplex size for Dij (4 Dij components)!'
MSG_BUG(msg)
end if
if (paw_ij(1)%cplex/=paw_an(1)%cplex) then
msg='paw_ij()%cplex and paw_an()%cplex must be equal!'
MSG_BUG(msg)
end if
if (ipert<=0.and.paw_ij(1)%cplex/=1) then
msg='cplex must be 1 for GS calculations!'
MSG_BUG(msg)
end if
if (paw_ij(1)%cplex_dij<cplex) then
msg='cplex_dij must be >= cplex!'
MSG_BUG(msg)
end if
if (paw_ij(1)%cplex/=cplex) then
msg='paw_ij()%cplex must be equal to cplex!'
MSG_BUG(msg)
end if
end if
!------------------------------------------------------------------------
!----- Initializations
!------------------------------------------------------------------------
!Nothing to do for some perturbations (RF case)
if (ipert==natom+1.or.ipert==natom+5) then
do iatom=1,my_natom
if (paw_ij(iatom)%has_dij==1) paw_ij(iatom)%dij=zero
if (paw_ij(iatom)%has_dij0==1) paw_ij(iatom)%dij0=zero
if (paw_ij(iatom)%has_dijhartree==1) paw_ij(iatom)%dijhartree=zero
if (paw_ij(iatom)%has_dijxc==1) paw_ij(iatom)%dijxc=zero
if (paw_ij(iatom)%has_dijhat==1) paw_ij(iatom)%dijhat=zero
if (paw_ij(iatom)%has_dijso==1) paw_ij(iatom)%dijso=zero
if (paw_ij(iatom)%has_dijU==1) paw_ij(iatom)%dijU=zero
if (paw_ij(iatom)%has_dijexxc==1) paw_ij(iatom)%dijexxc=zero
if (paw_ij(iatom)%has_dijxc_hat==1) paw_ij(iatom)%dijxc_hat=zero
if (paw_ij(iatom)%has_dijxc_val==1) paw_ij(iatom)%dijxc_val=zero
end do
return
end if
!Set up parallelism over atoms
paral_atom=(present(mpi_comm_atom).and.(my_natom/=natom))
nullify(my_atmtab);if (present(mpi_atmtab)) my_atmtab => mpi_atmtab
my_comm_atom=xmpi_self;if (present(mpi_comm_atom)) my_comm_atom=mpi_comm_atom
call get_my_atmtab(my_comm_atom,my_atmtab,my_atmtab_allocated,paral_atom,natom,my_natom_ref=my_natom)
!----- Various initializations
nsppol=1;nsploop=1
if (my_natom>0) then
nsppol=paw_ij(1)%nsppol
nsploop=nsppol;if (paw_ij(1)%ndij==4) nsploop=4
end if
usexcnhat=maxval(pawtab(1:ntypat)%usexcnhat)
my_comm_grid=xmpi_self;if (present(mpi_comm_grid)) my_comm_grid=mpi_comm_grid
!------ Select potential for Dij^hat computation
v_dijhat_allocated=.false.
if (my_natom>0) then
if ((paw_ij(1)%has_dij==1).or.(paw_ij(1)%has_dijhat==1).or. &
& (paw_ij(1)%has_dijhat==0.and.pawprtvol/=0)) then
if (usexcnhat==0) then
if (size(vxc,1)/=cplex*nfft.or.size(vxc,2)/=nspden) then
msg='invalid size for vxc!'
MSG_BUG(msg)
end if
ABI_ALLOCATE(v_dijhat,(cplex*nfft,nspden))
v_dijhat_allocated=.true.
!v_dijhat=vtrial-vxc
do idij=1,nspden
do klmn=1,cplex*nfft
v_dijhat(klmn,idij)=vtrial(klmn,idij)-vxc(klmn,idij)
end do
end do
else
v_dijhat => vtrial
end if
end if
end if
!------------------------------------------------------------------------
!----- Loop over atoms
!------------------------------------------------------------------------
do iatom=1,my_natom
iatom_tot=iatom;if (paral_atom) iatom_tot=my_atmtab(iatom)
! === Atom-dependent data ===
itypat=paw_ij(iatom)%itypat
cplex_dij=paw_ij(iatom)%cplex_dij
lm_size=paw_an(iatom)%lm_size
lmn2_size=paw_ij(iatom)%lmn2_size
ndij=paw_ij(iatom)%ndij
need_to_print=((abs(pawprtvol)>=1).and. &
& (iatom_tot==1.or.iatom_tot==natom.or.pawprtvol<0))
! === Determine which conditions and prerequesites are fulfilled for Dij ===
if (my_natom>0) then
! Total Dij: no condition ; no prerequesites
dij_available=.true.;dij_prereq=.true.
! Dij0: not available for RF ; need kij for the positron
dij0_available=(ipert<=0);dij0_prereq=(ipositron/=1.or.pawtab(itypat)%has_kij==2)
! DijHartree: no condition ; no prerequesites
dijhartree_available=.true.;dijhartree_prereq=.true.
! DijXC: no condition ; Vxc needed
dijxc_available=.true.
dijxc_prereq=(paw_ij(iatom)%has_dijxc==2.or.paw_an(iatom)%has_vxc>0)
! Dij^hat: no condition ; no prerequesites
dijhat_available=.true.;dijhat_prereq=.true.
! Dij^hat_FR: only for RF and when it was previously computed
dijhatfr_available=(ipert>0.and.paw_ij(iatom)%has_dijfr==2) ; dijhatfr_prereq=.true.
! DijSO: not available for RF, positron; only for spin-orbit ; VHartree and Vxc needed
dijso_available=(pawspnorb>0.and.ipert<=0.and.ipositron/=1)
dijso_prereq=(paw_ij(iatom)%has_dijso==2.or.&
& (paw_an(iatom)%has_vhartree>0.and.paw_an(iatom)%has_vxc>0))
! DijU: not available for RF, positron; only for LDA+U
dijU_available=(pawtab(itypat)%usepawu>0.and.ipert<=0.and.ipositron/=1)
dijU_prereq=(paw_ij(iatom)%has_dijU==2.or.paw_ij(iatom)%has_pawu_occ>0)
! DijExxc: not available for RF, positron; only for local exact exch. ; Vxc_ex needed
dijexxc_available=(pawtab(itypat)%useexexch>0.and.ipert<=0.and.ipositron/=1)
dijexxc_prereq=(paw_ij(iatom)%has_dijexxc==2.or.paw_ij(iatom)%has_exexch_pot>0)
! DijXC^hat: no condition ; Vxc needed
dijxchat_available=.true.
dijxchat_prereq=(paw_ij(iatom)%has_dijxc_hat==2.or.paw_an(iatom)%has_vxc>0)
! DijXC_val: no condition ; Vxc_val needed
dijxcval_available=.true.
dijxcval_prereq=(paw_ij(iatom)%has_dijxc_val==2.or.paw_an(iatom)%has_vxcval>0)
end if
! === Determine which parts of Dij have to be computed ===
dij_need=.false.;dij0_need=.false.;dijhartree_need=.false.;dijxc_need=.false.
dijhat_need=.false.;dijhatfr_need=.false.;dijso_need=.false.;dijU_need=.false.
dijexxc_need=.false.;dijxchat_need=.false.;dijxcval_need=.false.
if (dij_available) then
if (paw_ij(iatom)%has_dij==1) then
dij_need=.true.;paw_ij(iatom)%dij(:,:)=zero
else if (paw_ij(iatom)%has_dij==0.and.need_to_print) then
ABI_ALLOCATE(paw_ij(iatom)%dij,(cplex_dij*lmn2_size,ndij))
dij_need=.true.;paw_ij(iatom)%dij(:,:)=zero
paw_ij(iatom)%has_dij=-1
end if
else if (paw_ij(iatom)%has_dij==1) then
paw_ij(iatom)%dij=zero
end if
if (dij0_available) then
if (paw_ij(iatom)%has_dij0==1) then
dij0_need=.true.;paw_ij(iatom)%dij0(:)=zero
else if (paw_ij(iatom)%has_dij0==0.and.need_to_print) then
ABI_ALLOCATE(paw_ij(iatom)%dij0,(lmn2_size))
dij0_need=.true.;paw_ij(iatom)%dij0(:)=zero
paw_ij(iatom)%has_dij0=-1
end if
else if (paw_ij(iatom)%has_dij0==1) then
paw_ij(iatom)%dij0=zero
end if
if (dijhartree_available) then
if (paw_ij(iatom)%has_dijhartree==1) then
dijhartree_need=.true.;paw_ij(iatom)%dijhartree(:)=zero
else if (paw_ij(iatom)%has_dijhartree==0) then
ABI_ALLOCATE(paw_ij(iatom)%dijhartree,(cplex*lmn2_size))
dijhartree_need=.true.;paw_ij(iatom)%dijhartree(:)=zero
paw_ij(iatom)%has_dijhartree=-1
end if
else if (paw_ij(iatom)%has_dijhartree==1) then
paw_ij(iatom)%dijhartree=zero
end if
if (dijxc_available) then
if (paw_ij(iatom)%has_dijxc==1) then
dijxc_need=.true.;paw_ij(iatom)%dijxc(:,:)=zero
else if (paw_ij(iatom)%has_dijxc==0.and.need_to_print) then
ABI_ALLOCATE(paw_ij(iatom)%dijxc,(cplex_dij*lmn2_size,ndij))
dijxc_need=.true.;paw_ij(iatom)%dijxc(:,:)=zero
paw_ij(iatom)%has_dijxc=-1
end if
else if (paw_ij(iatom)%has_dijxc==1) then
paw_ij(iatom)%dijxc=zero
end if
if (dijhat_available) then
if (paw_ij(iatom)%has_dijhat==1) then
dijhat_need=.true.;paw_ij(iatom)%dijhat(:,:)=zero
else if (paw_ij(iatom)%has_dijhat==0.and.need_to_print) then
ABI_ALLOCATE(paw_ij(iatom)%dijhat,(cplex_dij*lmn2_size,ndij))
dijhat_need=.true.;paw_ij(iatom)%dijhat(:,:)=zero
paw_ij(iatom)%has_dijhat=-1
end if
else if (paw_ij(iatom)%has_dijhat==1) then
paw_ij(iatom)%dijhat=zero
end if
if (dijso_available) then
if (paw_ij(iatom)%has_dijso==1) then
dijso_need=.true.;paw_ij(iatom)%dijso(:,:)=zero
else if (paw_ij(iatom)%has_dijso==0.and.need_to_print) then
ABI_ALLOCATE(paw_ij(iatom)%dijso,(cplex_dij*lmn2_size,ndij))
dijso_need=.true.;paw_ij(iatom)%dijso(:,:)=zero
paw_ij(iatom)%has_dijso=-1
end if
else if (paw_ij(iatom)%has_dijso==1) then
paw_ij(iatom)%dijso=zero
end if
if (dijU_available) then
if (paw_ij(iatom)%has_dijU==1) then
dijU_need=.true.;paw_ij(iatom)%dijU(:,:)=zero
else if (paw_ij(iatom)%has_dijU==0.and.need_to_print) then
ABI_ALLOCATE(paw_ij(iatom)%dijU,(cplex_dij*lmn2_size,ndij))
dijU_need=.true.;paw_ij(iatom)%dijU(:,:)=zero
paw_ij(iatom)%has_dijU=-1
end if
else if (paw_ij(iatom)%has_dijU==1) then
paw_ij(iatom)%dijU=zero
end if
if (dijexxc_available.and.paw_ij(iatom)%has_dijexxc/=2) then
if (paw_ij(iatom)%has_dijexxc==1) then
dijexxc_need=.true.;paw_ij(iatom)%dijexxc(:,:)=zero
else if (paw_ij(iatom)%has_dijexxc==0.and.need_to_print) then
ABI_ALLOCATE(paw_ij(iatom)%dijexxc,(cplex_dij*lmn2_size,ndij))
dijexxc_need=.true.;paw_ij(iatom)%dijexxc(:,:)=zero
paw_ij(iatom)%has_dijexxc=-1
end if
else if (paw_ij(iatom)%has_dijexxc==1) then
paw_ij(iatom)%dijexxc=zero
end if
if (dijxchat_available) then
if (paw_ij(iatom)%has_dijxc_hat==1) then
dijxchat_need=.true.;paw_ij(iatom)%dijxc_hat(:,:)=zero
! else if (paw_ij(iatom)%has_dijxc_hat==0.and.need_to_print) then
! ABI_ALLOCATE(paw_ij(iatom)%dijxc_hat,(cplex_dij*lmn2_size,ndij))
! dijxchat_need=.true.;paw_ij(iatom)%dijxc_hat(:,:)=zero
! paw_ij(iatom)%has_dijxc_hat=-1
end if
else if (paw_ij(iatom)%has_dijxc_hat==1) then
paw_ij(iatom)%dijxc_hat=zero
end if
if (dijxcval_available) then
if (paw_ij(iatom)%has_dijxc_val==1) then
dijxcval_need=.true.;paw_ij(iatom)%dijxc_val(:,:)=zero
! else if (paw_ij(iatom)%has_dijxc_val==0.and.need_to_print) then
! ABI_ALLOCATE(paw_ij(iatom)%dijxc_val,(cplex_dij*lmn2_size,ndij))
! dijxcval_need=.true.;paw_ij(iatom)%dijxc_val(:,:)=zero
! paw_ij(iatom)%has_dijxc_val=-1
end if
else if (paw_ij(iatom)%has_dijxc_val==1) then
paw_ij(iatom)%dijxc_val=zero
end if
! === Print error messages if prerequesites are not fulfilled ===
if (dij_need.and.(.not.dij_prereq)) then
MSG_BUG('Dij prerequesites missing!')
end if
if (dij0_need.and.(.not.dij0_prereq)) then
MSG_BUG('Dij0 prerequesites missing!')
end if
if (dijhartree_need.and.(.not.dijhartree_prereq)) then
MSG_BUG('DijHartree prerequesites missing!')
end if
if (dijxc_need.and.(.not.dijxc_prereq)) then
MSG_BUG('Dij^XC prerequesites missing!')
end if
if (dijhat_need.and.(.not.dijhat_prereq)) then
MSG_BUG('Dij^hat prerequesites missing!')
end if
if (dijhatfr_need.and.(.not.dijhatfr_prereq)) then
MSG_BUG('DijFR^hat prerequesites missing!')
end if
if (dijso_need.and.(.not.dijso_prereq)) then
MSG_BUG('DijSO prerequesites missing!')
end if
if (dijU_need.and.(.not.dijU_prereq)) then
MSG_BUG('DijU prerequesites missing!')
end if
if (dijexxc_need.and.(.not.dijexxc_prereq)) then
MSG_BUG('DijExcc prerequesites missing!')
end if
if (dijxchat_need.and.(.not.dijxchat_prereq)) then
MSG_BUG('DijXC^hat prerequesites missing!')
end if
if (dijxcval_need.and.(.not.dijxcval_prereq)) then
MSG_BUG('DijXC_val prerequesites missing!')
end if
! ------------------------------------------------------------------------
! ----------- Add atomic Dij0 to Dij
! ------------------------------------------------------------------------
if ((dij0_need.or.dij_need).and.dij0_available) then
ABI_ALLOCATE(dij0,(lmn2_size))
! ===== Dij0 already computed
if (paw_ij(iatom)%has_dij0==2) then
dij0(:)=paw_ij(iatom)%dij0(:)
else
! ===== Need to compute Dij0
dij0(:)=pawtab(itypat)%dij0(:)
if (ipositron==1) dij0(:)=two*pawtab(itypat)%kij(:)-dij0(:)
if (dij0_need) paw_ij(iatom)%dij0(:)=dij0(:)
end if
if (dij_need) then
do idij=1,min(nsploop,2)
klmn1=1
do klmn=1,lmn2_size
paw_ij(iatom)%dij(klmn1,idij)=paw_ij(iatom)%dij(klmn1,idij)+dij0(klmn)
klmn1=klmn1+cplex_dij
end do
end do
end if
ABI_DEALLOCATE(dij0)
end if
! ------------------------------------------------------------------------
! ----------- Add Dij_Hartree to Dij
! ------------------------------------------------------------------------
if ((dijhartree_need.or.dij_need).and.dijhartree_available) then
ABI_ALLOCATE(dijhartree,(cplex*lmn2_size))
! ===== DijHartree already computed
if (paw_ij(iatom)%has_dijhartree==2) then
dijhartree(:)=paw_ij(iatom)%dijhartree(:)
else
! ===== Need to compute DijHartree
if (ipositron/=1) then
call pawdijhartree(cplex,dijhartree,nspden,pawrhoij(iatom),pawtab(itypat))
else
dijhartree(:)=zero
end if
if (ipositron/=0) then
ABI_ALLOCATE(dij_ep,(cplex*lmn2_size))
call pawdijhartree(cplex,dij_ep,nspden,electronpositron_pawrhoij(iatom),pawtab(itypat))
dijhartree(:)=dijhartree(:)-dij_ep(:)
ABI_DEALLOCATE(dij_ep)
end if
if (dijhartree_need) paw_ij(iatom)%dijhartree(:)=dijhartree(:)
end if
if (dij_need) then
do idij=1,min(nsploop,2)
if (cplex==1) then
klmn1=1
do klmn=1,lmn2_size
paw_ij(iatom)%dij(klmn1,idij)=paw_ij(iatom)%dij(klmn1,idij)+dijhartree(klmn)
klmn1=klmn1+cplex_dij
end do
else
paw_ij(iatom)%dij(:,idij)=paw_ij(iatom)%dij(:,idij)+dijhartree(:)
end if
end do
end if
ABI_DEALLOCATE(dijhartree)
end if
! ------------------------------------------------------------------------
! ----------- Add Dij_xc to Dij
! ------------------------------------------------------------------------
if ((dijxc_need.or.dij_need).and.dijxc_available) then
! ===== Dijxc already computed
if (paw_ij(iatom)%has_dijxc==2) then
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+paw_ij(iatom)%dijxc(:,:)
else
! ===== Need to compute DijXC
ABI_ALLOCATE(dijxc,(cplex_dij*lmn2_size,ndij))
if (pawxcdev/=0) then
ABI_ALLOCATE(lmselect,(lm_size))
lmselect(:)=paw_an(iatom)%lmselect(:)
if (ipositron/=0) lmselect(:)=(lmselect(:).or.electronpositron_lmselect(:,iatom))
call pawdijxcm(cplex,cplex_dij,dijxc,lmselect,ndij,nspden,nsppol,pawang,&
& pawrad(itypat),pawtab(itypat),paw_an(iatom)%vxc1,&
& paw_an(iatom)%vxct1,usexcnhat)
ABI_DEALLOCATE(lmselect)
else
call pawdijxc(cplex,cplex_dij,dijxc,ndij,nspden,nsppol,&
& pawang,pawrad(itypat),pawtab(itypat),paw_an(iatom)%vxc1,&
& paw_an(iatom)%vxct1,usexcnhat)
end if
if (dijxc_need) paw_ij(iatom)%dijxc(:,:)=dijxc(:,:)
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+dijxc(:,:)
ABI_DEALLOCATE(dijxc)
end if
end if
! ------------------------------------------------------------------------
! ----------- Add Dij_hat to Dij
! ------------------------------------------------------------------------
if ((dijhat_need.or.dij_need).and.dijhat_available) then
! ===== Dijhat already computed
if (paw_ij(iatom)%has_dijhat==2) then
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+paw_ij(iatom)%dijhat(:,:)
else
! ===== Need to compute Dijhat
ABI_ALLOCATE(dijhat,(cplex_dij*lmn2_size,ndij))
call pawdijhat(cplex,cplex_dij,dijhat,gprimd,iatom_tot,ipert,&
& natom,ndij,nfft,nfftot,nspden,nsppol,pawang,pawfgrtab(iatom),&
& pawtab(itypat),v_dijhat,qphon,ucvol,xred,mpi_comm_grid=my_comm_grid)
if (dijhat_need) paw_ij(iatom)%dijhat(:,:)=dijhat(:,:)
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+dijhat(:,:)
ABI_DEALLOCATE(dijhat)
end if
! ===== RF: add frozen part of 1st-order Dij
if (dijhatfr_available) then
do idij=1,nsploop
if (dij_need) paw_ij(iatom)%dij(:,idij)=paw_ij(iatom)%dij(:,idij) &
& +paw_ij(iatom)%dijfr(:,idij)
if (dijhat_need) paw_ij(iatom)%dijhat(:,idij)=paw_ij(iatom)%dijhat(:,idij) &
& +paw_ij(iatom)%dijfr(:,idij)
end do
end if
end if
! ------------------------------------------------------------------------
! ----------- Add Dij spin-orbit to Dij
! ------------------------------------------------------------------------
if ((dijso_need.or.dij_need).and.dijso_available) then
! ===== DijSO already computed
if (paw_ij(iatom)%has_dijso==2) then
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+paw_ij(iatom)%dijso(:,:)
else
! ===== Need to compute DijSO
ABI_ALLOCATE(dijso,(cplex_dij*lmn2_size,ndij))
call pawdijso(cplex_dij,dijso,ndij,nspden,&
& pawang,pawrad(itypat),pawtab(itypat),pawxcdev,spnorbscl,&
& paw_an(iatom)%vh1,paw_an(iatom)%vxc1)
if (dijso_need) paw_ij(iatom)%dijso(:,:)=dijso(:,:)
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+dijso(:,:)
ABI_DEALLOCATE(dijso)
end if
end if
! ------------------------------------------------------------------------
! ----------- Add Dij_{LDA+U} to Dij
! ------------------------------------------------------------------------
if ((dijU_need.or.dij_need).and.dijU_available) then
! ===== DijU already computed
if (paw_ij(iatom)%has_dijU==2) then
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+paw_ij(iatom)%dijU(:,:)
else
! ===== Need to compute DijU
lpawu=pawtab(itypat)%lpawu
ABI_ALLOCATE(dijpawu,(cplex_dij*lmn2_size,ndij))
ABI_ALLOCATE(vpawu,(cplex_dij,lpawu*2+1,lpawu*2+1,nspden))
if (pawtab(itypat)%usepawu>=10) vpawu=zero ! if dmft, do not apply U in LDA+U
if (pawtab(itypat)%usepawu< 10) then
call pawpupot(cplex_dij,ndij,paw_ij(iatom)%noccmmp,paw_ij(iatom)%nocctot,&
& nspden,pawprtvol,pawtab(itypat),vpawu)
end if
if (natvshift_==0) then
call pawdiju(cplex_dij,dijpawu,ndij,nspden,nsppol,pawtab(itypat),vpawu)
else
call pawdiju(cplex_dij,dijpawu,ndij,nspden,nsppol,pawtab(itypat),vpawu,&
& natvshift=natvshift_,atvshift=atvshift(:,:,iatom_tot),&
& fatvshift=fatvshift)
end if
ABI_DEALLOCATE(vpawu)
if (dijU_need) paw_ij(iatom)%dijU(:,:)=dijpawu(:,:)
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+dijpawu(:,:)
ABI_DEALLOCATE(dijpawu)
end if
end if
! ------------------------------------------------------------------------
! ----------- Add Dij_{local exact-exchange} to Dij
! ------------------------------------------------------------------------
if ((dijexxc_need.or.dij_need).and.dijexxc_available) then
! ===== DijEXXC already computed
if (paw_ij(iatom)%has_dijexxc==2) then
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+paw_ij(iatom)%dijexxc(:,:)
else
! ===== Need to compute DijEXXC
ABI_ALLOCATE(dijexxc,(cplex_dij*lmn2_size,ndij))
if (pawxcdev/=0) then
if (paw_ij(iatom)%has_exexch_pot/=2) then
ABI_ALLOCATE(vpawx,(1,lmn2_size,nspden))
call pawxpot(nspden,pawprtvol,pawrhoij(iatom),pawtab(itypat),vpawx)
else
vpawx=>paw_ij(iatom)%vpawx
end if
ABI_ALLOCATE(lmselect,(lm_size))
lmselect(:)=paw_an(iatom)%lmselect(:)
if (ipositron/=0) lmselect(:)=(lmselect(:).or.electronpositron_lmselect(:,iatom))
call pawdijexxc(cplex,cplex_dij,dijexxc,lmselect,ndij,nspden,nsppol,&
& pawang,pawrad(itypat),pawtab(itypat),vpawx,paw_an(iatom)%vxc_ex)
ABI_DEALLOCATE(lmselect)
if (paw_ij(iatom)%has_exexch_pot/=2) then
ABI_DEALLOCATE(vpawx)
end if
if (dijexxc_need) paw_ij(iatom)%dijexxc(:,:)=dijexxc(:,:)
if (dij_need) paw_ij(iatom)%dij(:,:)=paw_ij(iatom)%dij(:,:)+dijexxc(:,:)
ABI_DEALLOCATE(dijexxc)
end if
end if
end if
! ------------------------------------------------------------------------
! ----------- Add Dij background contribution to the total Dij
! ------------------------------------------------------------------------
if (dij_need .AND. pawtab(itypat)%usepotzero==1 ) then
do idij=1,min(nsploop,2)
klmn1=1
do klmn=1,lmn2_size
paw_ij(iatom)%dij(klmn1,idij)=paw_ij(iatom)%dij(klmn1,idij)+pawtab(itypat)%gammaij(klmn)*charge/ucvol
klmn1=klmn1+cplex_dij
end do
end do
end if
! ------------------------------------------------------------------------
! ----------- Compute Dijxc_hat
! ------------------------------------------------------------------------
if (dijxchat_need) then
if (usexcnhat/=0) then
ABI_ALLOCATE(dijxchat,(cplex_dij*lmn2_size,ndij))
call pawdijhat(cplex,cplex_dij,dijxchat,gprimd,iatom_tot,ipert,&
& natom,ndij,nfft,nfftot,nspden,nsppol,pawang,pawfgrtab(iatom),&
& pawtab(itypat),vxc,qphon,ucvol,xred,mpi_comm_grid=my_comm_grid)
paw_ij(iatom)%dijxc_hat(:,:)=dijxchat(:,:)
ABI_DEALLOCATE(dijxchat)
else ! usexcnhat=0
paw_ij(iatom)%dijxc_hat=zero
end if
end if
! ------------------------------------------------------------------------
! ----------- Compute Dijxc_val
! ------------------------------------------------------------------------
if (dijxcval_need) then
ABI_ALLOCATE(dijxcval,(cplex_dij*lmn2_size,ndij))
! Note that usexcnhat=0 for this call (no compensation term)
if (pawxcdev/=0) then
ABI_ALLOCATE(lmselect,(lm_size))
lmselect(:)=paw_an(iatom)%lmselect(:)
if (ipositron/=0) lmselect(:)=(lmselect(:).or.electronpositron_lmselect(:,iatom))
call pawdijxcm(cplex,cplex_dij,dijxcval,lmselect,ndij,nspden,nsppol,&
& pawang,pawrad(itypat),pawtab(itypat),paw_an(iatom)%vxc1_val,&
& paw_an(iatom)%vxct1_val,0)
ABI_DEALLOCATE(lmselect)
else
call pawdijxc(cplex,cplex_dij,dijxcval,ndij,nspden,nsppol,&
& pawang,pawrad(itypat),pawtab(itypat),paw_an(iatom)%vxc1_val,&
& paw_an(iatom)%vxct1_val,0)
end if
paw_ij(iatom)%dijxc_val(:,:)=dijxcval(:,:)
ABI_DEALLOCATE(dijxcval)
end if
! ------------------------------------------------------------------------
! Update some flags
if (dij_need.and.paw_ij(iatom)%has_dij>=1) paw_ij(iatom)%has_dij=2
if (dij0_need.and.paw_ij(iatom)%has_dij0>=1) paw_ij(iatom)%has_dij0=2
if (dijhartree_need.and.paw_ij(iatom)%has_dijhartree>=1) paw_ij(iatom)%has_dijhartree=2
if (dijxc_need.and.paw_ij(iatom)%has_dijxc>=1) paw_ij(iatom)%has_dijxc=2
if (dijhat_need.and.paw_ij(iatom)%has_dijhat>=1) paw_ij(iatom)%has_dijhat=2
if (dijso_need.and.paw_ij(iatom)%has_dijso>=1) paw_ij(iatom)%has_dijso=2
if (dijU_need.and.paw_ij(iatom)%has_dijU>=1) paw_ij(iatom)%has_dijU=2
if (dijexxc_need.and.paw_ij(iatom)%has_dijexxc>=1) paw_ij(iatom)%has_dijexxc=2
if (dijxchat_need.and.paw_ij(iatom)%has_dijxc_hat>=1) paw_ij(iatom)%has_dijxc_hat=2
if (dijxcval_need.and.paw_ij(iatom)%has_dijxc_val>=1) paw_ij(iatom)%has_dijxc_val=2
!End loop over atoms
end do ! iatom
!------------------------------------------------------------------------
!Final printing
if (paral_atom) then
call paw_ij_print(paw_ij,unit=std_out,pawprtvol=pawprtvol,pawspnorb=pawspnorb,&
& mpi_comm_atom=my_comm_atom,mpi_atmtab=my_atmtab,natom=natom,&
& mode_paral='PERS',enunit=enunit,ipert=ipert)
else
call paw_ij_print(paw_ij,unit=std_out,pawprtvol=pawprtvol,pawspnorb=pawspnorb,&
& mode_paral='COLL',enunit=enunit,ipert=ipert)
end if
!Free temporary storage
if (v_dijhat_allocated) then
ABI_DEALLOCATE(v_dijhat)
end if
do iatom=1,my_natom
if (paw_ij(iatom)%has_dij0==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dij0)
paw_ij(iatom)%has_dij0=0
end if
if (paw_ij(iatom)%has_dijhartree==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dijhartree)
paw_ij(iatom)%has_dijhartree=0
end if
if (paw_ij(iatom)%has_dijxc==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dijxc)
paw_ij(iatom)%has_dijxc=0
end if
if (paw_ij(iatom)%has_dijhat==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dijhat)
paw_ij(iatom)%has_dijhat=0
end if
if (paw_ij(iatom)%has_dijfr==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dijfr)
paw_ij(iatom)%has_dijfr=0
end if
if (paw_ij(iatom)%has_dijso==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dijso)
paw_ij(iatom)%has_dijso=0
end if
if (paw_ij(iatom)%has_dijU==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dijU)
paw_ij(iatom)%has_dijU=0
end if
if (paw_ij(iatom)%has_dijexxc==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dijexxc)
paw_ij(iatom)%has_dijexxc=0
end if
if (paw_ij(iatom)%has_dijxc_hat==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dijxc_hat)
paw_ij(iatom)%has_dijxc_hat=0
end if
if (paw_ij(iatom)%has_dijxc_val==-1) then
ABI_DEALLOCATE(paw_ij(iatom)%dijxc_val)
paw_ij(iatom)%has_dijxc_val=0
end if
end do
!Destroy atom table used for parallelism
call free_my_atmtab(my_atmtab,my_atmtab_allocated)
DBG_EXIT("COLL")
end subroutine pawdij
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawdijhartree
!! NAME
!! pawdijhartree
!!
!! FUNCTION
!! Compute the Hartree contribution to the PAW pseudopotential strength Dij
!! (for one atom only)
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! cplex=(RF calculations only) - 1 if RF 1st-order quantities are REAL, 2 if COMPLEX
!! nspden=number of spin density components
!! pawrhoij <type(pawrhoij_type)>= paw rhoij occupancies (and related data) for current atom
!! pawtab <type(pawtab_type)>=paw tabulated starting data, for current atom
!!
!! OUTPUT
!! dijxc(cplex*lmn2_size)= D_ij^Hartree terms
!!
!! PARENTS
!! m_pawdij,pawdenpot,pawenergy3
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawdijhartree(cplex,dijhartree,nspden,pawrhoij,pawtab)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawdijhartree'
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: cplex,nspden
!arrays
real(dp),intent(out) :: dijhartree(:)
type(pawrhoij_type),intent(in) :: pawrhoij
type(pawtab_type),intent(in) :: pawtab
!Local variables ---------------------------------------
!scalars
integer :: irhoij,ispden,jrhoij,kklmn,kklmn1,klmn,klmn1,lmn2_size,nspdiag
character(len=500) :: msg
!arrays
real(dp) :: ro(cplex)
! *************************************************************************
DBG_ENTER("COLL")
!Useful data
lmn2_size=pawtab%lmn2_size
nspdiag=1;if (nspden==2) nspdiag=2
!Check data consistency
if (size(dijhartree,1)/=cplex*lmn2_size) then
msg='invalid size for DijHartree !'
MSG_BUG(msg)
end if
if (pawrhoij%cplex<cplex) then
msg=' pawrhoij%cplex must be >=cplex !'
MSG_BUG(msg)
end if
!------------------------------------------------------------------------
!----------- Allocations and initializations
!------------------------------------------------------------------------
dijhartree=zero
!Real on-site quantities (ground-state calculation)
if (cplex==1) then
do ispden=1,nspdiag
jrhoij=1
do irhoij=1,pawrhoij%nrhoijsel
klmn=pawrhoij%rhoijselect(irhoij)
ro(1)=pawrhoij%rhoijp(jrhoij,ispden)*pawtab%dltij(klmn)
dijhartree(klmn)=dijhartree(klmn)&
& +ro(1)*pawtab%eijkl(klmn,klmn)
do klmn1=1,klmn-1
dijhartree(klmn1)=dijhartree(klmn1)&
& +ro(1)*pawtab%eijkl(klmn1,klmn)
end do
do klmn1=klmn+1,lmn2_size
dijhartree(klmn1)=dijhartree(klmn1)&
& +ro(1)*pawtab%eijkl(klmn,klmn1)
end do
jrhoij=jrhoij+pawrhoij%cplex
end do
end do
! Complex on-site quantities (response function calculation)
else
do ispden=1,nspdiag
jrhoij=1
do irhoij=1,pawrhoij%nrhoijsel
klmn=pawrhoij%rhoijselect(irhoij);kklmn=2*klmn-1
ro(1:2)=pawrhoij%rhoijp(jrhoij:jrhoij+1,ispden)*pawtab%dltij(klmn)
dijhartree(kklmn:kklmn+1)=dijhartree(kklmn:kklmn+1)&
& +ro(1:2)*pawtab%eijkl(klmn,klmn)
do klmn1=1,klmn-1
kklmn1=2*klmn1-1
dijhartree(kklmn1:kklmn1+1)=dijhartree(kklmn1:kklmn1+1)&
& +ro(1:2)*pawtab%eijkl(klmn1,klmn)
end do
do klmn1=klmn+1,lmn2_size
kklmn1=2*klmn1-1
dijhartree(kklmn1:kklmn1+1)=dijhartree(kklmn1:kklmn1+1)&
& +ro(1:2)*pawtab%eijkl(klmn,klmn1)
end do
jrhoij=jrhoij+pawrhoij%cplex
end do
end do
end if
DBG_EXIT("COLL")
end subroutine pawdijhartree
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawdijxc
!! NAME
!! pawdijxc
!!
!! FUNCTION
!! Compute the eXchange-Correlation contribution to the PAW pseudopotential strength Dij,
!! using densities and potential expressed on a (r,theta,phi) grid
!! (for one atom only):
!! D_ij^XC= < Phi_i|Vxc( n1+ nc[+nhat])| Phi_j>
!! -<tPhi_i|Vxc(tn1+tnc[+nhat])|tPhi_j>
!! -Intg_omega [ Vxc(tn1+tnc[+nhat])(r). Sum_L(Qij^L(r)). dr]
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! cplex=(RF calculations only) - 1 if RF 1st-order quantities are REAL, 2 if COMPLEX
!! cplex_dij=1 if dij is REAL, 2 if complex (2 for spin-orbit)
!! ndij= number of spin components for Dij^hat
!! nspden=number of spin density components
!! nsppol=number of independent spin WF components
!! pawang <type(pawang_type)>=paw angular mesh and related data, for current atom
!! pawrad <type(pawrad_type)>=paw radial mesh and related data, for current atom
!! pawtab <type(pawtab_type)>=paw tabulated starting data
!! vxc1(mesh_size,angl_size,nspden)=all-electron on-site XC potential for current atom
!! given on a (r,theta,phi) grid
!! vxct1(mesh_size,angl_size,nspden)=all-electron on-site XC potential for current atom
!! given on a (r,theta,phi) grid
!! usexcnhat= 1 if compensation density is included in Vxc, 0 otherwise
!!
!! OUTPUT
!! dijxc(cplex_dij*lmn2_size,ndij)= D_ij^XC terms
!!
!! NOTES
!! cplex is for RF, cplex_dij is for non-collinear (nspinor==2)
!!
!! PARENTS
!! m_pawdij
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawdijxc(cplex,cplex_dij,dijxc,ndij,nspden,nsppol,&
& pawang,pawrad,pawtab,vxc1,vxct1,usexcnhat)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawdijxc'
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: cplex,cplex_dij,ndij,nspden,nsppol,usexcnhat
type(pawang_type),intent(in) :: pawang
!arrays
real(dp),intent(in) :: vxc1(:,:,:),vxct1(:,:,:)
real(dp),intent(out) :: dijxc(:,:)
type(pawrad_type),intent(in) :: pawrad
type(pawtab_type),intent(in) :: pawtab
!Local variables ---------------------------------------
!scalars
integer :: angl_size,idij,idijend,ij_size,ilm,ils,ils1,ilslm,ipts,ir,ir1,isel,ispden
integer :: jlm,j0lm,klmn,klmn1,klm,kln,l_size,lm0,lmax,lmin,lm_size,lmn2_size
integer :: mesh_size,mm,nsploop
real(dp) :: tmp,vi,vr,vxcijhat,vxcijhat_i
character(len=500) :: msg
!arrays
real(dp),allocatable :: dijxc_idij(:),ff(:),gg(:),vxcij1(:),vxcij2(:),yylmr(:,:)
! *************************************************************************
DBG_ENTER("COLL")
!Useful data
lm_size=pawtab%lcut_size**2
lmn2_size=pawtab%lmn2_size
ij_size=pawtab%ij_size
l_size=pawtab%l_size
mesh_size=pawtab%mesh_size
angl_size=pawang%angl_size
!Check data consistency
if (size(dijxc,1)/=cplex_dij*lmn2_size.or.size(dijxc,2)/=ndij) then
msg='invalid sizes for Dijxc !'
MSG_BUG(msg)
end if
if (size(vxc1,1)/=cplex*mesh_size.or.size(vxct1,1)/=cplex*mesh_size.or.&
& size(vxc1,2)/=angl_size.or.size(vxct1,2)/=angl_size.or.&
& size(vxc1,3)/=nspden.or.size(vxct1,3)/=nspden) then
msg='invalid sizes for vxc1 or vxct1 !'
MSG_BUG(msg)
end if
if (cplex_dij<cplex) then
msg='cplex_dij must be >= cplex !'
MSG_BUG(msg)
end if
!Precompute products Ylm*Ylpmp
lmax=maxval(pawtab%indklmn(4,1:lmn2_size))
ABI_ALLOCATE(yylmr,(lmax**2*(lmax**2+1)/2,angl_size))
do ipts=1,angl_size
do jlm=1,lmax**2
j0lm=jlm*(jlm-1)/2
do ilm=1,jlm
klm=j0lm+ilm
yylmr(klm,ipts)=pawang%ylmr(ilm,ipts)*pawang%ylmr(jlm,ipts)
end do
end do
end do
!Init memory
dijxc=zero
ABI_ALLOCATE(dijxc_idij,(cplex*lmn2_size))
ABI_ALLOCATE(vxcij1,(cplex*ij_size))
ABI_ALLOCATE(vxcij2,(cplex*l_size))
ABI_ALLOCATE(ff,(mesh_size))
ABI_ALLOCATE(gg,(mesh_size))
!----------------------------------------------------------
!Loop over spin components
!----------------------------------------------------------
nsploop=nsppol;if (ndij==4) nsploop=4
do idij=1,nsploop
if (idij<=nsppol.or.(nspden==4.and.idij<=3).or.cplex==2) then
idijend=idij+idij/3;if (cplex==2) idijend=idij
do ispden=idij,idijend
dijxc_idij=zero
! ----------------------------------------------------------
! Loop on angular mesh
! ----------------------------------------------------------
do ipts=1,angl_size
! ===== Vxc_ij_1 (tmp) =====
vxcij1=zero
if (cplex==1) then
do kln=1,ij_size
ff(1:mesh_size)= &
& vxc1(1:mesh_size,ipts,ispden)*pawtab%phiphj(1:mesh_size,kln) &
& -vxct1(1:mesh_size,ipts,ispden)*pawtab%tphitphj(1:mesh_size,kln)
call simp_gen(vxcij1(kln),ff,pawrad)
end do
else
do kln=1,ij_size
do ir=1,mesh_size
ir1=2*ir
ff(ir)= &
& vxc1(ir1-1,ipts,ispden)*pawtab%phiphj(ir,kln) &
& -vxct1(ir1-1,ipts,ispden)*pawtab%tphitphj(ir,kln)
gg(ir)= &
& vxc1(ir1,ipts,ispden)*pawtab%phiphj(ir,kln) &
& -vxct1(ir1,ipts,ispden)*pawtab%tphitphj(ir,kln)
end do
call simp_gen(vxcij1(2*kln-1),ff,pawrad)
call simp_gen(vxcij1(2*kln ),gg,pawrad)
end do
end if
! ===== Vxc_ij_2 (tmp) =====
vxcij2=zero
if (usexcnhat/=0) then
if (cplex==1) then
do ils=1,l_size
ff(1:mesh_size)=vxct1(1:mesh_size,ipts,ispden) &
& *pawtab%shapefunc(1:mesh_size,ils) &
& *pawrad%rad(1:mesh_size)**2
call simp_gen(vxcij2(ils),ff,pawrad)
end do
else
do ils=1,l_size
do ir=1,mesh_size
ir1=2*ir
tmp=pawtab%shapefunc(ir,ils)*pawrad%rad(ir)**2
ff(ir)=vxct1(ir1-1,ipts,ispden)*tmp
gg(ir)=vxct1(ir1 ,ipts,ispden)*tmp
end do
call simp_gen(vxcij2(2*ils-1),ff,pawrad)
call simp_gen(vxcij2(2*ils ),gg,pawrad)
end do
end if
end if
! ===== Integrate Vxc_ij_1 and Vxc_ij_2 over the angular mesh =====
! ===== and accummulate in total Vxc_ij =====
if (cplex==1) then
do klmn=1,lmn2_size
klm=pawtab%indklmn(1,klmn);kln=pawtab%indklmn(2,klmn)
lmin=pawtab%indklmn(3,klmn);lmax=pawtab%indklmn(4,klmn)
dijxc_idij(klmn)=dijxc_idij(klmn) &
& +vxcij1(kln)*pawang%angwgth(ipts)*yylmr(klm,ipts)*four_pi
if (usexcnhat/=0) then
vxcijhat=zero
do ils=lmin,lmax,2
lm0=ils**2+ils+1
vr=four_pi*pawang%angwgth(ipts)*vxcij2(ils+1)
do mm=-ils,ils
ilslm=lm0+mm;isel=pawang%gntselect(ilslm,klm)
if (isel>0) then
tmp=pawang%ylmr(ilslm,ipts)*pawtab%qijl(ilslm,klmn)
vxcijhat=vxcijhat+vr*tmp
end if
end do
end do
dijxc_idij(klmn)=dijxc_idij(klmn)-vxcijhat
end if
end do ! Loop klmn
else
klmn1=1
do klmn=1,lmn2_size
klm=pawtab%indklmn(1,klmn);kln=pawtab%indklmn(2,klmn)
lmin=pawtab%indklmn(3,klmn);lmax=pawtab%indklmn(4,klmn)
tmp=pawang%angwgth(ipts)*yylmr(klm,ipts)*four_pi
dijxc_idij(klmn1 )=dijxc_idij(klmn1 )+vxcij1(2*kln-1)*tmp
dijxc_idij(klmn1+1)=dijxc_idij(klmn1+1)+vxcij1(2*kln )*tmp
if (usexcnhat/=0) then
vxcijhat=zero;vxcijhat_i=zero
do ils=lmin,lmax,2
lm0=ils**2+ils+1;ils1=2*(ils+1)
vr=four_pi*pawang%angwgth(ipts)*vxcij2(ils1-1)
vi=four_pi*pawang%angwgth(ipts)*vxcij2(ils1 )
do mm=-ils,ils
ilslm=lm0+mm;isel=pawang%gntselect(ilslm,klm)
if (isel>0) then
tmp=pawang%ylmr(ilslm,ipts)*pawtab%qijl(ilslm,klmn)
vxcijhat =vxcijhat +vr*tmp
vxcijhat_i=vxcijhat_i+vi*tmp
end if
end do
end do
dijxc_idij(klmn1 )=dijxc_idij(klmn1 )-vxcijhat
dijxc_idij(klmn1+1)=dijxc_idij(klmn1+1)-vxcijhat_i
end if
klmn1=klmn1+cplex
end do ! Loop klmn
end if
! ----------------------------------------------------------
! End loop on angular points
end do
! ----------------------------------------------------------
! Deduce some part of Dij according to symmetries
! ----------------------------------------------------------
if (cplex==1) then
if (ispden<3) then
if (cplex_dij==1) then
dijxc(1:lmn2_size,idij)=dijxc_idij(1:lmn2_size)
else
klmn1=1
do klmn=1,lmn2_size
dijxc(klmn1 ,idij)=dijxc_idij(klmn)
dijxc(klmn1+1,idij)=zero
klmn1=klmn1+cplex_dij
end do
end if
else
klmn1=max(1,ispden-2)
do klmn=1,lmn2_size
dijxc(klmn1,idij)=dijxc_idij(klmn)
klmn1=klmn1+cplex_dij
end do
end if
else !cplex=2
if (ispden<=3) then
dijxc(1:cplex*lmn2_size,idij)=dijxc_idij(1:cplex*lmn2_size)
else
klmn1=1 ! Remember V(4) contains i.V^21
do klmn=1,lmn2_size
dijxc(klmn1 ,idij)= dijxc_idij(klmn+1)
dijxc(klmn1+1,idij)=-dijxc_idij(klmn )
klmn1=klmn1+cplex_dij
end do
end if
end if
end do !ispden
else if (nspden==4.and.idij==4) then ! cplex=1 here
dijxc(:,idij)=dijxc(:,idij-1)
klmn1=2
do klmn=1,lmn2_size
dijxc(klmn1,idij)=-dijxc(klmn1,idij)
klmn1=klmn1+cplex_dij
end do
else if (nsppol==1.and.idij==2) then ! cplex=1 here
dijxc(:,idij)=dijxc(:,idij-1)
end if
!----------------------------------------------------------
!End loop on spin density components
end do
!Free temporary memory spaces
ABI_DEALLOCATE(yylmr)
ABI_DEALLOCATE(dijxc_idij)
ABI_DEALLOCATE(vxcij1)
ABI_DEALLOCATE(vxcij2)
ABI_DEALLOCATE(ff)
ABI_DEALLOCATE(gg)
DBG_EXIT("COLL")
end subroutine pawdijxc
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawdijxcm
!! NAME
!! pawdijxcm
!!
!! FUNCTION
!! Compute the eXchange-Correlation contribution to the PAW pseudopotential strength Dij,
!! using densities and potential expressed as (l,m) spherical moments
!! (for one atom only):
!! D_ij^XC= < Phi_i|Vxc( n1+ nc[+nhat])| Phi_j>
!! -<tPhi_i|Vxc(tn1+tnc[+nhat])|tPhi_j>
!! -Intg_omega [ Vxc(tn1+tnc[+nhat])(r). Sum_L(Qij^L(r)). dr]
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! cplex=(RF calculations only) - 1 if RF 1st-order quantities are REAL, 2 if COMPLEX
!! cplex_dij=1 if dij is REAL, 2 if complex (2 for spin-orbit)
!! lmselect(lm_size)=select the non-zero LM-moments of on-site potentials
!! ndij= number of spin components for Dij^hat
!! nspden=number of spin density components
!! nsppol=number of independent spin WF components
!! pawang <type(pawang_type)>=paw angular mesh and related data, for current atom
!! pawrad <type(pawrad_type)>=paw radial mesh and related data, for current atom
!! pawtab <type(pawtab_type)>=paw tabulated starting data
!! vxc1(mesh_size,lm_size,nspden)=all-electron on-site XC potential for current atom
!! given on (l,m) spherical moments
!! vxct1(mesh_size,lm_size,nspden)=all-electron on-site XC potential for current atom
!! given on (l,m) spherical moments
!! usexcnhat= 1 if compensation density is included in Vxc, 0 otherwise
!!
!! OUTPUT
!! dijxc(cplex_dij*lmn2_size,ndij)= D_ij^XC terms
!!
!! NOTES
!! cplex is for RF, cplex_dij is for non-collinear (nspinor==2)
!!
!! PARENTS
!! m_pawdij
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawdijxcm(cplex,cplex_dij,dijxc,lmselect,ndij,nspden,nsppol,&
& pawang,pawrad,pawtab,vxc1,vxct1,usexcnhat)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawdijxcm'
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: cplex,cplex_dij,ndij,nspden,nsppol,usexcnhat
type(pawang_type),intent(in) :: pawang
!arrays
logical :: lmselect(:)
real(dp),intent(in) :: vxc1(:,:,:),vxct1(:,:,:)
real(dp),intent(out) :: dijxc(:,:)
type(pawrad_type),intent(in) :: pawrad
type(pawtab_type),intent(in) :: pawtab
!Local variables ---------------------------------------
!scalars
integer :: idij,idijend,ij_size,ir,ir1,isel,ispden,klm,klm1,klmn,klmn1,kln
integer :: lm_size,lmn2_size,ll,mesh_size,nsploop
real(dp) :: tmp,vxcij2,vxcij2_i
character(len=500) :: msg
!arrays
real(dp),allocatable :: dijxc_idij(:),ff(:),gg(:),vxcij1(:)
! *************************************************************************
DBG_ENTER("COLL")
!Useful data
lm_size=pawtab%lcut_size**2
lmn2_size=pawtab%lmn2_size
ij_size=pawtab%ij_size
mesh_size=pawtab%mesh_size
!Check data consistency
if (size(dijxc,1)/=cplex_dij*lmn2_size.or.size(dijxc,2)/=ndij) then
msg='invalid sizes for Dijxc !'
MSG_BUG(msg)
end if
if (size(lmselect)/=lm_size) then
msg='invalid size for lmselect !'
MSG_BUG(msg)
end if
if (size(vxc1,1)/=cplex*mesh_size.or.size(vxct1,1)/=cplex*mesh_size.or.&
& size(vxc1,2)/=lm_size.or.size(vxct1,2)/=lm_size.or.&
& size(vxc1,3)/=nspden.or.size(vxct1,3)/=nspden) then
msg='invalid sizes for vxc1 or vxct1 !'
MSG_BUG(msg)
end if
if (cplex_dij<cplex) then
msg='cplex_dij must be >= cplex !'
MSG_BUG(msg)
end if
!Init memory
dijxc=zero
ABI_ALLOCATE(dijxc_idij,(cplex*lmn2_size))
ABI_ALLOCATE(vxcij1,(cplex*ij_size))
ABI_ALLOCATE(ff,(mesh_size))
ABI_ALLOCATE(gg,(mesh_size))
!----------------------------------------------------------
!Loop over spin components
!----------------------------------------------------------
nsploop=nsppol;if (ndij==4) nsploop=4
do idij=1,nsploop
if (idij<=nsppol.or.(nspden==4.and.idij<=3).or.cplex==2) then
idijend=idij+idij/3;if (cplex==2) idijend=idij
do ispden=idij,idijend
dijxc_idij=zero
! ----------------------------------------------------------
! Summing over (l,m) moments
! ----------------------------------------------------------
do klm=1,lm_size
if (lmselect(klm)) then
! ===== Vxc_ij_1 (tmp) =====
vxcij1=zero
if (cplex==1) then
do kln=1,ij_size
ff(1:mesh_size)= &
& vxc1(1:mesh_size,klm,ispden)*pawtab%phiphj(1:mesh_size,kln) &
& -vxct1(1:mesh_size,klm,ispden)*pawtab%tphitphj(1:mesh_size,kln)
call simp_gen(vxcij1(kln),ff,pawrad)
end do
else ! cplex==2
do kln=1,ij_size
do ir=1,mesh_size
ir1=2*ir
ff(ir)= &
& vxc1(ir1-1,klm,ispden)*pawtab%phiphj(ir,kln) &
& -vxct1(ir1-1,klm,ispden)*pawtab%tphitphj(ir,kln)
gg(ir)= &
& vxc1(ir1,klm,ispden)*pawtab%phiphj(ir,kln) &
& -vxct1(ir1,klm,ispden)*pawtab%tphitphj(ir,kln)
end do
call simp_gen(vxcij1(2*kln-1),ff,pawrad)
call simp_gen(vxcij1(2*kln ),gg,pawrad)
end do
end if
! ===== Vxc_ij_2 (tmp) =====
vxcij2=zero;vxcij2_i=zero
if (usexcnhat/=0) then
ll=1+int(sqrt(dble(klm)-0.1_dp))
if (cplex==1) then
ff(1:mesh_size)=vxct1(1:mesh_size,klm,ispden) &
& *pawtab%shapefunc(1:mesh_size,ll) &
& *pawrad%rad(1:mesh_size)**2
call simp_gen(vxcij2,ff,pawrad)
else ! cplex==2
do ir=1,mesh_size
ir1=2*ir
tmp=pawtab%shapefunc(ir,ll)*pawrad%rad(ir)**2
ff(ir)=vxct1(ir1-1,klm,ispden)*tmp
gg(ir)=vxct1(ir1 ,klm,ispden)*tmp
end do
call simp_gen(vxcij2 ,ff,pawrad)
call simp_gen(vxcij2_i,gg,pawrad)
end if
end if
! ===== Accumulate over klm moments Vxc_ij_1 and Vxc_ij_2 =====
! ===== into total Vxc_ij =====
if (cplex==1) then
do klmn=1,lmn2_size
klm1=pawtab%indklmn(1,klmn)
kln=pawtab%indklmn(2,klmn)
isel=pawang%gntselect(klm,klm1)
if (isel>0) &
& dijxc_idij(klmn)=dijxc_idij(klmn)+vxcij1(kln)*pawang%realgnt(isel)
if (usexcnhat/=0) &
dijxc_idij(klmn)=dijxc_idij(klmn)-pawtab%qijl(klm,klmn)*vxcij2
end do ! Loop klmn
else ! cplex==2
klmn1=1
do klmn=1,lmn2_size
klm1=pawtab%indklmn(1,klmn)
kln=pawtab%indklmn(2,klmn)
isel=pawang%gntselect(klm,klm1)
if (isel>0) then
dijxc_idij(klmn1 )=dijxc_idij(klmn1) &
& +vxcij1(2*kln-1)*pawang%realgnt(isel)
dijxc_idij(klmn1+1)=dijxc_idij(klmn1+1) &
& +vxcij1(2*kln )*pawang%realgnt(isel)
end if
if (usexcnhat/=0) then
dijxc_idij(klmn1 )=dijxc_idij(klmn1) &
& -pawtab%qijl(klm,klmn)*vxcij2
dijxc_idij(klmn1+1)=dijxc_idij(klmn1+1) &
& -pawtab%qijl(klm,klmn)*vxcij2_i
end if
klmn1=klmn1+cplex
end do ! Loop klmn
end if
end if ! klm selection
end do ! Loop klm
! ----------------------------------------------------------
! Deduce some part of Dij according to symmetries
! ----------------------------------------------------------
if (cplex==1) then
if (ispden<3) then
if (cplex_dij==1) then
dijxc(1:lmn2_size,idij)=dijxc_idij(1:lmn2_size)
else
klmn1=1
do klmn=1,lmn2_size
dijxc(klmn1 ,idij)=dijxc_idij(klmn)
dijxc(klmn1+1,idij)=zero
klmn1=klmn1+cplex_dij
end do
end if
else
klmn1=max(1,ispden-2)
do klmn=1,lmn2_size
dijxc(klmn1,idij)=dijxc_idij(klmn)
klmn1=klmn1+cplex_dij
end do
end if
else !cplex=2
if (ispden<=3) then
dijxc(1:cplex*lmn2_size,idij)=dijxc_idij(1:cplex*lmn2_size)
else
klmn1=1 ! Remember V(4) contains i.V^21
do klmn=1,lmn2_size
dijxc(klmn1 ,idij)= dijxc_idij(klmn+1)
dijxc(klmn1+1,idij)=-dijxc_idij(klmn )
klmn1=klmn1+cplex_dij
end do
end if
end if
end do !ispden
else if (nspden==4.and.idij==4) then ! cplex=1 here
dijxc(:,idij)=dijxc(:,idij-1)
klmn1=2
do klmn=1,lmn2_size
dijxc(klmn1,idij)=-dijxc(klmn1,idij)
klmn1=klmn1+cplex_dij
end do
else if (nsppol==1.and.idij==2) then ! cplex=1 here
dijxc(:,idij)=dijxc(:,idij-1)
end if
!----------------------------------------------------------
!End loop on spin density components
end do
!Free temporary memory spaces
ABI_DEALLOCATE(dijxc_idij)
ABI_DEALLOCATE(vxcij1)
ABI_DEALLOCATE(ff)
ABI_DEALLOCATE(gg)
DBG_EXIT("COLL")
end subroutine pawdijxcm
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawdijhat
!! NAME
!! pawdijhat
!!
!! FUNCTION
!! Compute the "hat" contribution to the PAW pseudopotential strength Dij,
!! i.e. the compensation charge contribution (for one atom only):
!! D_ij^hat=Intg_R [ V(r). Sum_L(Qij^L(r)). dr]
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! cplex=(RF calculations only) - 1 if RF 1st-order quantities are REAL, 2 if COMPLEX
!! cplex_dij=1 if dij is REAL, 2 if complex (2 for spin-orbit)
!! gprimd(3,3)=dimensional primitive translations for reciprocal space
!! iatom=absolute index of current atom (between 1 and natom)
!! ipert=index of perturbation; used only for RF calculation ; set ipert<=0 for GS calculations.
!! natom=total number of atoms
!! ndij= number of spin components for Dij^hat
!! ngrid=number of points of the real space grid (FFT, WVL, ...) treated by current proc
!! ngridtot=total number of points of the real space grid (FFT, WVL, ...)
!! For the FFT grid, thi should be equal to ngfft1*ngfft2*ngfft3
!! nspden=number of spin density components
!! nsppol=number of independent spin WF components
!! pawang <type(pawang_type)>=paw angular mesh and related data
!! pawfgrtab<type(pawfgrtab_type)>=atomic data given on fine rectangular grid for current atom
!! pawtab(ntypat) <type(pawtab_type)>=paw tabulated starting data, for current atom
!! Pot(cplex*ngrid,nspden)=potential on real space grid
!! qphon(3)=(RF calculations only) - wavevector of the phonon
!! ucvol=unit cell volume
!! xred(3,my_natom)= reduced atomic coordinates
!!
!! OUTPUT
!! dijhat(cplex_dij*lmn2_size,ndij)= D_ij^hat terms
!!
!! NOTES
!! cplex is for RF, cplex_dij is for non-collinear (nspinor==2)
!!
!! PARENTS
!! m_pawdij
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawdijhat(cplex,cplex_dij,dijhat,gprimd,iatom,ipert,&
& natom,ndij,ngrid,ngridtot,nspden,nsppol,pawang,pawfgrtab,&
& pawtab,Pot,qphon,ucvol,xred,&
& mpi_comm_grid) ! Optional argument
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawdijhat'
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: cplex,cplex_dij,iatom,ipert,natom,ndij
integer,intent(in) :: ngrid,ngridtot,nspden,nsppol
integer,intent(in),optional :: mpi_comm_grid
real(dp),intent(in) :: ucvol
type(pawang_type),intent(in) :: pawang
type(pawfgrtab_type),intent(inout) :: pawfgrtab
!arrays
real(dp),intent(in) :: gprimd(3,3),Pot(cplex*ngrid,nspden),qphon(3),xred(3,natom)
real(dp),intent(out) :: dijhat(:,:)
type(pawtab_type),intent(in) :: pawtab
!Local variables ---------------------------------------
!scalars
integer :: ic,idij,idijend,ier,ils,ilslm,ilslm1,isel,ispden,jc,klm,klmn,klmn1
integer :: lm0,lm_size,lmax,lmin,lmn2_size,mm,my_comm_grid,nfgd,nsploop,optgr0,optgr1
logical :: has_phase,qne0
real(dp) :: vi,vr
character(len=500) :: msg
!arrays
real(dp) :: rdum(1)
real(dp),allocatable :: dijhat_idij(:),prod(:)
! *************************************************************************
DBG_ENTER("COLL")
!Useful data
lm_size=pawtab%lcut_size**2
lmn2_size=pawtab%lmn2_size
nfgd=pawfgrtab%nfgd
has_phase=.false.
qne0=(qphon(1)**2+qphon(2)**2+qphon(3)**2>=1.d-15)
my_comm_grid=xmpi_self;if (present(mpi_comm_grid)) my_comm_grid=mpi_comm_grid
!Check data consistency
if (size(dijhat,1)/=cplex_dij*lmn2_size.or.size(dijhat,2)/=ndij) then
msg='invalid sizes for Dijhat !'
MSG_BUG(msg)
end if
if (pawfgrtab%rfgd_allocated==0.and.ipert>0.and.ipert<=natom.and.qne0) then
msg='pawfgrtab()%rfgd array must be allocated !'
MSG_BUG(msg)
end if
if (cplex_dij<cplex) then
msg='cplex_dij must be >= cplex !'
MSG_BUG(msg)
end if
!Eventually compute g_l(r).Y_lm(r) factors for the current atom (if not already done)
if ((pawfgrtab%gylm_allocated==0).or.((ipert==iatom).and.(pawfgrtab%gylmgr_allocated==0))) then
optgr0=0;optgr1=0
if (pawfgrtab%gylm_allocated==0) then
if (allocated(pawfgrtab%gylm)) then
ABI_DEALLOCATE(pawfgrtab%gylm)
end if
ABI_ALLOCATE(pawfgrtab%gylm,(nfgd,lm_size))
pawfgrtab%gylm_allocated=2;optgr0=1
end if
if ((ipert==iatom).and.(pawfgrtab%gylmgr_allocated==0)) then
if (allocated(pawfgrtab%gylmgr)) then
ABI_DEALLOCATE(pawfgrtab%gylmgr)
end if
ABI_ALLOCATE(pawfgrtab%gylmgr,(3,nfgd,lm_size))
pawfgrtab%gylmgr_allocated=2;optgr1=1
end if
if (optgr0+optgr1>0) then
call pawgylm(pawfgrtab%gylm,pawfgrtab%gylmgr,rdum,lm_size,nfgd,optgr0,optgr1,0,&
& pawtab,pawfgrtab%rfgd)
end if
end if
!Eventually compute exp(-i.q.r) factors for the current atom (if not already done)
if ((ipert==iatom).and.qne0.and.(pawfgrtab%expiqr_allocated==0)) then
if (allocated(pawfgrtab%expiqr)) then
ABI_DEALLOCATE(pawfgrtab%expiqr)
end if
ABI_ALLOCATE(pawfgrtab%expiqr,(2,nfgd))
call pawexpiqr(pawfgrtab%expiqr,gprimd,nfgd,qphon,pawfgrtab%rfgd,xred(:,iatom))
pawfgrtab%expiqr_allocated=2
end if
has_phase=(qne0.and.ipert>0.and.pawfgrtab%expiqr_allocated/=0)
!Init memory
dijhat=zero
ABI_ALLOCATE(prod,(cplex*lm_size))
ABI_ALLOCATE(dijhat_idij,(cplex*lmn2_size))
!----------------------------------------------------------
!Loop over spin components
!----------------------------------------------------------
nsploop=nsppol;if (ndij==4) nsploop=4
do idij=1,nsploop
if (idij<=nsppol.or.(nspden==4.and.idij<=3).or.cplex==2) then
idijend=idij+idij/3;if (cplex==2) idijend=idij
do ispden=idij,idijend
! ------------------------------------------------------
! Compute Int[V(r).g_l(r).Y_lm(r)]
! ------------------------------------------------------
! Note for non-collinear magnetism:
! We compute Int[V^(alpha,beta)(r).g_l(r).Y_lm(r)]
! Remember: if nspden=4, V is stored as : V^11, V^22, V^12, i.V^21
prod=zero
! ===== Standard case ============================
if (.not.has_phase) then
if (cplex==1) then
do ilslm=1,lm_size
do ic=1,nfgd
vr=Pot(pawfgrtab%ifftsph(ic),ispden)
prod(ilslm)=prod(ilslm)+vr*pawfgrtab%gylm(ic,ilslm)
end do
end do
else
ilslm1=1
do ilslm=1,lm_size
do ic=1,nfgd
jc=2*pawfgrtab%ifftsph(ic)
vr=Pot(jc-1,ispden);vi=Pot(jc,ispden)
prod(ilslm1 )=prod(ilslm1 )+vr*pawfgrtab%gylm(ic,ilslm)
prod(ilslm1+1)=prod(ilslm1+1)+vi*pawfgrtab%gylm(ic,ilslm)
end do
ilslm1=ilslm1+cplex
end do
end if
! ===== Including Exp(iqr) phase (DFPT only) =====
else
if (cplex==1) then
do ilslm=1,lm_size
do ic=1,nfgd
vr=Pot(pawfgrtab%ifftsph(ic),ispden)
prod(ilslm)=prod(ilslm)+vr*pawfgrtab%gylm(ic,ilslm)&
& *pawfgrtab%expiqr(1,ic)
end do
end do
else
ilslm1=1
do ilslm=1,lm_size
do ic=1,nfgd
jc=2*pawfgrtab%ifftsph(ic)
vr=Pot(jc-1,ispden);vi=Pot(jc,ispden)
prod(ilslm1 )=prod(ilslm1 )+pawfgrtab%gylm(ic,ilslm)&
& *(vr*pawfgrtab%expiqr(1,ic)-vi*pawfgrtab%expiqr(2,ic))
prod(ilslm1+1)=prod(ilslm1+1)+pawfgrtab%gylm(ic,ilslm)&
& *(vr*pawfgrtab%expiqr(2,ic)+vi*pawfgrtab%expiqr(1,ic))
end do
ilslm1=ilslm1+cplex
end do
end if
end if
! Scaling factor (unit volume)
prod=prod*ucvol/dble(ngridtot)
! Reduction in case of parallelism
if (xcomm_size(my_comm_grid)>1) then
call xmpi_sum(prod,my_comm_grid,ier)
end if
! ----------------------------------------------------------
! Compute Sum_(i,j)_LM { q_ij^L Int[V(r).g_l(r).Y_lm(r)] }
! ----------------------------------------------------------
! Note for non-collinear magnetism:
! We compute Sum_(i,j)_LM { q_ij^L Int[V^(alpha,beta)(r).g_l(r).Y_lm(r)] }
dijhat_idij=zero
if (cplex==1) then
do klmn=1,lmn2_size
klm =pawtab%indklmn(1,klmn)
lmin=pawtab%indklmn(3,klmn)
lmax=pawtab%indklmn(4,klmn)
do ils=lmin,lmax,2
lm0=ils**2+ils+1
do mm=-ils,ils
ilslm=lm0+mm;isel=pawang%gntselect(lm0+mm,klm)
if (isel>0) dijhat_idij(klmn)=dijhat_idij(klmn) &
& +prod(ilslm)*pawtab%qijl(ilslm,klmn)
end do
end do
end do
else
do klmn=1,lmn2_size
klmn1=2*klmn-1
klm =pawtab%indklmn(1,klmn)
lmin=pawtab%indklmn(3,klmn)
lmax=pawtab%indklmn(4,klmn)
do ils=lmin,lmax,2
lm0=ils**2+ils+1
do mm=-ils,ils
ilslm=lm0+mm;ilslm1=2*ilslm;isel=pawang%gntselect(lm0+mm,klm)
if (isel>0) dijhat_idij(klmn1:klmn1+1)=dijhat_idij(klmn1:klmn1+1) &
& +prod(ilslm1-1:ilslm1)*pawtab%qijl(ilslm,klmn)
end do
end do
end do
end if
! ----------------------------------------------------------
! Deduce some part of Dij according to symmetries
! ----------------------------------------------------------
if (cplex==1) then
if (ispden<3) then
if (cplex_dij==1) then
dijhat(1:lmn2_size,idij)=dijhat_idij(1:lmn2_size)
else
klmn1=1
do klmn=1,lmn2_size
dijhat(klmn1 ,idij)=dijhat_idij(klmn)
dijhat(klmn1+1,idij)=zero
klmn1=klmn1+cplex_dij
end do
end if
else
klmn1=max(1,ispden-2)
do klmn=1,lmn2_size
dijhat(klmn1,idij)=dijhat_idij(klmn)
klmn1=klmn1+cplex_dij
end do
end if
else !cplex=2
if (ispden<=3) then
dijhat(1:cplex*lmn2_size,idij)=dijhat_idij(1:cplex*lmn2_size)
else
klmn1=1 ! Remember V(4) contains i.V^21
do klmn=1,lmn2_size
dijhat(klmn1 ,idij)= dijhat_idij(klmn+1)
dijhat(klmn1+1,idij)=-dijhat_idij(klmn )
klmn1=klmn1+cplex_dij
end do
end if
end if
end do !ispden
else if (nspden==4.and.idij==4) then ! cplex=1 here
dijhat(:,idij)=dijhat(:,idij-1)
klmn1=2
do klmn=1,lmn2_size
dijhat(klmn1,idij)=-dijhat(klmn1,idij)
klmn1=klmn1+cplex_dij
end do
else if (nsppol==1.and.idij==2) then ! cplex=1 here
dijhat(:,idij)=dijhat(:,idij-1)
end if
!----------------------------------------------------------
!End loop on spin density components
end do
!Free temporary memory spaces
ABI_DEALLOCATE(prod)
ABI_DEALLOCATE(dijhat_idij)
if (pawfgrtab%gylm_allocated==2) then
ABI_DEALLOCATE(pawfgrtab%gylm)
ABI_ALLOCATE(pawfgrtab%gylm,(0,0))
pawfgrtab%gylm_allocated=0
end if
if (pawfgrtab%gylmgr_allocated==2) then
ABI_DEALLOCATE(pawfgrtab%gylmgr)
ABI_ALLOCATE(pawfgrtab%gylmgr,(0,0,0))
pawfgrtab%gylmgr_allocated=0
end if
if (pawfgrtab%expiqr_allocated==2) then
ABI_DEALLOCATE(pawfgrtab%expiqr)
ABI_ALLOCATE(pawfgrtab%expiqr,(0,0))
pawfgrtab%expiqr_allocated=0
end if
DBG_EXIT("COLL")
end subroutine pawdijhat
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawdiju
!! NAME
!! pawdiju
!!
!! FUNCTION
!! Compute the LDA+U contribution to the PAW pseudopotential strength Dij,
!! (for one atom only):
!! Dijpawu^{\sigma}_{mi,ni,mj,nj}=
!! \sum_{m,m'} [vpawu^{\sigma}_{m,m'}*phiphjint_{ni,nj}^{m,m'}]=
!! [vpawu^{\sigma}_{mi,mj}*phiphjint_{ni,nj}]
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (MT,FJ,BA)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! cplex_dij=1 if dij is REAL, 2 if complex (2 for spin-orbit)
!! ndij= number of spin components for Dij^hat
!! nspden=number of spin density components
!! nsppol=number of independent spin WF components
!! pawtab <type(pawtab_type)>=paw tabulated starting data, for current atom
!! vpawu(cplex_dij,lpawu*2+1,lpawu*2+1,nspden)=moments of LDA+U potential for current atom
!! --- Optional arguments ---
!! atvshift(natvshift,nsppol)=potential energy shift for lm channel & spin (current atom)
!! fatvshift=factor that multiplies atvshift
!! natvshift=number of atomic potential energy shifts (per atom)
!!
!! OUTPUT
!! dijpawu(cplex_dij*lmn2_size,ndij)= D_ij^XC terms
!!
!! PARENTS
!! m_pawdij
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawdiju(cplex_dij,dijpawu,ndij,nspden,nsppol,pawtab,vpawu,&
& natvshift,atvshift,fatvshift) ! optional arguments
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawdiju'
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: cplex_dij,ndij,nspden,nsppol
integer,intent(in),optional :: natvshift
real(dp),intent(in),optional :: fatvshift
!arrays
real(dp),intent(out) :: dijpawu(:,:)
real(dp),intent(in) :: vpawu(:,:,:,:)
real(dp),intent(in),optional :: atvshift(:,:)
type(pawtab_type),intent(in) :: pawtab
!Local variables ---------------------------------------
!scalars
integer :: icount,idij,idijeff,idijend,im1,im2,in1,in2,klmn,klmn1,lmax,lmin,lmn2_size
integer :: lpawu,natvshift_,nsploop
character(len=500) :: msg
!arrays
real(dp),allocatable :: coeffpawu(:),dijpawu_idij(:),dijsymU(:,:)
! *************************************************************************
DBG_ENTER("COLL")
!Useful data
lpawu=pawtab%lpawu
lmn2_size=pawtab%lmn2_size
natvshift_=0;if (present(natvshift)) natvshift_=natvshift
!Check data consistency
if (size(dijpawu,1)/=cplex_dij*lmn2_size.or.size(dijpawu,2)/=ndij) then
msg='invalid sizes for dijpawu !'
MSG_BUG(msg)
end if
if (size(vpawu,1)/=cplex_dij.or.size(vpawu,2)/=2*lpawu+1.or.&
& size(vpawu,3)/=2*lpawu+1.or.size(vpawu,4)/=nspden) then
msg='invalid sizes for vpawu !'
MSG_BUG(msg)
end if
if (natvshift_>0) then
if ((.not.present(atvshift)).or.(.not.present(fatvshift))) then
msg='when natvshift>0, atvshift and fatvshift arguments must be present !'
MSG_BUG(msg)
end if
if (size(atvshift,1)/=natvshift.or.size(atvshift,2)/=nsppol) then
msg='invalid sizes for atvshift !'
MSG_BUG(msg)
end if
end if
!Init memory
dijpawu=zero
ABI_ALLOCATE(dijpawu_idij,(cplex_dij*lmn2_size))
ABI_ALLOCATE(coeffpawu,(cplex_dij))
if (ndij==4) then
ABI_ALLOCATE(dijsymU,(cplex_dij*lmn2_size,4))
end if
!Loop over spin components
!----------------------------------------------------------
nsploop=nsppol;if (ndij==4) nsploop=4
do idij=1,nsploop
if (idij<=nsppol.or.(ndij==4.and.idij<=3)) then
idijend=idij+idij/3
do idijeff=idij,idijend ! if ndij==4, idijeff is used to compute updn and dnup contributions
dijpawu_idij=zero
! Loop over (l,m,n) moments
! ----------------------------------------------------------
klmn1=1
do klmn=1,lmn2_size
im1=pawtab%klmntomn(1,klmn)
im2=pawtab%klmntomn(2,klmn)
lmin=pawtab%indklmn(3,klmn)
lmax=pawtab%indklmn(4,klmn)
! Select l=lpawu
if (lmin==0.and.lmax==2*lpawu) then
! Check consistency
in1=pawtab%klmntomn(3,klmn)
in2=pawtab%klmntomn(4,klmn)
icount=in1+(in2*(in2-1))/2
if (pawtab%ij_proj<icount) then
msg='LDA+U: Problem while computing dijexxc !'
MSG_BUG(msg)
end if
! coeffpawu(:)=vpawu(:,im1,im2,idijeff) ! use real and imaginary part
coeffpawu(:)=vpawu(:,im2,im1,idijeff) ! because of transposition in setnoccmmp (for the cplex_dij==2)
if (natvshift_/=0.and.idij<3.and.im1==im2) then
coeffpawu(1)=coeffpawu(1)+fatvshift*atvshift(im1,idij)
end if
if (cplex_dij==1) then !cplex_dij=nspinor=1
dijpawu_idij(klmn1)=pawtab%phiphjint(icount)*coeffpawu(1) ! *dtset%userra
elseif (cplex_dij==2) then !cplex_dij=nspinor=2
dijpawu_idij(klmn1 )=pawtab%phiphjint(icount)*coeffpawu(1)
dijpawu_idij(klmn1+1)=pawtab%phiphjint(icount)*coeffpawu(2) ! spinor==2
end if
end if ! l selection
klmn1=klmn1+cplex_dij
end do ! klmn
dijpawu(:,idij)=dijpawu_idij(:)
if (ndij==4) dijsymU(:,idijeff)=dijpawu_idij(:)
end do ! idijeff
end if ! idij
if (nspden==4.or.ndij==4.or.cplex_dij==2) then
if (idij<=2) then
dijpawu(:,idij)=dijpawu(:,idij)
else
dijpawu(:,idij)=dijsymU(:,idij)
end if
end if
!End loop over spin components
!----------------------------------------------------------
end do
!Free temporary memory spaces
ABI_DEALLOCATE(dijpawu_idij)
ABI_DEALLOCATE(coeffpawu)
if (ndij==4) then
ABI_DEALLOCATE(dijsymU)
end if
DBG_EXIT("COLL")
end subroutine pawdiju
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawdijso
!! NAME
!! pawdijso
!!
!! FUNCTION
!! Compute the spin-orbit contribution to the PAW
!! pseudopotential strength Dij
!! (for one atom only)
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! cplex_dij=1 if dij is REAL, 2 if complex (2 for spin-orbit)
!! ndij= number of spin components for Dij^SO
!! nspden=number of spin density components
!! paw_an <type(paw_an_type)>=paw arrays given on angular mesh, for current atom
!! pawang <type(pawang_type)>=paw angular mesh and related data
!! pawrad <type(pawrad_type)>=paw radial mesh and related data, for current atom
!! pawtab <type(pawtab_type)>=paw tabulated starting data, for current atom
!! pawxcdev=Choice of XC development (0=no dev. (use of angular mesh) ; 1 or 2=dev. on moments)
!! spnorbscl=scaling factor for spin-orbit coupling
!! vh1(mesh_size,v_size,nspden)=all-electron on-site Hartree potential for current atom
!! only spherical moment is used
!! vxc1(mesh_size,v_size,nspden)=all-electron on-site XC potential for current atom
!! given on a (r,theta,phi) grid (v_size=angl_size)
!! or on (l,m) spherical moments (v_size=lm_size)
!!
!! OUTPUT
!! dijso(cplex_dij*lmn2_size,ndij)= spin-orbit Dij terms
!! cplex_dij=2 must be 2
!! dijso(:,:,1) contains Dij_SO^up-up
!! dijso(:,:,2) contains Dij_SO^dn-dn
!! dijso(:,:,3) contains Dij_SO^up-dn
!! dijso(:,:,4) contains Dij_SO^dn-up
!!
!! PARENTS
!! m_pawdij,pawdenpot
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawdijso(cplex_dij,dijso,ndij,nspden,&
& pawang,pawrad,pawtab,pawxcdev,spnorbscl,vh1,vxc1)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawdijso'
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: cplex_dij,ndij,nspden,pawxcdev
real(dp), intent(in) :: spnorbscl
type(pawang_type),intent(in) :: pawang
!arrays
real(dp),intent(out) :: dijso(:,:)
real(dp),intent(in) :: vh1(:,:,:),vxc1(:,:,:)
type(pawrad_type),intent(in) :: pawrad
type(pawtab_type),target,intent(in) :: pawtab
!Local variables ---------------------------------------
!scalars
integer :: angl_size,cplex,idij,ij_size,ilm,ipts,ispden,jlm,klm,klmn,klmn1,kln
integer :: lm_size,lmn2_size,mesh_size,nsploop
real(dp), parameter :: HalfFineStruct2=half/InvFineStruct**2
real(dp) :: fact
character(len=500) :: msg
!arrays
integer,ABI_CONTIGUOUS pointer :: indklmn(:,:)
real(dp),allocatable :: dijso_rad(:),dv1dr(:),ff(:)
! *************************************************************************
DBG_ENTER("COLL")
!Useful data
lm_size=pawtab%lcut_size**2
lmn2_size=pawtab%lmn2_size
ij_size=pawtab%ij_size
angl_size=pawang%angl_size
mesh_size=pawtab%mesh_size
indklmn => pawtab%indklmn
cplex=1 ! DijSO exists only for GS
nsploop=4
!Check data consistency
if (cplex_dij/=2) then
msg='cplex_dij must be 2 for spin-orbit coupling !'
MSG_BUG(msg)
end if
if (ndij/=4) then
msg='ndij must be 4 for spin-orbit coupling !'
MSG_BUG(msg)
end if
if (pawang%use_ls_ylm==0) then
msg='pawang%use_ls_ylm should be /=0 !'
MSG_BUG(msg)
end if
if (size(dijso,1)/=cplex_dij*lmn2_size.or.size(dijso,2)/=ndij) then
msg='invalid sizes for DijSO !'
MSG_BUG(msg)
end if
if (size(vh1,1)/=cplex*mesh_size.or.size(vh1,2)<1.or.size(vh1,3)<1) then
msg='invalid sizes for vh1 !'
MSG_BUG(msg)
end if
if (size(vxc1,1)/=cplex*mesh_size.or.size(vxc1,3)/=nspden.or.&
& (size(vxc1,2)/=angl_size.and.pawxcdev==0).or.&
& (size(vxc1,2)/=lm_size.and.pawxcdev/=0)) then
msg='invalid sizes for vxc1 !'
MSG_BUG(msg)
end if
!------------------------------------------------------------------------
!----------- Allocations and initializations
!------------------------------------------------------------------------
!Eventually compute <Phi_i|1/r.dV/dr|Phi_j>*alpha2/2*Y_00 (for spin-orbit)
ABI_ALLOCATE(dv1dr,(mesh_size))
ABI_ALLOCATE(dijso_rad,(ij_size))
ABI_ALLOCATE(ff,(mesh_size))
fact=one/sqrt(four_pi) ! Y_00
if (pawxcdev/=0) then
if (nspden==1) then
ff(1:mesh_size)=vxc1(1:mesh_size,1,1)
else
ff(1:mesh_size)=half*(vxc1(1:mesh_size,1,1)+vxc1(1:mesh_size,1,2))
end if
else
ff(1:mesh_size)=zero
if (nspden==1) then
do ipts=1,angl_size
ff(1:mesh_size)=ff(1:mesh_size) &
& +vxc1(1:mesh_size,ipts,1)*pawang%angwgth(ipts)
end do
else
do ipts=1,angl_size
ff(1:mesh_size)=ff(1:mesh_size) &
& +half*(vxc1(1:mesh_size,ipts,1)+vxc1(1:mesh_size,ipts,2)) &
& *pawang%angwgth(ipts)
end do
end if
ff(1:mesh_size)=sqrt(four_pi)*ff(1:mesh_size)
end if
ff(1:mesh_size)=fact*(ff(1:mesh_size)+vh1(1:mesh_size,1,1))
call nderiv_gen(dv1dr,ff,1,pawrad)
dv1dr(2:mesh_size)=HalfFineStruct2*(one/(one-ff(2:mesh_size)/InvFineStruct**2)) &
& *dv1dr(2:mesh_size)/pawrad%rad(2:mesh_size)
call pawrad_deducer0(dv1dr,mesh_size,pawrad)
do kln=1,ij_size
ff(1:mesh_size)= dv1dr(1:mesh_size)*pawtab%phiphj(1:mesh_size,kln)
call simp_gen(dijso_rad(kln),ff,pawrad)
end do
ABI_DEALLOCATE(dv1dr)
ABI_DEALLOCATE(ff)
dijso_rad(:)=spnorbscl*dijso_rad(:)
!------------------------------------------------------------------------
!----- Loop over density components
!------------------------------------------------------------------------
do idij=1,nsploop
! ------------------------------------------------------------------------
! ----- Computation of Dij_so
! ------------------------------------------------------------------------
klmn1=1
dijso(:,idij)=zero
if (mod(idij,2)==1) then
ispden=(1+idij)/2
do klmn=1,lmn2_size
if (indklmn(3,klmn)==0) then ! il==jl
klm=indklmn(1,klmn);kln=indklmn(2,klmn)
ilm=indklmn(5,klmn);jlm=indklmn(6,klmn)
fact=dijso_rad(kln);if (ilm>jlm) fact=-fact
dijso(klmn1 ,idij)=fact*pawang%ls_ylm(1,klm,ispden)
dijso(klmn1+1,idij)=fact*pawang%ls_ylm(2,klm,ispden)
end if
klmn1=klmn1+cplex_dij
end do
else if (idij==2) then
do klmn=1,lmn2_size
if (indklmn(3,klmn)==0) then ! il==jl
dijso(klmn1:klmn1+1,2)=-dijso(klmn1:klmn1+1,1)
end if
klmn1=klmn1+cplex_dij
end do
else if (idij==4) then
do klmn=1,lmn2_size
if (indklmn(3,klmn)==0) then ! il==jl
dijso(klmn1 ,4)=-dijso(klmn1 ,3)
dijso(klmn1+1,4)= dijso(klmn1+1,3)
end if
klmn1=klmn1+cplex_dij
end do
end if
! ----- End loop over idij
end do
ABI_DEALLOCATE(dijso_rad)
DBG_EXIT("COLL")
end subroutine pawdijso
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawdijexxc
!! NAME
!! pawdijexxc
!!
!! FUNCTION
!! Compute the local Exact-Exchange contribution to the PAW pseudopotential strength Dij,
!! using a potential expressed as (l,m) spherical moments
!! (for one atom only; only for correlated electrons):
!! D_ij^EXXC= < Phi_i|alpha*(VFock(correlated)-Vxc(n1_correlated)|Phi_j>
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (MT,FJ,BA)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! cplex=(RF calculations only) - 1 if RF 1st-order quantities are REAL, 2 if COMPLEX
!! cplex_dij=1 if dij is REAL, 2 if complex (2 for spin-orbit)
!! lmselect(lm_size)=select the non-zero LM-moments of on-site potentials
!! ndij= number of spin components for Dij^hat
!! nspden=number of spin density components
!! nsppol=number of independent spin WF components
!! pawang <type(pawang_type)>=paw angular mesh and related data
!! pawrad <type(pawrad_type)>=paw radial mesh and related data, for current atom
!! pawtab <type(pawtab_type)>=paw tabulated starting data, for current atom
!! vpawx(1,lmn2_size,nspden)=moments of exact exchange potential
!! for current atom and for correlated electrons
!! vxc_ex(mesh_size,lm_size,nspden)=all-electron on-site XC potential for current atom
!! taken into account only valence correlated electrons
!!
!! OUTPUT
!! dijexxc(cplex_dij*lmn2_size,ndij)= D_ij^XC terms
!!
!! NOTES
!! cplex is for RF, cplex_dij is for non-collinear (nspinor==2)
!!
!! PARENTS
!! m_pawdij
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawdijexxc(cplex,cplex_dij,dijexxc,lmselect,ndij,nspden,nsppol,&
& pawang,pawrad,pawtab,vpawx,vxc_ex)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawdijexxc'
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: cplex,cplex_dij,ndij,nspden,nsppol
type(pawang_type),intent(in) :: pawang
!arrays
logical :: lmselect(:)
real(dp),intent(in) :: vpawx(:,:,:),vxc_ex(:,:,:)
real(dp),intent(out) :: dijexxc(:,:)
type(pawrad_type),intent(in) :: pawrad
type(pawtab_type),intent(in) :: pawtab
!Local variables ---------------------------------------
!scalars
integer :: icount,idij,idijend,ij_size,iln,in1,in2,ir,ir1,isel,ispden
integer :: jln,j0ln,klm,klm1,klmn,klmn1,kln,lexexch,ln_min,ln_max,lmax,lmin
integer :: lm_size,lmn2_size,mesh_size,nsploop
character(len=500) :: msg
!arrays
real(dp),allocatable :: dijexxc_idij(:),ff(:),gg(:),vxcij1(:)
! *************************************************************************
DBG_ENTER("COLL")
!Useful data
lm_size=pawtab%lcut_size**2
lmn2_size=pawtab%lmn2_size
ij_size=pawtab%ij_size
mesh_size=pawtab%mesh_size
lexexch=pawtab%lexexch
ln_min=pawtab%lnproju(1)
ln_max=pawtab%lnproju(pawtab%nproju)
!Check data consistency
if (size(dijexxc,1)/=cplex_dij*lmn2_size.or.size(dijexxc,2)/=ndij) then
msg='invalid sizes for dijexxc !'
MSG_BUG(msg)
end if
if (size(lmselect)/=lm_size) then
msg='invalid size for lmselect !'
MSG_BUG(msg)
end if
if (size(vxc_ex,1)/=cplex*mesh_size.or.size(vxc_ex,2)/=lm_size.or.&
& size(vxc_ex,3)/=nspden) then
msg='invalid sizes for vxc_ex !'
MSG_BUG(msg)
end if
if (size(vpawx,1)/=1.or.size(vpawx,2)/=lmn2_size.or.&
& size(vpawx,3)/=nspden) then
msg='invalid sizes for vpawx !'
MSG_BUG(msg)
end if
if (cplex_dij<cplex) then
msg='cplex_dij must be >= cplex !'
MSG_BUG(msg)
end if
!Init memory
dijexxc=zero
ABI_ALLOCATE(dijexxc_idij,(cplex*lmn2_size))
ABI_ALLOCATE(vxcij1,(cplex*ij_size))
ABI_ALLOCATE(ff,(mesh_size))
ABI_ALLOCATE(gg,(mesh_size))
!----------------------------------------------------------
!Loop over spin components
!----------------------------------------------------------
nsploop=nsppol;if (ndij==4) nsploop=4
do idij=1,nsploop
if (idij<=nsppol.or.(nspden==4.and.idij<=3).or.cplex==2) then
idijend=idij+idij/3;if (cplex==2) idijend=idij
do ispden=idij,idijend
dijexxc_idij=zero
! ----------------------------------------------------------
! Summing over (l,m) moments
! ----------------------------------------------------------
do klm=1,lm_size
if (lmselect(klm)) then
! ===== Vxc_ij_1 (tmp) =====
vxcij1=zero
if (cplex==1) then
do jln=ln_min,ln_max
j0ln=jln*(jln-1)/2
do iln=ln_min,jln
kln=j0ln+iln
ff(1:mesh_size)= &
& vxc_ex(1:mesh_size,klm,idij)*pawtab%phiphj(1:mesh_size,kln)
call simp_gen(vxcij1(kln),ff,pawrad)
end do
end do
else
do jln=ln_min,ln_max
j0ln=jln*(jln-1)/2
do iln=ln_min,jln
kln=j0ln+iln
do ir=1,mesh_size
ir1=2*ir
ff(ir)= &
& vxc_ex(ir1-1,klm,ispden)*pawtab%phiphj(ir,kln)
gg(ir)= &
& vxc_ex(ir1,klm,ispden)*pawtab%phiphj(ir,kln)
end do
call simp_gen(vxcij1(2*kln-1),ff,pawrad)
call simp_gen(vxcij1(2*kln ),gg,pawrad)
end do
end do
end if
! ===== Accumulate Vxc_ij_1 over klm moments =====
if (cplex==1) then
do klmn=1,lmn2_size
lmin=pawtab%indklmn(3,klmn)
lmax=pawtab%indklmn(4,klmn)
if (lmin==0.and.lmax==2*lexexch) then
klm1=pawtab%indklmn(1,klmn)
kln=pawtab%indklmn(2,klmn)
isel=pawang%gntselect(klm,klm1)
if (isel>0) dijexxc_idij(klmn)=dijexxc_idij(klmn) &
& +vxcij1(kln)*pawang%realgnt(isel)
end if
end do ! Loop klmn
else ! cplex==2
klmn1=1
do klmn=1,lmn2_size
lmin=pawtab%indklmn(3,klmn)
lmax=pawtab%indklmn(4,klmn)
if (lmin==0.and.lmax==2*lexexch) then
klm1=pawtab%indklmn(1,klmn)
kln=pawtab%indklmn(2,klmn)
isel=pawang%gntselect(klm,klm1)
if (isel>0) then
dijexxc_idij(klmn1 )=dijexxc_idij(klmn1) &
& +vxcij1(2*kln-1)*pawang%realgnt(isel)
dijexxc_idij(klmn1+1)=dijexxc_idij(klmn1+1) &
& +vxcij1(2*kln )*pawang%realgnt(isel)
end if
end if
klmn1=klmn1+cplex
end do ! Loop klmn
end if
end if ! lmselect
end do ! Loop klm
! Mix Hartree and GGA terms
if (cplex==1) then
do klmn=1,lmn2_size
lmin=pawtab%indklmn(3,klmn)
lmax=pawtab%indklmn(4,klmn)
if (lmin==0.and.lmax==2*lexexch) then
in1=pawtab%klmntomn(3,klmn)
in2=pawtab%klmntomn(4,klmn)
icount=in1+(in2*(in2-1))/2
if(pawtab%ij_proj<icount) then
msg='PAW local exact-exchange: Problem while computing dijexxc !'
MSG_BUG(msg)
end if
dijexxc_idij(klmn)=pawtab%exchmix &
& *(vpawx(1,klmn,idij)-dijexxc_idij(klmn))
end if
end do
else ! cplex=2
klmn1=1
do klmn=1,lmn2_size
lmin=pawtab%indklmn(3,klmn)
lmax=pawtab%indklmn(4,klmn)
if (lmin==0.and.lmax==2*lexexch) then
in1=pawtab%klmntomn(3,klmn)
in2=pawtab%klmntomn(4,klmn)
icount=in1+(in2*(in2-1))/2
if(pawtab%ij_proj<icount) then
msg='PAW local exact-exchange: Problem while computing dijexxc !'
MSG_BUG(msg)
end if
dijexxc_idij(klmn1) =pawtab%exchmix &
& *(vpawx(1,klmn,idij)-dijexxc_idij(klmn1))
dijexxc_idij(klmn1+1)=pawtab%exchmix &
& *(vpawx(1,klmn,idij)-dijexxc_idij(klmn1+1))
end if
klmn1=klmn1+cplex
end do ! Loop klmn
end if
! ----------------------------------------------------------
! Deduce some part of Dij according to symmetries
! ----------------------------------------------------------
if (cplex==1) then
if (ispden<3) then
if (cplex_dij==1) then
dijexxc(1:lmn2_size,idij)=dijexxc_idij(1:lmn2_size)
else
klmn1=1
do klmn=1,lmn2_size
dijexxc(klmn1 ,idij)=dijexxc_idij(klmn)
dijexxc(klmn1+1,idij)=zero
klmn1=klmn1+cplex_dij
end do
end if
else
klmn1=max(1,ispden-2)
do klmn=1,lmn2_size
dijexxc(klmn1,idij)=dijexxc_idij(klmn)
klmn1=klmn1+cplex_dij
end do
end if
else !cplex=2
if (ispden<=3) then
dijexxc(1:cplex*lmn2_size,idij)=dijexxc_idij(1:cplex*lmn2_size)
else
klmn1=1 ! Remember V(4) contains i.V^21
do klmn=1,lmn2_size
dijexxc(klmn1 ,idij)= dijexxc_idij(klmn+1)
dijexxc(klmn1+1,idij)=-dijexxc_idij(klmn )
klmn1=klmn1+cplex_dij
end do
end if
end if
end do !ispden
else if (nspden==4.and.idij==4) then ! cplex=1 here
dijexxc(:,idij)=dijexxc(:,idij-1)
klmn1=2
do klmn=1,lmn2_size
dijexxc(klmn1,idij)=-dijexxc(klmn1,idij)
klmn1=klmn1+cplex_dij
end do
else if (nsppol==1.and.idij==2) then ! cplex=1 here
dijexxc(:,idij)=dijexxc(:,idij-1)
end if
!----------------------------------------------------------
!End loop on spin density components
end do
!Free temporary memory spaces
ABI_DEALLOCATE(dijexxc_idij)
ABI_DEALLOCATE(vxcij1)
ABI_DEALLOCATE(ff)
ABI_DEALLOCATE(gg)
DBG_EXIT("COLL")
end subroutine pawdijexxc
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawdijfr
!!
!! NAME
!! pawdijfr
!!
!! FUNCTION
!! PAW, Response Function only:
!! Compute frozen part of psp strength Dij due to 1st-order compensation density
!! and first order local potential:
!! Dijfr =Int_R^3{vtrial*Sum_LM[Q_ij_q^LM^(1)] + Vloc^(1)*Sum_LM[Q_ij_q^LM]}
!! Depends on q wave vector but not on first-order wave-function.
!!
!! COPYRIGHT
!! Copyright (C) 2012-2014 ABINIT group (MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.
!!
!! INPUTS
!! cplex: if 1, real space 1-order functions on FFT grid are REAL; if 2, COMPLEX
!! gprimd(3,3)=dimensional primitive translations for reciprocal space
!! idir=direction of atomic displacement (in case of phonons perturb.)
!! ipert=nindex of perturbation
!! mpi_atmtab(:)=--optional-- indexes of the atoms treated by current proc
!! mpi_comm_atom=--optional-- MPI communicator over atoms
!! mpi_comm_grid=--optional-- MPI communicator over real space grid components
!! my_natom=number of atoms treated by current processor
!! natom=total number of atoms in cell
!! nfft=(effective) number of FFT grid points (for this processor)
!! nspden=number of spin-density components
!! ntypat=number of types of atoms
!! option=0: computes full frozen part of Dij
!! 1: computes frozen part of Dij without contribution from Vpsp1
!! pawang <type(pawang_type)>=paw angular mesh and related data
!! pawfgrtab(my_natom) <type(pawfgrtab_type)>=atomic data given on fine rectangular grid
!! pawrad(ntypat*usepaw) <type(pawrad_type)>=paw radial mesh and related data
!! pawtab(ntypat) <type(pawtab_type)>=paw tabulated starting data
!! qphon(3)=wavevector of the phonon
!! rprimd(3,3)=dimensional primitive translations for real space
!! ucvol=unit cell volume (bohr^3)
!! vpsp1(cplex*nfft)= first-order change of local potential
!! vtrial(nfft,nspden)= total GS potential
!! vxc(nfft,nspden)=XC potential
!! xred(3,my_natom)= reduced atomic coordinates
!!
!! OUTPUT
!! paw_ij1(iatom)%dijfr(cplex_dij*lmn2_size,nspden)=
!! frozen contribution to psp strength Dij
!! =Int_R^3{vtrial*Sum_LM[Q_ij_q^LM^(1)] + Vloc^(1)*Sum_LM[Q_ij_q^LM]}
!!
!! PARENTS
!! d2frnl,nstpaw3,rhofermi3,scfcv3
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawdijfr(cplex,gprimd,idir,ipert,my_natom,natom,nfft,ngfft,nspden,ntypat,&
& option,paw_ij1,pawang,pawfgrtab,pawrad,pawtab,qphon,rprimd,ucvol,vpsp1,vtrial,vxc,xred,&
& mpi_atmtab,mpi_comm_atom,mpi_comm_grid) ! optional arguments (parallelism)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawdijfr'
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(in) :: cplex,idir,ipert,my_natom,natom,nfft,nspden,ntypat,option
integer,optional,intent(in) :: mpi_comm_atom,mpi_comm_grid
real(dp),intent(in) :: ucvol
type(pawang_type),intent(in) :: pawang
!arrays
integer,intent(in) :: ngfft(18)
integer,optional,target,intent(in) :: mpi_atmtab(:)
real(dp),intent(in) :: gprimd(3,3),qphon(3),rprimd(3,3)
real(dp),intent(in) :: vpsp1(cplex*nfft),vtrial(nfft,nspden),vxc(nfft,nspden)
real(dp),intent(in) :: xred(3,natom)
type(paw_ij_type),intent(inout) :: paw_ij1(my_natom)
type(pawfgrtab_type),intent(inout) :: pawfgrtab(my_natom)
type(pawrad_type),intent(in) :: pawrad(ntypat)
type(pawtab_type),intent(in) :: pawtab(ntypat)
!Local variables-------------------------------
!scalars
integer :: dplex,iatom,iatom_tot,ic,ier,ils,ilslm,isel,ispden,istr,itypat,jc
integer :: klm,klmn,klmn1,kln,lm_size,lmn2_size,lm0,lmax,lmin,mesh_size
integer :: mm,my_comm_atom,my_comm_grid,mu,mua,mub,nfftot,nfgd,optgr0,optgr1,optgr2,usexcnhat
logical :: has_phase,my_atmtab_allocated,need_dijfr_1,need_dijfr_2,need_dijfr_3,need_dijfr_4
logical :: paral_atom,qne0,testdij1,testdij2,testdij3
real(dp) :: c1,fact,intg,rg1
!arrays
integer,parameter :: m_index(3)=(/1,-1,0/)
integer,pointer :: my_atmtab(:)
integer,parameter :: alpha(9)=(/1,2,3,3,3,2,2,1,1/),beta(9)=(/1,2,3,2,1,1,3,3,2/)
real(dp) :: contrib(2)
real(dp),allocatable :: ff(:),intv(:,:),intvloc(:,:),intv_tmp(:,:),rg(:),vloc(:,:)
! *************************************************************************
DBG_ENTER("COLL")
!Nothing to be done for DDK
if (ipert==natom+1) return
!Set up parallelism over atoms
paral_atom=(present(mpi_comm_atom).and.(my_natom/=natom))
nullify(my_atmtab);if (present(mpi_atmtab)) my_atmtab => mpi_atmtab
my_comm_atom=xmpi_self;if (present(mpi_comm_atom)) my_comm_atom=mpi_comm_atom
my_comm_grid=xmpi_self;if (present(mpi_comm_grid)) my_comm_grid=mpi_comm_grid
call get_my_atmtab(my_comm_atom,my_atmtab,my_atmtab_allocated,paral_atom,natom,my_natom_ref=my_natom)
!Compatibility tests
qne0=(qphon(1)**2+qphon(2)**2+qphon(3)**2>=1.d-15)
if (my_natom>0) then
if (paw_ij1(1)%cplex_dij<cplex) then
MSG_BUG('paw_ij1()%cplex_dij must be >=cplex !')
end if
if (paw_ij1(1)%cplex/=cplex) then
MSG_BUG('paw_ij1()%cplex and cplex must be equal !')
end if
if (paw_ij1(1)%has_dijfr==0) then
MSG_BUG('pawdij1()%dijfr must be allocated !')
end if
testdij1=(ipert<=natom.and.option==0.and.pawfgrtab(1)%gylm_allocated==0)
testdij2=(ipert<=natom.and.pawfgrtab(1)%gylmgr_allocated==0)
testdij3=(testdij2.and.qne0.and.pawfgrtab(1)%expiqr_allocated==0)
if ((testdij1.or.testdij2.or.testdij3).and.pawfgrtab(1)%rfgd_allocated==0) then
MSG_BUG('pawfgrtab()%rfgd array must be allocated !')
end if
end if
!Get correct index of strain pertubation
if (ipert==natom+3) istr = idir
if (ipert==natom+4) istr = idir + 3
!Some inits
usexcnhat=maxval(pawtab(1:ntypat)%usexcnhat)
nfftot=ngfft(1)*ngfft(2)*ngfft(3)
fact=ucvol/dble(nfftot)
dplex=cplex-1
!Loops over atoms
do iatom=1,my_natom
iatom_tot=iatom;if (paral_atom) iatom_tot=my_atmtab(iatom)
! Select which part of Dijfr to compute
need_dijfr_1=(ipert==iatom_tot.and.paw_ij1(iatom)%has_dijfr==1)
need_dijfr_2=(ipert<=natom.and.paw_ij1(iatom)%has_dijfr==1.and.(option==0))
need_dijfr_3=((ipert==natom+2).and.paw_ij1(iatom)%has_dijfr==1)
need_dijfr_4=((ipert==natom+3.or.ipert==natom+4).and.paw_ij1(iatom)%has_dijfr==1)
if ((.not.need_dijfr_1).and.(.not.need_dijfr_2).and.(.not.need_dijfr_3).and.(.not.need_dijfr_4)) then
if (paw_ij1(iatom)%has_dijfr>0) then
paw_ij1(iatom)%dijfr=zero ; paw_ij1(iatom)%has_dijfr=2
end if
cycle
end if
! Some atom-dependent quantities
itypat=pawfgrtab(iatom)%itypat
lm_size=pawtab(itypat)%lcut_size**2
lmn2_size=pawtab(itypat)%lmn2_size
! Eventually compute g_l(r).Y_lm(r) factors for the current atom (if not already done)
nfgd=0
if (need_dijfr_1.or.need_dijfr_2.or.need_dijfr_4) then
nfgd=pawfgrtab(iatom)%nfgd
if (((need_dijfr_2.or.need_dijfr_4).and.(pawfgrtab(iatom)%gylm_allocated==0)).or.&
& ((need_dijfr_1).and.(pawfgrtab(iatom)%gylmgr_allocated==0))) then
optgr0=0;optgr1=0;optgr2=0
if ((need_dijfr_2.or. need_dijfr_4).and.(pawfgrtab(iatom)%gylm_allocated==0)) then
if (allocated(pawfgrtab(iatom)%gylm)) then
ABI_DEALLOCATE(pawfgrtab(iatom)%gylm)
end if
ABI_ALLOCATE(pawfgrtab(iatom)%gylm,(nfgd,lm_size))
pawfgrtab(iatom)%gylm_allocated=2;optgr0=1
end if
if ((need_dijfr_1).and.(pawfgrtab(iatom)%gylmgr_allocated==0)) then
if (allocated(pawfgrtab(iatom)%gylmgr)) then
ABI_DEALLOCATE(pawfgrtab(iatom)%gylmgr)
end if
ABI_ALLOCATE(pawfgrtab(iatom)%gylmgr,(3,nfgd,lm_size))
pawfgrtab(iatom)%gylmgr_allocated=2;optgr1=1
end if
if (optgr0+optgr1+optgr2>0) then
call pawgylm(pawfgrtab(iatom)%gylm,pawfgrtab(iatom)%gylmgr,pawfgrtab(iatom)%gylmgr2,&
& lm_size,nfgd,optgr0,optgr1,optgr2,pawtab(itypat),pawfgrtab(iatom)%rfgd)
end if
end if
end if
! Eventually compute exp(-i.q.r) factors for the current atom (if not already done)
has_phase=.false.
if (need_dijfr_2) then
if (qne0.and.(pawfgrtab(iatom)%expiqr_allocated==0)) then
if (allocated(pawfgrtab(iatom)%expiqr)) then
ABI_DEALLOCATE(pawfgrtab(iatom)%expiqr)
end if
ABI_ALLOCATE(pawfgrtab(iatom)%expiqr,(2,nfgd))
call pawexpiqr(pawfgrtab(iatom)%expiqr,gprimd,nfgd,qphon,&
& pawfgrtab(iatom)%rfgd,xred(:,iatom_tot))
pawfgrtab(iatom)%expiqr_allocated=2
end if
has_phase=(pawfgrtab(iatom)%expiqr_allocated/=0)
end if
! Loop over spin components
do ispden=1,nspden
! ============ Phonons ====================================
if (ipert<=natom) then
if (need_dijfr_1.or.need_dijfr_2) then
ABI_ALLOCATE(intv,(cplex,lm_size))
intv(:,:)=zero
! First part: Int_R^3{vtrial*Sum_LM[Q_ij_q^LM^(1)]}
if (need_dijfr_1) then
! ----- Retrieve potential Vlocal (subtle if nspden=4 ;-)
if (nspden/=4) then
ABI_ALLOCATE(vloc,(1,nfgd))
if (usexcnhat==0) then
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
vloc(1,ic)=vtrial(jc,ispden)-vxc(jc,ispden)
end do
else
do ic=1,nfgd
vloc(1,ic)=vtrial(pawfgrtab(iatom)%ifftsph(ic),ispden)
end do
end if
else ! nspden/=4
ABI_ALLOCATE(vloc,(2,nfgd))
if (ispden<=2) then
if (usexcnhat==0) then
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
vloc(1,ic)=vtrial(jc,ispden)-vxc(jc,ispden)
vloc(2,ic)=zero
end do
else
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
vloc(1,ic)=vtrial(jc,ispden)
vloc(2,ic)=zero
end do
end if
else if (ispden==3) then
if (usexcnhat==0) then
vloc(:,:)=zero
else
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
vloc(1,ic)=vtrial(jc,3)
vloc(2,ic)=vtrial(jc,4)
end do
end if
else ! ispden=4
vloc(2,1:nfgd)=-vloc(2,1:nfgd)
end if
end if
! ----- Compute Integral [ Vtrial(r).(g_l(r).Y_lm(r))^(1) dr ]
ABI_ALLOCATE(intv_tmp,(cplex,3))
do ilslm=1,lm_size
intv_tmp=zero
if (nspden/=4) then
do ic=1,nfgd
do mu=1,3
! Minus sign because dg(r-R)/dR = -dg(r-R)/dr
contrib(1)=-vloc(1,ic)*pawfgrtab(iatom)%gylmgr(mu,ic,ilslm)
intv_tmp(1,mu)=intv_tmp(1,mu)+contrib(1)
end do
end do
else ! nspden=4
do ic=1,nfgd
do mu=1,3
! Minus sign because dg(r-R)/dR = -dg(r-R)/dr
contrib(1:2)=-vloc(1:2,ic)*pawfgrtab(iatom)%gylmgr(mu,ic,ilslm)
intv_tmp(1:2,mu)=intv_tmp(1:2,mu)+contrib(1:2)
end do
end do
end if
! Convert from cartesian to reduced coordinates
intv(1:cplex,ilslm)=intv(1:cplex,ilslm) &
& +(rprimd(1,idir)*intv_tmp(1:cplex,1) &
& +rprimd(2,idir)*intv_tmp(1:cplex,2) &
& +rprimd(3,idir)*intv_tmp(1:cplex,3))
end do
ABI_DEALLOCATE(vloc)
ABI_DEALLOCATE(intv_tmp)
end if ! need_dijfr_1
! 2nd part: Int_R^3{Vloc^(1)*Sum_LM[Q_ij_q^LM]}
if (need_dijfr_2) then
if (ispden==1) then
! ----- Retrieve potential Vloc^(1)
ABI_ALLOCATE(vloc,(cplex,nfgd))
do ic=1,nfgd
jc=cplex*pawfgrtab(iatom)%ifftsph(ic)-dplex
vloc(1:cplex,ic)=vpsp1(jc:jc+dplex)
end do
! ----- Compute Integral [ Vloc^(1)(r).g_l(r).Y_lm(r) ]
ABI_ALLOCATE(intvloc,(cplex,lm_size))
intvloc=zero
if (has_phase) then
if (cplex==1) then
do ilslm=1,lm_size
do ic=1,nfgd
contrib(1)=vloc(1,ic)*pawfgrtab(iatom)%gylm(ic,ilslm)
intvloc(1,ilslm)=intvloc(1,ilslm)+contrib(1)*pawfgrtab(iatom)%expiqr(1,ic)
end do
end do
else
do ilslm=1,lm_size
do ic=1,nfgd
contrib(1:cplex)=vloc(1:cplex,ic)*pawfgrtab(iatom)%gylm(ic,ilslm)
intvloc(1,ilslm)=intvloc(1,ilslm)+contrib(1)*pawfgrtab(iatom)%expiqr(1,ic) &
& -contrib(2)*pawfgrtab(iatom)%expiqr(2,ic)
intvloc(2,ilslm)=intvloc(2,ilslm)+contrib(1)*pawfgrtab(iatom)%expiqr(2,ic) &
& +contrib(2)*pawfgrtab(iatom)%expiqr(1,ic)
end do
end do
end if
else ! no phase
do ilslm=1,lm_size
do ic=1,nfgd
contrib(1:cplex)=vloc(1:cplex,ic)*pawfgrtab(iatom)%gylm(ic,ilslm)
intvloc(1:cplex,ilslm)=intvloc(1:cplex,ilslm)+contrib(1:cplex)
end do
end do
end if
ABI_DEALLOCATE(vloc)
end if ! ispden=1
if (ispden<=min(nspden,2)) then
intv(1:cplex,1:lm_size)=intv(1:cplex,1:lm_size)+intvloc(1:cplex,1:lm_size)
if (ispden==min(nspden,2)) then
ABI_DEALLOCATE(intvloc)
end if
end if
end if ! need_dijfr_2
! Apply ucvol/nfft factor on integral
intv(:,:)=fact*intv(:,:)
! --- Reduction in case of parallelization ---
call xmpi_sum(intv,my_comm_grid,ier)
paw_ij1(iatom)%dijfr(:,ispden)=zero
! ---- Loop over (i,j) components
klmn1=1
do klmn=1,lmn2_size
klm =pawtab(itypat)%indklmn(1,klmn)
lmin=pawtab(itypat)%indklmn(3,klmn)
lmax=pawtab(itypat)%indklmn(4,klmn)
do ils=lmin,lmax,2
lm0=ils**2+ils+1
do mm=-ils,ils
ilslm=lm0+mm;isel=pawang%gntselect(lm0+mm,klm)
if (isel>0) then
paw_ij1(iatom)%dijfr(klmn1:klmn1+dplex,ispden)= &
& paw_ij1(iatom)%dijfr(klmn1:klmn1+dplex,ispden) &
& +pawtab(itypat)%qijl(ilslm,klmn)*intv(1:cplex,ilslm)
end if
end do
end do
klmn1=klmn1+paw_ij1(iatom)%cplex_dij
end do
ABI_DEALLOCATE(intv)
! Dijfr is marked as computed
paw_ij1(iatom)%has_dijfr=2
end if
! ============ Electric field perturbation =======================
else if (ipert==natom+2) then
if (need_dijfr_3) then
! The following factor arises in expanding the angular dependence of the dipole
! vector in terms of real spherical harmonics. The real spherical harmonics are as
! in the routine initylmr.F90;
! see http://www.unioviedo.es/qcg/art/Theochem419-19-ov-BF97-rotation-matrices.pdf
c1 = sqrt(four_pi/three)
mesh_size=pawrad(itypat)%mesh_size
if (ispden==1) then
ABI_ALLOCATE(ff,(mesh_size))
ABI_ALLOCATE(rg,(3))
! loop over basis state pairs for this atom
klmn1=1
do klmn = 1, paw_ij1(iatom)%lmn2_size
klm =pawtab(itypat)%indklmn(1,klmn)
kln =pawtab(itypat)%indklmn(2,klmn)
lmin=pawtab(itypat)%indklmn(3,klmn)
lmax=pawtab(itypat)%indklmn(4,klmn)
! Select only l=1, because the dipole is a vector operator
if (lmin==1) then
lm0=3 ! (l^2+l+1) for l=1
! Computation of <phi_i|r|phi_j>- <tphi_i|r|tphi_j>
! the dipole vector has radial dependence r
ff(1:mesh_size)=(pawtab(itypat)%phiphj(1:mesh_size,kln)&
& -pawtab(itypat)%tphitphj(1:mesh_size,kln))&
& *pawrad(itypat)%rad(1:mesh_size)
! call pawrad_deducer0(ff,mesh_size,pawrad(itypat))
call simp_gen(intg,ff,pawrad(itypat))
! Compute <S_li_mi|r-R|S_lj_mj>: use a real Gaunt expression (with selection rule)
rg(1:3)=zero
do ic=1,3
isel=pawang%gntselect(lm0+m_index(ic),klm)
if (isel>0) rg(ic)=pawang%realgnt(isel)
end do
! Translate from cartesian to reduced coordinates (in idir direction)
rg1=gprimd(1,idir)*rg(1)+gprimd(2,idir)*rg(2)+gprimd(3,idir)*rg(3)
! Build sqrt(4pi/3).<S_li_mi|r-R|S_lj_mj>.(<phi_i|r-R|phi_j>- <tphi_i|r-R|tphi_j>
paw_ij1(iatom)%dijfr(klmn1,ispden)=c1*rg1*intg
if (cplex==2) paw_ij1(iatom)%dijfr(klmn1+1,ispden)=zero
else
paw_ij1(iatom)%dijfr(klmn1,ispden)=zero
end if ! end gaunt constraint
klmn1=klmn1+paw_ij1(iatom)%cplex_dij
end do ! end loop over lmn2_size pairs of basis states
ABI_DEALLOCATE(ff)
ABI_DEALLOCATE(rg)
! Dijfr is spin-independent for electric field case
else if (ispden==2) then
paw_ij1(iatom)%dijfr(:,ispden)=paw_ij1(iatom)%dijfr(:,1)
else
paw_ij1(iatom)%dijfr(:,ispden)=zero
end if
! Dijfr is marked as computed
paw_ij1(iatom)%has_dijfr=2
end if
! ============ Elastic tensor ===============================
else if (ipert==natom+3.or.ipert==natom+4) then
! ----- Retrieve potential Vlocal (subtle if nspden=4 ;-)
if (nspden/=4) then
ABI_ALLOCATE(vloc,(1,nfgd))
if (usexcnhat==0) then
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
vloc(1,ic)=vtrial(jc,ispden)-vxc(jc,ispden)
end do
else
do ic=1,nfgd
vloc(1,ic)=vtrial(pawfgrtab(iatom)%ifftsph(ic),ispden)
end do
end if
else ! nspden/=4
ABI_ALLOCATE(vloc,(2,nfgd))
if (ispden<=2) then
if (usexcnhat==0) then
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
vloc(1,ic)=vtrial(jc,ispden)-vxc(jc,ispden)
vloc(2,ic)=zero
end do
else
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
vloc(1,ic)=vtrial(jc,ispden)
vloc(2,ic)=zero
end do
end if
else if (ispden==3) then
if (usexcnhat==0) then
vloc(:,:)=zero
else
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
vloc(1,ic)=vtrial(jc,3)
vloc(2,ic)=vtrial(jc,4)
end do
end if
else ! ispden=4
vloc(2,1:nfgd)=-vloc(2,1:nfgd)
end if
end if
ABI_ALLOCATE(intv,(cplex,lm_size))
intv(:,:)=zero
! option = 0 Insulator case
if(option==0)then
do ilslm=1,lm_size
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
contrib(1) = 0
! Int_R^3{vtrial*Sum_LM[Q_ij_q^LM^(1)]}
mua=alpha(istr);mub=beta(istr)
contrib(1)=contrib(1)+half*vloc(1,ic)&
& *(pawfgrtab(iatom)%gylmgr(mua,ic,ilslm)*pawfgrtab(iatom)%rfgd(mub,ic)&
& + pawfgrtab(iatom)%gylmgr(mub,ic,ilslm)*pawfgrtab(iatom)%rfgd(mua,ic))
! Int_R^3{Vloc^(1)*Sum_LM[Q_ij_q^LM]}
contrib(1)=contrib(1)+vpsp1(jc)*pawfgrtab(iatom)%gylm(ic,ilslm)
! delta_{alphabeta}Int_R^3{Vloc*Sum_LM[Q_ij_q^LM]}
if(istr<=3)then
contrib(1)=contrib(1)+vloc(1,ic)*pawfgrtab(iatom)%gylm(ic,ilslm)
end if
intv(1,ilslm)=intv(1,ilslm)+contrib(1)
end do
end do
! option = 1 Metal case (without Vpsp1)
else if (option==1)then
do ilslm=1,lm_size
do ic=1,nfgd
jc=pawfgrtab(iatom)%ifftsph(ic)
contrib(1) = 0
! Int_R^3{vtrial*Sum_LM[Q_ij_q^LM^(1)]}
mua=alpha(istr);mub=beta(istr)
contrib(1)=contrib(1)+half*vloc(1,ic)&
& *(pawfgrtab(iatom)%gylmgr(mua,ic,ilslm)*pawfgrtab(iatom)%rfgd(mub,ic)&
& + pawfgrtab(iatom)%gylmgr(mub,ic,ilslm)*pawfgrtab(iatom)%rfgd(mua,ic))
! delta_{alphabeta}Int_R^3{Vtrial*Sum_LM[Q_ij_q^LM]}
if(istr<=3)then
contrib(1)=contrib(1)+vloc(1,ic)*pawfgrtab(iatom)%gylm(ic,ilslm)
end if
intv(1,ilslm)=intv(1,ilslm)+contrib(1)
end do
end do
end if
! Apply ucvol/nfft factor on integral
intv(:,:)=fact*intv(:,:)
! --- Reduction in case of parallelization ---
call xmpi_sum(intv,my_comm_grid,ier)
paw_ij1(iatom)%dijfr(:,ispden)=zero
! ---- Loop over (i,j) components
klmn1=1
do klmn=1,lmn2_size
klm =pawtab(itypat)%indklmn(1,klmn)
lmin=pawtab(itypat)%indklmn(3,klmn)
lmax=pawtab(itypat)%indklmn(4,klmn)
do ils=lmin,lmax,2
lm0=ils**2+ils+1
do mm=-ils,ils
ilslm=lm0+mm;isel=pawang%gntselect(lm0+mm,klm)
if (isel>0) then
paw_ij1(iatom)%dijfr(klmn1:klmn1+dplex,ispden)= &
& paw_ij1(iatom)%dijfr(klmn1:klmn1+dplex,ispden) &
& +pawtab(itypat)%qijl(ilslm,klmn)*intv(1:cplex,ilslm)
end if
end do
end do
klmn1=klmn1+paw_ij1(iatom)%cplex_dij
end do
ABI_DEALLOCATE(intv)
ABI_DEALLOCATE(vloc)
! Dijfr is marked as computed
paw_ij1(iatom)%has_dijfr=2
! ============ Magnetic field perturbation =======================
else if (ipert==natom+5) then
if (need_dijfr_3) then
! Dijfr is marked as computed
paw_ij1(iatom)%has_dijfr=2
end if
end if ! ipert
! End loop over spin components
end do ! ispden
! Eventually free temporary space for g_l(r).Y_lm(r) gradients and exp(-i.q.r)
if (need_dijfr_1.or.need_dijfr_2) then
if (pawfgrtab(iatom)%gylm_allocated==2) then
ABI_DEALLOCATE(pawfgrtab(iatom)%gylm)
ABI_ALLOCATE(pawfgrtab(iatom)%gylm,(0,0))
pawfgrtab(iatom)%gylm_allocated=0
end if
if (pawfgrtab(iatom)%gylmgr_allocated==2) then
ABI_DEALLOCATE(pawfgrtab(iatom)%gylmgr)
ABI_ALLOCATE(pawfgrtab(iatom)%gylmgr,(0,0,0))
pawfgrtab(iatom)%gylmgr_allocated=0
end if
if (pawfgrtab(iatom)%expiqr_allocated==2) then
ABI_DEALLOCATE(pawfgrtab(iatom)%expiqr)
ABI_ALLOCATE(pawfgrtab(iatom)%expiqr,(0,0))
pawfgrtab(iatom)%expiqr_allocated=0
end if
end if
! End loop on atoms
end do
!Destroy atom table used for parallelism
call free_my_atmtab(my_atmtab,my_atmtab_allocated)
DBG_EXIT("COLL")
end subroutine pawdijfr
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawpupot
!! NAME
!! pawpupot
!!
!! FUNCTION
!! Compute the PAW LDA+U on-site potential
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (BA,FJ,MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~ABINIT/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~ABINIT/Infos/contributors.
!!
!! INPUTS
!! cplex_dij=1 if dij is REAL, 2 if complex (2 for spin-orbit)
!! ndij=number of spin components for Dij^hat
!! nspden=number of spin density components
!! pawprtvol=control print volume and debugging output for PAW
!! noccmmp(cplex_dij,2*lpawu+1,2*lpawu+1,ndij)=density matrix in the augm. region
!! nocctot(ndij)=number of electrons in the correlated subspace
!! pawtab(ntypat) <type(pawtab_type)>=paw tabulated starting data:
!! %usepawu, %upawu, %jpau
!! %vee(2*lpawu+1*4)=screened coulomb matrix
!!
!! OUTPUT
!! vpawu(cplex_dij,lpawu*2+1,lpawu*2+1,nspden)=lda+u potential
!! (see eg PRB 52, 5467 (1995))
!!
!! PARENTS
!! ldau_self,m_paw_commutator,m_pawdij
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawpupot(cplex_dij,ndij,noccmmp,nocctot,nspden,&
& pawprtvol,pawtab,vpawu)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawpupot'
use interfaces_14_hidewrite
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: cplex_dij,ndij,nspden,pawprtvol
type(pawtab_type),intent(in) :: pawtab
!arrays
real(dp),intent(in) :: noccmmp(:,:,:,:),nocctot(:)
real(dp),intent(out) :: vpawu(:,:,:,:)
!Local variables ---------------------------------------
!scalars
!Option for interaction energy in case of non-collinear magnetism:
! 1: E_int=-J/4.N.(N-2) (better)
! 2: E_int=-J/2.(Nup.(Nup-1)+Ndn.(Ndn-1)) (Nup and Ndn are ill-defined)
integer,parameter :: option_interaction=1
integer :: iplex,ispden,jspden,lpawu,m1,m11,m2,m21,m3,m31,m4,m41
real(dp) :: mnorm,mx,my,mz,n_sig,n_msig,n_tot,VUKStemp,n_sigs,n_msigs
real(dp),save :: VUKS
character(len=500) :: msg
!arrays
real(dp),parameter :: factcg(3:4)=(/one,-one/)
real(dp) :: n34_msig(cplex_dij),n34_sig(cplex_dij)
!real(dp) :: n43_sig(cplex_dij)
! *****************************************************
DBG_ENTER("COLL")
!Useful data
lpawu=pawtab%lpawu
!Check data consistency
if(option_interaction==3.and.pawtab%usepawu>=10) then
msg = "Option_interaction==3 is not compatible with usepawu>=10 in pawpupot"
MSG_ERROR(msg)
end if
if (size(vpawu,1)/=cplex_dij.or.size(vpawu,2)/=2*lpawu+1.or.&
& size(vpawu,3)/=2*lpawu+1.or.size(vpawu,4)/=nspden) then
write (msg,'(a,4I5, a,4I5)') ' invalid sizes for vpawu !',cplex_dij,2*lpawu+1,2*lpawu+1,nspden, &
& ' /= ', size(vpawu,1), size(vpawu,2), size(vpawu,3), size(vpawu,4)
MSG_BUG(msg)
end if
if (size(noccmmp,1)/=cplex_dij.or.size(noccmmp,2)/=2*lpawu+1.or.&
& size(noccmmp,3)/=2*lpawu+1.or.size(noccmmp,4)/=ndij) then
write (msg,'(a,4I5, a,4I5)') ' invalid sizes for noccmmp !',cplex_dij,2*lpawu+1,2*lpawu+1,ndij, &
& ' /= ', size(noccmmp,1), size(noccmmp,2), size(noccmmp,3), size(noccmmp,4)
MSG_BUG(msg)
end if
if (size(nocctot,1)/=ndij) then
msg='invalid size for nocctot !'
MSG_BUG(msg)
end if
!=====================================================
!Compute LDA+U Potential on the basis of projectors
!cf PRB 52 5467 (1995)
!-----------------------------------------------------
vpawu=zero
do ispden=1,nspden
if (ispden<=2) then ! cases ndij=4, ispden=1,2 or ndij<4
jspden=min(ndij,2)-ispden+1 ! (ispden,ndij)=(1,4)=>jspden=2
if (nspden<=2) then
n_sig =nocctot(ispden)
n_msig=nocctot(jspden)
n_tot =n_sig+n_msig
else
n_tot=nocctot(1)
mx=nocctot(2)
my=nocctot(3)
mz=nocctot(4)
mnorm=sqrt(mx*mx+my*my+mz*mz)
if (ispden==1) then
! n_sig =half*(n_tot+mnorm)
! n_msig=half*(n_tot-mnorm)
n_sig =half*(n_tot+sign(mnorm,mz))
n_msig=half*(n_tot-sign(mnorm,mz))
else
! n_sig =half*(n_tot-mnorm)
! n_msig=half*(n_tot+mnorm)
n_sig =half*(n_tot-sign(mnorm,mz))
n_msig=half*(n_tot+sign(mnorm,mz))
end if
end if
n_sigs =n_sig/(float(2*lpawu+1))
n_msigs =n_msig/(float(2*lpawu+1))
do m1=-lpawu,lpawu
m11=m1+lpawu+1
do m2=-lpawu,lpawu
m21=m2+lpawu+1
do m3=-lpawu,lpawu
m31=m3+lpawu+1
do m4=-lpawu,lpawu
m41=m4+lpawu+1
n34_sig(:) =noccmmp(:,m31,m41,ispden) ! spin sigma
n34_msig(:)=noccmmp(:,m31,m41,jspden) ! opposite spin (-sigma)
if(m31==m41.and.pawtab%usepawu==3) then
n34_sig(1)= n34_sig(1) - n_sigs
n34_msig(1)= n34_msig(1) - n_msigs
end if
do iplex=1,cplex_dij
vpawu(iplex,m11,m21,ispden)=vpawu(iplex,m11,m21,ispden) &
& +n34_msig(iplex)*pawtab%vee(m11,m31,m21,m41) &
& +n34_sig(iplex)*(pawtab%vee(m11,m31,m21,m41)-pawtab%vee(m11,m31,m41,m21))
end do
! if(abs(pawprtvol)>=3.and.m11==1.and.m21==1) then
! write(msg,'(a,i4,i4,2e20.10)') "m31,m41,vu=",m31,m41,&
! & vpawu(:,m11,m21,ispden)
! call wrtout(std_out,msg,'COLL')
! write(msg,'(a,4e20.10)') "vee",pawtab%vee(m11,m31,m21,m41),&
! & pawtab%vee(m11,m31,m41,m21)
! call wrtout(std_out,msg,'COLL')
! write(msg,'(a,4e20.10)') "n34_msig,n34_sig",n34_msig(1),n34_sig(1)
! call wrtout(std_out,msg,'COLL')
! end if
end do
end do
! if(abs(pawprtvol)>=3) then
! if(m11/=m21) then
! write(msg,'(a,i4,i4,2e20.10)') "vu=",m11,m21,vpawu(:,m11,m21,ispden)
! call wrtout(std_out,msg,'COLL')
! write(msg,'(a,2e20.10)') "vupred=",-pawtab%upawu*noccmmp(:,m21,m11,ispden)
! call wrtout(std_out,msg,'COLL')
! end if
! end if
end do ! m2
if(abs(pawprtvol)>=3) then
write(msg,'(a,i3,14f11.5)') &
& "vpawu ",m11, (vpawu(:,m11,m21,ispden),m21=1,2*lpawu+1)
call wrtout(std_out, msg,'COLL')
write(msg,'(a,i3,14f11.5)') &
& "noccmmp ",m11, (noccmmp(:,m11,m21,ispden),m21=1,2*lpawu+1)
call wrtout(std_out, msg,'COLL')
end if
! Full localized limit
if(pawtab%usepawu==1) then ! not activated if usepawu=10 !!
! Here we compute vpawu=vpawu-v_dc
vpawu(1,m11,m11,ispden)=vpawu(1,m11,m11,ispden)-pawtab%upawu*(n_tot-half)
if (ndij/=4.or.option_interaction==2) then
vpawu(1,m11,m11,ispden)=vpawu(1,m11,m11,ispden)+pawtab%jpawu*(n_sig-half)
else if (ndij==4.and.option_interaction==1) then
vpawu(1,m11,m11,ispden)=vpawu(1,m11,m11,ispden)+half*pawtab%jpawu*(n_tot-one)
else if (ndij==4.and.option_interaction==3) then
! Here vdc^{alpha,beta}=\vect{m}.\vect{sigma}^{\beta,\alpha}
vpawu(1,m11,m11,ispden)=vpawu(1,m11,m11,ispden)+half*pawtab%jpawu*(n_tot-one)
end if
! Around mean field
else if(pawtab%usepawu==2) then
vpawu(1,m11,m11,ispden)=vpawu(1,m11,m11,ispden)-n_msig*pawtab%upawu &
& -n_sig*(pawtab%upawu-pawtab%jpawu) &
& *(dble(2*lpawu)/dble(2*lpawu+1))
end if
! if (abs(pawprtvol)>=3) then
! write(msg,'(a,i4,i4,2x,e20.10)') "vudiag= ",m11,m11,vpawu(1,m11,m11,ispden)
! call wrtout(std_out, msg,'COLL')
! write(msg,'(a,2e20.10)') "vudiagpred= ",pawtab%upawu*(half-noccmmp(:,m11,m11,ispden))
! call wrtout(std_out, msg,'COLL')
! end if
if(abs(pawprtvol)>=3) then
write(msg,*) "nocctot",nocctot
call wrtout(std_out, msg,'COLL')
write(msg,'(a,i3,14f11.5)') &
& "vpawu 2",m11, (vpawu(:,m11,m21,ispden),m21=1,2*lpawu+1)
call wrtout(std_out, msg,'COLL')
write(msg,'(a,i3,14f11.5)') &
& "noccmmp2",m11, (noccmmp(:,m11,m21,ispden),m21=1,2*lpawu+1)
call wrtout(std_out, msg,'COLL')
end if
end do ! m1
end if ! ispden<=2
! Non-collinear magnetism: add non-diagonal term; see (Eq 6) in PRB 72, 024458 (2005)
! BA Here, we compute the transpose --- with respect to spin indices --- of
! BA equation (6) of this reference, because of differences in notations,
! BA namely Eband=\sum rhoij^{alpha,beta}*Dij(beta,alpha) contrary to PRB 72, 024458 (2005)
if (ispden>=3) then
mx=nocctot(2)
my=nocctot(3)
do m1=-lpawu,lpawu
m11=m1+lpawu+1
do m2=-lpawu,lpawu
m21=m2+lpawu+1
do m3=-lpawu,lpawu
m31=m3+lpawu+1
do m4=-lpawu,lpawu
m41=m4+lpawu+1
! n43_sig(:) =noccmmp(:,m41,m31,ispden)
! vpawu(1,m11,m21,ispden)=vpawu(1,m11,m21,ispden)-n43_sig(1)*pawtab%vee(m11,m31,m41,m21)
! vpawu(2,m11,m21,ispden)=vpawu(2,m11,m21,ispden)+n43_sig(2)*pawtab%vee(m11,m31,m41,m21)
n34_sig(:) =noccmmp(:,m31,m41,ispden)
vpawu(1,m11,m21,ispden)=vpawu(1,m11,m21,ispden)-n34_sig(1)*pawtab%vee(m11,m31,m41,m21)
vpawu(2,m11,m21,ispden)=vpawu(2,m11,m21,ispden)-n34_sig(2)*pawtab%vee(m11,m31,m41,m21)
end do
end do
end do
if(pawtab%usepawu==1.and.option_interaction==3) then ! not activated if usepawu=10 !!
vpawu(1,m11,m11,ispden)=vpawu(1,m11,m21,ispden)+half*pawtab%jpawu*mx
if(ispden==3) then
vpawu(2,m11,m11,ispden)=vpawu(1,m11,m21,ispden)-half*pawtab%jpawu*my
else
vpawu(2,m11,m11,ispden)=vpawu(1,m11,m21,ispden)+half*pawtab%jpawu*my
end if
end if
end do
end if
if(abs(pawprtvol)>=3) then
write(std_out,*) "vpawu, ispden",ispden
do m11=1,2*lpawu+1
write(msg,'(12(1x,9(1x,"(",f10.7,",",f10.7,")")))') &
& (vpawu(1:cplex_dij,m11,m21,ispden),m21=1,2*lpawu+1)
call wrtout(std_out,msg,'COLL')
end do
end if
! Printing for test
if (abs(pawprtvol)>=3) then
if (ispden==1) VUKS=zero
VUKStemp=zero
do m1=-lpawu,lpawu
m11=m1+lpawu+1
do m2=-lpawu,lpawu
m21=m2+lpawu+1
VUKStemp=VUKStemp+vpawu(1,m11,m21,ispden)*noccmmp(1,m11,m21,ispden)
if (cplex_dij == 2) then
VUKStemp=VUKStemp-vpawu(2,m11,m21,ispden)*noccmmp(2,m11,m21,ispden)
end if
write(msg,'(a,2e20.10,2e20.10)') "m1,m2,vpawu,noccmmp= ", &
& vpawu(:,m11,m21,ispden),noccmmp(:,m11,m21,ispden)
call wrtout(std_out, msg,'COLL')
end do
end do
VUKS=VUKS+VUKStemp
write(msg,*) "pawpupot: VUKStemp= ",ispden,VUKStemp
call wrtout(std_out, msg,'COLL')
if (ispden==nspden) then
write(msg,*) "pawpupot: VUKS= ",ispden,VUKS
call wrtout(std_out, msg,'COLL')
end if
end if
end do ! Loop on ispden
DBG_EXIT("COLL")
end subroutine pawpupot
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/pawxpot
!! NAME
!! pawxpot
!!
!! FUNCTION
!! Compute the PAW Local Exact-Exchange on-site potential
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (BA,FJ)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~ABINIT/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~ABINIT/Infos/contributors.
!!
!! INPUTS
!! nspden=number of spin-density components
!! pawprtvol=control print volume and debugging output for PAW
!! paw_ij <type(paw_ij_type)>=paw arrays given on (i,j) channels
!! pawtab <type(pawtab_type)>=paw tabulated starting data:
!! pawrhoij <type(pawrhoij_type)>= paw rhoij occupancies and related data
!!
!! OUTPUT
!! paw_ij%vpawx(pawtab%lexexch*2+1,pawtab%lexexch*2+1)=local exact-exchange potential
!!
!! PARENTS
!! m_pawdij,pawdenpot
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine pawxpot(nspden,pawprtvol,pawrhoij,pawtab,vpawx)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'pawxpot'
use interfaces_14_hidewrite
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: nspden,pawprtvol
type(pawrhoij_type),intent(in) :: pawrhoij
type(pawtab_type),intent(in) :: pawtab
real(dp),intent(out) :: vpawx(:,:,:)
!Local variables ---------------------------------------
!scalars
integer :: irhoij,irhoij1,ispden,jrhoij,jrhoij1,klmn,klmn1,lexexch,ll,lmn2_size
integer :: m11,m21,m31,m41,n1,n2,n3,n4,nk,nn1,nn2
real(dp) :: tot
character(len=500) :: msg
!arrays
integer :: indn(3,3)
real(dp) :: factnk(6)
! *****************************************************
DBG_ENTER("COLL")
!Useful data
lexexch=pawtab%lexexch
lmn2_size=pawtab%lmn2_size
if (pawtab%nproju==1) nk=1
if (pawtab%nproju==2) nk=6
factnk(1)=one;factnk(2)=one;factnk(3)=one
factnk(4)=two;factnk(5)=two;factnk(6)=two
indn(1,1)=1;indn(1,2)=4;indn(1,3)=5
indn(2,1)=4;indn(2,2)=2;indn(2,3)=6
indn(3,1)=5;indn(3,2)=6;indn(3,3)=3
!Check data consistency
if (size(vpawx,1)/=1.or.size(vpawx,2)/=lmn2_size.or.&
& size(vpawx,3)/=nspden) then
msg='invalid sizes for vpawx !'
MSG_BUG(msg)
end if
!=====================================================
!Compute local exact exchange Potential
!on the basis of projectors.
!-----------------------------------------------------
vpawx=zero
do ispden=1,nspden
jrhoij=1
do irhoij=1,pawrhoij%nrhoijsel
klmn=pawrhoij%rhoijselect(irhoij)
if(pawtab%indklmn(3,klmn)==0.and.pawtab%indklmn(4,klmn)==2*lexexch) then
m11=pawtab%klmntomn(1,klmn);m21=pawtab%klmntomn(2,klmn)
n1=pawtab%klmntomn(3,klmn);n2=pawtab%klmntomn(4,klmn)
nn1=(n1*n2)/2+1
jrhoij1=1
do irhoij1=1,pawrhoij%nrhoijsel
klmn1=pawrhoij%rhoijselect(irhoij1)
if(pawtab%indklmn(3,klmn1)==0.and.pawtab%indklmn(4,klmn1)==2*lexexch) then
m31=pawtab%klmntomn(1,klmn1);m41=pawtab%klmntomn(2,klmn1)
n3=pawtab%klmntomn(3,klmn1);n4=pawtab%klmntomn(4,klmn1)
nn2=(n3*n4)/2+1
do ll=1,lexexch+1
vpawx(1,klmn,ispden)=vpawx(1,klmn,ispden)&
& -pawtab%vex(m11,m31,m41,m21,ll)*pawtab%dltij(klmn1) &
& *pawtab%fk(indn(nn1,nn2),ll)*pawrhoij%rhoijp(jrhoij1,ispden)
end do
end if
jrhoij1=jrhoij1+pawrhoij%cplex
end do !irhoij1
end if
jrhoij=jrhoij+pawrhoij%cplex
end do !irhoij
end do !ispden
!Test
if (abs(pawprtvol)>=2) then
tot=zero
do ispden=1,pawrhoij%nspden
jrhoij=1
do irhoij=1,pawrhoij%nrhoijsel
klmn=pawrhoij%rhoijselect(irhoij)
tot=tot+vpawx(1,klmn,ispden)*pawrhoij%rhoijp(jrhoij,ispden)*pawtab%dltij(klmn)
jrhoij=jrhoij+pawrhoij%cplex
end do
end do
write(msg, '(a,es22.15)' )" Vpawx: tot=",tot*half
call wrtout(std_out,msg,'COLL')
end if
DBG_EXIT("COLL")
end subroutine pawxpot
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/symdij
!! NAME
!! symdij
!!
!! FUNCTION
!! Symmetrize PAW non-local strengths Dij
!! Symmetrize total Dij or one part of it
!!
!! COPYRIGHT
!! Copyright (C) 2001-2014 ABINIT group (FJ, MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! gprimd(3,3)=dimensional primitive translations for reciprocal space(bohr^-1).
!! indsym(4,nsym,natom)=indirect indexing array for atom labels
!! ipert=index of perturbation if pawrhoij is a pertubed rhoij
!! no meaning for ground-state calculations (should be 0)
!! [mpi_atmtab(:)]=--optional-- indexes of the atoms treated by current proc
!! [mpi_comm_atom]=--optional-- MPI communicator over atoms
!! my_natom=number of atoms treated by current processor
!! natom=number of atoms in cell
!! nsym=number of symmetry elements in space group
!! ntypat=number of types of atoms in unit cell.
!! option_dij=choose which part of Dij has to be symmetrized (which paw_ij(:)%dijxxx):
!! 0: total dij (dij)
!! 1: dij due to compensation charge (dijhat)
!! 2: dij due to +U (dijU)
!! 3: dij XC (dijxc)
!! 4: dij XC due to compensation charge (dijxc_hat)
!! 5: dij XC valence only (dijxc_val)
!! 6: dij spin-orbit (dijso)
!! 7: dij exact exchange (dijexxc)
!! 8: dij, RF frozen part (dijfr)
!! paw_ij(natom)%cplex_dij=1 if dij are REAL, 2 if they are COMPLEX
!! paw_ij(natom)%lmn_size=number of (l,m,n) elements for the paw basis
!! paw_ij(natom)%nspden=number of spin-density components
!! paw_ij(natom)%nsppol=number of independant spin-density components
!! paw_ij(natom)%dij(lmn2_size,nspden)=non-symmetrized paw dij quantities
!! pawang <type(pawang_type)>=angular mesh discretization and related data
!! pawprtvol=control print volume and debugging output for PAW
!! pawtab(ntypat) <type(pawtab_type)>=paw tabulated starting data
!! [qphon(3)]=--optional-- (RF calculations only) - wavevector of the phonon
!! rprimd(3,3)=real space primitive translations.
!! symafm(nsym)=(anti)ferromagnetic part of symmetry operations
!! symrec(3,3,nsym)=symmetries of group in terms of operations on
!! reciprocal space primitive translations
!!
!! SIDE EFFECTS
!! paw_ij(natom)%dij???(cplex_dij*lmn2_size,nspden)=symmetrized dij quantities as output
!!
!! PARENTS
!! bethe_salpeter,m_pawdij,paw_mknewh0,respfn,scfcv,scfcv3,screening,sigma
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab
!!
!! SOURCE
subroutine symdij(gprimd,indsym,ipert,my_natom,natom,nsym,ntypat,option_dij,&
& paw_ij,pawang,pawprtvol,pawtab,rprimd,symafm,symrec, &
& mpi_atmtab,mpi_comm_atom,qphon) ! optional arguments (parallelism)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'symdij'
use interfaces_14_hidewrite
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: ipert,my_natom,natom,nsym,ntypat,option_dij,pawprtvol
integer,optional,intent(in) :: mpi_comm_atom
type(pawang_type),intent(in) :: pawang
!arrays
integer,intent(in) :: indsym(4,nsym,natom),symafm(nsym),symrec(3,3,nsym)
integer,optional,target,intent(in) :: mpi_atmtab(:)
real(dp),intent(in) :: gprimd(3,3),rprimd(3,3)
real(dp),intent(in),optional :: qphon(3)
type(paw_ij_type),intent(inout) :: paw_ij(my_natom)
type(pawtab_type),target,intent(in) :: pawtab(ntypat)
!Local variables ---------------------------------------
!scalars
integer :: at_indx,cplex,cplex_dij,iafm,iatom,iatom_tot,ierr
integer :: il,il0,ilmn,iln,iln0,ilpm,indexi,indexii,indexj,indexjj,indexjj0,indexk,indexkc
integer :: iplex,irot,ispden,itypat,j0lmn,jl,jl0,jlmn,jln,jln0,jlpm,jspden
integer :: klmn,klmnc,kspden,lmn_size,mi,mj,my_comm_atom,mu,natinc,ndij0,ndij1,nu,optsym,sz1,sz2
logical,parameter :: afm_noncoll=.true. ! TRUE if antiferro symmetries are used with non-collinear magnetism
logical :: antiferro,have_phase,my_atmtab_allocated,noncoll,paral_atom,use_afm
!DEBUG_ALTERNATE_ALGO
!Set to TRUE to choose an alternate algorithm (with another representation)
!to symmetrize Dij within non-collinear magnetism or spin-orbit
logical,parameter :: lsymnew=.false.
!DEBUG_ALTERNATE_ALGO
real(dp) :: arg,factafm,zarot2
character(len=6) :: pertstrg,wrt_mode
character(len=500) :: msg
!arrays
integer :: nsym_used(2)
integer, ABI_CONTIGUOUS pointer :: indlmn(:,:)
integer,pointer :: my_atmtab(:)
integer :: idum(0)
real(dp) :: dijc(2),factsym(2),phase(2),rotdij(2,2),sumdij(2,2)
real(dp),allocatable :: dijnew(:,:),dijtmp(:,:),rotmag(:,:),summag(:,:)
real(dp),allocatable :: symrec_cart(:,:,:),work(:,:)
character(len=7),parameter :: dspin(6)=(/"up ","down ","up-up ", &
& "dwn-dwn","up-dwn ","dwn-up "/)
type(coeff2_type),target, allocatable :: my_tmp_dij(:)
type(coeff2_type),pointer :: tmp_dij(:)
!DEBUG_ALTERNATE_ALGO
!integer :: i1,i2,i3,i4,symrel_conv(3,3)
!real(dp) :: spinrot(4)
!real(dp),allocatable :: dijtemp(:,:),sumrhoso(:,:)
!complex(dpc) :: dijt(2,2),dijt2(2,2),Rspinrot(2,2)
!DEBUG_ALTERNATE_ALGO
! *********************************************************************
DBG_ENTER("COLL")
!Tests of compatibility:
if (my_natom>0) then
if ((option_dij==1.and.paw_ij(1)%has_dijhat==0).or.&
& (option_dij==2.and.paw_ij(1)%has_dijU==0).or.&
& (option_dij==3.and.paw_ij(1)%has_dijxc==0).or.&
& (option_dij==4.and.paw_ij(1)%has_dijxc_hat==0).or.&
& (option_dij==5.and.paw_ij(1)%has_dijxc_val==0).or.&
& (option_dij==6.and.paw_ij(1)%has_dijso==0).or.&
& (option_dij==7.and.paw_ij(1)%has_dijexxc==0).or.&
& (option_dij==8.and.paw_ij(1)%has_dijfr==0)) then
msg='Incompatibilty between option_dij and allocation of Dij!'
MSG_BUG(msg)
end if
end if
!Set up parallelism over atoms
paral_atom=(present(mpi_comm_atom).and.(my_natom/=natom))
nullify(my_atmtab);if (present(mpi_atmtab)) my_atmtab => mpi_atmtab
my_comm_atom=xmpi_self;if (present(mpi_comm_atom)) my_comm_atom=mpi_comm_atom
call get_my_atmtab(my_comm_atom,my_atmtab,my_atmtab_allocated,paral_atom,natom,my_natom_ref=my_natom)
!Symmetrization occurs only when nsym>1
if (nsym>1.and.ipert/=natom+1.and.ipert/=natom+5) then
if (pawang%nsym==0) then
msg='pawang%zarot must be allocated!'
MSG_BUG(msg)
end if
cplex_dij=1;antiferro=.false.;noncoll=.false.
if (my_natom>0) then
cplex_dij=paw_ij(1)%cplex_dij
! Antiferro case ?
antiferro=(paw_ij(1)%nspden==2.and.paw_ij(1)%nsppol==1.and.paw_ij(1)%ndij/=4)
! Non-collinear case
noncoll=(paw_ij(1)%ndij==4)
if (noncoll.and.paw_ij(1)%cplex_dij/=2) then
msg='cplex_dij must be 2 with ndij=4!'
MSG_BUG(msg)
end if
end if
if (noncoll) then
ABI_ALLOCATE(summag,(cplex_dij,3))
ABI_ALLOCATE(rotmag,(cplex_dij,3))
ABI_ALLOCATE(work,(cplex_dij,3))
ABI_ALLOCATE(symrec_cart,(3,3,nsym))
do irot=1,nsym
symrec_cart(:,:,irot)=symdij_symcart(gprimd,rprimd,symrec(:,:,irot))
end do
!DEBUG_ALTERNATE_ALGO
! if(lsymnew) then
! ABI_ALLOCATE(sumrhoso,(cplex_dij,4))
! end if
!DEBUG_ALTERNATE_ALGO
end if
! Do we use antiferro symmetries ?
use_afm=((antiferro).or.(noncoll.and.afm_noncoll))
! Do we have a phase due to q-vector (phonons only) ?
have_phase=.false.
if (ipert>0.and.present(qphon).and.my_natom>0) then
have_phase=(abs(qphon(1))>tol8.or.abs(qphon(2))>tol8.or.abs(qphon(3))>tol8)
if (have_phase.and.cplex_dij==1) then
msg='Should have cplex_dij=2 for a non-zero q!'
MSG_BUG(msg)
end if
end if
! Have to make a temporary copy of dij
ABI_DATATYPE_ALLOCATE(my_tmp_dij,(my_natom))
do iatom=1,my_natom
sz1=paw_ij(iatom)%cplex_dij*paw_ij(iatom)%lmn2_size;sz2=paw_ij(iatom)%ndij
ABI_ALLOCATE(my_tmp_dij(iatom)%value,(sz1,sz2))
ABI_ALLOCATE(dijtmp,(sz1,sz2))
if (option_dij==0) then
dijtmp(:,:)=paw_ij(iatom)%dij(:,:)
else if (option_dij==1) then
dijtmp(:,:)=paw_ij(iatom)%dijhat(:,:)
else if (option_dij==2) then
dijtmp(:,:)=paw_ij(iatom)%dijU(:,:)
else if (option_dij==3) then
dijtmp(:,:)=paw_ij(iatom)%dijxc(:,:)
else if (option_dij==4) then
dijtmp(:,:)=paw_ij(iatom)%dijxc_hat(:,:)
else if (option_dij==5) then
dijtmp(:,:)=paw_ij(iatom)%dijxc_val(:,:)
else if (option_dij==6) then
dijtmp(:,:)=paw_ij(iatom)%dijso(:,:)
else if (option_dij==7) then
dijtmp(:,:)=paw_ij(iatom)%dijexxc(:,:)
else if (option_dij==8) then
dijtmp(:,:)=paw_ij(iatom)%dijfr(:,:)
end if
!Has to translate Dij^{alpha,beta} into (Dij, Dij magnetic field) format
if (paw_ij(1)%ndij==4) then
my_tmp_dij(iatom)%value(:,1)=dijtmp(:,1)+dijtmp(:,2)
my_tmp_dij(iatom)%value(:,2)=dijtmp(:,3)+dijtmp(:,4)
my_tmp_dij(iatom)%value(:,4)=dijtmp(:,1)-dijtmp(:,2)
do klmn=1,paw_ij(iatom)%lmn2_size
my_tmp_dij(iatom)%value(2*klmn-1,3)=-dijtmp(2*klmn ,3)+dijtmp(2*klmn ,4)
my_tmp_dij(iatom)%value(2*klmn ,3)= dijtmp(2*klmn-1,3)-dijtmp(2*klmn-1,4)
end do
!DEBUG_ALTERNATE_ALGO
! if(lsymnew) my_tmp_dij(iatom)%value(:,:)=dijtmp(:,:)
!DEBUG_ALTERNATE_ALGO
else
my_tmp_dij(iatom)%value(:,:)=dijtmp(:,:)
end if
ABI_DEALLOCATE(dijtmp)
end do
! Parallelism: gather all Dij
if (paral_atom) then
ABI_DATATYPE_ALLOCATE(tmp_dij,(natom))
call xmpi_allgatherv(my_tmp_dij,tmp_dij,my_comm_atom,my_atmtab,ierr)
do iatom=1,my_natom
ABI_DEALLOCATE(my_tmp_dij(iatom)%value)
end do
ABI_DATATYPE_DEALLOCATE(my_tmp_dij)
else
tmp_dij=>my_tmp_dij
end if
ndij1=1
if (antiferro) ndij1=2
if (noncoll) ndij1=4
ndij0=ndij1-1
ABI_ALLOCATE(dijnew,(cplex_dij,ndij1))
! Loops over atoms and spin components
do iatom=1,my_natom
iatom_tot=iatom;if (paral_atom) iatom_tot=my_atmtab(iatom)
itypat=paw_ij(iatom)%itypat
lmn_size=paw_ij(iatom)%lmn_size
cplex_dij=paw_ij(iatom)%cplex_dij
cplex=paw_ij(iatom)%cplex
indlmn => pawtab(itypat)%indlmn
!DEBUG_ALTERNATE_ALGO
! if (noncoll.and.lsymnew) then
! ABI_ALLOCATE(dijtemp,(paw_ij(iatom)%cplex_dij,paw_ij(iatom)%ndij))
! end if
!DEBUG_ALTERNATE_ALGO
do ispden=1,paw_ij(iatom)%nsppol
jspden=min(3-ispden,paw_ij(iatom)%nsppol)
! Loops over (il,im) and (jl,jm)
jl0=-1;jln0=-1;indexj=1
do jlmn=1,lmn_size
jl=indlmn(1,jlmn)
jlpm=1+jl+indlmn(2,jlmn)
jln=indlmn(5,jlmn)
if (jln/=jln0) indexj=indexj+2*jl0+1
j0lmn=jlmn*(jlmn-1)/2
il0=-1;iln0=-1;indexi=1
do ilmn=1,jlmn
il=indlmn(1,ilmn)
ilpm=1+il+indlmn(2,ilmn)
iln=indlmn(5,ilmn)
if (iln/=iln0) indexi=indexi+2*il0+1
klmn=j0lmn+ilmn;klmnc=cplex_dij*(klmn-1)
nsym_used(:)=0
rotdij(:,:)=zero
if (noncoll) rotmag(:,:)=zero
!DEBUG_ALTERNATE_ALGO
! if (noncoll.and.lsymnew) sumrhoso(:,:)=zero
!DEBUG_ALTERNATE_ALGO
! Loop over symmetries
do irot=1,nsym
!DEBUG_ALTERNATE_ALGO
! if(lsymnew) then
! call mati3inv(symrec(:,:,irot),symrel_conv)
! call getspinrot(rprimd,spinrot,symrel_conv)
! Rspinrot(1,1)=cmplx(spinrot(1),-spinrot(4))
! Rspinrot(1,2)=cmplx(-spinrot(3),-spinrot(2))
! Rspinrot(2,1)=cmplx(spinrot(3),-spinrot(2))
! Rspinrot(2,2)=cmplx(spinrot(1),spinrot(4))
! end if
!DEBUG_ALTERNATE_ALGO
if ((symafm(irot)/=1).and.(.not.use_afm)) cycle
kspden=ispden;if (symafm(irot)==-1) kspden=jspden
iafm=1;if ((antiferro).and.(symafm(irot)==-1)) iafm=2
factafm=dble(symafm(irot))
nsym_used(iafm)=nsym_used(iafm)+1
at_indx=indsym(4,irot,iatom_tot)
if (have_phase) then
arg=two_pi*(qphon(1)*indsym(1,irot,iatom)+qphon(2)*indsym(2,irot,iatom) &
& +qphon(3)*indsym(3,irot,iatom))
phase(1)=cos(arg);phase(2)=sin(arg)
end if
sumdij(:,:)=zero
if (noncoll) summag(:,:)=zero
! Accumulate values over (mi,mj) and symmetries
do mj=1,2*jl+1
indexjj=indexj+mj;indexjj0=indexjj*(indexjj-1)/2
do mi=1,2*il+1
indexii=indexi+mi
factsym(:)=one
if (indexii<=indexjj) then
indexk=indexjj0+indexii
if(cplex_dij==2.and.cplex==1) factsym(2)=one
else
indexk=indexii*(indexii-1)/2+indexjj
if(cplex_dij==2.and.cplex==1) factsym(2)=-one
end if
indexkc=cplex_dij*(indexk-1)
!DEBUG_ALTERNATE_ALGO
! if (noncoll.and.lsymnew) then
! do iplex=1,cplex_dij
! if(factafm>zero) then
! dijtemp(iplex,1)=factsym(iplex)*tmp_dij(at_indx)%value(indexkc+iplex,1)
! dijtemp(iplex,2)=factsym(iplex)*tmp_dij(at_indx)%value(indexkc+iplex,2)
! else
! dijtemp(iplex,1)=factsym(iplex)*tmp_dij(at_indx)%value(indexkc+iplex,2)
! dijtemp(iplex,2)=factsym(iplex)*tmp_dij(at_indx)%value(indexkc+iplex,1)
! end if
! if(factsym(2)<zero) then ! to be changed if symafm
! dijtemp(iplex,3)=factafm*factsym(iplex)*tmp_dij(at_indx)%value(indexkc+iplex,4)
! dijtemp(iplex,4)=factafm*factsym(iplex)*tmp_dij(at_indx)%value(indexkc+iplex,3)
! else
! dijtemp(iplex,3)=factafm*factsym(iplex)*tmp_dij(at_indx)%value(indexkc+iplex,3)
! dijtemp(iplex,4)=factafm*factsym(iplex)*tmp_dij(at_indx)%value(indexkc+iplex,4)
! end if
! end do
! end if
!DEBUG_ALTERNATE_ALGO
! Be careful: use here R_rel^-1 in term of spherical harmonics
! which is tR_rec in term of spherical harmonics
! so, use transpose[zarot].... however, we use here zarot (??)
zarot2=pawang%zarot(mi,ilpm,il+1,irot)*pawang%zarot(mj,jlpm,jl+1,irot)
! zarot2=pawang%zarot(ilpm,mi,il+1,irot)*pawang%zarot(jlpm,mj,jl+1,irot)
if((.not.noncoll).or.(.not.lsymnew)) then
sumdij(1,iafm)=sumdij(1,iafm)+factsym(1)*zarot2*tmp_dij(at_indx)%value(indexkc+1,kspden)
if(cplex_dij==2) sumdij(2,iafm)= &
& sumdij(2,iafm)+factsym(2)*factafm*zarot2*tmp_dij(at_indx)%value(indexkc+2,kspden)
end if
if (noncoll.and.(.not.lsymnew)) then
do mu=1,3
summag(1,mu)=summag(1,mu)+factsym(1)*factafm*zarot2*tmp_dij(at_indx)%value(indexkc+1,1+mu)
if(cplex_dij==2) summag(2,mu)= &
& summag(2,mu)+factsym(2)*zarot2*tmp_dij(at_indx)%value(indexkc+2,1+mu)
end do
end if
!DEBUG_ALTERNATE_ALGO
! if (noncoll.and.(lsymnew)) then
! dijt(1,1)=cmplx(dijtemp(1,1),dijtemp(2,1))
! dijt(2,2)=cmplx(dijtemp(1,2),dijtemp(2,2))
! dijt(1,2)=cmplx(dijtemp(1,3),dijtemp(2,3))
! dijt(2,1)=cmplx(dijtemp(1,4),dijtemp(2,4))
! dijt2(:,:)=czero
! do i1=1,2
! do i4=1,2
! do i2=1,2
! do i3=1,2
! dijt2(i1,i4)=dijt2(i1,i4)+Rspinrot(i1,i2)*dijt(i2,i3)*conjg(Rspinrot(i4,i3))
! end do
! end do
! end do
! end do
! do mu=1,4
! if(mu==1) then
! i1=1;i4=1
! else if(mu==2) then
! i1=2;i4=2
! else if(mu==3) then
! i1=1;i4=2
! else if(mu==4) then
! i1=2;i4=1
! end if
! sumrhoso(1,mu)=sumrhoso(1,mu)+zarot2*real(dijt2(i1,i4))
! sumrhoso(2,mu)=sumrhoso(2,mu)+zarot2*imag(dijt2(i1,i4))
! end do
! end if
end do ! mi
end do ! mj
!DEBUG_ALTERNATE_ALGO
! Apply phase for phonons
if (have_phase) then
if((.not.noncoll).or.(.not.lsymnew)) then
dijc(1:2)=sumdij(1:2,iafm)
sumdij(1,iafm)=phase(1)*dijc(1)-phase(2)*dijc(2)
sumdij(2,iafm)=phase(1)*dijc(2)+phase(2)*dijc(1)
end if
if (noncoll.and.(.not.lsymnew)) then
do mu=1,3
dijc(1:2)=summag(1:2,mu)
summag(1,mu)=phase(1)*dijc(1)-phase(2)*dijc(2)
summag(2,mu)=phase(1)*dijc(2)+phase(2)*dijc(1)
end do
end if
!DEBUG_ALTERNATE_ALGO
! if (noncoll.and.(lsymnew) then
! do mu=1,4
! dijc(1:2)=sumrhoso(1:2,mu)
! sumrhoso(1,mu)=phase(1)*dijc(1)-phase(2)*dijc(2)
! sumrhoso(2,mu)=phase(1)*dijc(2)+phase(2)*dijc(1)
! end do
! end do
! end if
!DEBUG_ALTERNATE_ALGO
end if
! Add contribution of this rotation
rotdij(1:cplex_dij,iafm)=rotdij(1:cplex_dij,iafm)+sumdij(1:cplex_dij,iafm)
if (noncoll.and.(.not.lsymnew)) then
! If non-collinear case, rotate Dij magnetization
! Should use symrel^1 but use transpose[symrec] instead
do nu=1,3
do mu=1,3
!we need the transpose ?
rotmag(1:cplex_dij,mu)=rotmag(1:cplex_dij,mu) &
& +symrec_cart(mu,nu,irot)*summag(1:cplex_dij,nu)
end do
end do
end if
end do ! End loop over symmetries
if((.not.noncoll).or.(.not.lsymnew)) then
! Store new value of dij
do iplex=1,cplex_dij
dijnew(iplex,1)=rotdij(iplex,1)/nsym_used(1)
if (abs(dijnew(iplex,1))<=tol10) dijnew(iplex,1)=zero
end do
! Antiferromagnetic case: has to fill up "down" component of dij
if (antiferro.and.nsym_used(2)>0) then
do iplex=1,cplex_dij
dijnew(iplex,2)=rotdij(iplex,2)/nsym_used(2)
if (abs(dijnew(iplex,2))<=tol10) dijnew(iplex,2)=zero
end do
end if
!DEBUG_ALTERNATE_ALGO
! else if (noncoll.and.(lsymnew)) then
! do mu=1,4
! do iplex=1,cplex_dij
! dijnew(iplex,mu)=sumrhoso(iplex,mu)/nsym_used(1)
! if (abs(dijnew(iplex,mu))<=tol10) dijnew(iplex,mu)=zero
! end do
! end do
!DEBUG_ALTERNATE_ALGO
end if
! Non-collinear case: store new values of Dij magnetization
if (noncoll.and.(.not.lsymnew)) then
! Select on-zero elements
do mu=1,3
do iplex=1,cplex_dij
rotmag(iplex,mu)=rotmag(iplex,mu)/nsym_used(1)
if (abs(rotmag(iplex,mu))<=tol10) rotmag(iplex,mu)=zero
end do
end do
! Transfer back to Dij^{alpha,beta}
if(.not.lsymnew) then
dijnew(1,1)=half*(dijnew(1,1)+rotmag(1,3))
dijnew(2,1)=half*(dijnew(2,1)+rotmag(2,3))
dijnew(1,2)= dijnew(1,1)-rotmag(1,3)
dijnew(2,2)= dijnew(2,1)-rotmag(2,3)
dijnew(1,3)=half*(rotmag(1,1)+rotmag(2,2))
dijnew(2,3)=half*(rotmag(2,1)-rotmag(1,2))
dijnew(1,4)=half*(rotmag(1,1)-rotmag(2,2))
dijnew(2,4)=half*(rotmag(2,1)+rotmag(1,2))
end if
end if
! Transfer new value of Dij in suitable pointer
if (option_dij==0) then
paw_ij(iatom)%dij(klmnc+1:klmnc+cplex_dij,ispden:ispden+ndij0)=dijnew(1:cplex_dij,1:ndij1)
else if (option_dij==1) then
paw_ij(iatom)%dijhat(klmnc+1:klmnc+cplex_dij,ispden:ispden+ndij0)=dijnew(1:cplex_dij,1:ndij1)
else if (option_dij==2) then
paw_ij(iatom)%dijU(klmnc+1:klmnc+cplex_dij,ispden:ispden+ndij0)=dijnew(1:cplex_dij,1:ndij1)
else if (option_dij==3) then
paw_ij(iatom)%dijxc(klmnc+1:klmnc+cplex_dij,ispden:ispden+ndij0)=dijnew(1:cplex_dij,1:ndij1)
else if (option_dij==4) then
paw_ij(iatom)%dijxc_hat(klmnc+1:klmnc+cplex_dij,ispden:ispden+ndij0)=dijnew(1:cplex_dij,1:ndij1)
else if (option_dij==5) then
paw_ij(iatom)%dijxc_val(klmnc+1:klmnc+cplex_dij,ispden:ispden+ndij0)=dijnew(1:cplex_dij,1:ndij1)
else if (option_dij==6) then
paw_ij(iatom)%dijso(klmnc+1:klmnc+cplex_dij,ispden:ispden+ndij0)=dijnew(1:cplex_dij,1:ndij1)
else if (option_dij==7) then
paw_ij(iatom)%dijexxc(klmnc+1:klmnc+cplex_dij,ispden:ispden+ndij0)=dijnew(1:cplex_dij,1:ndij1)
else if (option_dij==8) then
paw_ij(iatom)%dijfr(klmnc+1:klmnc+cplex_dij,ispden:ispden+ndij0)=dijnew(1:cplex_dij,1:ndij1)
end if
il0=il;iln0=iln ! End loops over (il,im) and (jl,jm)
end do
jl0=jl;jln0=jln
end do
end do ! ispden
!DEBUG_ALTERNATE_ALGO
! if (noncoll.and.lsymnew) then
! ABI_DEALLOCATE(dijtemp)
! end if
!DEBUG_ALTERNATE_ALGO
end do ! iatom
ABI_DEALLOCATE(dijnew)
if (noncoll) then
ABI_DEALLOCATE(summag)
ABI_DEALLOCATE(rotmag)
ABI_DEALLOCATE(symrec_cart)
ABI_DEALLOCATE(work)
!DEBUG_ALTERNATE_ALGO
! if (lsymnew) then
! ABI_DEALLOCATE(sumrhoso)
! end if
!DEBUG_ALTERNATE_ALGO
end if
if (paral_atom) then
do iatom=1,natom
ABI_DEALLOCATE(tmp_dij(iatom)%value)
end do
ABI_DATATYPE_DEALLOCATE(tmp_dij)
else
do iatom=1,my_natom
ABI_DEALLOCATE(my_tmp_dij(iatom)%value)
end do
ABI_DATATYPE_DEALLOCATE(my_tmp_dij)
end if
else if (ipert/=natom+1.and.ipert/=natom+5) then ! nsym>1
! *********************************************************************
! If nsym==1, only cut small components of dij
if (my_natom>0) then
if(paw_ij(1)%nspden==2.and.paw_ij(1)%nsppol==1) then
MSG_BUG(' In the antiferromagnetic case, nsym cannot be 1')
end if
end if
do iatom=1,my_natom
do ispden=1,paw_ij(iatom)%ndij
if (option_dij==0) then
do klmn=1,paw_ij(iatom)%lmn2_size*paw_ij(iatom)%cplex_dij
if (abs(paw_ij(iatom)%dij(klmn,ispden))<=tol10) paw_ij(iatom)%dij(klmn,ispden)=zero
end do
else if (option_dij==1) then
do klmn=1,paw_ij(iatom)%lmn2_size*paw_ij(iatom)%cplex_dij
if (abs(paw_ij(iatom)%dijhat(klmn,ispden))<=tol10) paw_ij(iatom)%dijhat(klmn,ispden)=zero
end do
else if (option_dij==2) then
do klmn=1,paw_ij(iatom)%lmn2_size*paw_ij(iatom)%cplex_dij
if (abs(paw_ij(iatom)%dijU(klmn,ispden))<=tol10) paw_ij(iatom)%dijU(klmn,ispden)=zero
end do
else if (option_dij==3) then
do klmn=1,paw_ij(iatom)%lmn2_size*paw_ij(iatom)%cplex_dij
if (abs(paw_ij(iatom)%dijxc(klmn,ispden))<=tol10) paw_ij(iatom)%dijxc(klmn,ispden)=zero
end do
else if (option_dij==4) then
do klmn=1,paw_ij(iatom)%lmn2_size*paw_ij(iatom)%cplex_dij
if (abs(paw_ij(iatom)%dijxc_hat(klmn,ispden))<=tol10) paw_ij(iatom)%dijxc_hat(klmn,ispden)=zero
end do
else if (option_dij==5) then
do klmn=1,paw_ij(iatom)%lmn2_size*paw_ij(iatom)%cplex_dij
if (abs(paw_ij(iatom)%dijxc_val(klmn,ispden))<=tol10) paw_ij(iatom)%dijxc_val(klmn,ispden)=zero
end do
else if (option_dij==6) then
do klmn=1,paw_ij(iatom)%lmn2_size*paw_ij(iatom)%cplex_dij
if (abs(paw_ij(iatom)%dijso(klmn,ispden))<=tol10) paw_ij(iatom)%dijso(klmn,ispden)=zero
end do
else if (option_dij==7) then
do klmn=1,paw_ij(iatom)%lmn2_size*paw_ij(iatom)%cplex_dij
if (abs(paw_ij(iatom)%dijexxc(klmn,ispden))<=tol10) paw_ij(iatom)%dijexxc(klmn,ispden)=zero
end do
else if (option_dij==8) then
do klmn=1,paw_ij(iatom)%lmn2_size*paw_ij(iatom)%cplex_dij
if (abs(paw_ij(iatom)%dijfr(klmn,ispden))<=tol10) paw_ij(iatom)%dijfr(klmn,ispden)=zero
end do
end if
end do
end do
end if ! nsym>1
!*********************************************************************
!Printing of Dij
if (abs(pawprtvol)>=1.and.option_dij==0.and.ipert/=natom+1.and.ipert/=natom+5) then
wrt_mode='COLL';if (paral_atom) wrt_mode='PERS'
pertstrg="DIJ";if (ipert>0) pertstrg="DIJ(1)"
natinc=1;if(my_natom>1.and.pawprtvol>=0) natinc=my_natom-1
do iatom=1,my_natom,natinc
iatom_tot=iatom; if (paral_atom) iatom_tot=my_atmtab(iatom)
write(msg, '(6a,i3,a)') ch10," PAW TEST:",ch10,&
& ' ====== Values of ',trim(pertstrg),' in symdij (iatom=',iatom_tot,') (Hartree) ======'
call wrtout(std_out,msg,wrt_mode)
optsym=2;if (paw_ij(iatom)%cplex_dij==2.and.ipert>0) optsym=1
do ispden=1,paw_ij(iatom)%ndij
if (paw_ij(iatom)%ndij==1) then
write(msg, '(4a,i3,a)') ch10,&
& ' *********** ',trim(pertstrg),' (atom ',iatom_tot,') **********'
else
write(msg, '(4a,i3,3a)') ch10,&
& ' *********** ',trim(pertstrg),' (atom ',iatom_tot,', Component ', &
& trim(dspin(ispden+2*(paw_ij(iatom)%ndij/4))),') **********'
end if
call wrtout(std_out,msg,wrt_mode)
if (paw_ij(iatom)%ndij/=4.or.ispden<=2) then
call pawio_print_ij(std_out,paw_ij(iatom)%dij(:,ispden),paw_ij(iatom)%lmn2_size,&
& paw_ij(iatom)%cplex_dij,paw_ij(iatom)%lmn_size,-1,idum,0,pawprtvol,idum,50.d0*dble(3-2*ispden),1,&
& opt_sym=optsym,mode_paral=wrt_mode)
else
if (ipert==0) then
call pawio_print_ij(std_out,paw_ij(iatom)%dij(:,ispden),paw_ij(iatom)%lmn2_size,&
& paw_ij(iatom)%cplex_dij,paw_ij(iatom)%lmn_size,-1,idum,0,pawprtvol,idum,50.d0*dble(3-2*ispden),1,&
& asym_ij=paw_ij(iatom)%dij(:,7-ispden),mode_paral=wrt_mode)
else
call pawio_print_ij(std_out,paw_ij(iatom)%dij(:,ispden),paw_ij(iatom)%lmn2_size,&
& paw_ij(iatom)%cplex_dij,paw_ij(iatom)%lmn_size,-1,idum,0,pawprtvol,idum,50.d0*dble(3-2*ispden),1,&
& opt_sym=optsym,mode_paral=wrt_mode)
end if
end if
end do
end do
call wrtout(std_out,"",wrt_mode)
end if
!Destroy atom table used for parallelism
call free_my_atmtab(my_atmtab,my_atmtab_allocated)
DBG_EXIT("COLL")
!*********************************************************************
!Small function: convert a symmetry operation
!from reduced coordinates (integers) to cartesian coordinates (reals)
contains
function symdij_symcart(aprim,bprim,symred)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'symdij_symcart'
!End of the abilint section
implicit none
real(dp) :: symdij_symcart(3,3)
integer,intent(in) :: symred(3,3)
real(dp),intent(in) :: aprim(3,3),bprim(3,3)
integer :: ii,jj,kk
real(dp) :: tmp(3,3)
symdij_symcart=zero;tmp=zero
do kk=1,3
do jj=1,3
do ii=1,3
tmp(ii,jj)=tmp(ii,jj)+bprim(ii,kk)*dble(symred(jj,kk))
end do
end do
end do
do kk=1,3
do jj=1,3
do ii=1,3
symdij_symcart(ii,jj)=symdij_symcart(ii,jj)+aprim(ii,kk)*tmp(jj,kk)
end do
end do
end do
end function symdij_symcart
end subroutine symdij
!!***
!----------------------------------------------------------------------
!!****f* m_pawdij/symdij_all
!! NAME
!! symdij_all
!!
!! FUNCTION
!! Symmetrize all contributions to PAW non-local strengths Dij
!!
!! INPUTS
!! gprimd(3,3)=dimensional primitive translations for reciprocal space(bohr^-1).
!! indsym(4,nsym,natom)=indirect indexing array for atom labels
!! ipert=index of perturbation if pawrhoij is a pertubed rhoij
!! no meaning for ground-state calculations (should be 0)
!! mpi_atmtab(:)=--optional-- indexes of the atoms treated by current proc
!! mpi_comm_atom=--optional-- MPI communicator over atoms
!! my_natom=number of atoms treated by current processor
!! natom=number of atoms in cell
!! nsym=number of symmetry elements in space group
!! ntypat=number of types of atoms in unit cell.
!! paw_ij(natom)%cplex_dij=1 if dij are REAL, 2 if they are COMPLEX
!! paw_ij(natom)%lmn_size=number of (l,m,n) elements for the paw basis
!! paw_ij(natom)%nspden=number of spin-density components
!! paw_ij(natom)%nsppol=number of independant spin-density components
!! paw_ij(natom)%dij(lmn2_size,nspden)=non-symmetrized paw dij quantities
!! pawang <type(pawang_type)>=angular mesh discretization and related data
!! pawprtvol=control print volume and debugging output for PAW
!! pawtab(ntypat) <type(pawtab_type)>=paw tabulated starting data
!! rprimd(3,3)=real space primitive translations.
!! symafm(nsym)=(anti)ferromagnetic part of symmetry operations
!! symrec(3,3,nsym)=symmetries of group in terms of operations on
!! reciprocal space primitive translations
!!
!! SIDE EFFECTS
!! paw_ij(natom)%dij???(cplex_dij*lmn2_size,nspden)=symmetrized dij quantities as output
!!
!! PARENTS
!! paw_mknewh0,screening,sigma
!!
!! CHILDREN
!! free_my_atmtab,get_my_atmtab,symdij
!!
!! SOURCE
subroutine symdij_all(gprimd,indsym,ipert,my_natom,natom,nsym,ntypat,&
& paw_ij,pawang,pawprtvol,pawtab,rprimd,symafm,symrec,&
& mpi_atmtab,mpi_comm_atom) ! optional arguments (parallelism)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'symdij_all'
!End of the abilint section
implicit none
!Arguments ---------------------------------------------
!scalars
integer,intent(in) :: ipert,my_natom,natom,nsym,ntypat,pawprtvol
integer,optional,intent(in) :: mpi_comm_atom
type(pawang_type),intent(in) :: pawang
!arrays
integer,intent(in) :: indsym(4,nsym,natom),symafm(nsym),symrec(3,3,nsym)
integer,optional,target,intent(in) :: mpi_atmtab(:)
real(dp),intent(in) :: gprimd(3,3),rprimd(3,3)
type(paw_ij_type),intent(inout) :: paw_ij(my_natom)
type(pawtab_type),intent(in) :: pawtab(ntypat)
!Local variables ---------------------------------------
!scalars
integer,parameter :: MAX_NOPTS=11
integer :: ii,option_dij,my_comm_atom,nopt
logical :: my_atmtab_allocated,paral_atom
!arrays
integer :: options(MAX_NOPTS)
integer,pointer :: my_atmtab(:)
! *********************************************************************
nopt = 0
if (ANY(paw_ij(:)%has_dij==2)) then
nopt = nopt + 1
options(nopt) = 0
end if
if (ANY(paw_ij(:)%has_dijhat==2)) then
nopt = nopt + 1
options(nopt) = 1
end if
if (ANY(paw_ij(:)%has_dijU==2)) then
nopt = nopt + 1
options(nopt) = 2
end if
if (ANY(paw_ij(:)%has_dijxc==2)) then
nopt = nopt + 1
options(nopt) = 3
end if
if (ANY(paw_ij(:)%has_dijxc_hat==2)) then
nopt = nopt + 1
options(nopt) = 4
end if
if (ANY(paw_ij(:)%has_dijxc_val==2)) then
nopt = nopt + 1
options(nopt) = 5
end if
if (ANY(paw_ij(:)%has_dijso==2)) then
nopt = nopt + 1
options(nopt) = 6
end if
if (ANY(paw_ij(:)%has_dijexxc==2)) then
nopt = nopt + 1
options(nopt) = 7
end if
if (ANY(paw_ij(:)%has_dijfr==2)) then
nopt = nopt + 1
options(nopt) = 8
end if
!FIXME Dij_hartree and exech_pot are not symmetrized,
if (ANY(paw_ij(:)%has_dijhartree==2)) then
MSG_WARNING("symdij does not symmetrize dijhartree term!")
!nopt = nopt + 1
!options(nopt) = 9
end if
if (ANY(paw_ij(:)%has_exexch_pot==2)) then
nopt = nopt + 1
options(nopt) = 10
MSG_ERROR("Not coded")
end if
!Set up parallelism over atoms
paral_atom=(present(mpi_comm_atom))
nullify(my_atmtab);if (present(mpi_atmtab)) my_atmtab => mpi_atmtab
my_comm_atom=xmpi_self;if (present(mpi_comm_atom)) my_comm_atom=mpi_comm_atom
call get_my_atmtab(my_comm_atom,my_atmtab,my_atmtab_allocated,paral_atom,natom,my_natom_ref=my_natom)
do ii=1,nopt
option_dij = options(ii)
if (paral_atom) then
call symdij(gprimd,indsym,ipert,my_natom,natom,nsym,ntypat,option_dij,&
& paw_ij,pawang,pawprtvol,pawtab,rprimd,symafm,symrec,&
& mpi_comm_atom=my_comm_atom,mpi_atmtab=my_atmtab)
else
call symdij(gprimd,indsym,ipert,my_natom,natom,nsym,ntypat,option_dij,&
& paw_ij,pawang,pawprtvol,pawtab,rprimd,symafm,symrec)
end if
end do
!Destroy atom table used for parallelism
call free_my_atmtab(my_atmtab,my_atmtab_allocated)
end subroutine symdij_all
!!***
!----------------------------------------------------------------------
END MODULE m_pawdij
!!***
| gpl-3.0 |
zachary-williamson/ITK | Modules/ThirdParty/VNL/src/vxl/v3p/netlib/blas/ztrmv.f | 41 | 10389 | SUBROUTINE ZTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
* .. Scalar Arguments ..
INTEGER INCX, LDA, N
CHARACTER*1 DIAG, TRANS, UPLO
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), X( * )
* ..
*
* Purpose
* =======
*
* ZTRMV performs one of the matrix-vector operations
*
* x := A*x, or x := A'*x, or x := conjg( A' )*x,
*
* where x is an n element vector and A is an n by n unit, or non-unit,
* upper or lower triangular matrix.
*
* Parameters
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the matrix is an upper or
* lower triangular matrix as follows:
*
* UPLO = 'U' or 'u' A is an upper triangular matrix.
*
* UPLO = 'L' or 'l' A is a lower triangular matrix.
*
* Unchanged on exit.
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' x := A*x.
*
* TRANS = 'T' or 't' x := A'*x.
*
* TRANS = 'C' or 'c' x := conjg( A' )*x.
*
* Unchanged on exit.
*
* DIAG - CHARACTER*1.
* On entry, DIAG specifies whether or not A is unit
* triangular as follows:
*
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
*
* DIAG = 'N' or 'n' A is not assumed to be unit
* triangular.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array A must contain the upper
* triangular matrix and the strictly lower triangular part of
* A is not referenced.
* Before entry with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array A must contain the lower
* triangular matrix and the strictly upper triangular part of
* A is not referenced.
* Note that when DIAG = 'U' or 'u', the diagonal elements of
* A are not referenced either, but are assumed to be unity.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, n ).
* Unchanged on exit.
*
* X - COMPLEX*16 array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x. On exit, X is overwritten with the
* transformed vector x.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* .. Local Scalars ..
COMPLEX*16 TEMP
INTEGER I, INFO, IX, J, JX, KX
LOGICAL NOCONJ, NOUNIT
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL XERBLA
* .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF ( .NOT.LSAME( UPLO , 'U' ).AND.
$ .NOT.LSAME( UPLO , 'L' ) )THEN
INFO = 1
ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
$ .NOT.LSAME( TRANS, 'T' ).AND.
$ .NOT.LSAME( TRANS, 'C' ) )THEN
INFO = 2
ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
$ .NOT.LSAME( DIAG , 'N' ) )THEN
INFO = 3
ELSE IF( N.LT.0 )THEN
INFO = 4
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
INFO = 6
ELSE IF( INCX.EQ.0 )THEN
INFO = 8
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'ZTRMV ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 )
$ RETURN
*
NOCONJ = LSAME( TRANS, 'T' )
NOUNIT = LSAME( DIAG , 'N' )
*
* Set up the start point in X if the increment is not unity. This
* will be ( N - 1 )*INCX too small for descending loops.
*
IF( INCX.LE.0 )THEN
KX = 1 - ( N - 1 )*INCX
ELSE IF( INCX.NE.1 )THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
IF( LSAME( TRANS, 'N' ) )THEN
*
* Form x := A*x.
*
IF( LSAME( UPLO, 'U' ) )THEN
IF( INCX.EQ.1 )THEN
DO 20, J = 1, N
IF( X( J ).NE.ZERO )THEN
TEMP = X( J )
DO 10, I = 1, J - 1
X( I ) = X( I ) + TEMP*A( I, J )
10 CONTINUE
IF( NOUNIT )
$ X( J ) = X( J )*A( J, J )
END IF
20 CONTINUE
ELSE
JX = KX
DO 40, J = 1, N
IF( X( JX ).NE.ZERO )THEN
TEMP = X( JX )
IX = KX
DO 30, I = 1, J - 1
X( IX ) = X( IX ) + TEMP*A( I, J )
IX = IX + INCX
30 CONTINUE
IF( NOUNIT )
$ X( JX ) = X( JX )*A( J, J )
END IF
JX = JX + INCX
40 CONTINUE
END IF
ELSE
IF( INCX.EQ.1 )THEN
DO 60, J = N, 1, -1
IF( X( J ).NE.ZERO )THEN
TEMP = X( J )
DO 50, I = N, J + 1, -1
X( I ) = X( I ) + TEMP*A( I, J )
50 CONTINUE
IF( NOUNIT )
$ X( J ) = X( J )*A( J, J )
END IF
60 CONTINUE
ELSE
KX = KX + ( N - 1 )*INCX
JX = KX
DO 80, J = N, 1, -1
IF( X( JX ).NE.ZERO )THEN
TEMP = X( JX )
IX = KX
DO 70, I = N, J + 1, -1
X( IX ) = X( IX ) + TEMP*A( I, J )
IX = IX - INCX
70 CONTINUE
IF( NOUNIT )
$ X( JX ) = X( JX )*A( J, J )
END IF
JX = JX - INCX
80 CONTINUE
END IF
END IF
ELSE
*
* Form x := A'*x or x := conjg( A' )*x.
*
IF( LSAME( UPLO, 'U' ) )THEN
IF( INCX.EQ.1 )THEN
DO 110, J = N, 1, -1
TEMP = X( J )
IF( NOCONJ )THEN
IF( NOUNIT )
$ TEMP = TEMP*A( J, J )
DO 90, I = J - 1, 1, -1
TEMP = TEMP + A( I, J )*X( I )
90 CONTINUE
ELSE
IF( NOUNIT )
$ TEMP = TEMP*DCONJG( A( J, J ) )
DO 100, I = J - 1, 1, -1
TEMP = TEMP + DCONJG( A( I, J ) )*X( I )
100 CONTINUE
END IF
X( J ) = TEMP
110 CONTINUE
ELSE
JX = KX + ( N - 1 )*INCX
DO 140, J = N, 1, -1
TEMP = X( JX )
IX = JX
IF( NOCONJ )THEN
IF( NOUNIT )
$ TEMP = TEMP*A( J, J )
DO 120, I = J - 1, 1, -1
IX = IX - INCX
TEMP = TEMP + A( I, J )*X( IX )
120 CONTINUE
ELSE
IF( NOUNIT )
$ TEMP = TEMP*DCONJG( A( J, J ) )
DO 130, I = J - 1, 1, -1
IX = IX - INCX
TEMP = TEMP + DCONJG( A( I, J ) )*X( IX )
130 CONTINUE
END IF
X( JX ) = TEMP
JX = JX - INCX
140 CONTINUE
END IF
ELSE
IF( INCX.EQ.1 )THEN
DO 170, J = 1, N
TEMP = X( J )
IF( NOCONJ )THEN
IF( NOUNIT )
$ TEMP = TEMP*A( J, J )
DO 150, I = J + 1, N
TEMP = TEMP + A( I, J )*X( I )
150 CONTINUE
ELSE
IF( NOUNIT )
$ TEMP = TEMP*DCONJG( A( J, J ) )
DO 160, I = J + 1, N
TEMP = TEMP + DCONJG( A( I, J ) )*X( I )
160 CONTINUE
END IF
X( J ) = TEMP
170 CONTINUE
ELSE
JX = KX
DO 200, J = 1, N
TEMP = X( JX )
IX = JX
IF( NOCONJ )THEN
IF( NOUNIT )
$ TEMP = TEMP*A( J, J )
DO 180, I = J + 1, N
IX = IX + INCX
TEMP = TEMP + A( I, J )*X( IX )
180 CONTINUE
ELSE
IF( NOUNIT )
$ TEMP = TEMP*DCONJG( A( J, J ) )
DO 190, I = J + 1, N
IX = IX + INCX
TEMP = TEMP + DCONJG( A( I, J ) )*X( IX )
190 CONTINUE
END IF
X( JX ) = TEMP
JX = JX + INCX
200 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of ZTRMV .
*
END
| apache-2.0 |
slitvinov/packmol | fgcommon.f | 1 | 28118 | c
c Written by Leandro Martínez, 2009-2011.
c Copyright (c) 2009-2011, Leandro Martínez, Jose Mario Martinez,
c Ernesto G. Birgin.
c
c This program is free software; you can redistribute it and/or
c modify it under the terms of the GNU General Public License
c as published by the Free Software Foundation; either version 2
c of the License, or (at your option) any later version.
c
c
c This file contains the parts of the evaluation of the function
c and gradient which are identical in the serial and parallel
c versions.
c
c
c Objective function evaluation
c
c
c Subroutine comprest: Compute the function value relative to
c to the restrictions for one atom
c
c
subroutine comprest(xcart,restpars,
+ scale,scale2,
+ nratom,ityperest,iratom,
+ icart,f)
implicit none
include 'sizes.i'
integer iratcount, irest, icart
integer nratom(maxatom), ityperest(maxrest)
integer iratom(maxatom,mrperatom)
double precision xcart(maxatom,3), restpars(maxrest,9)
double precision xmin, ymin, zmin, clength, a1, a2, a3, a4, w,
+ b1, b2, b3, d, a5, a6
double precision scale, scale2
double precision f
double precision xmax, ymax, zmax
double precision v1, v2, v3
double precision vnorm
f = 0.d0
do iratcount = 1, nratom(icart)
irest = iratom(icart,iratcount)
if(ityperest(irest).eq.2) then
clength = restpars(irest,4)
xmin = restpars(irest,1)
ymin = restpars(irest,2)
zmin = restpars(irest,3)
xmax = restpars(irest,1) + clength
ymax = restpars(irest,2) + clength
zmax = restpars(irest,3) + clength
a1 = dmin1(xcart(icart,1) - xmin, 0.d0)
a2 = dmin1(xcart(icart,2) - ymin, 0.d0)
a3 = dmin1(xcart(icart,3) - zmin, 0.d0)
f = f + scale*(a1 * a1 + a2 * a2 + a3 * a3)
a1 = dmax1(xcart(icart,1) - xmax, 0.d0)
a2 = dmax1(xcart(icart,2) - ymax, 0.d0)
a3 = dmax1(xcart(icart,3) - zmax, 0.d0)
f = f + scale*(a1 * a1 + a2 * a2 + a3 * a3)
else if(ityperest(irest).eq.3) then
xmin = restpars(irest,1)
ymin = restpars(irest,2)
zmin = restpars(irest,3)
xmax = restpars(irest,4)
ymax = restpars(irest,5)
zmax = restpars(irest,6)
a1 = dmin1(xcart(icart,1) - xmin, 0.d0)
a2 = dmin1(xcart(icart,2) - ymin, 0.d0)
a3 = dmin1(xcart(icart,3) - zmin, 0.d0)
f = f + scale*(a1 * a1 + a2 * a2 + a3 * a3)
a1 = dmax1(xcart(icart,1) - xmax, 0.d0)
a2 = dmax1(xcart(icart,2) - ymax, 0.d0)
a3 = dmax1(xcart(icart,3) - zmax, 0.d0)
f = f + scale*(a1 * a1 + a2 * a2 + a3 * a3)
else if(ityperest(irest).eq.4) then
w = (xcart(icart,1)-restpars(irest,1))**2 +
+ (xcart(icart,2)-restpars(irest,2))**2 +
+ (xcart(icart,3)-restpars(irest,3))**2 -
+ restpars(irest,4)**2
a1 = dmax1(w,0.d0)
f = f + scale2*a1*a1
else if(ityperest(irest).eq.5) then
a1 = (xcart(icart,1)-restpars(irest,1))**2 /
+ restpars(irest,4)**2
a2 = (xcart(icart,2)-restpars(irest,2))**2 /
+ restpars(irest,5)**2
a3 = (xcart(icart,3)-restpars(irest,3))**2 /
+ restpars(irest,6)**2
a4 = restpars(irest,7)**2
w = a1 + a2 + a3 - a4
a1 = dmax1(w,0.d0)
f = f + scale2*a1*a1
else if(ityperest(irest).eq.6) then
xmin = restpars(irest,1)
ymin = restpars(irest,2)
zmin = restpars(irest,3)
xmax = restpars(irest,1) + restpars(irest,4)
ymax = restpars(irest,2) + restpars(irest,4)
zmax = restpars(irest,3) + restpars(irest,4)
a1 = dmax1(xcart(icart,1) - xmin,0.d0)
a2 = dmax1(xcart(icart,2) - ymin,0.d0)
a3 = dmax1(xcart(icart,3) - zmin,0.d0)
a4 = dmax1(xmax - xcart(icart,1),0.d0)
a5 = dmax1(ymax - xcart(icart,2),0.d0)
a6 = dmax1(zmax - xcart(icart,3),0.d0)
f = f + a1*a2*a3*a4*a5*a6
else if(ityperest(irest).eq.7) then
xmin = restpars(irest,1)
ymin = restpars(irest,2)
zmin = restpars(irest,3)
xmax = restpars(irest,4)
ymax = restpars(irest,5)
zmax = restpars(irest,6)
a1 = dmax1(xcart(icart,1) - xmin,0.d0)
a2 = dmax1(xcart(icart,2) - ymin,0.d0)
a3 = dmax1(xcart(icart,3) - zmin,0.d0)
a4 = dmax1(xmax - xcart(icart,1),0.d0)
a5 = dmax1(ymax - xcart(icart,2),0.d0)
a6 = dmax1(zmax - xcart(icart,3),0.d0)
f = f + a1*a2*a3*a4*a5*a6
else if(ityperest(irest).eq.8) then
w = (xcart(icart,1)-restpars(irest,1))**2 +
+ (xcart(icart,2)-restpars(irest,2))**2 +
+ (xcart(icart,3)-restpars(irest,3))**2 -
+ restpars(irest,4)**2
a1 = dmin1(w,0.d0)
f = f + scale2*a1*a1
else if(ityperest(irest).eq.9) then
a1 = (xcart(icart,1)-restpars(irest,1))**2 /
+ restpars(irest,4)**2
a2 = (xcart(icart,2)-restpars(irest,2))**2 /
+ restpars(irest,5)**2
a3 = (xcart(icart,3)-restpars(irest,3))**2 /
+ restpars(irest,6)**2
a4 = restpars(irest,7)**2
w = a1 + a2 + a3 - a4
a1 = dmin1(w,0.d0)
f = f + a1*a1
else if(ityperest(irest).eq.10) then
w = restpars(irest,1)*xcart(icart,1) +
+ restpars(irest,2)*xcart(icart,2) +
+ restpars(irest,3)*xcart(icart,3) -
+ restpars(irest,4)
a1 = dmin1(w,0.d0)
f = f + scale * a1*a1
else if(ityperest(irest).eq.11) then
w = restpars(irest,1)*xcart(icart,1) +
+ restpars(irest,2)*xcart(icart,2) +
+ restpars(irest,3)*xcart(icart,3) -
+ restpars(irest,4)
a1 = dmax1(w,0.d0)
f = f + scale * a1*a1
else if(ityperest(irest).eq.12) then
a1 = xcart(icart,1) - restpars(irest,1)
a2 = xcart(icart,2) - restpars(irest,2)
a3 = xcart(icart,3) - restpars(irest,3)
vnorm = sqrt(restpars(irest,4)**2 + restpars(irest,5)**2 +
+ restpars(irest,6)**2)
v1 = restpars(irest,4)/vnorm
v2 = restpars(irest,5)/vnorm
v3 = restpars(irest,6)/vnorm
b1 = v1 * a1
b2 = v2 * a2
b3 = v3 * a3
w = b1 + b2 + b3
d = ( a1 - v1*w )**2 +
+ ( a2 - v2*w )**2 +
+ ( a3 - v3*w )**2
f = f + scale2 * (
+ dmax1(-w , 0.d0)**2 +
+ dmax1(w - restpars(irest,9), 0.d0)**2 +
+ dmax1(d - restpars(irest,7)**2 , 0.d0 )**2 )
else if(ityperest(irest).eq.13) then
a1 = xcart(icart,1) - restpars(irest,1)
a2 = xcart(icart,2) - restpars(irest,2)
a3 = xcart(icart,3) - restpars(irest,3)
vnorm = sqrt(restpars(irest,4)**2 + restpars(irest,5)**2 +
+ restpars(irest,6)**2)
v1 = restpars(irest,4)/vnorm
v2 = restpars(irest,5)/vnorm
v3 = restpars(irest,6)/vnorm
b1 = v1 * a1
b2 = v2 * a2
b3 = v3 * a3
w = b1 + b2 + b3
d = ( a1 - v1*w )**2 +
+ ( a2 - v2*w )**2 +
+ ( a3 - v3*w )**2
f = f + scale2 * (
+ dmin1(-w , 0.d0)**2 *
+ dmin1(w - restpars(irest,9), 0.d0)**2 *
+ dmin1(d - restpars(irest,7)**2 , 0.d0 )**2 )
end if
end do
return
end
c
c Gradient evaluation
c
c
c Gradient relative to restraints
c
subroutine gwalls(icart,irest,gxcar)
implicit none
include 'sizes.i'
include 'molpa.i'
integer icart, irest
double precision a1, a2, a3, a4, a5, a6, xmin, ymin, zmin,
+ xmax, ymax, zmax,
+ clength, b1, b2, b3, c1, c2, w, d, rg(3),
+ vnorm, vv1, vv2, vv3, frab, frac, frbc,
+ dfra(3), dfrb(3), dfrc(3), gxcar(maxatom,3)
if(ityperest(irest).eq.2) then
clength = restpars(irest,4)
xmin = restpars(irest,1)
ymin = restpars(irest,2)
zmin = restpars(irest,3)
xmax = restpars(irest,1) + clength
ymax = restpars(irest,2) + clength
zmax = restpars(irest,3) + clength
a1 = xcart(icart,1) - xmin
a2 = xcart(icart,2) - ymin
a3 = xcart(icart,3) - zmin
if(a1.lt.0.d0) gxcar(icart,1) =
+ gxcar(icart,1) + scale * 2.d0 * a1
if(a2.lt.0.d0) gxcar(icart,2) =
+ gxcar(icart,2) + scale * 2.d0 * a2
if(a3.lt.0.d0) gxcar(icart,3) =
+ gxcar(icart,3) + scale * 2.d0 * a3
a1 = xcart(icart,1) - xmax
a2 = xcart(icart,2) - ymax
a3 = xcart(icart,3) - zmax
if(a1.gt.0.d0) gxcar(icart,1) =
+ gxcar(icart,1) + scale * 2.d0 * a1
if(a2.gt.0.d0) gxcar(icart,2) =
+ gxcar(icart,2) + scale * 2.d0 * a2
if(a3.gt.0.d0) gxcar(icart,3) =
+ gxcar(icart,3) + scale * 2.d0 * a3
else if(ityperest(irest).eq.3) then
xmin = restpars(irest,1)
ymin = restpars(irest,2)
zmin = restpars(irest,3)
xmax = restpars(irest,4)
ymax = restpars(irest,5)
zmax = restpars(irest,6)
a1 = xcart(icart,1) - xmin
a2 = xcart(icart,2) - ymin
a3 = xcart(icart,3) - zmin
if(a1.lt.0.d0) gxcar(icart,1) =
+ gxcar(icart,1) + scale * 2.d0 * a1
if(a2.lt.0.d0) gxcar(icart,2) =
+ gxcar(icart,2) + scale * 2.d0 * a2
if(a3.lt.0.d0) gxcar(icart,3) =
+ gxcar(icart,3) + scale * 2.d0 * a3
a1 = xcart(icart,1) - xmax
a2 = xcart(icart,2) - ymax
a3 = xcart(icart,3) - zmax
if(a1.gt.0.d0) gxcar(icart,1) =
+ gxcar(icart,1) + scale * 2.d0 * a1
if(a2.gt.0.d0) gxcar(icart,2) =
+ gxcar(icart,2) + scale * 2.d0 * a2
if(a3.gt.0.d0) gxcar(icart,3) =
+ gxcar(icart,3) + scale * 2.d0 * a3
else if(ityperest(irest).eq.4) then
d = (xcart(icart,1)-restpars(irest,1))**2 +
+ (xcart(icart,2)-restpars(irest,2))**2 +
+ (xcart(icart,3)-restpars(irest,3))**2 -
+ restpars(irest,4)**2
if(d.gt.0.d0) then
gxcar(icart,1) = gxcar(icart,1) + 4.d0 * scale2 *
+ (xcart(icart,1)-restpars(irest,1))*d
gxcar(icart,2) = gxcar(icart,2) + 4.d0 * scale2 *
+ (xcart(icart,2)-restpars(irest,2))*d
gxcar(icart,3) = gxcar(icart,3) + 4.d0 * scale2 *
+ (xcart(icart,3)-restpars(irest,3))*d
end if
else if(ityperest(irest).eq.5) then
a1 = xcart(icart,1)-restpars(irest,1)
b1 = xcart(icart,2)-restpars(irest,2)
c1 = xcart(icart,3)-restpars(irest,3)
a2 = restpars(irest,4)**2
b2 = restpars(irest,5)**2
c2 = restpars(irest,6)**2
d = a1**2/a2+b1**2/b2+c1**2/c2-restpars(irest,7)**2
if(d.gt.0) then
gxcar(icart,1) = gxcar(icart,1) + scale2*4.d0*d*a1/a2
gxcar(icart,2) = gxcar(icart,2) + scale2*4.d0*d*b1/b2
gxcar(icart,3) = gxcar(icart,3) + scale2*4.d0*d*c1/c2
end if
else if(ityperest(irest).eq.6) then
xmin = restpars(irest,1)
ymin = restpars(irest,2)
zmin = restpars(irest,3)
xmax = restpars(irest,1) + restpars(irest,4)
ymax = restpars(irest,2) + restpars(irest,4)
zmax = restpars(irest,3) + restpars(irest,4)
a1 = dmax1(xcart(icart,1) - xmin,0.d0)
a2 = dmax1(xcart(icart,2) - ymin,0.d0)
a3 = dmax1(xcart(icart,3) - zmin,0.d0)
a4 = dmax1(xmax - xcart(icart,1),0.d0)
a5 = dmax1(ymax - xcart(icart,2),0.d0)
a6 = dmax1(zmax - xcart(icart,3),0.d0)
w = a1*a2*a3*a4*a5*a6
if(w.gt.0.d0) then
gxcar(icart,1) = gxcar(icart,1) + a2*a3*a5*a6*(a4-a1)
gxcar(icart,2) = gxcar(icart,2) + a1*a3*a4*a6*(a5-a2)
gxcar(icart,3) = gxcar(icart,3) + a1*a2*a4*a5*(a6-a3)
end if
else if(ityperest(irest).eq.7) then
xmin = restpars(irest,1)
ymin = restpars(irest,2)
zmin = restpars(irest,3)
xmax = restpars(irest,4)
ymax = restpars(irest,5)
zmax = restpars(irest,6)
a1 = dmax1(xcart(icart,1) - xmin,0.d0)
a2 = dmax1(xcart(icart,2) - ymin,0.d0)
a3 = dmax1(xcart(icart,3) - zmin,0.d0)
a4 = dmax1(xmax - xcart(icart,1),0.d0)
a5 = dmax1(ymax - xcart(icart,2),0.d0)
a6 = dmax1(zmax - xcart(icart,3),0.d0)
w = a1*a2*a3*a4*a5*a6
if(w.gt.0.d0) then
gxcar(icart,1) = gxcar(icart,1) + a2*a3*a5*a6*(a4-a1)
gxcar(icart,2) = gxcar(icart,2) + a1*a3*a4*a6*(a5-a2)
gxcar(icart,3) = gxcar(icart,3) + a1*a2*a4*a5*(a6-a3)
end if
else if(ityperest(irest).eq.8) then
d = (xcart(icart,1)-restpars(irest,1))**2 +
+ (xcart(icart,2)-restpars(irest,2))**2 +
+ (xcart(icart,3)-restpars(irest,3))**2 -
+ restpars(irest,4)**2
if(d.lt.0.d0) then
gxcar(icart,1) = gxcar(icart,1) + 4.d0 * scale2 *
+ (xcart(icart,1)-restpars(irest,1))*d
gxcar(icart,2) = gxcar(icart,2) + 4.d0 * scale2 *
+ (xcart(icart,2)-restpars(irest,2))*d
gxcar(icart,3) = gxcar(icart,3) + 4.d0 * scale2 *
+ (xcart(icart,3)-restpars(irest,3))*d
end if
else if(ityperest(irest).eq.9) then
a1 = xcart(icart,1)-restpars(irest,1)
b1 = xcart(icart,2)-restpars(irest,2)
c1 = xcart(icart,3)-restpars(irest,3)
a2 = restpars(irest,4)**2
b2 = restpars(irest,5)**2
c2 = restpars(irest,6)**2
d = a1**2/a2+b1**2/b2+c1**2/c2-restpars(irest,7)**2
if(d.lt.0) then
d = scale2 * d
gxcar(icart,1) = gxcar(icart,1) + 4.d0*d*a1/a2
gxcar(icart,2) = gxcar(icart,2) + 4.d0*d*b1/b2
gxcar(icart,3) = gxcar(icart,3) + 4.d0*d*c1/c2
end if
else if(ityperest(irest).eq.10) then
d = restpars(irest,1)*xcart(icart,1) +
+ restpars(irest,2)*xcart(icart,2) +
+ restpars(irest,3)*xcart(icart,3) -
+ restpars(irest,4)
if(d.lt.0.d0) then
d = scale * d
gxcar(icart,1) = gxcar(icart,1) +
+ 2.d0*restpars(irest,1)*d
gxcar(icart,2) = gxcar(icart,2) +
+ 2.d0*restpars(irest,2)*d
gxcar(icart,3) = gxcar(icart,3) +
+ 2.d0*restpars(irest,3)*d
end if
else if(ityperest(irest).eq.11) then
d = restpars(irest,1)*xcart(icart,1) +
+ restpars(irest,2)*xcart(icart,2) +
+ restpars(irest,3)*xcart(icart,3) -
+ restpars(irest,4)
if(d.gt.0.d0) then
d = scale * d
gxcar(icart,1) = gxcar(icart,1) +
+ 2.d0*restpars(irest,1)*d
gxcar(icart,2) = gxcar(icart,2) +
+ 2.d0*restpars(irest,2)*d
gxcar(icart,3) = gxcar(icart,3) +
+ 2.d0*restpars(irest,3)*d
end if
else if(ityperest(irest).eq.12) then
rg(1) = 0.0d0
rg(2) = 0.0d0
rg(3) = 0.0d0
a1 = xcart(icart,1) - restpars(irest,1)
a2 = xcart(icart,2) - restpars(irest,2)
a3 = xcart(icart,3) - restpars(irest,3)
vnorm = sqrt(restpars(irest,4)**2 + restpars(irest,5)**2
+ + restpars(irest,6)**2)
vv1 = restpars(irest,4)/vnorm
vv2 = restpars(irest,5)/vnorm
vv3 = restpars(irest,6)/vnorm
b1 = vv1 * a1
b2 = vv2 * a2
b3 = vv3 * a3
w = b1 + b2 + b3
d = (a1 - vv1*w)**2 +
+ (a2 - vv2*w)**2 +
+ (a3 - vv3*w)**2
rg(1) = scale2 * (
+ -2*dmax1(-w , 0.d0) * vv1 +
+ 2*dmax1(w - restpars(irest,9), 0.d0) * vv1 +
+ 2*dmax1(d - restpars(irest,7)**2 , 0.d0) *
+ (2*(a1 - vv1*w)*(1 - vv1**2)+
+ 2*(a2 - vv2*w)*(-vv2*vv1)+
+ 2*(a3 - vv3*w)*(-vv3*vv1) ))
rg(2) = scale2 * (
+ -2*dmax1(-w , 0.d0) * vv2 +
+ 2*dmax1(w - restpars(irest,9), 0.d0) * vv2 +
+ 2*dmax1(d - restpars(irest,7)**2 , 0.d0) *
+ (2*(a1 - vv1*w)*(-vv1*vv2)+
+ 2*(a2 - vv2*w)*(1 - vv2**2)+
+ 2*(a3 - vv3*w)*(-vv3*vv2) ))
rg(3) = scale2 * (
+ -2*dmax1(-w , 0.d0) * vv3 +
+ 2*dmax1(w - restpars(irest,9), 0.d0) * vv3 +
+ 2*dmax1(d - restpars(irest,7)**2 , 0.d0) *
+ (2*(a1 - vv1*w)*(-vv1*vv3)+
+ 2*(a2 - vv2*w)*(-vv2*vv3)+
+ 2*(a3 - vv3*w)*(1 - vv3**2) ))
gxcar(icart,1) = gxcar(icart,1) + rg(1)
gxcar(icart,2) = gxcar(icart,2) + rg(2)
gxcar(icart,3) = gxcar(icart,3) + rg(3)
else if(ityperest(irest).eq.13) then
rg(1) = 0.0d0
rg(2) = 0.0d0
rg(3) = 0.0d0
a1 = xcart(icart,1) - restpars(irest,1)
a2 = xcart(icart,2) - restpars(irest,2)
a3 = xcart(icart,3) - restpars(irest,3)
vnorm = sqrt(restpars(irest,4)**2 + restpars(irest,5)**2
+ + restpars(irest,6)**2)
vv1 = restpars(irest,4)/vnorm
vv2 = restpars(irest,5)/vnorm
vv3 = restpars(irest,6)/vnorm
b1 = vv1 * a1
b2 = vv2 * a2
b3 = vv3 * a3
w = b1 + b2 + b3
d = (a1 - vv1*w)**2 +
+ (a2 - vv2*w)**2 +
+ (a3 - vv3*w)**2
frab = dmin1(-w , 0.d0)**2 *
+ dmin1(w - restpars(irest,9), 0.d0)**2
frac = dmin1(-w , 0.d0)**2 *
+ dmin1(d - restpars(irest,7)**2 , 0.d0 )**2
frbc = dmin1(w - restpars(irest,9), 0.d0)**2 *
+ dmin1(d - restpars(irest,7)**2 , 0.d0 )**2
dfra(1) = -2*dmin1(-w , 0.d0) * vv1
dfrb(1) = 2*dmin1(w - restpars(irest,9), 0.d0) * vv1
dfrc(1) = 2*dmin1(d - restpars(irest,7)**2 , 0.d0) *
+ (2*(a1 - vv1*w)*(1 - vv1**2)+
+ 2*(a2 - vv2*w)*(-vv2*vv1)+
+ 2*(a3 - vv3*w)*(-vv3*vv1) )
dfra(2) = -2*dmin1(-w , 0.d0) * vv2
dfrb(2) = 2*dmin1(w - restpars(irest,9), 0.d0) * vv2
dfrc(2) = 2*dmin1(d - restpars(irest,7)**2 , 0.d0) *
+ (2*(a1 - vv1*w)*(-vv1*vv2)+
+ 2*(a2 - vv2*w)*(1 - vv2**2)+
+ 2*(a3 - vv3*w)*(-vv3*vv2) )
dfra(3) = -2*dmin1(-w , 0.d0) * vv3
dfrb(3) = 2*dmin1(w - restpars(irest,9), 0.d0) * vv3
dfrc(3) = 2*dmin1(d - restpars(irest,7)**2 , 0.d0) *
+ (2*(a1 - vv1*w)*(-vv1*vv3)+
+ 2*(a2 - vv2*w)*(-vv2*vv3)+
+ 2*(a3 - vv3*w)*(1 - vv3**2) )
rg(1) = scale2 * ( dfra(1)*frbc + dfrb(1)*frac +
+ dfrc(1)*frab)
rg(2) = scale2 * ( dfra(2)*frbc + dfrb(2)*frac +
+ dfrc(2)*frab)
rg(3) = scale2 * ( dfra(3)*frbc + dfrb(3)*frac +
+ dfrc(3)*frab)
gxcar(icart,1) = gxcar(icart,1) + rg(1)
gxcar(icart,2) = gxcar(icart,2) + rg(2)
gxcar(icart,3) = gxcar(icart,3) + rg(3)
end if
return
end
c
c Subroutine that performs finite difference and analytical gradient
c comparision. Used only for test purpouses
c
subroutine compgrad(n,x)
implicit none
include 'sizes.i'
integer n, i, iworst
double precision x(*), g(nn), fx, step, gcomp, gbest, eworst,
+ error, steperror, stepbest
real time0, tarray(2), etime
write(*,*)
write(*,*) ' Comparing analytical and finite-difference '
write(*,*) ' gradients... may take a while. '
write(*,*)
write(*,*) ' Five first center of masses and angles',
+ ' of tested point: '
do i = 1, 15, 3
write(*,15) (i+2)/3, x(i), x(i+1), x(i+2),
+ x(n/2+i),x(n/2+i+1),x(n/2+i+2)
end do
15 format(i4,6(tr2,f8.3))
write(*,*)
write(*,*) ' Computing gradient ... '
call feasy(x, fx)
write(*,*) ' Function value on test point: ', fx
open(98, file = 'chkgrad.log',status='unknown')
write(98, *)'Function Value = ', fx
call geasy(n, x, g)
write(98,10)
10 format(t2,'Component',t16,'Analytical',t33,'Discrete',
+ t51,'Error',t62,'Best step')
time0 = etime(tarray)
eworst = 0.d0
do i = 1, n
if(etime(tarray)-time0.gt.10.) then
time0 = etime(tarray)
write(*,*) ' Computing the ',i,'th of ',n,' components. '
end if
error = 1.d20
step = 1.d-2
do while(error.gt.1.d-6.and.step.ge.1.d-20)
call discret(i,x,gcomp,step)
if(dmin1(abs(g(i)),abs(gcomp)).gt.1.d-10) then
steperror = abs( ( gcomp - g(i) ) / g(i) )
else
steperror = abs( gcomp - g(i) )
end if
if( steperror .lt. error ) then
error = steperror
gbest = gcomp
stepbest = step
end if
step = step / 10.d0
end do
write(98,20) i, g(i), gbest, error, stepbest
20 format(i10,4(tr2,d13.7))
if(error.gt.eworst) then
iworst = i
eworst = error
end if
end do
write(98,*) 'Maximum difference = ',
+ iworst,' Error= ', eworst
write(*,*) ' Done. '
stop
end
subroutine discret(icomp,x,gcomp,step)
implicit none
integer icomp
double precision save, step, x(*), fplus, fminus, gcomp
save = x(icomp)
x(icomp) = save + step
call feasy(x, fplus)
x(icomp) = save - step
call feasy(x, fminus)
gcomp = (fplus - fminus) / (2.d0 * step)
x(icomp) = save
return
end
c
c Subroutine that computes the function value
c
c
c
subroutine feasyseq(x,f)
implicit none
include 'sizes.i'
include 'molpa.i'
double precision v1(3), v2(3), v3(3)
double precision x(nn)
double precision f,fparcs,fplus
double precision xtemp, ytemp, ztemp
double precision xbar, ybar, zbar
double precision beta, gama, teta
double precision flast
integer i, j, k
integer ilugan, ilubar, icart, itype, imol, iatom, idatom,
+ iboxx, iboxy, iboxz
c Reset function value
f = 0.d0
frest = 0.d0
fdist = 1.d20
c Reset boxes
if(.not.init1) call resetboxes(nboxes,latomfirst,latomfix)
c Transform baricenter and angles into cartesian coordinates
c Computes cartesian coordinates from vector x and coor
ilubar = 0
ilugan = ntotmol*3
icart = natfix
do itype = 1, ntype
if(.not.comptype(itype)) then
icart = icart + nmols(itype)*natoms(itype)
else
do imol = 1, nmols(itype)
xbar = x(ilubar+1)
ybar = x(ilubar+2)
zbar = x(ilubar+3)
c Computing the rotation matrix
beta = x(ilugan+1)
gama = x(ilugan+2)
teta = x(ilugan+3)
call eulerrmat(beta,gama,teta,v1,v2,v3)
c Looping over the atoms of this molecule
idatom = idfirst(itype) - 1
do iatom = 1, natoms(itype)
icart = icart + 1
idatom = idatom + 1
c Computing the cartesian coordinates for this atom
call compcart(icart,xcart,
+ xbar,ybar,zbar,
+ coor(idatom,1),coor(idatom,2),coor(idatom,3),
+ v1,v2,v3)
c Adding to f the value relative to constraints for this atom
call comprest(xcart,restpars,
+ scale,scale2,
+ nratom,ityperest,iratom,
+ icart,fplus)
f = f + fplus
frest = dmax1(frest,fplus)
if(move) fatom(icart) = fatom(icart) + fplus
c Putting atoms in their boxes
if(.not.init1) then
xtemp = xcart(icart,1) - sizemin(1)
ytemp = xcart(icart,2) - sizemin(2)
ztemp = xcart(icart,3) - sizemin(3)
iboxx = int(xtemp/boxl(1)) + 1
iboxy = int(ytemp/boxl(2)) + 1
iboxz = int(ztemp/boxl(3)) + 1
if(xtemp.le.0) iboxx = 1
if(ytemp.le.0) iboxy = 1
if(ztemp.le.0) iboxz = 1
if(iboxx.gt.nboxes(1)) iboxx = nboxes(1)
if(iboxy.gt.nboxes(2)) iboxy = nboxes(2)
if(iboxz.gt.nboxes(3)) iboxz = nboxes(3)
latomnext(icart) = latomfirst(iboxx,iboxy,iboxz)
latomfirst(iboxx,iboxy,iboxz) = icart
ibtype(icart) = itype
ibmol(icart) = imol
end if
end do
ilugan = ilugan + 3
ilubar = ilubar + 3
end do
end if
end do
if(init1) return
c Minimum distance function evaluation
do i = 1, nboxes(1)
do j = 1, nboxes(2)
do k = 1, nboxes(3)
icart = latomfirst(i,j,k)
do while ( icart .ne. 0 )
if(comptype(ibtype(icart))) then
c Vector that keeps the value for this atom
if(move) flast = f
c Interactions inside box
f = f + fparcs(icart,latomnext(icart))
c Interactions of boxes that share faces
f = f + fparcs(icart,latomfirst(i+1,j,k))
f = f + fparcs(icart,latomfirst(i,j+1,k))
f = f + fparcs(icart,latomfirst(i,j,k+1))
c Interactions of boxes that share axes
f = f + fparcs(icart,latomfirst(i+1,j+1,k))
f = f + fparcs(icart,latomfirst(i+1,j,k+1))
f = f + fparcs(icart,latomfirst(i+1,j-1,k))
f = f + fparcs(icart,latomfirst(i+1,j,k-1))
f = f + fparcs(icart,latomfirst(i,j+1,k+1))
f = f + fparcs(icart,latomfirst(i,j+1,k-1))
c Interactions of boxes that share vertices
f = f + fparcs(icart,latomfirst(i+1,j+1,k+1))
f = f + fparcs(icart,latomfirst(i+1,j+1,k-1))
f = f + fparcs(icart,latomfirst(i+1,j-1,k+1))
f = f + fparcs(icart,latomfirst(i+1,j-1,k-1))
c If going to move bad molecules, update fatom
if(move) fatom(icart) = fatom(icart) + f - flast
end if
icart = latomnext(icart)
end do
end do
end do
end do
return
end
c
c Function that computes the main part of the objective function
c
double precision function fparcs(icart,firstjcart)
c Dimensions
include 'sizes.i'
C SCALAR ARGUMENTS
integer icart,firstjcart
C LOCAL SCALARS
integer jcart
double precision a1,a2,a3,datom
C COMMON BLOCK
include 'molpa.i'
fparcs = 0.0d0
jcart = firstjcart
do while ( jcart .ne. 0 )
if(comptype(ibtype(jcart))) then
if(ibmol(icart).ne.ibmol(jcart).or.
+ ibtype(icart).ne.ibtype(jcart)) then
a1 = xcart(icart, 1)-xcart(jcart, 1)
a2 = xcart(icart, 2)-xcart(jcart, 2)
a3 = xcart(icart, 3)-xcart(jcart, 3)
datom = a1 * a1 + a2 * a2 + a3 * a3
a1 = dmin1(datom - dism2, 0.d0)
fparcs = fparcs + a1 * a1
fdist = dmin1(datom,fdist)
end if
end if
jcart = latomnext(jcart)
end do
end
| gpl-3.0 |
qsnake/abinit | src/66_wfs/prep_kpgio.F90 | 1 | 22319 | !{\src2tex{textfont=tt}}
!!****f* ABINIT/prep_kpgio
!! NAME
!! prep_kpgio
!!
!! FUNCTION
!! Used only in BandFFT parallelization.
!! Do initialization of kg information.
!! Transposition of all quantities which depend on kg_k
!! In case of istwfk==2, this routine completes also
!! the kg_k_gather vector by the opposite values.
!! The values are distributed on the processors in function of
!! the value of modulo(-kg_k_gather(2,i),nproc_fft)
!!
!! COPYRIGHT
!!
!! INPUTS
!! accesswff = defines the format of the output
!! ecut_eff = kinetic energy planewave cutoff (hartree)
!! exchn2n3d = if 1, n2 and n3 are exchanged
!! gmet(3,3) = reciprocal space metric (bohr^-2)
!! istwfk(nkpt) = input option parameter that describes the storage of wfs
!! kptns(3,nkpt) = reduced coords of k points
!! fnametmp_kg = name of unkg file
!! mgfft = maximum single fft dimension (IN)
!! mkmem = number of k points which can fit in memory; set to 0 if use disk
!! mode_paral = either 'COLL' or 'PERS', tells whether
!! the loop over k points must be done by all processors or not,
!! in case of parallel execution.
!! mpi_enreg = informations about MPI parallelization
!! mpw = maximum number of planewaves as dimensioned in calling routine
!! nband(nkpt*nsppol) = number of bands at each k point
!! nkpt = number of k points
!! nsppol = 1 for unpolarized, 2 for polarized
!! unkg = unit number for storage of basis sphere data: stores indirect
!! indexing array and integer coordinates for all planewaves in basis
!! sphere for each k point being considered
!!
!! OUTPUT
!! kg(3,mpw*mkmem) = dimensionless coords of G vecs in basis sphere at k point
!! npwarr(nkpt) = array holding npw for each k point, taking into account
!! the effect of istwfk, and the spreading over processors
!! npwtot(nkpt) = array holding the total number of plane waves for each k point,
!!---------------------------------------------------------------------
!! within the mpi_enreg%bandfft_kpt data_type : Initialize and compute
!!---------------------------------------------------------------------
!! gbound = sphere boundary info
!! idatarecv0 = position of the planewave coordinates (0,0,0)
!! istwf_k = input option parameter that describes the storage of wfs
!! kg_k_gather = planewave coordinates
!! (of the processor + sended by other processors band)
!! kg_k_gather_sym = planewave coordinates
!! (kg_k_gather + opposited planewave coordinates sended by the processors fft)
!! ndatarecv = total number of values received by the processor and sended
!! by the other processors band
!! ndatasend_sym = number of sended values to the processors fft to create opposited
!! planewave coordinates
!! ndatarecv_tot = total number of received values by the processor
!! (ndatarecv + number of received opposited planewave coordinates)
!! recvcounts = number of values received by the processor from each processor band
!! recvcounts_sym = number of values received by the processor from each processor fft
!! recvcounts_sym_tot = number of values received by each processor from the other processors fft
!! rdispls = positions of values received by the processor from each processor band
!! rdispls_sym = positions of values received by the processor from each processor fft
!! sendcounts = number of values sended by the processor to each processor band
!! sendcounts_sym = number of values sended by the processor to each processor fft
!! sendcounts_sym_all = number of values sended by each processor to the other processors fft
!! sdispls = postions of values sended by the processor to each processor band
!! sdispls_sym = postions of values sended by the processor to each processor fft
!! tab_proc = positions of opposited planewave coordinates in the list of the
!! processors fft
!!
!! SIDE EFFECTS
!!
!! NOTES
!! Note that in case of band parallelism, the number of spin-up
!! and spin-down bands must be equal at each k points
!!
!! PARENTS
!! gstate,inwffil
!!
!! CHILDREN
!! flush_unit,kpgio,leave_new,sphereboundary,wrtout,xallgather_mpi
!! xallgatherv_mpi,xalltoallv_mpi,xsum_mpi
!!
!! SOURCE
#if defined HAVE_CONFIG_H
#include "config.h"
#endif
#include "abi_common.h"
subroutine prep_kpgio(accesswff,ecut_eff,exchn2n3d,gmet,istwfk,kg,kptns,fnametmp_kg,mgfft,mkmem,mode_paral,&
& mpi_enreg,mpw,nband,nkpt,npwarr,npwtot,nsppol,unkg)
use m_profiling
use defs_basis
use defs_datatypes
use defs_abitypes
use m_xmpi
use m_io_tools, only : flush_unit
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'prep_kpgio'
use interfaces_14_hidewrite
use interfaces_16_hideleave
use interfaces_53_ffts
use interfaces_56_recipspace
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(in) :: accesswff,exchn2n3d,mgfft,mkmem,mpw,nkpt,nsppol,unkg
real(dp),intent(in) :: ecut_eff
character(len=4),intent(in) :: mode_paral
character(len=fnlen),intent(in) :: fnametmp_kg
type(MPI_type),intent(inout) :: mpi_enreg
!arrays
integer,intent(in) :: istwfk(nkpt),nband(nkpt*nsppol)
integer,intent(out) :: kg(3,mpw*mkmem),npwarr(nkpt),npwtot(nkpt)
real(dp),intent(in) :: gmet(3,3),kptns(3,nkpt)
!Local variables-------------------------------
!scalars
integer :: comm_band,comm_fft,idatarecv,idatarecv0,ierr,ikg,ikpt,ikpt_this_proc,iproc,isppol,istwf_k,jsendloc,me_band
integer :: me_fft,me_kpt,ndatarecv,ndatarecv_tot,ndatasend_sym,nproc_band,nproc_fft,npw_k,npw_tot
character(len=500) :: message
!arrays
integer,allocatable :: gbound(:,:)
integer,allocatable :: kg_k(:,:),kg_k_gather(:,:),kg_k_gather_all(:,:),kg_k_gather_send(:,:),kg_k_gather_sym(:,:)
integer,allocatable :: npw_per_proc(:)
integer,allocatable :: rdispls(:),rdispls_all(:),rdispls_sym(:),rdispls_sym_loc(:)
integer,allocatable :: recvcounts(:),recvcounts_sym(:),recvcounts_sym_loc(:),recvcounts_sym_tot(:)
integer,allocatable :: sdispls(:),sdispls_sym_loc(:),sdispls_sym(:)
integer,allocatable :: sendcounts(:),sendcounts_sym(:),sendcounts_sym_all(:),sendcounts_sym_loc(:)
integer,allocatable :: sum_kg(:),tab_proc(:)
! *********************************************************************
!DEBUG
!write(std_out,*)' prep_kpgio : enter '
!ENDDEBUG
!---------------------------------------------
!Initialisation
!---------------------------------------------
nproc_fft = mpi_enreg%nproc_fft
nproc_band = mpi_enreg%nproc_band
me_band = mpi_enreg%me_band
me_fft = mpi_enreg%me_fft
me_kpt = mpi_enreg%me_kpt
comm_band = mpi_enreg%comm_band
comm_fft = mpi_enreg%comm_fft
!=============================================================================
!Initialize all various tabs within the mpi_enreg%bandfft_kpt(ikpt) data_struc
!These tabs are distributed over the kpt processors
!=============================================================================
ABI_ALLOCATE(mpi_enreg%bandfft_kpt,(mkmem))
ABI_ALLOCATE(mpi_enreg%tab_kpt_distrib,(nkpt))
mpi_enreg%bandfft_kpt(:)%flag1_is_allocated=0
mpi_enreg%bandfft_kpt(:)%flag2_is_allocated=0
mpi_enreg%bandfft_kpt(:)%flag3_is_allocated=0
mpi_enreg%tab_kpt_distrib(:)=0
do isppol=1,nsppol
ikpt_this_proc=0
do ikpt=1,nkpt
if(minval(abs(mpi_enreg%proc_distrb(ikpt,:,isppol)-me_kpt))/=0) then
cycle
end if
ikpt_this_proc=ikpt_this_proc+1
! This test should be done when dataset are read and slipt of work do between processor
! If this test is not good for one proc then other procs fall in deadlock->so PERS and MPI_ABORT
if (ikpt_this_proc > mkmem) then
write(message, '(a,a,a,a)' ) ch10,' gstate : BUG -',ch10,&
& ' this bandfft tab cannot be allocated !'
call wrtout(std_out,message,'PERS')
call flush_unit(std_out)
call leave_new('PERS')
end if
mpi_enreg%tab_kpt_distrib(ikpt)=ikpt_this_proc
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%gbound ,(2*mgfft+8,2))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%recvcounts,(nproc_band))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%sendcounts,(nproc_band))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%rdispls ,(nproc_band))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%sdispls ,(nproc_band))
mpi_enreg%bandfft_kpt(ikpt_this_proc)%flag1_is_allocated=1
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%kg_k_gather)
! Initialize various quantities which will be computed in vtorho
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%ffnl_gather)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%kinpw_gather)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%kpg_k_gather)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%ph3d_gather)
! Initialize various quantities which will be computed below in case of istwf_k=2
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%kg_k_gather_sym)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%rdispls_sym)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%recvcounts_sym)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%recvcounts_sym_tot)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%sdispls_sym)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%sendcounts_sym)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%sendcounts_sym_all)
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%tab_proc)
! In case of MPI_IO, initialize the following tab
nullify(mpi_enreg%bandfft_kpt(ikpt_this_proc)%ind_kg_mpi_to_seq)
end do
end do
if((mpi_enreg%paral_compil_mpio==1).and.accesswff==IO_MODE_MPI) then
mpi_enreg%flag_ind_kg_mpi_to_seq = 1
end if
!=============================================================================
!End of the initialization of the mpi_enreg%bandfft_kpt(ikpt) data_struc
!=============================================================================
!Compute kg, npwarr and npwtot
call kpgio(ecut_eff,exchn2n3d,gmet,istwfk,kg,fnametmp_kg, &
& kptns,mkmem,nband,nkpt,mode_paral,mpi_enreg,&
& mpw,npwarr,npwtot,nsppol,unkg)
!=============================================================================
!Compute and store various tabs in mpi_enreg%bandfft_kpt(ikpt) data_struc
!These ones will be used in following subroutines:
!vtorho, mkrho, prep_nonlop, prep_fourwf, prep_getghc...
!=============================================================================
ABI_ALLOCATE(sdispls ,(nproc_band))
ABI_ALLOCATE(sendcounts ,(nproc_band))
ABI_ALLOCATE(rdispls ,(nproc_band))
ABI_ALLOCATE(recvcounts ,(nproc_band))
do isppol=1,nsppol
ikg=0
do ikpt=1,nkpt
npw_k=npwarr(ikpt)
istwf_k=istwfk(ikpt)
if(minval(abs(mpi_enreg%proc_distrb(ikpt,:,isppol)-me_kpt))/=0) then
cycle
end if
ikpt_this_proc=mpi_enreg%tab_kpt_distrib(ikpt)
if ((ikpt_this_proc > mkmem).or.(ikpt_this_proc==0)) then
write(message, '(a,a,a,a)' ) ch10,' gstate : BUG -',ch10,&
& ' this bandfft tab is not allocated !'
call wrtout(std_out,message,'COLL')
call leave_new('COLL')
end if
call xallgather_mpi(npw_k,recvcounts,comm_band,ierr)
rdispls(1)=0
do iproc=2,nproc_band
rdispls(iproc)=rdispls(iproc-1)+recvcounts(iproc-1)
end do
ndatarecv=rdispls(nproc_band)+recvcounts(nproc_band)
ABI_ALLOCATE(kg_k_gather,(3,ndatarecv))
ABI_ALLOCATE(kg_k,(3,mpw))
kg_k(:,1:npw_k)=kg(:,1+ikg:npw_k+ikg)
call xallgatherv_mpi(kg_k,3*npw_k,kg_k_gather,3*recvcounts(:),3*rdispls(:),comm_band,ierr)
sendcounts(:)=npw_k*mpi_enreg%bandpp
do iproc=1,nproc_band
sdispls(iproc)=(iproc-1)*npw_k*mpi_enreg%bandpp
end do
! ============================================================================
! Here we compute gbound, as well for istwf_k=1 as for istwf_k=2 and store it
! ============================================================================
ABI_ALLOCATE(npw_per_proc,(nproc_fft))
ABI_ALLOCATE(rdispls_all,(nproc_fft))
ABI_ALLOCATE(gbound,(2*mgfft+8,2))
if (mgfft>0) gbound(:,:)=0
if (istwf_k==1) then
call xallgather_mpi(ndatarecv,npw_per_proc,mpi_enreg%comm_fft,ierr)
rdispls_all(1)=0
do iproc=2,nproc_fft
rdispls_all(iproc)=rdispls_all(iproc-1)+npw_per_proc(iproc-1)
end do
npw_tot=rdispls_all(nproc_fft)+npw_per_proc(nproc_fft)
ABI_ALLOCATE(kg_k_gather_all,(3,npw_tot))
call xallgatherv_mpi(kg_k_gather,&
& 3*ndatarecv,kg_k_gather_all,3*npw_per_proc(:),3*rdispls_all,mpi_enreg%comm_fft,ierr)
if (mgfft>0) then
call sphereboundary(gbound,istwf_k,kg_k_gather_all,mgfft,npw_tot)
end if
else if (istwf_k==2) then
! ============================================================================
! In this case, we have to add the opposite values in the kg_k_gather tab
! before computing gbound
! ============================================================================
! Allocation
ABI_ALLOCATE(tab_proc ,(ndatarecv))
ABI_ALLOCATE(sendcounts_sym ,(nproc_fft))
ABI_ALLOCATE(sendcounts_sym_all,(nproc_fft*nproc_fft))
ABI_ALLOCATE(sdispls_sym ,(nproc_fft))
ABI_ALLOCATE(recvcounts_sym ,(nproc_fft))
ABI_ALLOCATE(recvcounts_sym_tot,(nproc_fft))
ABI_ALLOCATE(rdispls_sym ,(nproc_fft))
ABI_ALLOCATE(sendcounts_sym_loc,(nproc_fft))
ABI_ALLOCATE(sdispls_sym_loc ,(nproc_fft))
ABI_ALLOCATE(recvcounts_sym_loc,(nproc_fft))
ABI_ALLOCATE(rdispls_sym_loc ,(nproc_fft))
! Initialisation
tab_proc(:) = 0
sendcounts_sym(:) = 0
sendcounts_sym_all(:) = 0
sdispls_sym(:) = 0
recvcounts_sym(:) = 0
recvcounts_sym_tot(:) = 0
! Localisation of kg_k==[0 0 0]
ABI_ALLOCATE(sum_kg,(ndatarecv))
idatarecv0 = -1
ndatasend_sym = ndatarecv
sum_kg=sum(abs(kg_k_gather),1)
if (count(sum_kg==0)/=0) then
do idatarecv=1,ndatarecv
if (sum_kg(idatarecv)==0) idatarecv0=idatarecv
end do
ndatasend_sym = ndatarecv-1
end if
! Localisation of the processor where the vector -k2 is
do idatarecv=1,ndatarecv
if (idatarecv/=idatarecv0) then
tab_proc(idatarecv) = modulo(-kg_k_gather(2,idatarecv),nproc_fft)
else
tab_proc(idatarecv) = -1
end if
end do
! Number of values send by the processor to the others
do iproc=1,nproc_fft
sendcounts_sym(iproc) = count(tab_proc(:)==(iproc-1))
end do
! Save sendcounts_sym for each processor in sendcounts_sym_all
! knowed by all processors of comm_fft
rdispls_sym(1)=0
do iproc=2,nproc_fft
rdispls_sym(iproc)= nproc_fft*(iproc-1)
end do
recvcounts_sym(:)=nproc_fft
call xallgatherv_mpi(sendcounts_sym(:),nproc_fft,&
sendcounts_sym_all(:),recvcounts_sym,rdispls_sym,comm_fft,ierr)
! Calculation of the dimension of kg_k_gather_sym for each processor
! recvcounts_sym_tot is knowed by all processors of comm_fft
call xsum_mpi(sendcounts_sym,recvcounts_sym_tot,nproc_fft,comm_fft,ierr)
! Dimension of kg_k_gather_sym
ndatarecv_tot = ndatarecv+recvcounts_sym_tot(me_fft+1)
! Intialize kg_k_gather_sym
ABI_ALLOCATE(kg_k_gather_sym,(3,ndatarecv_tot))
kg_k_gather_sym(:,:)=0
kg_k_gather_sym(:,1:ndatarecv) = kg_k_gather(:,:)
! Allocation and initialisation
ABI_ALLOCATE(kg_k_gather_send,(3,ndatasend_sym))
kg_k_gather_send(:,:)=0
! The values are sorted in blocks
jsendloc=0
do iproc=1,nproc_fft
! Position of the beginning of the block
sdispls_sym(iproc)=jsendloc
! Creation of the blocks
do idatarecv=1,ndatarecv
if (tab_proc(idatarecv)==(iproc-1)) then
jsendloc=jsendloc+1
kg_k_gather_send(:,jsendloc) = -kg_k_gather(:,idatarecv)
end if
end do
end do
! Position of received data
rdispls_sym(1)= ndatarecv
recvcounts_sym(1)= sendcounts_sym_all((me_fft+1))
do iproc=2,nproc_fft
rdispls_sym(iproc) = rdispls_sym(iproc-1) + &
sendcounts_sym_all((me_fft+1)+(iproc-2)*nproc_fft)
recvcounts_sym(iproc) = sendcounts_sym_all((me_fft+1)+(iproc-1)*nproc_fft)
end do
! Exchange of kg_k
sendcounts_sym_loc = sendcounts_sym*3
sdispls_sym_loc = sdispls_sym *3
recvcounts_sym_loc = recvcounts_sym*3
rdispls_sym_loc = rdispls_sym *3
call xalltoallv_mpi(kg_k_gather_send(:,:),sendcounts_sym_loc,sdispls_sym_loc,&
kg_k_gather_sym(:,:) ,recvcounts_sym_loc,rdispls_sym_loc,comm_fft,ierr)
! Store the following data in the mpi_enreg%bandfft_kpt data_struc
ikpt_this_proc=mpi_enreg%tab_kpt_distrib(ikpt)
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%kg_k_gather_sym,(3,ndatarecv_tot))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%rdispls_sym,(nproc_fft))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%recvcounts_sym,(nproc_fft))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%recvcounts_sym_tot,(nproc_fft))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%sdispls_sym,(nproc_fft))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%sendcounts_sym,(nproc_fft))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%sendcounts_sym_all,(nproc_fft*nproc_fft))
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%tab_proc,(ndatarecv))
mpi_enreg%bandfft_kpt(ikpt_this_proc)%flag3_is_allocated=1
mpi_enreg%bandfft_kpt(ikpt_this_proc)%idatarecv0 =idatarecv0
mpi_enreg%bandfft_kpt(ikpt_this_proc)%ndatarecv_tot =ndatarecv_tot
mpi_enreg%bandfft_kpt(ikpt_this_proc)%ndatasend_sym =ndatasend_sym
mpi_enreg%bandfft_kpt(ikpt_this_proc)%kg_k_gather_sym(:,:) =kg_k_gather_sym(:,:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%rdispls_sym(:) =rdispls_sym(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%recvcounts_sym(:) =recvcounts_sym(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%recvcounts_sym_tot(:)=recvcounts_sym_tot(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%sdispls_sym(:) =sdispls_sym(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%sendcounts_sym(:) =sendcounts_sym(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%sendcounts_sym_all(:)=sendcounts_sym_all(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%tab_proc(:) =tab_proc(:)
ABI_DEALLOCATE(tab_proc)
ABI_DEALLOCATE(sendcounts_sym)
ABI_DEALLOCATE(sendcounts_sym_all)
ABI_DEALLOCATE(sdispls_sym)
ABI_DEALLOCATE(recvcounts_sym)
ABI_DEALLOCATE(recvcounts_sym_tot)
ABI_DEALLOCATE(rdispls_sym)
ABI_DEALLOCATE(kg_k_gather_sym)
ABI_DEALLOCATE(sendcounts_sym_loc)
ABI_DEALLOCATE(recvcounts_sym_loc)
ABI_DEALLOCATE(sdispls_sym_loc)
ABI_DEALLOCATE(rdispls_sym_loc)
ABI_DEALLOCATE(kg_k_gather_send)
ABI_DEALLOCATE(sum_kg)
! Then compute gbound
call xallgather_mpi(ndatarecv_tot,npw_per_proc,mpi_enreg%comm_fft,ierr)
rdispls_all(1)=0
do iproc=2,nproc_fft
rdispls_all(iproc)=rdispls_all(iproc-1)+npw_per_proc(iproc-1)
end do
npw_tot=rdispls_all(nproc_fft)+npw_per_proc(nproc_fft)
ABI_ALLOCATE(kg_k_gather_all,(3,npw_tot))
call xallgatherv_mpi(mpi_enreg%bandfft_kpt(ikpt_this_proc)%kg_k_gather_sym,&
& 3*ndatarecv_tot,kg_k_gather_all,3*npw_per_proc(:),3*rdispls_all,mpi_enreg%comm_fft,ierr)
if (mgfft>0) then
call sphereboundary(gbound,istwf_k,kg_k_gather_all,mgfft,npw_tot)
end if
! Only calculations with istwfk=1 or 2
else
write(message, '(a,a,a,a,i2,a)' ) ch10,' gstate : BUG -',ch10,&
& ' the value istwfk=',istwf_k,' is not allowed in case of bandfft parallelization!'
call wrtout(std_out,message,'COLL')
call leave_new('COLL')
end if
ABI_DEALLOCATE(kg_k_gather_all)
ABI_DEALLOCATE(npw_per_proc)
ABI_DEALLOCATE(rdispls_all)
! ============================================================================
! End of gbound
! ============================================================================
! Tabs which are common to istwf_k=1 and 2
ABI_ALLOCATE(mpi_enreg%bandfft_kpt(ikpt_this_proc)%kg_k_gather,(3,ndatarecv))
mpi_enreg%bandfft_kpt(ikpt_this_proc)%recvcounts(:) =recvcounts(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%sendcounts(:) =sendcounts(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%rdispls(:) =rdispls(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%sdispls(:) =sdispls(:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%gbound(:,:) =gbound(:,:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%kg_k_gather(:,:)=kg_k_gather(:,:)
mpi_enreg%bandfft_kpt(ikpt_this_proc)%ndatarecv =ndatarecv
mpi_enreg%bandfft_kpt(ikpt_this_proc)%istwf_k =istwf_k
mpi_enreg%bandfft_kpt(ikpt_this_proc)%npw_tot =npw_tot
ABI_DEALLOCATE(kg_k_gather)
ABI_DEALLOCATE(kg_k)
ABI_DEALLOCATE(gbound)
ikg=ikg+npw_k
end do
end do
ABI_DEALLOCATE(recvcounts)
ABI_DEALLOCATE(sendcounts)
ABI_DEALLOCATE(rdispls)
ABI_DEALLOCATE(sdispls)
!=============================================================================
!End of computation and storage of the mpi_enreg%bandfft_kpt(ikpt) data_struc
!=============================================================================
end subroutine prep_kpgio
!!***
| gpl-3.0 |
stephenR/gcc-fpp | gcc/testsuite/gfortran.dg/merge_init_expr.f90 | 162 | 1071 | ! { dg-do run }
!
! Check simplification of MERGE.
!
INTEGER, PARAMETER :: array(3) = [1, 2, 3]
LOGICAL, PARAMETER :: mask(3) = [ .TRUE., .FALSE., .TRUE. ]
INTEGER, PARAMETER :: scalar_1 = MERGE (1, 0, .TRUE.)
INTEGER, PARAMETER :: scalar_2 = MERGE (0, 1, .FALSE.)
INTEGER, PARAMETER :: array_1(3) = MERGE (array, 0, .TRUE.)
INTEGER, PARAMETER :: array_2(3) = MERGE (array, 0, .FALSE.)
INTEGER, PARAMETER :: array_3(3) = MERGE (0, array, .TRUE.)
INTEGER, PARAMETER :: array_4(3) = MERGE (0, array, .FALSE.)
INTEGER, PARAMETER :: array_5(3) = MERGE (1, 0, mask)
INTEGER, PARAMETER :: array_6(3) = MERGE (array, -array, mask)
INTEGER, PARAMETER :: array_7(3) = MERGE ([1,2,3], -array, mask)
IF (scalar_1 /= 1 .OR. scalar_2 /= 1) CALL abort
IF (.NOT. ALL (array_1 == array)) CALL abort
IF (.NOT. ALL (array_2 == [0, 0, 0])) CALL abort
IF (.NOT. ALL (array_3 == [0, 0, 0])) CALL abort
IF (.NOT. ALL (array_4 == array)) CALL abort
IF (.NOT. ALL (array_5 == [1, 0, 1])) CALL abort
IF (.NOT. ALL (array_6 == [1, -2, 3])) CALL abort
END
| gpl-2.0 |
qsnake/abinit | src/12_hide_mpi/xalltoall_mpi.F90 | 1 | 2139 | !{\src2tex{textfont=tt}}
!!****f* ABINIT/xalltoall_mpi
!! NAME
!! xalltoall_mpi
!!
!! FUNCTION
!! This module contains functions that calls MPI routine,
!! if we compile the code using the MPI CPP flags.
!! xalltoall_mpi is the generic function.
!!
!! COPYRIGHT
!! Copyright (C) 2001-2012 ABINIT group (AR,XG)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~ABINIT/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!!
!! SOURCE
#if defined HAVE_CONFIG_H
#include "config.h"
#endif
!!***
!!****f* ABINIT/xalltoall_mpi_dp2d
!! NAME
!! xalltoall_mpi_dp2d
!!
!! FUNCTION
!! Sends data from all to all processes.
!! Target: double precision two-dimensional arrays.
!!
!! COPYRIGHT
!! Copyright (C) 2001-2012 ABINIT group (AR,XG)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~ABINIT/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!!
!! INPUTS
!!
!! OUTPUT
!!
!! SIDE EFFECTS
!!
!! PARENTS
!!
!! CHILDREN
!! mpi_alltoall
!!
!! SOURCE
subroutine xalltoall_mpi_dp2d(xval, sendsize, recvbuf, recvsize, spaceComm, ier)
use defs_basis
#if defined HAVE_MPI2 && ! defined HAVE_MPI_INCLUDED_ONCE
use mpi
#endif
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'xalltoall_mpi_dp2d'
!End of the abilint section
implicit none
#if defined HAVE_MPI1
include 'mpif.h'
#endif
!Arguments-------------------------
real(dp),intent(in) :: xval(:,:)
real(dp),intent(inout) :: recvbuf(:,:)
integer ,intent(in) :: sendsize, recvsize
integer ,intent(in) :: spaceComm
integer ,intent(out) :: ier
!Local variables-------------------
! *************************************************************************
ier=0
#if defined HAVE_MPI
if (spaceComm /= MPI_COMM_SELF .and. spaceComm /= MPI_COMM_NULL) then
! allgather xval on all proc. in spaceComm
call MPI_ALLTOALL(xval, sendsize, MPI_DOUBLE_PRECISION, recvbuf, &
& recvsize, MPI_DOUBLE_PRECISION, spaceComm, ier)
end if
#endif
end subroutine xalltoall_mpi_dp2d
!!***
| gpl-3.0 |
qsnake/abinit | src/77_ddb/m_phdos.F90 | 1 | 32813 | !{\src2tex{textfont=tt}}
!!****m* ABINIT/m_phdos
!! NAME
!! m_phdos
!!
!! FUNCTION
!! Module for the phonon density of states.
!! Container type is defined, and destruction, print subroutines
!! as well as the central mkphdos
!!
!! COPYRIGHT
!! Copyright (C) 1999-2012 ABINIT group (MG,MJV)
!! This file is distributed under the terms of the
!! GNU General Public Licence, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt .
!!
!! SOURCE
#if defined HAVE_CONFIG_H
#include "config.h"
#endif
#include "abi_common.h"
module m_phdos
use m_profiling
use defs_basis
use defs_abitypes, only : anaddb_dataset_type
use m_errors
use m_io_tools, only : get_unit
implicit none
private
!!***
!!****t* m_phdos/phonon_dos_type
!! NAME
!! phonon_dos_type
!!
!! FUNCTION
!! Container for phonon DOS and atom projected contributions
!!
!! SOURCE
type,public :: phonon_dos_type
! Integer
integer :: ntypat
! Number of type of atoms.
integer :: natom
! Number of atoms is the unit cell.
integer :: prtdos
! Option of DOS calculation (1 for Gaussian, 2 for tetrahedrons).
integer :: nomega
! Number of frequency points in DOS mesh.
integer :: nqibz
! Number of q-points in the IBZ.
integer :: ntetra_ibz
! Number of tetrahedrons in the IBZ.
! Reals
real(dp) :: omega_min
! Min frequency for DOS calculation.
real(dp) :: omega_max
! Max frequency for DOS calculation.
real(dp) :: omega_step
! Frequency step.
real(dp) :: dossmear
! Gaussian broadening.
! Real pointers
real(dp), pointer :: omega(:) SET2NULL
! omega(nomega)
! Frequency grid.
real(dp), pointer :: phdos(:) SET2NULL
! phdos(nomega)
! phonon DOS.
real(dp), pointer :: phdos_int(:) SET2NULL
! phdos_int(nomega)
! integrated phonon DOS
real(dp), pointer :: pjdos(:,:,:) SET2NULL
! pjdos(nomega,3,natom)
! projected DOS (over atoms)
real(dp), pointer :: pjdos_int(:,:,:) SET2NULL
! pjdos_int(nomega,3,natom)
! Integrate atomic PJDOS
real(dp), pointer :: pjdos_typ(:,:) SET2NULL
! pjdos_typ(nomega,ntypat)
! phonon DOS contribution arising from a particular atom-type.
real(dp), pointer :: pjdos_typ_int(:,:) SET2NULL
! pjdos_typ_int(nomega,ntypat)
! Integrate phonon DOS contribution arising from a particular atom-type.
real(dp), pointer :: pjdos_xyz_typ(:,:,:) SET2NULL
! phdos(nomega,3,ntypat)
! phonon DOS contribution arising from a particular atom-type
! decomposed along the three reduced directions.
end type phonon_dos_type
public :: print_phondos
public :: print_phondos_debye
public :: init_phondos
public :: nullify_phondos
public :: destroy_phondos
public :: mkphdos
!!**
CONTAINS !=========================================================================================================================
!!***
!!****f* m_phdos/print_phondos
!!
!! NAME
!! print_phondos
!!
!! FUNCTION
!! Print out phonon DOS (and partial DOS etc) in meV units
!!
!! INPUTS
!! PHdos= container object for phonon DOS
!! fname=File name for output
!!
!! OUTPUT
!!
!! PARENTS
!! anaddb,elphon,scphon_interpolate_phonon_and_dos
!!
!! CHILDREN
!! get_full_kgrid,get_tetra_weight,gtdyn9,init_phondos,init_tetra,matr3inv
!! mkrdim,phfrq3,simpson_int,smpbz,symkpt,wrtout
!!
!! SOURCE
subroutine print_phondos(PHdos,fname)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'print_phondos'
use interfaces_14_hidewrite
!End of the abilint section
implicit none
!Arguments ------------------------------------
character(len=*),intent(in) :: fname
type(phonon_dos_type),intent(in) :: PHdos
!Local variables-------------------------------
integer :: io,itype,ios,unt
real(dp) :: cfact
character(len=50) :: frmt
character(len=500) :: msg
character(len=3) :: unitname
! *************************************************************************
! === Convert everything into meV ===
cfact=Ha_eV*1000 ; unitname='meV'
! === Leave everything in Ha ===
! this should be the abinit default!
cfact=one ; unitname='Ha'
! === Open external file and write results ===
! TODO Here I have to rationalize how to write all this stuff!!
!
unt=get_unit()
! open(unit=unt,file=fname,form='formatted',status='new')
open(unit=unt,file=fname,form='formatted',iostat=ios)
ABI_CHECK(ios==0,'Opening '//TRIM(fname))
write(msg,'(3a)')'# ',ch10,'# Phonon density of states and projected DOS'
call wrtout(unt,msg,'COLL')
write(msg,'(6a)')'# ',ch10,'# Energy in ',unitname,', DOS in states/',unitname
call wrtout(unt,msg,'COLL')
select case (PHdos%prtdos)
case (1)
write(msg,'(a,es16.8,2a,i4)')&
& '# Gaussian method with smearing = ',PHdos%dossmear*cfact,unitname,', nqibz =',PHdos%nqibz
case (2)
write(msg,'(a,i5,a,i4)')'# Tetrahedron method, number of irreducible tetrahedrons = ',&
& PHdos%ntetra_ibz,', nqibz= ',PHdos%nqibz
case default
write(msg,'(a,i0)')" Wrong prtdos = ",PHdos%prtdos
MSG_ERROR(msg)
end select
call wrtout(unt,msg,'COLL')
write(msg,'(5a)')'# ',ch10,'# omega PHDOS INT_PHDOS PJDOS[atom_type=1] INT_PJDOS[atom_type1] ... ',ch10,'# '
call wrtout(unt,msg,'COLL')
write(frmt,*)'(',PHdos%ntypat,'(2es17.8))'
do io=1,PHdos%nomega
write(unt,'(3es17.8)',advance='NO')PHdos%omega(io)*cfact,PHdos%phdos(io)/cfact,PHdos%phdos_int(io)/cfact
do itype=1,PHdos%ntypat
write(unt,frmt,advance='NO')PHdos%pjdos_typ(io,itype)/cfact,PHdos%pjdos_typ_int(io,itype)/cfact
end do
write(unt,*)
end do
close(unt)
end subroutine print_phondos
!!***
!----------------------------------------------------------------------
!****f* m_phdos/print_phondos_debye
!!
!! NAME
!! print_phondos_debye
!!
!! FUNCTION
!! Print out global Debye temperature, force constant, etc... from phonon DOS
!!
!! INPUTS
!! phonon_dos= container object for phonon DOS
!! ucvol = unit cell volume
!!
!! OUTPUT
!!
!! PARENTS
!! anaddb
!!
!! CHILDREN
!! get_full_kgrid,get_tetra_weight,gtdyn9,init_phondos,init_tetra,matr3inv
!! mkrdim,phfrq3,simpson_int,smpbz,symkpt,wrtout
!!
!! SOURCE
subroutine print_phondos_debye(PHdos, ucvol)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'print_phondos_debye'
use interfaces_14_hidewrite
use interfaces_32_util
!End of the abilint section
implicit none
!Arguments ------------------------------------
real(dp), intent(in) :: ucvol
type(phonon_dos_type),intent(in) :: PHdos
!Local variables-------------------------------
integer :: io, iomax, iomin
real(dp) :: avgom2dos, avgspeedofsound
real(dp) :: debyefreq, meanfreq, meanfreq2
real(dp), allocatable :: om2dos(:), om1dos(:), intdos(:)
character(len=500) :: msg
! average speed of sound: coefficient of omega^2 in the DOS is = Volume / 2 pi^2 hbar^3 v_s^3
! first find how far out we can fit with a parabola
ABI_ALLOCATE(om2dos,(PHdos%nomega))
ABI_ALLOCATE(om1dos,(PHdos%nomega))
ABI_ALLOCATE(intdos,(PHdos%nomega))
avgom2dos = zero
do io=1,PHdos%nomega
om1dos(io) = PHdos%omega(io) * PHdos%phdos(io)
om2dos(io) = PHdos%omega(io)**2 * PHdos%phdos(io)
end do
! integrate dos * omega
intdos = zero
call simpson_int(PHdos%nomega,PHdos%omega_step,om1dos,intdos)
meanfreq = intdos(PHdos%nomega)
! integrate dos * omega^2
intdos = zero
call simpson_int(PHdos%nomega,PHdos%omega_step,om2dos,intdos)
meanfreq2 = intdos(PHdos%nomega)
! Debye frequency = sqrt(<omega^2>* 3/2)
debyefreq = sqrt (meanfreq2 * three * half)
write (msg,'(a,E20.10,a,E20.10,a)') ' Debye frequency from DOS: ', debyefreq, ' (Ha) = ', &
& debyefreq*Ha_THz, ' (THz)'
call wrtout (ab_out,msg,"COLL")
call wrtout (std_out,msg,"COLL")
! Debye temperature = hbar * Debye frequency / kb
write (msg,'(a,E20.10,2a)') ' Debye temperature from DOS: ', debyefreq*Ha_K, ' (K)', ch10
call wrtout (ab_out,msg,"COLL")
call wrtout (std_out,msg,"COLL")
iomin = 1
iomax = PHdos%nomega
do io = 1, PHdos%nomega
! skip eventual negative frequency modes
if (PHdos%omega(io) <= tol10) then
iomin = io
cycle
end if
! accumulate dos * om^2 to make an average
avgom2dos = avgom2dos + om2dos(io)
! first deviation from initial value of more than 10 percent
if (abs(one-om2dos(1)/om2dos(io)) > 0.1_dp) then
iomax = io
exit
end if
end do
avgom2dos = avgom2dos / (iomax-iomin+1)
! this value is also useful for partial atomic DOS, related to kinetic energy and Force constant in Moessbauer
avgspeedofsound = (ucvol / 2 / pi**2 / avgom2dos)**third
write (msg,'(a,E20.10,a,F16.4,2a)') '- Average speed of sound: ', avgspeedofsound, ' (at units) = ', &
& avgspeedofsound * Bohr_Ang * 1.d-10 / Time_Sec, ' (m/s)',ch10
call wrtout (ab_out,msg,"COLL")
call wrtout (std_out,msg,"COLL")
! average force constant
!
ABI_DEALLOCATE(om2dos)
ABI_DEALLOCATE(om1dos)
ABI_DEALLOCATE(intdos)
end subroutine print_phondos_debye
!!***
!----------------------------------------------------------------------
!!****f* m_phdos/nullify_phondos
!!
!! NAME
!! nullify_phondos
!!
!! FUNCTION
!! Set all pointers to null()
!!
!! SIDE EFFECTS
!! PHdos= Pointers in the datastructure set to null()
!!
!! PARENTS
!! m_phdos
!!
!! CHILDREN
!! get_full_kgrid,get_tetra_weight,gtdyn9,init_phondos,init_tetra,matr3inv
!! mkrdim,phfrq3,simpson_int,smpbz,symkpt,wrtout
!!
!! SOURCE
subroutine nullify_phondos(PHdos)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'nullify_phondos'
!End of the abilint section
implicit none
!Arguments -------------------------------
type(phonon_dos_type),intent(inout) :: PHdos
! *************************************************************************
!@phonon_dos_type
nullify(PHdos%omega)
nullify(PHdos%phdos)
nullify(PHdos%phdos_int)
nullify(PHdos%pjdos)
nullify(PHdos%pjdos_int)
nullify(PHdos%pjdos_typ)
nullify(PHdos%pjdos_typ_int)
nullify(PHdos%pjdos_xyz_typ)
end subroutine nullify_phondos
!!***
!----------------------------------------------------------------------
!!****f* m_phdos/init_phondos
!!
!! NAME
!! init_phondos
!!
!! FUNCTION
!! Init function for phonon DOS object
!!
!! INPUTS
!!
!! OUTPUT
!! PHdos= container object for phonon DOS, filled and allocated
!!
!! PARENTS
!! m_phdos,scphon
!!
!! CHILDREN
!! get_full_kgrid,get_tetra_weight,gtdyn9,init_phondos,init_tetra,matr3inv
!! mkrdim,phfrq3,simpson_int,smpbz,symkpt,wrtout
!!
!! SOURCE
subroutine init_phondos(PHdos,ntypat,natom,prtdos,nomega,nqibz,ntetra_ibz,omega_max,omega_min,omega_step,dossmear)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'init_phondos'
!End of the abilint section
implicit none
!Arguments -------------------------------
integer, intent(in) :: ntypat,natom,prtdos
integer, intent(in) :: nomega,nqibz,ntetra_ibz
real(dp), intent(in) :: omega_step,dossmear
real(dp), intent(in) :: omega_max,omega_min
type(phonon_dos_type),intent(out) :: PHdos
! *************************************************************************
!@phonon_dos_type
call nullify_phondos(PHdos)
PHdos%ntypat = ntypat
PHdos%natom = natom
PHdos%prtdos = prtdos
PHdos%nomega = nomega
PHdos%nqibz = nqibz
PHdos%ntetra_ibz = ntetra_ibz
PHdos%omega_max = omega_max
PHdos%omega_min = omega_min
PHdos%omega_step = omega_step
PHdos%dossmear = dossmear
ABI_ALLOCATE(PHdos%omega,(nomega))
ABI_ALLOCATE(PHdos%phdos,(nomega))
ABI_ALLOCATE(PHdos%phdos_int,(nomega))
ABI_ALLOCATE(PHdos%pjdos,(nomega,3,natom))
ABI_ALLOCATE(PHdos%pjdos_int,(nomega,3,natom))
ABI_ALLOCATE(PHdos%pjdos_typ,(nomega,ntypat))
ABI_ALLOCATE(PHdos%pjdos_typ_int,(nomega,ntypat))
ABI_ALLOCATE(PHdos%pjdos_xyz_typ,(nomega,3,ntypat))
end subroutine init_phondos
!!***
!----------------------------------------------------------------------
!!****f* m_phdos/destroy_phondos
!!
!! NAME
!! destroy_phondos
!!
!! FUNCTION
!! destructor function for phonon DOS object
!!
!! INPUTS
!! PHdos= container object for phonon DOS
!!
!! OUTPUT
!!
!! PARENTS
!! anaddb,elphon
!!
!! CHILDREN
!! get_full_kgrid,get_tetra_weight,gtdyn9,init_phondos,init_tetra,matr3inv
!! mkrdim,phfrq3,simpson_int,smpbz,symkpt,wrtout
!!
!! SOURCE
subroutine destroy_phondos(PHdos)
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'destroy_phondos'
!End of the abilint section
implicit none
!Arguments -------------------------------
type(phonon_dos_type),intent(inout) ::PHdos
! *************************************************************************
!@phonon_dos_type
if (associated(PHdos%omega)) then
ABI_DEALLOCATE(PHdos%omega)
end if
if (associated(PHdos%phdos)) then
ABI_DEALLOCATE(PHdos%phdos)
end if
if (associated(PHdos%phdos_int)) then
ABI_DEALLOCATE(PHdos%phdos_int)
end if
if (associated(PHdos%pjdos)) then
ABI_DEALLOCATE(PHdos%pjdos)
end if
if (associated(PHdos%pjdos_int)) then
ABI_DEALLOCATE(PHdos%pjdos_int)
end if
if (associated(PHdos%pjdos_typ)) then
ABI_DEALLOCATE(PHdos%pjdos_typ)
end if
if (associated(PHdos%pjdos_typ_int)) then
ABI_DEALLOCATE(PHdos%pjdos_typ_int)
end if
if (associated(PHdos%pjdos_xyz_typ)) then
ABI_DEALLOCATE(PHdos%pjdos_xyz_typ)
end if
end subroutine destroy_phondos
!!***
!----------------------------------------------------------------------
!!****f* m_phdos/mkphdos
!!
!! NAME
!! mkphdos
!!
!! FUNCTION
!! Function to calculate the phonon density of states as well as
!! the contributions associated to the different types of atoms in the unit cell.
!! Two methods are implemented: gaussian method and linear interpolation based on
!! tetrahedrons.
!!
!! INPUTS
!! prtdos=1 for Gaussian method, 2 for tetrahedra.
!! dosdeltae=Step for the frequency mesh.
!! dossmear=Gaussian broadening used if prtdos==1.
!! dipdip= if 0, no dipole-dipole interaction was subtracted in atmfrc
!! if 1, atmfrc has been build without dipole-dipole part
!! symdynmat=if 1, (re)symmetrize the dynamical matrix, except if Gamma wavevector with electric field added.
!! acell(3) =length scales by which rprim is to be multiplied
!! amu(ntypat)=mass of the atoms (atomic mass unit)
!! anaddb_dtset= (derived datatype) contains all the input variables
!! atmfrc(2,3,natom,3,natom,nrpt) = Interatomic Forces in real space
!! dielt(3,3)=dielectric tensor
!! dyewq0(3,3,natom)=Ewald part of the dynamical matrix, at q=0.
!! gmet(3,3)= metric tensor in reciprocal space.
!! gprim(3,3)=normalized coordinates in reciprocal space
!! indsym(4,nsym,natom)=label given by subroutine symatm, indicating atom
!! label which gets rotated into given atom by given symmetry
!! (first three elements are related primitive translation--
!! see symatm where this is computed)
!! mpert =maximum number of ipert
!! msym = maximum number of symmetries
!! natom=number of atoms in the unit cell
!! nrpt=number of R points in the Big Box
!! nsym=number of symmetries
!! ntypat=number of atom types
!! rmet(3,3)=metric tensor in real space.
!! rprim(3,3)=dimensionless primitive translations in real space
!! rpt(3,nprt)=canonical coordinates of the R points in the unit cell
!! These coordinates are normalized (=> * acell(3)!!)
!! symrec(3,3,nsym)=symmetry operations
!! symrel(3,3,nsym)=symmetry operations
!! trans(3,natom)=atomic translations : xred = rcan + trans
!! typat(natom)=integer label of each type of atom (1,2,...)
!! ucvol=unit cell volume
!! wghatm(natom,natom,nrpt)=weights associated to a pair of atoms and to a R vector
!! xred(3,natom)= relative coords of atoms in unit cell (dimensionless)
!! zeff(3,3,natom)=effective charge on each atom, versus electric
!! field and atomic displacement
!!
!! OUTPUT
!!
!! NOTES
!!
!! On the use of the q-grids :
!! Two different q-meshes are used in this subroutine. The first one is the coarse
!! mesh where the interatomic forces have been calculated during the DFPT run.
!! This q-grid is used to obtain an initial guess for the max and min frequency
!! value of the phonon spectrum. These values are, indeed, required to dimension
!! the array containing the PHDOS. The second (dense) grid is used to perform the
!! PHDOS calculation. If the Fourier interpolation on the second dense q-grid
!! generates a phonon frequency outside the initially calculated frequency mesh,
!! the mesh is enlarged and the calculation is restarted.
!!
!! PARENTS
!! anaddb,elphon,scphon_interpolate_phonon_and_dos
!!
!! CHILDREN
!! get_full_kgrid,get_tetra_weight,gtdyn9,init_phondos,init_tetra,matr3inv
!! mkrdim,phfrq3,simpson_int,smpbz,symkpt,wrtout
!!
!! SOURCE
subroutine mkphdos(PHdos,prtdos,dosdeltae,dossmear,dipdip,symdynmat,acell,amu,anaddb_dtset,&
& atmfrc,dielt,dyewq0,gmet,gprim,indsym,&
& mpert,msym,natom,nrpt,nsym,ntypat,rmet,rprim,rpt,symrec,symrel,trans,typat,ucvol,wghatm,xred,zeff)
use m_tetrahedron
use m_errors
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'mkphdos'
use interfaces_14_hidewrite
use interfaces_32_util
use interfaces_42_geometry
use interfaces_56_recipspace
use interfaces_72_response
use interfaces_77_ddb
!End of the abilint section
implicit none
!Arguments -------------------------------
!scalars
integer,intent(in) :: prtdos,dipdip,symdynmat
integer,intent(in) :: mpert,msym,natom,nrpt,nsym,ntypat
real(dp),intent(in) :: dosdeltae,dossmear,ucvol
type(anaddb_dataset_type),intent(in) :: anaddb_dtset
type(phonon_dos_type),intent(inout) :: PHdos
!arrays
integer,intent(in) :: indsym(4,nsym,natom),symrec(3,3,nsym),symrel(3,3,nsym),typat(natom)
real(dp),intent(in) :: acell(3),amu(ntypat),dielt(3,3),gmet(3,3),gprim(3,3)
real(dp),intent(in) :: rmet(3,3),rprim(3,3),rpt(3,nrpt)
real(dp),intent(in) :: trans(3,natom),wghatm(natom,natom,nrpt),xred(3,natom)
real(dp),intent(in) :: zeff(3,3,natom)
real(dp),intent(inout) :: atmfrc(2,3,natom,3,natom,nrpt),dyewq0(3,3,natom)
!Local variables -------------------------
!scalars
integer,parameter :: brav1=1,chksymbreak0=0
integer :: facbrv,iat,idir,imesh,imode,io,iq_ibz,istat,itype,mtetra,nkpt_fullbz
integer :: nmesh,nqbz,nqpt_max,nqshft,option,timrev
integer :: ierr
real(dp) :: bzvol,dum,gaussfactor,gaussprefactor
real(dp) :: gaussval,low_bound,max_occ,pnorm
real(dp) :: qphnrm,upr_bound,xx
logical :: out_of_bounds
character(len=500) :: msg
character(len=80) :: errstr
type(t_tetrahedron) :: tetrahedra_q
!arrays
integer :: qptrlatt(3,3)
integer,allocatable :: bz2ibz(:),ibz2bz(:),ngqpt(:,:),tetra_full(:,:,:)
integer,allocatable :: tetra_mult(:),tetra_wrap(:,:,:)
real(dp) :: d2cart(2,3,mpert,3,mpert),displ(2*3*natom*3*natom),eigval(3*natom)
real(dp) :: eigvec(2,3,natom,3*natom),gprimd(3,3),phfrq(3*natom)
real(dp) :: qlatt(3,3),qphon(3),rlatt(3,3),rprimd(3,3)
real(dp),allocatable :: dtweightde(:,:),full_eigvec(:,:,:,:,:),full_phfrq(:,:)
real(dp),allocatable :: kpt_fullbz(:,:),qbz(:,:),qibz(:,:),qshft(:,:),tmp_phfrq(:),tweight(:,:)
real(dp),allocatable :: wtq(:),wtq_folded(:),wtqibz(:)
! *********************************************************************
DBG_ENTER("COLL")
if ( ALL(prtdos/=(/1,2/) ) ) then
write(msg,'(a,i0)')&
& ' The argument prtdos should be 1 or 2, however prtdos = ',prtdos
MSG_BUG(msg)
end if
if (dosdeltae<=zero) then
write(msg,'(a,es16.8)')&
& ' The argument dosdeltae should be positive, however dosdeltae = ',dosdeltae
MSG_BUG(msg)
end if
if (prtdos==1.and.dossmear<=zero) then
write(msg,'(a,es16.8)')&
& ' The argument anaddb%dossmear should be positive however dossmear = ',dossmear
MSG_BUG(msg)
end if
!
call mkrdim(acell,rprim,rprimd)
call matr3inv(rprimd,gprimd)
bzvol=ABS ( gprimd(1,1)*(gprimd(2,2)*gprimd(3,3)-gprimd(3,2)*gprimd(2,3)) &
& -gprimd(2,1)*(gprimd(1,2)*gprimd(3,3)-gprimd(3,2)*gprimd(1,3)) &
& +gprimd(3,1)*(gprimd(1,2)*gprimd(2,3)-gprimd(2,2)*gprimd(1,3)))
!
! Initialize container type, but with minimal values
call init_phondos(PHdos,ntypat,natom,prtdos,1,1,1,smallest_real,greatest_real,dosdeltae,dossmear)
!
! === Parameters defining the gaussian approximant ===
if (prtdos==1) then
gaussprefactor=one/(dossmear*sqrt(two_pi))
gaussfactor=one/(sqrt2*dossmear)
write(msg,'(4a,f8.5,2a,f8.5)')ch10,&
& ' mkphdos : calculating phonon DOS using gaussian method :',ch10,&
& ' gaussian smearing [meV] = ',dossmear*Ha_meV,ch10,&
& ' frequency step [meV] = ',PHdos%omega_step*Ha_meV
else if (prtdos==2) then
write(msg,'(2a)')ch10,' mkphdos : calculating phonon DOS using tetrahedron method '
end if
call wrtout(std_out,msg,'COLL')
!
! Initial lower and upper bound of the phonon spectrum.
low_bound=greatest_real
upr_bound=smallest_real
!
! Save memory during the generation of the q-mesh in the full BZ
! Take into account the type of Bravais lattice
facbrv=1
if (brav1==2) facbrv=2
if (brav1==3) facbrv=4
nmesh=2
ABI_ALLOCATE(ngqpt,(3,nmesh))
do imesh=1,nmesh
if (imesh==1) then ! Coarse q-mesh used during RF calculation.
ngqpt(:,imesh)=anaddb_dtset%ngqpt(1:3)
nqshft=anaddb_dtset%nqshft
ABI_ALLOCATE(qshft,(3,nqshft))
! TODO this has to be fixed there is a small inconsistency in the dimension of q1shft
qshft(:,1:nqshft)=anaddb_dtset%q1shft(:,1:nqshft)
!
else ! Dense q-mesh used for the Fourier interpolation.
ngqpt(1:3,imesh)=anaddb_dtset%ng2qpt(1:3)
nqshft=1 !always 1
ABI_ALLOCATE(qshft,(3,nqshft))
qshft(:,1)=anaddb_dtset%q2shft(:) ! FIXME small inconsistency in the dimension of q1shft
end if
nqpt_max=(ngqpt(1,imesh)*ngqpt(2,imesh)*ngqpt(3,imesh)*nqshft)/facbrv
ABI_ALLOCATE(qibz,(3,nqpt_max))
ABI_ALLOCATE(qbz,(3,nqpt_max))
qptrlatt(:,:)=0
qptrlatt(1,1)=ngqpt(1,imesh)
qptrlatt(2,2)=ngqpt(2,imesh)
qptrlatt(3,3)=ngqpt(3,imesh)
option=1
!
! here I noticed a problem in the declaration of q1shft in the anaddb datatype
! FIXME we write on unit std_out just to avoid problem with automatic tests
call smpbz(brav1,std_out,qptrlatt,nqpt_max,nqbz,nqshft,option,qshft,qbz)
!
! Reduce the number of such points by symmetrization.
ABI_ALLOCATE(ibz2bz,(nqbz))
ABI_ALLOCATE(wtq,(nqbz))
ABI_ALLOCATE(wtq_folded,(nqbz))
wtq(:)=one/nqbz ! Weights sum up to one
timrev=1; option=1 ! TODO timrev should be input
!
! This call will set PHdos%nqibz
call symkpt(chksymbreak0,gmet,ibz2bz,std_out,qbz,nqbz,PHdos%nqibz,nsym,symrec,timrev,wtq,wtq_folded)
write(std_out,*) 'PHdos%nqibz = ', PHdos%nqibz
ABI_ALLOCATE(wtqibz,(PHdos%nqibz))
do iq_ibz=1,PHdos%nqibz
wtqibz(iq_ibz)=wtq_folded(ibz2bz(iq_ibz))
qibz(:,iq_ibz)=qbz(:,ibz2bz(iq_ibz))
end do
ABI_DEALLOCATE(wtq_folded)
ABI_DEALLOCATE(qshft)
if (prtdos==2.and.imesh==2) then
!
! Second mesh with tetrahedron method
! convert kptrlatt to double and invert, qlatt here refer to the shortest qpt vectors
rlatt(:,:)=qptrlatt(:,:)
call matr3inv(rlatt,qlatt)
ABI_ALLOCATE(qshft,(3,nqshft))
qshft(:,1)=anaddb_dtset%q2shft(:) ! FIXME small inconsistency in the dimension of q1shft
nkpt_fullbz=nqbz
ABI_ALLOCATE(bz2ibz,(nkpt_fullbz))
ABI_ALLOCATE(kpt_fullbz,(3,nkpt_fullbz))
!
! Make full kpoint grid and get equivalence to irred kpoints.
! This routines scales badly wrt nkpt_fullbz, should introduce checl on the norm.
call get_full_kgrid(bz2ibz,qlatt,qibz,kpt_fullbz,qptrlatt,PHdos%nqibz,nkpt_fullbz,nqshft,nsym,qshft,symrel)
!
! Get tetrahedra, ie indexes of the full q-points at their summits
! tetra_full(:,1,i) contains the irred qpt number
! tetra_full(:,2,i) contains the full qpt number
! tetra_wrap(:,:,i) contains a flag to wrap q-points outside the IBZ (+-1) to get the irreducible tetrahedra
! the number of equivalent tetrahedra is counted in tetra_mult and the inequivalent few (ntetra < mtetra) are
! packed into the beginning of tetra_full
mtetra=6*nqbz
ABI_ALLOCATE(tetra_full,(4,2,mtetra))
ABI_ALLOCATE(tetra_wrap,(3,4,mtetra))
ABI_ALLOCATE(tetra_mult,(mtetra))
call init_tetra(bz2ibz, gprimd, qlatt, kpt_fullbz, nqbz, tetrahedra_q, ierr, errstr)
ABI_CHECK(ierr==0,errstr)
ABI_DEALLOCATE(bz2ibz)
!
! Allocate arrays used to store the entire spectrum, Required to calculate tetra weights.
ABI_ALLOCATE(full_phfrq,(3*natom,PHdos%nqibz))
ABI_ALLOCATE(full_eigvec,(2,3,natom,3*natom,PHdos%nqibz))
istat = ABI_ALLOC_STAT
ABI_CHECK(istat==0,'out-of-memory in full_eigvec')
end if ! prtdos==2.and.imesh==2
!
! This infinite loop is used to be sure that the frequency mesh is large enough to contain
! the entire phonon spectrum. The mesh is enlarged if, during the Fourier interpolation,
! a phonon frequency turns out to be outside the interval [omega_min:omega_max]
do
out_of_bounds=.FALSE.
if (associated(PHdos%omega)) then
ABI_DEALLOCATE(PHdos%omega)
end if
if (associated(PHdos%phdos)) then
ABI_DEALLOCATE(PHdos%phdos)
end if
if (associated(PHdos%pjdos)) then
ABI_DEALLOCATE(PHdos%pjdos)
end if
!
! Frequency mesh.
PHdos%omega_min=low_bound; if (ABS(PHdos%omega_min)<tol5) PHdos%omega_min=-tol5
PHdos%omega_max=upr_bound
PHdos%nomega=NINT((PHdos%omega_max-PHdos%omega_min)/PHdos%omega_step)+1
PHdos%nomega=MAX(6,PHdos%nomega) ! Ensure Simpson integration will be ok
ABI_ALLOCATE(PHdos%omega,(PHdos%nomega))
do io=1,PHdos%nomega
PHdos%omega(io)=PHdos%omega_min+PHdos%omega_step*(io-1)
end do
if (imesh/=1) then
write(std_out,*)&
& 'nomega = ',PHdos%nomega,' omega_min [cm-1] =',PHdos%omega_min*Ha_cmm1,' omega_max [cm-1] =',PHdos%omega_max*Ha_cmm1
end if
ABI_ALLOCATE(PHdos%phdos,(PHdos%nomega))
PHdos%phdos=zero
ABI_ALLOCATE(PHdos%pjdos,(PHdos%nomega,3,natom))
PHdos%pjdos=zero
!
! === Sum over irreducible q-points ===
do iq_ibz=1,PHdos%nqibz
qphon(:)=qibz(:,iq_ibz); qphnrm=one
!
! Get d2cart using interatomic forces and the long-range coulomb interaction through Ewald summation
call gtdyn9(acell,atmfrc,dielt,dipdip,dyewq0,d2cart,gmet,gprim,&
& mpert,natom,nrpt,qphnrm,qphon,rmet,rprim,rpt,trans,ucvol,wghatm,xred,zeff)
!
! Get eigenvectors and eigenvalues of the dynamical matrix, eigvec are normalized to one
call phfrq3(amu,displ,d2cart,eigval,eigvec,indsym,mpert,msym,natom,nsym,ntypat,&
& phfrq,qphnrm,qphon,rprimd,symdynmat,symrel,typat,ucvol)
dum=MINVAL(phfrq); PHdos%omega_min=MIN(PHdos%omega_min,dum)
dum=MAXVAL(phfrq); PHdos%omega_max=MAX(PHdos%omega_max,dum)
out_of_bounds = (PHdos%omega_min<low_bound .or. PHdos%omega_max>upr_bound)
if (imesh>1.and..not.out_of_bounds) then
select case (prtdos)
case (1)
!
! Accumulate PHDOS and PJDOS using gaussian method ===
do imode=1,3*natom
do io=1,PHdos%nomega
xx=(PHdos%omega(io)-phfrq(imode))*gaussfactor
gaussval=gaussprefactor*exp(-xx*xx)
PHdos%phdos(io)=PHdos%phdos(io) + wtqibz(iq_ibz)*gaussval
do iat=1,natom
do idir=1,3
pnorm=eigvec(1,idir,iat,imode)**2+eigvec(2,idir,iat,imode)**2
PHdos%pjdos(io,idir,iat)=PHdos%pjdos(io,idir,iat)+ pnorm*wtqibz(iq_ibz)*gaussval
end do
end do
end do
end do
!
case (2)
!
! === Tetrahedrons ===
! * Save phonon frequencies and eigenvectors.
! Summation is done after the loops over the two meshes.
full_phfrq(:,iq_ibz)=phfrq(:)
full_eigvec(:,:,:,:,iq_ibz)=eigvec(:,:,:,:)
case default
write(msg,'(a,i0)')" Wrong value for prtdos= ",prtdos
MSG_ERROR(msg)
end select
end if !Second mesh and not out of boundaries
!
end do !irred q-points
if (out_of_bounds) then
upr_bound=PHdos%omega_max+ABS(PHdos%omega_max/ten)
low_bound=PHdos%omega_min-ABS(PHdos%omega_min/ten)
write(msg,'(3a)')&
& ' At least one phonon frequency falls outside the frequency mesh chosen',ch10,&
& ' restarting the calculation with a larger frequency mesh '
if (imesh>1) then
MSG_COMMENT(msg)
end if
else
EXIT !infinite loop
end if
end do !infinite loop
ABI_DEALLOCATE(ibz2bz)
ABI_DEALLOCATE(qibz)
ABI_DEALLOCATE(qbz)
ABI_DEALLOCATE(wtq)
ABI_DEALLOCATE(wtqibz)
end do !imesh
ABI_DEALLOCATE(ngqpt)
if (associated(PHdos%phdos_int)) then
ABI_DEALLOCATE(PHdos%phdos_int)
end if
if (associated(PHdos%pjdos_int)) then
ABI_DEALLOCATE(PHdos%pjdos_int)
end if
ABI_ALLOCATE(PHdos%phdos_int,(PHdos%nomega))
PHdos%phdos_int=zero
if (prtdos==2) then
! === Integrate using tetrahedrons ===
! * All the data are contained in full_phfrq and full_eigvec.
! * low_bound and upr_bound contain the entire spectrum calculated on the dense mesh.
ABI_ALLOCATE(tmp_phfrq,(PHdos%nqibz))
ABI_ALLOCATE(tweight,(PHdos%nqibz,PHdos%nomega))
ABI_ALLOCATE(dtweightde,(PHdos%nqibz,PHdos%nomega))
ABI_ALLOCATE(PHdos%pjdos_int,(PHdos%nomega,3,natom))
PHdos%phdos=zero; PHdos%pjdos=zero; PHdos%pjdos_int=zero
max_occ=one
do imode=1,3*natom
tmp_phfrq(:)=full_phfrq(imode,:)
!
! === Calculate general integration weights at each irred kpoint as in Blochl et al PRB 49 16223 ===
call get_tetra_weight(tmp_phfrq, low_bound, upr_bound,&
& max_occ, PHdos%nomega, PHdos%nqibz, tetrahedra_q,&
& tweight,dtweightde)
do io=1,PHdos%nomega
do iq_ibz=1,PHdos%nqibz
PHdos%phdos(io)=PHdos%phdos(io)+dtweightde(iq_ibz,io)
PHdos%phdos_int(io)=PHdos%phdos_int(io)+tweight(iq_ibz,io)
do iat=1,natom
do idir=1,3
pnorm=full_eigvec(1,idir,iat,imode,iq_ibz)**2 + full_eigvec(2,idir,iat,imode,iq_ibz)**2
PHdos%pjdos(io,idir,iat)=PHdos%pjdos(io,idir,iat) + pnorm*dtweightde(iq_ibz,io)
PHdos%pjdos_int(io,idir,iat)=PHdos%pjdos_int(io,idir,iat) + pnorm*tweight(iq_ibz,io)
end do
end do
end do
end do
end do
ABI_DEALLOCATE(tmp_phfrq)
ABI_DEALLOCATE(tweight)
ABI_DEALLOCATE(dtweightde)
end if
!
! =======================
! === calculate IPDOS ===
! =======================
if (associated(PHdos%pjdos_xyz_typ)) then
ABI_DEALLOCATE(PHdos%pjdos_xyz_typ)
end if
if (associated(PHdos%pjdos_typ)) then
ABI_DEALLOCATE(PHdos%pjdos_typ)
end if
if (associated(PHdos%pjdos_typ_int)) then
ABI_DEALLOCATE(PHdos%pjdos_typ_int)
end if
ABI_ALLOCATE(PHdos%pjdos_xyz_typ,(PHdos%nomega,3,ntypat))
PHdos%pjdos_xyz_typ=zero
ABI_ALLOCATE(PHdos%pjdos_typ ,(PHdos%nomega,ntypat))
PHdos%pjdos_typ =zero
ABI_ALLOCATE(PHdos%pjdos_typ_int,(PHdos%nomega,ntypat))
PHdos%pjdos_typ_int=zero
do iat=1,natom
itype=typat(iat)
do io=1,PHdos%nomega
PHdos%pjdos_xyz_typ(io,:,itype)=PHdos%pjdos_xyz_typ(io,:,itype)+PHdos%pjdos(io,:,iat)
PHdos%pjdos_typ(io,itype)=PHdos%pjdos_typ(io,itype)+sum(PHdos%pjdos(io,:,iat))
end do
if (prtdos==2) then
do io=1,PHdos%nomega
PHdos%pjdos_typ_int(io,itype)=PHdos%pjdos_typ_int(io,itype)+SUM(PHdos%pjdos_int(io,:,iat))
end do
end if
end do
!
! Evaluate IDOS using simple simpson integration
! TODO should avoid the simpson rule using derf.F90, just to be consistent
if (prtdos==1) then
call simpson_int(PHdos%nomega,PHdos%omega_step,PHdos%phdos,PHdos%phdos_int)
do itype=1,ntypat
call simpson_int(PHdos%nomega,PHdos%omega_step,PHdos%pjdos_typ(:,itype),PHdos%pjdos_typ_int(:,itype))
end do
end if
if (prtdos==2) then
ABI_DEALLOCATE(tetra_full)
ABI_DEALLOCATE(tetra_wrap)
ABI_DEALLOCATE(tetra_mult)
ABI_DEALLOCATE(full_phfrq)
ABI_DEALLOCATE(full_eigvec)
end if
DBG_EXIT("COLL")
end subroutine mkphdos
!!***
end module m_phdos
!!***
| gpl-3.0 |
jjones-cavium/gcc | gcc/testsuite/gfortran.dg/array_constructor_12.f90 | 174 | 1261 | ! Like array_constructor_6.f90, but check integer(8) iterators.
! { dg-do run }
program main
integer (kind = 8) :: i, l8, u8, step8
integer (kind = 4) :: l4, step4
integer (kind = 8), parameter :: big = 10000000000_8
l4 = huge (l4)
u8 = l4 + 10_8
step4 = 2
call test ((/ (i, i = l4, u8, step4) /), l4 + 0_8, u8, step4 + 0_8)
l8 = big
u8 = big * 20
step8 = big
call test ((/ (i, i = l8, u8, step8) /), l8, u8, step8)
u8 = big + 100
l8 = big
step4 = -20
call test ((/ (i, i = u8, l8, step4) /), u8, l8, step4 + 0_8)
u8 = big * 40
l8 = big * 20
step8 = -big * 2
call test ((/ (i, i = u8, l8, step8) /), u8, l8, step8)
u8 = big
l4 = big / 100
step4 = -big / 500
call test ((/ (i, i = u8, l4, step4) /), u8, l4 + 0_8, step4 + 0_8)
u8 = big * 40 + 200
l4 = 200
step8 = -big
call test ((/ (i, i = u8, l4, step8) /), u8, l4 + 0_8, step8)
contains
subroutine test (a, l, u, step)
integer (kind = 8), dimension (:), intent (in) :: a
integer (kind = 8), intent (in) :: l, u, step
integer (kind = 8) :: i
integer :: j
j = 1
do i = l, u, step
if (a (j) .ne. i) call abort
j = j + 1
end do
if (size (a, 1) .ne. j - 1) call abort
end subroutine test
end program main
| gpl-2.0 |
qsnake/abinit | src/28_numeric_noabirule/interp.F90 | 1 | 3922 | #if defined HAVE_CONFIG_H
#include "config.h"
#endif
#include "abi_common.h"
function interp(n,z,f,z0,zz)
use defs_basis
use m_numeric_tools, only : linfit
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'interp'
!End of the abilint section
implicit none
integer :: n
complex(gwpc) :: z(n), f(n), z0, zz
complex(gwpc) :: interp
complex(gwpc) :: a, b
real(dp) :: x(n),smrt
if(.false.)write(std_out,*)z0
x(:) = real(z(:))
smrt=linfit(n,x,f,a,b)
if( smrt>0.1/Ha_eV) then
write(std_out,*) '**WARNING: the values are not linear'
write(std_out,*) smrt,a,b,f
endif
interp = a * zz + b
return
end function interp
function dinterp(n,z,f,z0,zz)
use defs_basis
use m_numeric_tools, only : linfit
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'dinterp'
!End of the abilint section
implicit none
integer n
complex(gwpc) :: z(n), f(n), z0, zz
complex(gwpc) :: dinterp
complex(gwpc) a, b
real(dp) :: x(n), smrt
if(.false.)write(std_out,*)z0,zz
x(:) = real(z(:))
smrt=linfit(n,x,f,a,b)
if( smrt>0.1/Ha_eV) then
write(std_out,*) '**WARNING: the values are not linear'
write(std_out,*) smrt,a,b,f
endif
dinterp = a
return
end function dinterp
function taylor_interp(n,z,f,z0,zz)
use defs_basis
! calculate in zz the Taylor polinomial around z0 that interpolate the function f
! at the n points z
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'taylor_interp'
use interfaces_28_numeric_noabirule, except_this_one => taylor_interp
!End of the abilint section
implicit none
integer n
complex(gwpc) :: z(n), f(n), z0, zz
complex(gwpc) :: taylor_interp
integer i
complex(gwpc) :: c(n), zz_minus_z0_to_i
call calculate_taylor_c(n,z,f,z0,c)
! calculate the Taylor polinomial in zz
zz_minus_z0_to_i = 1
taylor_interp = 0
do i = 1, n
taylor_interp = taylor_interp + c(i) * zz_minus_z0_to_i
zz_minus_z0_to_i = zz_minus_z0_to_i * (zz - z0)
enddo
return
end function taylor_interp
function dtaylor_interp(n,z,f,z0,zz)
use defs_basis
! calculate in zz the Taylor polinomial derivative
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'dtaylor_interp'
use interfaces_28_numeric_noabirule, except_this_one => dtaylor_interp
!End of the abilint section
implicit none
integer n
complex(gwpc) :: z(n), f(n), z0, zz
complex(gwpc) :: dtaylor_interp
integer i
complex(gwpc) :: c(n), zz_minus_z0_to_i
call calculate_taylor_c(n,z,f,z0,c)
! calculate the Taylor polinomial in zz
zz_minus_z0_to_i = 1
dtaylor_interp = 0
do i = 2, n
dtaylor_interp = dtaylor_interp + (i-1) * c(i) * zz_minus_z0_to_i
zz_minus_z0_to_i = zz_minus_z0_to_i * (zz - z0)
enddo
return
end function dtaylor_interp
subroutine calculate_taylor_c(n,z,f,z0,c)
use m_profiling
use defs_basis
! calculate the Taylor coefficients polinomial expansion around z0
! for the function f at the n points z
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'calculate_taylor_c'
!End of the abilint section
implicit none
integer n
complex(gwpc) :: z(n), f(n), z0, c(n)
integer, parameter :: nrhs=1
integer i,j,info
complex(gwpc) :: a(n,n), bb(n,nrhs)
! calculate the coefficient matrix
a(:,1) = 1
do i = 1, n
do j = 2, n
a(i,j) = a(i,j-1) * (z(i) - z0)
enddo
enddo
! solve the linear system to find the Taylor expansion coefficients
bb(:,1) = f(:)
stop 'introduce cgesv'
!call cgesv(n,nrhs,a,n,ipiv,bb,n,info)
if(info/=0) then
write(std_out,*) info
stop 'cgesv failed'
endif
c(:) = bb(:,1)
return
end subroutine calculate_taylor_c
| gpl-3.0 |
qsnake/abinit | src/68_rsprc/prcref.F90 | 1 | 26946 | !{\src2tex{textfont=tt}}
!!****f* ABINIT/prcref
!!
!! NAME
!! prcref
!!
!! FUNCTION
!! Compute preconditioned residual potential (or density) and forces.
!! iprcel, iprcch and iprcfc govern the choice of the preconditioner.
!! Three tasks are done :
!! 1) Preconditioning of the forces (residual has already been included)
!! using the approximate force constant matrix. Get proposed
!! change of atomic positions.
!! 2) Precondition the residual, get first part of proposed trial
!! potential change.
!! 3) PAW only: precondition the rhoij residuals (simple preconditionning)
!! 4) Take into account the proposed change of atomic positions to
!! modify the proposed trial potential change.
!!
!! NOTE
!! This routine is almost similar to prcref_PMA.F90 which is employed in
!! case of potential mixing. Yet it has undergone strong changes simultaneously
!! from two different sources at the same time which resulted in a splitting.
!!
!! COPYRIGHT
!! Copyright (C) 1998-2012 ABINIT group (DCA,XG,MT)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt .
!!
!! INPUTS
!! atindx(natom)=index table for atoms (see scfcv.f)
!! dielar(7)=input parameters for dielectric matrix:
!! diecut,dielng,diemac,diemix,diegap,dielam,diemixmag.
!! dielstrt=number of the step at which the dielectric preconditioning begins.
!! dtset <type(dataset_type)>=all input variables in this dataset
!! | intxc=control xc quadrature
!! | iprcch= not yet used here
!! | iprcel= governs the preconditioning of the potential residual
!! | 0 => simple model dielectric matrix, described by the
!! | parameters dielng, diemac, diemix and diemixmag contained in dielar.
!! | between 21 and 39 => until istep=dielstart, same as iprcel=0, then uses
!! | the RPA dielectric matrix (routine dielmt)
!! | between 41 and 49 => uses the RPA dielectric matrix (routine dielmt).
!! | between 51 and 59 => uses the RPA dielectric matrix (routine dieltcel).
!! | between 61 and 69 => uses the electronic dielectric matr (routine dieltcel).
!! | between 71 and 79 => uses the real-space preconditioner based on Kerker prc (prcrskerkerN)
!! | between 81 and 99 => reserved for futur version of the real-space preconditioner
!! | between 141 and 169 -> same as between 41 and 69 but with a different periodicity: modulo(iprcel modulo (10))
!! | iprcfc= governs the preconditioning of the forces
!! | 0 => hessian is the identity matrix
!! | 1 => hessian is 0.5 times the identity matrix
!! | 2 => hessian is 0.25 times the identity matrix
!! | ixc=exchange-correlation choice parameter.
!! | natom=number of atoms
!! | nspden=number of spin-density components
!! | occopt=option for occupancies
!! | prtvol=control print volume and debugging
!! | typat(natom)=integer type for each atom in cell
!! etotal=total ennergy
!! fcart(3,natom)=cartesian forces (hartree/bohr)
!! ffttomix(nfft*(1-nfftprc/nfft))=Index of the points of the FFT (fine) grid on the grid used for mixing (coarse)
!! gmet(3,3)=metrix tensor in G space in Bohr**-2.
!! gsqcut=cutoff on (k+G)^2 (bohr^-2)
!!
!! istep= number of the step in the SCF cycle
!! kg_diel(3,npwdiel)=reduced planewave coordinates for the dielectric matrix.
!! mgfft=maximum size of 1D FFTs
!! moved_atm_inside= if 1, then the preconditioned forces
!! as well as the preconditioned potential residual must be computed;
!! otherwise, compute only the preconditioned potential residual.
!! mpi_enreg=informations about MPI parallelization
!! nattyp(ntypat)=number of atoms of each type in cell.
!! nfft=number of fft grid points
!! nfftprc=size of FFT grid on which the potential residual will be preconditionned
!! ngfft(18)=contain all needed information about 3D FFT, see ~abinit/doc/input_variables/vargs.htm#ngfft
!! ngfftprc(18)=contain all needed information about 3D FFT for the grid corresponding to nfftprc
!! nkxc=second dimension of the array kxc, see rhohxc.f for a description
!! npawmix=-PAW only- number of spherical part elements to be mixed
!! npwdiel=number of planewaves for dielectric matrix
!! ntypat=number of types of atoms in cell.
!! n1xccc=dimension of xccc1d ; 0 if no XC core correction is used
!! optreal=1 if residual potential is is REAL space, 2 if it is in RECIPROCAL SPACE
!! optres=0: the array vresid contains a potential residual
!! 1: the array vresid contains a density residual
!! pawrhoij(natom*usepaw) <type(pawrhoij_type)>= paw rhoij occupancies and related data
!! Use here rhoij residuals (and gradients)
!! pawtab(ntypat*usepaw) <type(pawtab_type)>=paw tabulated starting data
!! psps <type(pseudopotential_type)>=variables related to pseudopotentials
!! rhog(2,nfft)=array for electron density in reciprocal space
!! rhor(nfft,nspden)=array for electron density in electrons/bohr**3.
!! rprimd(3,3)=dimensional primitive translations in real space (bohr)
!! susmat(2,npwdiel,nspden,npwdiel,nspden)=
!! the susceptibility (or density-density response) matrix in reciprocal space
!! vresid(optreal*nfftprc,nspden)=residual potential
!! vxc(nfft,nspden)=exchange-correlation potential (hartree)
!! vhartr(nfft)=array for holding Hartree potential
!! vlspl(mqgrid,2,ntypat)=q^2 v(q) spline for each type of atom.
!! vpsp(nfft)=array for holding local psp
!! xred(3,natom)=reduced dimensionless atomic coordinates
!!
!! OUTPUT
!! dtn_pc(3,natom)=preconditioned change of atomic position,
!! in reduced coordinates
!! vrespc(optreal*nfftprc,nspden)=preconditioned residual of the potential
!! ==== if psps%usepaw==1
!! rhoijrespc(npawmix)= preconditionned rhoij residuals at output
!!
!! SIDE EFFECT
!! dielinv(2,npwdiel,nspden,npwdiel,nspden)=
!! inverse of the dielectric matrix in rec. space
!! kxc(nfft,nkxc)=exchange-correlation kernel,
!! needed if the electronic dielectric matrix is computed
!! ===== if iprcch==3 .and. moved_atm_inside==1 =====
!! ph1d(2,3*(2*mgfft+1)*natom)=1-dim structure factor phases
!!
!! PARENTS
!! newrho
!!
!! CHILDREN
!! atm2fft,dielmt,dieltcel,fourdp,fresid,getph,indirect_parallel_fourier
!! kgindex,leave_new,mean_fftr,metric,mkcore,mklocl,moddiel,prcrskerker1
!! prcrskerker2,rhohxc,testsusmat,wrtout,xredxcart,xsum_mpi,zerosym
!!
!! SOURCE
#if defined HAVE_CONFIG_H
#include "config.h"
#endif
#include "abi_common.h"
subroutine prcref(atindx,dielar,dielinv,&
& dielstrt,dtn_pc,dtset,etotal,fcart,ffttomix,gmet,gsqcut,&
& istep,kg_diel,kxc,&
& mgfft,moved_atm_inside,mpi_enreg,&
& nattyp,nfft,nfftprc,ngfft,ngfftprc,nkxc,npawmix,npwdiel,ntypat,n1xccc,&
& optreal,optres,pawrhoij,pawtab,ph1d,psps,rhog,rhoijrespc,rhor,rprimd,&
& susmat,vhartr,vpsp,vresid,vrespc,vxc,wvl,xred)
use m_profiling
use defs_basis
use defs_datatypes
use defs_abitypes
use defs_wvltypes
use m_xmpi
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'prcref'
use interfaces_14_hidewrite
use interfaces_16_hideleave
use interfaces_42_geometry
use interfaces_52_fft_mpi_noabirule
use interfaces_53_ffts
use interfaces_53_spacepar
use interfaces_56_recipspace
use interfaces_56_xc
use interfaces_65_psp
use interfaces_67_common
use interfaces_68_rsprc, except_this_one => prcref
!End of the abilint section
implicit none
!Arguments-------------------------------
!scalars
integer,intent(in) :: dielstrt,istep,mgfft,moved_atm_inside,n1xccc
integer,intent(in) :: nfft,nfftprc,nkxc,npawmix,npwdiel,ntypat,optreal,optres
real(dp),intent(in) :: etotal,gsqcut
type(MPI_type),intent(inout) :: mpi_enreg
type(dataset_type),intent(in) :: dtset
type(pseudopotential_type),intent(in) :: psps
type(wvl_internal_type), intent(in) :: wvl
!arrays
integer,intent(in) :: atindx(dtset%natom),ffttomix(nfft*(1-nfftprc/nfft))
integer,intent(in) :: kg_diel(3,npwdiel),nattyp(ntypat),ngfft(18),ngfftprc(18)
real(dp),intent(in) :: dielar(7),fcart(3,dtset%natom),rhog(2,nfft)
real(dp),intent(in) :: rhor(nfft,dtset%nspden),rprimd(3,3)
real(dp),intent(in) :: susmat(2,npwdiel,dtset%nspden,npwdiel,dtset%nspden)
real(dp),intent(in) :: vhartr(nfft),vresid(nfftprc*optreal,dtset%nspden)
real(dp),intent(in) :: vxc(nfft,dtset%nspden)
real(dp),intent(inout) :: dielinv(2,npwdiel,dtset%nspden,npwdiel,dtset%nspden)
real(dp),intent(inout) :: gmet(3,3),kxc(nfft,nkxc)
real(dp),intent(inout) :: ph1d(2,3*(2*mgfft+1)*dtset%natom),vpsp(nfft)
real(dp),intent(inout) :: xred(3,dtset%natom)
real(dp),intent(out) :: dtn_pc(3,dtset%natom),rhoijrespc(npawmix)
real(dp),intent(out) :: vrespc(nfftprc*optreal,dtset%nspden)
type(pawrhoij_type),intent(inout) :: pawrhoij(dtset%natom*psps%usepaw)
type(pawtab_type),intent(in) :: pawtab(ntypat*psps%usepaw)
!Local variables-------------------------------
!scalars
integer :: cplex,dielop,iatom,ier,ifft,ii,index,ipw1
integer :: ipw2,ispden,klmn,kmix,n1,n2,n3,n3xccc,nfftot,nk3xc,optatm
integer :: optdyfr,optgr,option,optn,optn2,optstr,optv
real(dp) :: ai,ar,diemix,diemixmag,eei,enxc
real(dp) :: mixfac
real(dp) :: mixfac_eff,mixfacmag,ucvol,vxcavg
logical :: computediel
character(len=500) :: message
!arrays
integer :: qprtrb(3)
integer,allocatable :: indpw_prc(:)
real(dp) :: dummy6(6),dummy7(6),gprimd(3,3),qphon(3),rmet(3,3),strsxc(6)
real(dp) :: vmean(dtset%nspden),vprtrb(2)
real(dp),allocatable :: dummy(:),dummy1(:),dummy2(:),dummy3(:),dummy4(:),dummy5(:),dummy8(:)
real(dp),allocatable :: dyfrlo_indx(:,:,:),dyfrx2(:,:,:)
real(dp),allocatable :: fcart_pc(:,:),gresid(:,:),grtn_indx(:,:)
real(dp),allocatable :: grxc(:,:),grxc_indx(:,:),rhog_wk(:,:),rhor_new(:,:)
real(dp),allocatable :: rhor_wk(:,:),rhor_wk0(:,:),vhartr_wk(:),vpsp_wk(:)
real(dp),allocatable :: vres_diel(:,:),vxc_wk(:,:),work(:),work1(:,:),work2(:)
real(dp),allocatable :: work3(:,:),xccc3d(:),xred_wk(:,:)
logical,allocatable :: mask(:)
! *************************************************************************
!DEBUG
!write(std_out,*)' prcref : enter '
!stop
!ENDDEBUG
!Compute different geometric tensor, as well as ucvol, from rprimd
call metric(gmet,gprimd,-1,rmet,rprimd,ucvol)
!1) Eventually take care of the forces
if(moved_atm_inside==1)then
ABI_ALLOCATE(fcart_pc,(3,dtset%natom))
if(dtset%iprcfc==0)then
fcart_pc(:,:)=fcart(:,:)
else
fcart_pc(:,:)= (two**dtset%iprcfc) * fcart(:,:)
end if
! Compute preconditioned delta xred from preconditioned fcart and rprimd
call xredxcart(dtset%natom,-1,rprimd,fcart_pc,dtn_pc)
ABI_DEALLOCATE(fcart_pc)
end if
!#######################################################################
!2) Take care of the potential residual
!Compute the residuals corresponding to the solution
!of an approximate realspace dielectric function according
!to X. Gonze PRB vol54 nb7 p4383 (1996)
if(dtset%iprcel>=71.and.dtset%iprcel<=79) then
if (nfft==nfftprc) then
if (dtset%iprcel<=78) then
call prcrskerker1(dtset,mpi_enreg,nfft,dtset%nspden,ngfft,dielar,etotal, &
& gprimd,vresid,vrespc,rhor(:,1))
else
call prcrskerker2(dtset,nfft,dtset%nspden,ngfft,dielar,gprimd,rprimd, &
& vresid,vrespc,dtset%natom,xred,mpi_enreg,ucvol)
end if
else
! If preconditionning has to be done on a coarse grid,
! has to transfer several arrays
ABI_ALLOCATE(work1,(nfftprc,dtset%nspden))
ABI_ALLOCATE(work3,(nfftprc,dtset%nspden))
ABI_ALLOCATE(work,(2*nfftprc))
do ispden=1,dtset%nspden
work(:)=vresid(:,ispden)
call fourdp(1,work,work1(:,ispden),+1,mpi_enreg,nfftprc,ngfftprc,dtset%paral_kgb,0)
end do
ABI_DEALLOCATE(work)
if (dtset%iprcel<=78) then
ABI_ALLOCATE(rhog_wk,(2,nfftprc))
rhog_wk(:,:)=zero
if (mpi_enreg%nproc_fft>1.and. mpi_enreg%paral_compil_fft==1) then
nfftot=ngfft(1)*ngfft(2)*ngfft(3)
call indirect_parallel_Fourier(ffttomix,rhog_wk,mpi_enreg,ngfftprc,&
& ngfft,nfftprc,nfft,dtset%paral_kgb,rhog,nfftot)
else
do ii=1,nfft
if (ffttomix(ii)>0) rhog_wk(:,ffttomix(ii))=rhog(:,ii)
end do
end if
call zerosym(rhog_wk,2,mpi_enreg,ngfftprc(1),ngfftprc(2),ngfftprc(3))
ABI_ALLOCATE(work,(nfftprc))
call fourdp(1,rhog_wk,work,+1,mpi_enreg,nfftprc,ngfftprc,dtset%paral_kgb,0)
call prcrskerker1(dtset,mpi_enreg,nfftprc,dtset%nspden,ngfftprc,dielar,etotal, &
& gprimd,work1,work3,work)
ABI_DEALLOCATE(work)
else
call prcrskerker2(dtset,nfftprc,dtset%nspden,ngfftprc,dielar,gprimd,rprimd, &
& work1,work3,dtset%natom,xred,mpi_enreg,ucvol)
end if
do ispden=1,dtset%nspden
call fourdp(1,vrespc(:,ispden),work3(:,ispden),-1,mpi_enreg,nfftprc,ngfftprc,dtset%paral_kgb,0)
end do
ABI_DEALLOCATE(work1)
ABI_DEALLOCATE(work3)
end if
else
if(dtset%iprcel==0 .or. (dtset%iprcel<40.and.istep<dielstrt) )then
cplex=optreal
qphon(:)=zero
! Simple scalar multiplication, or model dielectric function
call moddiel(cplex,dielar,mpi_enreg,nfftprc,ngfftprc,dtset%nspden,optreal,optres,dtset%paral_kgb,qphon,rprimd,vresid,vrespc)
! Use the inverse dielectric matrix in a small G sphere
else if( (istep>=dielstrt .and. dtset%iprcel>=21) .or. modulo(dtset%iprcel,100)>=41 )then
! With dielop=1, the matrices will be computed when istep=dielstrt
! With dielop=2, the matrices will be computed when istep=dielstrt and 1
dielop=1
if(modulo(dtset%iprcel,100)>=41)dielop=2
call testsusmat(computediel,dielop,dielstrt,dtset,istep) !test if the matrix is to be computed
if(computediel) then
! Compute the inverse dielectric matrix from the susceptibility matrix
! There are two routines for the RPA matrix, while for the electronic
! dielectric matrix, only dieltcel will do the work
if(modulo(dtset%iprcel,100)<=49)then
call dielmt(dielinv,gmet,kg_diel,&
& npwdiel,dtset%nspden,dtset%occopt,dtset%prtvol,susmat)
else
option=1
if(modulo(dtset%iprcel,100)>=61)option=2
call dieltcel(dielinv,gmet,kg_diel,kxc,&
& nfft,ngfft,nkxc,npwdiel,dtset%nspden,dtset%occopt,option,dtset%paral_kgb,dtset%prtvol,susmat)
end if
end if
ABI_ALLOCATE(work1,(2,nfftprc))
ABI_ALLOCATE(work2,(optreal*nfftprc))
! Presently, one uses the inverse of the RPA dielectric matrix,
! for which spin must be averaged.
! Do fft from real space (work2) to G space (work1)
if (optreal==1) then
work2(:)=vresid(:,1)
! Must average over spins in the case of a potential residual
if(dtset%nspden/=1.and.optres==0)work2(:)=(work2(:)+vresid(:,2))*half
call fourdp(1,work1,work2,-1,mpi_enreg,nfftprc,ngfftprc,dtset%paral_kgb,0)
else
work1(:,:)=reshape(vresid(:,1),(/2,nfftprc/))
if(dtset%nspden/=1.and.optres==0)work1(:,:)=(work1(:,:)+reshape(vresid(:,2),(/2,nfftprc/)))*half
end if
! Multiply by restricted inverse of dielectric matrix.
! Must first copy relevant elements of work1 to a npwdiel-dimensioned array,
! then zero work1, operate with the dielinv matrix, and store in work1.
ABI_ALLOCATE(vres_diel,(2,npwdiel))
ABI_ALLOCATE(indpw_prc,(npwdiel))
ABI_ALLOCATE(mask,(npwdiel))
mask(:)=.true.
call kgindex(indpw_prc,kg_diel,mask,mpi_enreg,ngfftprc,npwdiel)
do ipw1=1,npwdiel
if(mask(ipw1)) then
vres_diel(1,ipw1)=work1(1,indpw_prc(ipw1))
vres_diel(2,ipw1)=work1(2,indpw_prc(ipw1))
end if
end do
work1(:,:)=zero
do ipw1=1,npwdiel
ar=zero ; ai=zero
! Use inverse of dielectric matrix (potential mixing)
if (optres==0) then
do ipw2=1,npwdiel
if(mask(ipw2))then
ar=ar+dielinv(1,ipw1,1,ipw2,1)*vres_diel(1,ipw2) &
& -dielinv(2,ipw1,1,ipw2,1)*vres_diel(2,ipw2)
ai=ai+dielinv(2,ipw1,1,ipw2,1)*vres_diel(1,ipw2) &
& +dielinv(1,ipw1,1,ipw2,1)*vres_diel(2,ipw2)
end if
end do
else
! Use symetric of inverse of dielectric matrix (density mixing)
do ipw2=1,npwdiel
if(mask(ipw2))then
ar=ar+dielinv(1,ipw2,1,ipw1,1)*vres_diel(1,ipw2) &
& +dielinv(2,ipw2,1,ipw1,1)*vres_diel(2,ipw2)
ai=ai-dielinv(2,ipw2,1,ipw1,1)*vres_diel(1,ipw2) &
& +dielinv(1,ipw2,1,ipw1,1)*vres_diel(2,ipw2)
end if
end do
end if
! Must be careful not to count the diagonal 1 twice : it is added later,
! so must be subtracted now.
call xsum_mpi(ar,mpi_enreg%comm_fft,ier)
call xsum_mpi(ai,mpi_enreg%comm_fft,ier)
if(mask(ipw1)) then
work1(1,indpw_prc(ipw1))=ar-vres_diel(1,ipw1)
work1(2,indpw_prc(ipw1))=ai-vres_diel(2,ipw1)
end if !mask(ipw1)
end do ! ipw1
ABI_DEALLOCATE(vres_diel)
ABI_DEALLOCATE(indpw_prc)
ABI_DEALLOCATE(mask)
! Fourier transform
if (optreal==1) then
call fourdp(1,work1,work2,1,mpi_enreg,nfftprc,ngfftprc,dtset%paral_kgb,0)
else
work2(:)=reshape(work1(:,:),(/nfftprc*2/))
end if
! Add to get the preconditioned vresid, must be careful about spins.
if(dtset%iprcel>=30)then
diemix=dielar(4);diemixmag=abs(dielar(7))
vrespc(:,1)=diemix*(vresid(:,1)+work2(:))
if(dtset%nspden/=1.and.optres==0)vrespc(:,2)=diemixmag*(vresid(:,2)+work2(:))
if(dtset%nspden==4.and.optres==0)vrespc(:,3:4)=diemixmag*vresid(:,3:4)
if(dtset%nspden/=1.and.optres==1)vrespc(:,2:dtset%nspden)=diemixmag*vresid(:,2:dtset%nspden)
else
vrespc(:,1)=vresid(:,1)+work2(:)
if(dtset%nspden/=1.and.optres==0)vrespc(:,2)=vresid(:,2)+work2(:)
if(dtset%nspden==4.and.optres==0)vrespc(:,3:4)=vresid(:,3:4)
if(dtset%nspden/=1.and.optres==1)vrespc(:,2:dtset%nspden)=vresid(:,2:dtset%nspden)
end if
ABI_DEALLOCATE(work1)
ABI_DEALLOCATE(work2)
! Other choice ?
else
write(message, '(a,a,a,a,i3,a,a,a,a)' ) ch10,&
& ' prcref : ERROR - ',ch10,&
& ' From the calling routine, iprcel=',dtset%iprcel,ch10,&
& ' The only allowed values are 0 or larger than 20.',ch10,&
& ' Action : correct your input file.'
call wrtout(std_out,message,'COLL')
call leave_new('COLL')
end if
end if
!#######################################################################
!3) PAW only : precondition the rhoij quantities (augmentation
!occupancies) residuals. Use a simple preconditionning
!with the same mixing factor as the model dielectric function.
if (psps%usepaw==1) then
if (istep>=dielstrt.and.dtset%iprcel>=21.and.dtset%iprcel<30) then
mixfac=one;mixfacmag=one
else
mixfac=dielar(4);mixfacmag=abs(dielar(7))
end if
if (pawrhoij(1)%cplex==1) then
index=0
do iatom=1,dtset%natom
do ispden=1,pawrhoij(iatom)%nspden
mixfac_eff=mixfac;if (ispden>1) mixfac_eff=mixfacmag
do kmix=1,pawrhoij(iatom)%lmnmix_sz
index=index+1;klmn=pawrhoij(iatom)%kpawmix(kmix)
rhoijrespc(index)=mixfac_eff*pawrhoij(iatom)%rhoijres(klmn,ispden)
end do
end do
end do
else
index=-1
do iatom=1,dtset%natom
do ispden=1,pawrhoij(iatom)%nspden
mixfac_eff=mixfac;if (ispden>1) mixfac_eff=mixfacmag
do kmix=1,pawrhoij(iatom)%lmnmix_sz
index=index+2;klmn=2*pawrhoij(iatom)%kpawmix(kmix)-1
rhoijrespc(index:index+1)=mixfac_eff*pawrhoij(iatom)%rhoijres(klmn:klmn+1,ispden)
end do
end do
end do
end if
end if
!#######################################################################
!4) Take care of the change of atomic positions
!Note : this part is very demanding on memory...
!however, since this algorithm is still in development,
!it was NOT included in the estimation provided by memory.f
if(abs(dtset%iprcch)==3 .and. moved_atm_inside==1)then
! Not yet compatible with resid given in reciprocal space
if (optreal/=1) then
write(message, '(8a)' ) ch10,&
& ' prcref : ERROR - ',ch10,&
& ' From the calling routine, iprcch=3',ch10,&
& ' You cannot use residuals in reciprocal space.',ch10,&
& ' Action : correct your input file.'
call wrtout(std_out,message,'COLL')
call leave_new('COLL')
end if
! Not compatible with non-collinear magnetism
if(dtset%nspden==4)then
write(message, '(4a)' ) ch10,&
& ' prcref : ERROR -',ch10,&
& 'iprcch=3 does not work for nspden=4 !'
call wrtout(std_out,message,'COLL')
call leave_new('COLL')
end if
n1=ngfft(1) ; n2=ngfft(2) ; n3=ngfft(3)
nfftot=n1*n2*n3
if (optres==0) then ! Array vresid contains a potential residual
! -----------------------------------------------------------------
! First subtract the current local, hartree and exchange correlation potentials
do ispden=1,min(dtset%nspden,2)
vrespc(:,ispden)=vrespc(:,ispden)-vpsp(:)-vhartr(:)-vxc(:,ispden)
end do
if (dtset%nspden==4) then
do ispden=3,4
vrespc(:,ispden)=vrespc(:,ispden)-vxc(:,ispden)
end do
end if
! Compute the modified density, in rhor_wk
option=2
ABI_ALLOCATE(gresid,(3,dtset%natom))
ABI_ALLOCATE(grxc,(3,dtset%natom))
ABI_ALLOCATE(rhor_wk,(nfft,dtset%nspden))
ABI_ALLOCATE(rhor_wk0,(nfft,dtset%nspden))
ABI_ALLOCATE(xred_wk,(3,dtset%natom))
xred_wk(:,:)=xred(:,:)+dtn_pc(:,:)
call fresid(dtset,gresid,mpi_enreg,nfft,ngfft,&
& ntypat,option,pawtab,rhor,rprimd,&
& ucvol,rhor_wk,xred_wk,xred,psps%znuclpsp)
! Compute up+down rhog_wk(G) by fft
ABI_ALLOCATE(work,(nfft))
ABI_ALLOCATE(rhog_wk,(2,nfft))
work(:)=rhor_wk(:,1)
call fourdp(1,rhog_wk,work,-1,mpi_enreg,nfft,ngfft,dtset%paral_kgb,0)
ABI_DEALLOCATE(work)
! Compute structure factor phases for new atomic pos:
call getph(atindx,dtset%natom,n1,n2,n3,ph1d,xred_wk)
! Compute local ionic pseudopotential vpsp:
! and core electron density xccc3d, if needed.
n3xccc=0;if (n1xccc/=0) n3xccc=nfft
ABI_ALLOCATE(xccc3d,(n3xccc))
ABI_ALLOCATE(vpsp_wk,(nfft))
vprtrb(1:2)=zero
if (psps%usepaw==1) then
! PAW: compute vpsp and xccc3d together in reciprocal space
optatm=1;optdyfr=0;optgr=0;optstr=0;optv=1;optn=n3xccc/nfft;optn2=1
! Note: atindx1 should be passed to atm2fft (instead of atindx) but it is unused...
call atm2fft(atindx,xccc3d,vpsp,dummy,dummy2,eei,dummy1,gmet,gprimd,dummy3,dummy4,gsqcut,&
& mgfft,mpi_enreg,psps%mqgrid_vl,dtset%natom,nattyp,nfft,ngfft,ntypat,&
& optatm,optdyfr,optgr,optn,optn2,optstr,optv,dtset%paral_kgb,&
& pawtab,ph1d,psps%qgrid_vl,qprtrb,dummy5,dummy6,dummy7,&
& ucvol,psps%usepaw,dummy8,vprtrb,psps%vlspl)
else
! Norm-conserving: compute vpsp in recip. space and xccc3d in real space
option = 1
ABI_ALLOCATE(dyfrlo_indx,(3,3,dtset%natom))
ABI_ALLOCATE(grtn_indx,(3,dtset%natom))
call mklocl(dtset,dyfrlo_indx,eei,gmet,gprimd,grtn_indx,gsqcut,dummy6,&
& mgfft,mpi_enreg,dtset%natom,nattyp,nfft,ngfft,dtset%nspden,&
& ntypat,option,ph1d,psps,qprtrb,rhog_wk,rhor_wk,rprimd,&
& ucvol,vprtrb,vpsp_wk,wvl,xred)
ABI_DEALLOCATE(dyfrlo_indx)
ABI_DEALLOCATE(grtn_indx)
if (n1xccc/=0) then
ABI_ALLOCATE(dyfrx2,(3,3,dtset%natom))
ABI_ALLOCATE(grxc_indx,(3,dtset%natom))
call mkcore(dummy6,dyfrx2,grxc_indx,mpi_enreg,dtset%natom,nfft,dtset%nspden,ntypat,&
& n1,n1xccc,n2,n3,option,rprimd,dtset%typat,ucvol,vxc,psps%xcccrc,&
& psps%xccc1d,xccc3d,xred_wk)
ABI_DEALLOCATE(dyfrx2)
ABI_DEALLOCATE(grxc_indx)
end if
end if
! Compute Hartree+xc potentials
ABI_ALLOCATE(vxc_wk,(nfft,dtset%nspden))
ABI_ALLOCATE(vhartr_wk,(nfft))
option=1
! to be adjusted for the call to rhohxc
nk3xc=1
call rhohxc(dtset,enxc,gsqcut,psps%usepaw,kxc,mpi_enreg,nfft,ngfft,&
& work,0,work,0,nkxc,nk3xc,dtset%nspden,n3xccc,option,rhog_wk,rhor_wk,rprimd,strsxc,1,&
& vhartr_wk,vxc_wk,vxcavg,xccc3d)
ABI_DEALLOCATE(xccc3d)
! Sum all contributions
do ispden=1,min(dtset%nspden,2)
do ifft=1,nfft
vrespc(ifft,ispden)=vrespc(ifft,ispden)+vpsp_wk(ifft)+vhartr_wk(ifft)+vxc_wk(ifft,ispden)
end do
end do
if (dtset%nspden==4) then
do ispden=3,4
do ifft=1,nfft
vrespc(ifft,ispden)=vrespc(ifft,ispden)+vxc_wk(ifft,ispden)
end do
end do
end if
call mean_fftr(vrespc,vmean,mpi_enreg,nfft,nfftot,dtset%nspden)
if(dtset%nspden==2) then
vmean(1)=half*(vmean(1)+vmean(2))
vmean(2)=vmean(1)
end if
do ispden=1,dtset%nspden
vrespc(:,ispden)=vrespc(:,ispden)-vmean(ispden)
end do
ABI_DEALLOCATE(gresid)
ABI_DEALLOCATE(grxc)
ABI_DEALLOCATE(rhog_wk)
ABI_DEALLOCATE(rhor_wk)
ABI_DEALLOCATE(rhor_wk0)
ABI_DEALLOCATE(xred_wk)
ABI_DEALLOCATE(vhartr_wk)
ABI_DEALLOCATE(vpsp_wk)
ABI_DEALLOCATE(vxc_wk)
else ! Array vresid contains a density residual
! -----------------------------------------------------------------
! Only have to compute the modified preconditionned density residual
option=2
ABI_ALLOCATE(gresid,(3,dtset%natom))
ABI_ALLOCATE(grxc,(3,dtset%natom))
ABI_ALLOCATE(rhor_new,(nfft,dtset%nspden))
ABI_ALLOCATE(rhor_wk,(nfft,dtset%nspden))
ABI_ALLOCATE(rhor_wk0,(nfft,dtset%nspden))
ABI_ALLOCATE(xred_wk,(3,dtset%natom))
xred_wk(:,:)=xred(:,:)+dtn_pc(:,:)
rhor_new(:,1)=rhor(:,1)+vrespc(:,1)
if (dtset%nspden==2) then
rhor_new(:,1)=rhor_new(:,1)+vrespc(:,2)
rhor_new(:,2)=rhor(:,2)+vrespc(:,1)
end if
call fresid(dtset,gresid,mpi_enreg,nfft,ngfft,&
& ntypat,option,pawtab,rhor,rprimd,&
& ucvol,rhor_wk0,xred_wk,xred,psps%znuclpsp)
call fresid(dtset,gresid,mpi_enreg,nfft,ngfft,&
& ntypat,option,pawtab,rhor_new,rprimd,&
& ucvol,rhor_wk,xred_wk,xred,psps%znuclpsp)
vrespc(:,1)=rhor_wk(:,dtset%nspden)-rhor_wk0(:,dtset%nspden)
if (dtset%nspden==2) vrespc(:,2)=rhor_wk(:,1)-rhor_wk0(:,1)-vrespc(:,1)
ABI_DEALLOCATE(gresid)
ABI_DEALLOCATE(grxc)
ABI_DEALLOCATE(rhor_new)
ABI_DEALLOCATE(rhor_wk)
ABI_DEALLOCATE(rhor_wk0)
ABI_DEALLOCATE(xred_wk)
end if
end if
!DEBUG
!write(std_out,*)' prcref : exit '
!stop
!ENDDEBUG
end subroutine prcref
!!***
| gpl-3.0 |
stephenR/gcc-fpp | gcc/testsuite/gfortran.dg/g77/980628-3.f | 188 | 1350 | c { dg-do run }
c { dg-options "-std=gnu" }
c
* g77 0.5.23 and previous had bugs involving too little space
* allocated for EQUIVALENCE and COMMON areas needing initial
* padding to meet alignment requirements of the system.
call subr
end
subroutine subr
implicit none
save
character c1(11), c2(11), c3(11)
real r1, r2, r3
character c4, c5, c6
equivalence (c1(2), r1)
equivalence (c2(2), r2)
equivalence (c3(2), r3)
c1(1) = '1'
r1 = 1.
c1(11) = '1'
c4 = '4'
c2(1) = '2'
r2 = 2.
c2(11) = '2'
c5 = '5'
c3(1) = '3'
r3 = 3.
c3(11) = '3'
c6 = '6'
call x (c1, r1, c2, r2, c3, r3, c4, c5, c6)
end
subroutine x (c1, r1, c2, r2, c3, r3, c4, c5, c6)
implicit none
character c1(11), c2(11), c3(11)
real r1, r2, r3
character c4, c5, c6
if (c1(1) .ne. '1') call abort
if (r1 .ne. 1.) call abort
if (c1(11) .ne. '1') call abort
if (c4 .ne. '4') call abort
if (c2(1) .ne. '2') call abort
if (r2 .ne. 2.) call abort
if (c2(11) .ne. '2') call abort
if (c5 .ne. '5') call abort
if (c3(1) .ne. '3') call abort
if (r3 .ne. 3.) call abort
if (c3(11) .ne. '3') call abort
if (c6 .ne. '6') call abort
end
| gpl-2.0 |
doslab/gcc-designated-initializer-support-cpp | gcc/testsuite/gfortran.dg/initialization_14.f90 | 180 | 1386 | ! { dg-do compile }
! PR 20851
! Dummy arguments are disallowed in initialization expressions in
! elemental functions except as arguments to the intrinsic functions
! BIT_SIZE, KIND, LEN, or to the numeric inquiry functions listed
! in 13.11.8
MODULE TT
INTEGER M
CONTAINS
ELEMENTAL REAL FUNCTION two(N)
INTEGER, INTENT(IN) :: N
INTEGER, DIMENSION(N) :: scr ! { dg-error "Dummy argument 'n' not allowed in expression" }
END FUNCTION
ELEMENTAL REAL FUNCTION twopointfive(N)
INTEGER, INTENT(IN) :: N
INTEGER, DIMENSION(MAX(N,2)) :: scr ! { dg-error "Dummy argument 'n' not allowed in expression" }
end FUNCTION twopointfive
REAL FUNCTION three(N)
INTEGER, INTENT(IN) :: N
INTEGER, DIMENSION(N) :: scr ! this time it's valid
END FUNCTION
ELEMENTAL REAL FUNCTION four(N)
INTEGER, INTENT(IN) :: N
INTEGER, DIMENSION(bit_size(N)) :: scr ! another valid variant
END FUNCTION
ELEMENTAL REAL FUNCTION gofourit(N)
INTEGER, INTENT(IN) :: N
INTEGER, DIMENSION(MIN(HUGE(N),1)) :: scr ! another valid variant
END FUNCTION
ELEMENTAL REAL FUNCTION fourplusone(N)
INTEGER, INTENT(IN) :: N
INTEGER, DIMENSION(M) :: scr ! another valid variant
END FUNCTION
ELEMENTAL REAL FUNCTION five(X)
real, intent(in) :: x
CHARACTER(LEN=PRECISION(X)) :: C ! valid again
END FUNCTION
END MODULE
END
| gpl-2.0 |
SamKChang/abinit-7.10.5_multipole | src/67_common/extrapwf.F90 | 1 | 27822 | !{\src2tex{textfont=tt}}
!!****f* ABINIT/extrapwf
!!
!! NAME
!! extrapwf
!!
!! FUNCTION
!! Extrapolate wavefunctions for new ionic positions
!! from values of wavefunctions of previous SCF cycle.
!! Use algorithm proposed by T. A. Arias et al. in PRB 45, 1538 (1992)
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (MT,FJ)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt .
!!
!! INPUTS
!! atindx(natom)=index table for atoms
!! atindx1(natom)=index table for atoms, inverse of atindx
!! dtset <type(dataset_type)>=all input variables in this dataset
!! istep=number of call the routine
!! kg(3,mpw*mkmem)=reduced planewave coordinates.
!! mcg=size of wave-functions array (cg) =mpw*nspinor*mband*mkmem*nsppol
!! mgfft=maximum size of 1D FFTs
!! mpi_enreg=informations about MPI parallelization
!! nattyp(ntypat)=number of atoms of each type in cell.
!! ngfft(18)=contain all needed information about 3D FFT
!! npwarr(nkpt)=number of planewaves in basis at this k point
!! ntypat=number of types of atoms in cell
!! pawtab(ntypat*dtset%usepaw) <type(pawtab_type)>=paw tabulated starting data
!! psps<type(pseudopotential_type)>=variables related to pseudopotentials
!! usepaw= 0 for non paw calculation; =1 for paw calculation
!! xred_old(3,natom)=old reduced coordinates for atoms in unit cell
!! ylm(mpw*mkmem,mpsang*mpsang*useylm)= real spherical harmonics for each G and k point
!!
!! SIDE EFFECTS
!! cg(2,mcg)= plane wave wavefunction coefficient
!! Value from previous SCF cycle is input
!! Extrapolated value is output
!! scf_history <type(scf_history_type)>=arrays obtained from previous SCF cycles
!!
!! PARENTS
!! extraprho
!!
!! CHILDREN
!! ctocprj,dotprod_g,getph,hermit,metric,pawcprj_alloc,pawcprj_copy
!! pawcprj_destroy,pawcprj_get,pawcprj_getdim,pawcprj_lincom,pawcprj_put
!! pawcprj_zaxpby,xmpi_allgather,xmpi_alltoallv,zgemm,zhpev
!!
!! SOURCE
#if defined HAVE_CONFIG_H
#include "config.h"
#endif
#include "abi_common.h"
subroutine extrapwf(atindx,atindx1,cg,dtset,istep,kg,mcg,mgfft,mpi_enreg,&
& nattyp,ngfft,npwarr,ntypat,pawtab,psps,scf_history,usepaw,xred_old,ylm)
use defs_basis
use defs_abitypes
use m_scf_history
use m_xmpi
use m_wffile
use m_profiling_abi
use m_errors
use m_cgtools
use defs_datatypes, only : pseudopotential_type
use m_pawtab, only : pawtab_type
use m_pawcprj, only : pawcprj_type, pawcprj_alloc, pawcprj_copy, pawcprj_get, pawcprj_lincom, &
& pawcprj_destroy, pawcprj_zaxpby, pawcprj_put, pawcprj_getdim
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'extrapwf'
use interfaces_32_util
use interfaces_41_geometry
use interfaces_56_recipspace
use interfaces_65_nonlocal
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(in) :: istep,mcg,mgfft,ntypat,usepaw
type(MPI_type),intent(inout) :: mpi_enreg
type(dataset_type),intent(in) :: dtset
type(scf_history_type),intent(inout) :: scf_history
type(pseudopotential_type),intent(in) :: psps
!arrays
integer,intent(in) :: atindx(dtset%natom),atindx1(dtset%natom),kg(3,dtset%mpw*dtset%mkmem),nattyp(ntypat),ngfft(18)
integer,intent(in) :: npwarr(dtset%nkpt)
real(dp),intent(in) :: ylm(dtset%mpw*dtset%mkmem,psps%mpsang*psps%mpsang*psps%useylm)
real(dp), intent(inout) :: cg(2,mcg)
real(dp),intent(in) :: xred_old(3,dtset%natom)
type(pawtab_type),intent(in) :: pawtab(ntypat*usepaw)
!Local variables-------------------------------
!scalars
integer :: ia,iat,iatom,iband_max,iband_max1,iband_min,iband_min1,ibd,ibg,iblockbd,iblockbd1,icg,icgb,icgb1,icgb2
integer :: ierr,ig,ii,ikpt,ilmn1,ilmn2,inc,ind1,ind2,iorder_cprj
integer :: isize,isppol,istep1,istwf_k,itypat,klmn,me_distrb,my_nspinor
integer :: nband_k,nblockbd,nprocband,npw_k,npw_nk,spaceComm_band
real(dp) :: dotr,dotr1,doti,doti1,eigval
!character(len=500) :: message
type(wffile_type):: wffnow
!arrays
real(dp) :: alpha(2),beta(2),gmet(3,3),gprimd(3,3),rmet(3,3),ph1d(2,3*(2*mgfft+1)*dtset%natom),ucvol
integer,allocatable :: bufsize(:),bufsize_wf(:),bufdisp(:),bufdisp_wf(:),dimcprj(:),npw_block(:),npw_disp(:)
real(dp),allocatable :: al(:,:),anm(:),cwavef(:,:),cwavef1(:,:),cwavef_tmp(:,:),deltawf1(:,:),deltawf2(:,:)
real(dp),allocatable :: eig(:),evec(:,:)
real(dp),allocatable :: unm(:,:,:)
real(dp),allocatable :: work(:,:),work1(:,:),wf1(:,:),ylmgr_k(:,:,:),zhpev1(:,:),zhpev2(:)
complex(dpc),allocatable :: unm_tmp(:,:),anm_tmp(:,:)
type(pawcprj_type),allocatable :: cprj(:,:),cprj_k(:,:),cprj_k1(:,:),cprj_k2(:,:),cprj_k3(:,:),cprj_k4(:,:)
!complex(dpc) :: aa
! *************************************************************************
!---------------------------------------------------------------
!----------- Inits
!---------------------------------------------------------------
!Compatibility tests
if (istep==0) return
!Useful array
if (usepaw==1) then
ABI_ALLOCATE(dimcprj,(dtset%natom))
call pawcprj_getdim(dimcprj,dtset%natom,nattyp,ntypat,dtset%typat,pawtab,'O')
end if
!History indexes
ind1=1;ind2=2
my_nspinor=max(1,dtset%nspinor/mpi_enreg%nproc_spinor)
!scf_history%alpha=two
!scf_history%beta=-one
!write(std_out,*) 'ALPHA',scf_history%alpha,scf_history%beta
if (istep==1) then
scf_history%cg(:,:,ind1)=cg(:,:)
! scf_history%cg(:,:,ind2)=zero
scf_history%cg(:,:,ind2)= cg(:,:)
if(usepaw==1) then
call metric(gmet,gprimd,-1,rmet,scf_history%rprimd,ucvol)
call getph(atindx,dtset%natom,ngfft(1),ngfft(2),ngfft(3),ph1d,xred_old)
iatom=0 ; iorder_cprj=0
call pawcprj_alloc(scf_history%cprj(:,:,ind1),0,dimcprj)
call pawcprj_alloc(scf_history%cprj(:,:,ind2),0,dimcprj)
ABI_ALLOCATE(ylmgr_k,(dtset%mpw,3,0))
call ctocprj(atindx,cg,1,scf_history%cprj(:,:,ind1),gmet,gprimd,&
& iatom,0,iorder_cprj,dtset%istwfk,kg,dtset%kptns,dtset%mband,mcg,scf_history%mcprj,&
& dtset%mgfft,dtset%mkmem,mpi_enreg,psps%mpsang,dtset%mpw,&
& dtset%natom,nattyp,dtset%nband,dtset%natom,ngfft,dtset%nkpt,&
& dtset%nloalg,npwarr,dtset%nspinor,dtset%nsppol,dtset%ntypat,&
& dtset%paral_kgb,ph1d,psps,rmet,dtset%typat,ucvol,0,0,0,0,&
& wffnow,xred_old,ylm,ylmgr_k)
ABI_DEALLOCATE(ylmgr_k)
! call pawcprj_set_zero(scf_history%cprj(:,:,ind2))
call pawcprj_copy(scf_history%cprj(:,:,ind1),scf_history%cprj(:,:,ind2))
end if
return
end if
if (istep>=2) then
! Init parallelism
me_distrb=mpi_enreg%me_kpt
if (mpi_enreg%paral_kgb==1) then
spaceComm_band=mpi_enreg%comm_band
nprocband=mpi_enreg%nproc_band
else
spaceComm_band=0
nprocband=1
end if
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! for the moment sequential part only
nprocband=1
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Additional statements if band-fft parallelism
if (nprocband>1) then
ABI_ALLOCATE(npw_block,(nprocband))
ABI_ALLOCATE(npw_disp,(nprocband))
ABI_ALLOCATE(bufsize,(nprocband))
ABI_ALLOCATE(bufdisp,(nprocband))
ABI_ALLOCATE(bufsize_wf,(nprocband))
ABI_ALLOCATE(bufdisp_wf,(nprocband))
end if
icg=0
ibg=0
if(usepaw==1) then
call metric(gmet,gprimd,-1,rmet,scf_history%rprimd,ucvol)
call getph(atindx,dtset%natom,ngfft(1),ngfft(2),ngfft(3),ph1d,xred_old)
ABI_DATATYPE_ALLOCATE(cprj,(dtset%natom,scf_history%mcprj))
call pawcprj_alloc(cprj,0,dimcprj)
iatom=0 ; iorder_cprj=0
ABI_ALLOCATE(ylmgr_k,(dtset%mpw,3,0))
call ctocprj(atindx,cg,1,cprj,gmet,gprimd,iatom,0,iorder_cprj,&
& dtset%istwfk,kg,dtset%kptns,dtset%mband,mcg,scf_history%mcprj,dtset%mgfft,&
& dtset%mkmem,mpi_enreg,psps%mpsang,dtset%mpw,dtset%natom,&
& nattyp,dtset%nband,dtset%natom,ngfft,dtset%nkpt,dtset%nloalg,&
& npwarr,dtset%nspinor,dtset%nsppol,dtset%ntypat,dtset%paral_kgb,&
& ph1d,psps,rmet,dtset%typat,ucvol,0,0,0,0,wffnow,xred_old,&
& ylm,ylmgr_k)
ABI_DEALLOCATE(ylmgr_k)
end if ! end usepaw=1
end if ! end istep>=2
!LOOP OVER SPINS
do isppol=1,dtset%nsppol
! BIG FAT k POINT LOOP
do ikpt=1,dtset%nkpt
! Select k point to be treated by this proc
nband_k=dtset%nband(ikpt+(isppol-1)*dtset%nkpt)
if(proc_distrb_cycle(mpi_enreg%proc_distrb,ikpt,1,nband_k,isppol,me_distrb)) cycle
istwf_k=dtset%istwfk(ikpt)
! Retrieve number of plane waves
npw_k=npwarr(ikpt)
if (nprocband>1) then
! Special treatment for band-fft //
call xmpi_allgather(npw_k,npw_block,spaceComm_band,ierr)
npw_nk=sum(npw_block);npw_disp(1)=0
do ii=2,nprocband
npw_disp(ii)=npw_disp(ii-1)+npw_block(ii-1)
end do
else
npw_nk=npw_k
end if
if(istep>=2)then
! Allocate arrays for a wave-function (or a block of WFs)
ABI_ALLOCATE(cwavef,(2,npw_nk*my_nspinor))
ABI_ALLOCATE(cwavef1,(2,npw_nk*my_nspinor))
if (nprocband>1) then
isize=2*my_nspinor;bufsize(:)=isize*npw_block(:);bufdisp(:)=isize*npw_disp(:)
isize=2*my_nspinor*npw_k;bufsize_wf(:)=isize
do ii=1,nprocband
bufdisp_wf(ii)=(ii-1)*isize
end do
end if
! Subspace alignment
! Loop over bands or blocks of bands
icgb=icg
nblockbd=nband_k/nprocband
if(usepaw==1) then
ABI_DATATYPE_ALLOCATE( cprj_k,(dtset%natom,my_nspinor*nblockbd))
call pawcprj_alloc(cprj_k,cprj(1,1)%ncpgr,dimcprj)
call pawcprj_get(atindx1,cprj_k,cprj,dtset%natom,1,ibg,ikpt,1,isppol,dtset%mband,&
& dtset%mkmem,dtset%natom,nblockbd,nblockbd,my_nspinor,dtset%nsppol,0,&
& mpicomm=mpi_enreg%comm_kpt,proc_distrb=mpi_enreg%proc_distrb)
ABI_DATATYPE_ALLOCATE( cprj_k1,(dtset%natom,my_nspinor*nblockbd))
call pawcprj_alloc(cprj_k1,scf_history%cprj(1,1,ind1)%ncpgr,dimcprj)
call pawcprj_get(atindx1,cprj_k1,scf_history%cprj(:,:,ind1),dtset%natom,1,ibg,ikpt,1,isppol,&
& dtset%mband,dtset%mkmem,dtset%natom,nblockbd,nblockbd,my_nspinor,dtset%nsppol,0,&
& mpicomm=mpi_enreg%comm_kpt,proc_distrb=mpi_enreg%proc_distrb)
ABI_DATATYPE_ALLOCATE( cprj_k2,(dtset%natom,my_nspinor*nblockbd))
call pawcprj_alloc(cprj_k2,scf_history%cprj(1,1,ind2)%ncpgr,dimcprj)
call pawcprj_get(atindx1,cprj_k2,scf_history%cprj(:,:,ind2),dtset%natom,1,ibg,ikpt,1,isppol,&
& dtset%mband,dtset%mkmem,dtset%natom,nblockbd,nblockbd,my_nspinor,dtset%nsppol,0,&
& mpicomm=mpi_enreg%comm_kpt,proc_distrb=mpi_enreg%proc_distrb)
end if !end usepaw=1
ABI_ALLOCATE(unm,(2,nblockbd,nblockbd))
unm=zero
icgb2=0
do iblockbd=1,nblockbd
iband_min=1+(iblockbd-1)*nprocband
iband_max=iblockbd*nprocband
if(xmpi_paral==1.and.mpi_enreg%paral_kgb/=1) then
if (proc_distrb_cycle(mpi_enreg%proc_distrb,ikpt,iband_min,iband_max,isppol,me_distrb)) cycle
end if
! Extract wavefunction information
if (nprocband>1) then
! Special treatment for band-fft //
ABI_ALLOCATE(cwavef_tmp,(2,npw_k*my_nspinor*nprocband))
do ig=1,npw_k*my_nspinor*nprocband
cwavef_tmp(1,ig)=cg(1,ig+icgb)
cwavef_tmp(2,ig)=cg(2,ig+icgb)
end do
call xmpi_alltoallv(cwavef_tmp,bufsize_wf,bufdisp_wf,cwavef,bufsize,bufdisp,spaceComm_band,ierr)
ABI_DEALLOCATE(cwavef_tmp)
else
do ig=1,npw_k*my_nspinor
cwavef(1,ig)=cg(1,ig+icgb)
cwavef(2,ig)=cg(2,ig+icgb)
end do
end if
icgb1=icg
do iblockbd1=1,nblockbd
iband_min1=1+(iblockbd1-1)*nprocband
iband_max1=iblockbd1*nprocband
if(xmpi_paral==1.and.mpi_enreg%paral_kgb/=1) then
if (proc_distrb_cycle(mpi_enreg%proc_distrb,ikpt,iband_min1,iband_max1,isppol,me_distrb)) cycle
end if
! Extract wavefunction information
if (nprocband>1) then
! Special treatment for band-fft //
ABI_ALLOCATE(cwavef_tmp,(2,npw_k*my_nspinor*nprocband))
do ig=1,npw_k*my_nspinor*nprocband
cwavef_tmp(1,ig)=scf_history%cg(1,ig+icgb1,ind1)
cwavef_tmp(2,ig)=scf_history%cg(2,ig+icgb1,ind1)
end do
call xmpi_alltoallv(cwavef_tmp,bufsize_wf,bufdisp_wf,cwavef1,bufsize,bufdisp,spaceComm_band,ierr)
ABI_DEALLOCATE(cwavef_tmp)
else
do ig=1,npw_k*my_nspinor
cwavef1(1,ig)=scf_history%cg(1,ig+icgb1,ind1)
cwavef1(2,ig)=scf_history%cg(2,ig+icgb1,ind1)
end do
end if
! Calculate Unm=<psi_nk(t)|S|psi_mk(t-dt)>
call dotprod_g(dotr,doti,istwf_k,npw_k*my_nspinor,2,cwavef,cwavef1,mpi_enreg%me_g0,mpi_enreg%comm_spinorfft)
if(usepaw==1) then
ia =0
do itypat=1,ntypat
do iat=1+ia,nattyp(itypat)+ia
do ilmn1=1,pawtab(itypat)%lmn_size
do ilmn2=1,ilmn1
klmn=((ilmn1-1)*ilmn1)/2+ilmn2
dotr=dotr+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k1(iat,iblockbd1)%cp(1,ilmn2)+&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k1(iat,iblockbd1)%cp(2,ilmn2))
doti=doti+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k1(iat,iblockbd1)%cp(2,ilmn2)-&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k1(iat,iblockbd1)%cp(1,ilmn2))
end do
do ilmn2=ilmn1+1,pawtab(itypat)%lmn_size
klmn=((ilmn2-1)*ilmn2)/2+ilmn1
dotr=dotr+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k1(iat,iblockbd1)%cp(1,ilmn2)+&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k1(iat,iblockbd1)%cp(2,ilmn2))
doti=doti+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k1(iat,iblockbd1)%cp(2,ilmn2)-&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k1(iat,iblockbd1)%cp(1,ilmn2))
end do
end do
end do
ia=ia+nattyp(itypat)
end do
end if
! unm(1,iblockbd,iblockbd1)=dotr
! unm(2,iblockbd,iblockbd1)=doti
unm(1,iblockbd1,iblockbd)=dotr
unm(2,iblockbd1,iblockbd)=doti
! End loop over bands iblockbd1
icgb1=icgb1+npw_k*my_nspinor*nprocband
end do
! End loop over bands iblockbd
icgb2=icgb2+npw_k*my_nspinor*nprocband
icgb=icgb+npw_k*my_nspinor*nprocband
end do
! write(std_out,*) 'UNM'
! do iblockbd=1,nblockbd
! write(std_out,11) (unm(1,iblockbd,iblockbd1),unm(2,iblockbd,iblockbd1),iblockbd1=1,nblockbd)
! end do
! 11 format(12(1x,f9.5),a)
! Compute A=tU^*U
ABI_ALLOCATE(unm_tmp,(nblockbd,nblockbd))
ABI_ALLOCATE(anm_tmp,(nblockbd,nblockbd))
ABI_ALLOCATE(anm,(nblockbd*(nblockbd+1)))
unm_tmp(:,:)=cmplx(unm(1,:,:),unm(2,:,:),kind=dp)
call zgemm('C','N',nblockbd,nblockbd,nblockbd,dcmplx(1._dp), unm_tmp,nblockbd, &
& unm_tmp,nblockbd,dcmplx(0._dp),anm_tmp,nblockbd)
do iblockbd=1,nblockbd
do iblockbd1=iblockbd,nblockbd
ii=iblockbd1*(iblockbd1-1)+2*(iblockbd-1)+1
anm(ii)=real(anm_tmp(iblockbd,iblockbd1))
anm(ii+1)=aimag(anm_tmp(iblockbd,iblockbd1))
end do
end do
call hermit(anm,anm,ierr,nblockbd)
! aa=dcmplx(0._dp)
! do iblockbd=1,nblockbd
! aa=aa+conjg(unm_tmp(iblockbd,1))*unm_tmp(iblockbd,1)
! end do
! write(std_out,*) 'tU*U', aa
! write(std_out,*) 'ANM_tmp'
! do iblockbd=1,nblockbd
! write(std_out,11) (anm_tmp(iblockbd,iblockbd1),iblockbd1=1,nblockbd)
! end do
! write(std_out,*) 'ANM'
! do iblockbd=1,nblockbd*(nblockbd+1)
! write(std_out,11) anm(iblockbd)
! end do
! Diagonalize A
ABI_ALLOCATE(eig,(nblockbd))
ABI_ALLOCATE(evec,(2*nblockbd,nblockbd))
ABI_ALLOCATE(zhpev1,(2,2*nblockbd-1))
ABI_ALLOCATE(zhpev2,(3*nblockbd-2))
call zhpev('V','U',nblockbd,anm,eig,evec,nblockbd,zhpev1,&
& zhpev2,ierr)
ABI_DEALLOCATE(anm)
ABI_DEALLOCATE(zhpev1)
ABI_DEALLOCATE(zhpev2)
! aa=dcmplx(0._dp)
! do iblockbd=1,nblockbd
! aa=aa+anm_tmp(1,iblockbd)*cmplx(evec((2*iblockbd-1),1),evec(2*iblockbd,1),kind=dp)
! end do
! write(std_out,*) 'EIG', aa, eig(1)*evec(1,1),eig(1)*evec(2,1)
! Compute A'=evec*tU^/sqrt(eig)
call zgemm('C','C',nblockbd,nblockbd,nblockbd,dcmplx(1._dp),evec,nblockbd, &
& unm_tmp,nblockbd,dcmplx(0._dp),anm_tmp,nblockbd)
do iblockbd=1,nblockbd
eigval=dsqrt(eig(iblockbd))
do iblockbd1=1,nblockbd
anm_tmp(iblockbd,iblockbd1)=anm_tmp(iblockbd,iblockbd1)/eigval
end do
end do
! Compute tA^A'to come back to the initial subspace for the cg's
call zgemm('N','N',nblockbd,nblockbd,nblockbd,dcmplx(1._dp),evec,nblockbd, &
& anm_tmp,nblockbd,dcmplx(0._dp),unm_tmp,nblockbd)
anm_tmp=unm_tmp
! write(std_out,*) 'ANM_tmp'
! do iblockbd=1,nblockbd
! write(std_out,11) (anm_tmp(iblockbd,iblockbd1),iblockbd1=1,nblockbd)
! end do
! Wavefunction alignment (istwfk=1 ?)
ABI_ALLOCATE(work,(2,npw_nk*my_nspinor*nblockbd))
ABI_ALLOCATE(work1,(2,my_nspinor*nblockbd*npw_nk))
work1(:,:)=scf_history%cg(:,icg+1:icg+my_nspinor*nblockbd*npw_nk,ind1)
call zgemm('N','N',npw_nk*my_nspinor,nblockbd,nblockbd,dcmplx(1._dp), &
& work1,npw_nk*my_nspinor, &
& anm_tmp,nblockbd,dcmplx(0._dp),work,npw_nk*my_nspinor)
scf_history%cg(:,1+icg:npw_nk*my_nspinor*nblockbd+icg,ind1)=work(:,:)
work1(:,:)=scf_history%cg(:,icg+1:icg+my_nspinor*nblockbd*npw_nk,ind2)
call zgemm('N','N',npw_nk*my_nspinor,nblockbd,nblockbd,dcmplx(1._dp), &
& work1,npw_nk*my_nspinor, &
& anm_tmp,nblockbd,dcmplx(0._dp),work,npw_nk*my_nspinor)
scf_history%cg(:,1+icg:npw_nk*my_nspinor*nblockbd+icg,ind2)=work(:,:)
ABI_DEALLOCATE(work1)
! If paw, musb also align cprj:
if (usepaw==1) then
! New version (MT):
ABI_DATATYPE_ALLOCATE(cprj_k3,(dtset%natom,my_nspinor))
ABI_DATATYPE_ALLOCATE(cprj_k4,(dtset%natom,my_nspinor))
call pawcprj_alloc(cprj_k3,cprj_k1(1,1)%ncpgr,dimcprj)
call pawcprj_alloc(cprj_k4,cprj_k2(1,1)%ncpgr,dimcprj)
ABI_ALLOCATE(al,(2,nblockbd))
do iblockbd=1,nblockbd
ii=(iblockbd-1)*my_nspinor
do iblockbd1=1,nblockbd
al(1,iblockbd1)=real (anm_tmp(iblockbd,iblockbd1))
al(2,iblockbd1)=aimag(anm_tmp(iblockbd,iblockbd1))
end do
call pawcprj_lincom(al,cprj_k3,cprj_k1,nblockbd)
call pawcprj_lincom(al,cprj_k4,cprj_k2,nblockbd)
call pawcprj_copy(cprj_k3,cprj_k1(:,ii+1:ii+my_nspinor))
call pawcprj_copy(cprj_k4,cprj_k2(:,ii+1:ii+my_nspinor))
end do
ABI_DEALLOCATE(al)
! Old version (FJ):
! allocate( cprj_k3(dtset%natom,my_nspinor*nblockbd))
! call pawcprj_alloc(cprj_k3,cprj_k1(1,1)%ncpgr,dimcprj)
! allocate( cprj_k4(dtset%natom,my_nspinor*nblockbd))
! call pawcprj_alloc(cprj_k4,cprj_k2(1,1)%ncpgr,dimcprj)
! beta(1)=one;beta(2)=zero
! do iblockbd=1,nblockbd*my_nspinor
! do iblockbd1=1,nblockbd*my_nspinor
! alpha(1)=real(anm_tmp(iblockbd,iblockbd1));alpha(2)=aimag(anm_tmp(iblockbd,iblockbd1))
! call pawcprj_zaxpby(alpha,beta,cprj_k1(:,iblockbd1:iblockbd1),cprj_k3(:,iblockbd:iblockbd))
! call pawcprj_zaxpby(alpha,beta,cprj_k2(:,iblockbd1:iblockbd1),cprj_k4(:,iblockbd:iblockbd))
! end do
! end do
! call pawcprj_copy(cprj_k3,cprj_k1)
! call pawcprj_copy(cprj_k4,cprj_k2)
call pawcprj_destroy(cprj_k3)
call pawcprj_destroy(cprj_k4)
ABI_DATATYPE_DEALLOCATE(cprj_k3)
ABI_DATATYPE_DEALLOCATE(cprj_k4)
end if
ABI_DEALLOCATE(anm_tmp)
ABI_DEALLOCATE(unm_tmp)
ABI_DEALLOCATE(work)
end if ! end istep>=2
! Wavefunction extrapolation
ibd=0
inc=npw_nk*my_nspinor
ABI_ALLOCATE(deltawf2,(2,npw_nk*my_nspinor))
ABI_ALLOCATE(wf1,(2,npw_nk*my_nspinor))
ABI_ALLOCATE(deltawf1,(2,npw_nk*my_nspinor))
do iblockbd=1,nblockbd
deltawf2(:,:)=scf_history%cg(:,1+icg+ibd:icg+ibd+inc,ind2)
wf1(:,:)=scf_history%cg(:,1+icg+ibd:icg+ibd+inc,ind1)
! wf1(2,1)=zero;deltawf2(2,1)=zero
if (istep>=2) then
call dotprod_g(dotr,doti,istwf_k,npw_nk*my_nspinor,2,cg(:,icg+1+ibd:ibd+icg+inc),cg(:,icg+1+ibd:ibd+icg+inc),&
& mpi_enreg%me_g0,mpi_enreg%comm_spinorfft)
call dotprod_g(dotr1,doti1,istwf_k,npw_nk*my_nspinor,2,cg(:,icg+1+ibd:ibd+icg+inc),wf1,&
& mpi_enreg%me_g0,mpi_enreg%comm_spinorfft)
if(usepaw==1) then
ia =0
do itypat=1,ntypat
do iat=1+ia,nattyp(itypat)+ia
do ilmn1=1,pawtab(itypat)%lmn_size
do ilmn2=1,ilmn1
klmn=((ilmn1-1)*ilmn1)/2+ilmn2
dotr=dotr+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k(iat,iblockbd)%cp(1,ilmn2)+&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k(iat,iblockbd)%cp(2,ilmn2))
doti=doti+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k(iat,iblockbd)%cp(2,ilmn2)-&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k(iat,iblockbd)%cp(1,ilmn2))
dotr1=dotr1+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k1(iat,iblockbd)%cp(1,ilmn2)+&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k1(iat,iblockbd)%cp(2,ilmn2))
doti1=doti1+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k1(iat,iblockbd)%cp(2,ilmn2)-&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k1(iat,iblockbd)%cp(1,ilmn2))
end do
do ilmn2=ilmn1+1,pawtab(itypat)%lmn_size
klmn=((ilmn2-1)*ilmn2)/2+ilmn1
dotr=dotr+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k(iat,iblockbd)%cp(1,ilmn2)+&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k(iat,iblockbd)%cp(2,ilmn2))
doti=doti+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k(iat,iblockbd)%cp(2,ilmn2)-&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k(iat,iblockbd)%cp(1,ilmn2))
dotr1=dotr1+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k1(iat,iblockbd)%cp(1,ilmn2)+&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k1(iat,iblockbd)%cp(2,ilmn2))
doti1=doti1+pawtab(itypat)%sij(klmn)*(cprj_k(iat,iblockbd)%cp(1,ilmn1)*cprj_k1(iat,iblockbd)%cp(2,ilmn2)-&
& cprj_k(iat,iblockbd)%cp(2,ilmn1)*cprj_k1(iat,iblockbd)%cp(1,ilmn2))
end do
end do
end do
ia=ia+nattyp(itypat)
end do
end if
dotr=sqrt(dotr**2+doti**2)
dotr1=sqrt(dotr1**2+doti1**2)
write(std_out,*)'DOTR, DOTR1',dotr,dotr1
dotr=dotr1/dotr
write(std_out,*)'DOTR',dotr
deltawf1=zero
if(dotr>=0.9d0) then
deltawf1(:,:)=cg(:,icg+1+ibd:ibd+icg+inc)-wf1(:,:)
if(usepaw==1) then
alpha(1)=one;alpha(2)=zero
beta(1)=-one;beta(2)=zero
ia =0
call pawcprj_zaxpby(alpha,beta,cprj_k(:,iblockbd:iblockbd),cprj_k1(:,iblockbd:iblockbd))
end if
istep1=istep
else
istep1=1
end if
end if
scf_history%cg(:,1+icg+ibd:icg+ibd+inc,ind1)=cg(:,icg+1+ibd:ibd+icg+inc)
scf_history%cg(:,1+icg+ibd:icg+ibd+inc,ind2)=deltawf1(:,:)
if(usepaw==1) then
call pawcprj_put(atindx1,cprj_k,scf_history%cprj(:,:,ind1),dtset%natom,1,ibg,ikpt,1,isppol,&
& dtset%mband,dtset%mkmem,dtset%natom,nblockbd,nblockbd,dimcprj,my_nspinor,dtset%nsppol,0,&
& mpicomm=mpi_enreg%comm_kpt,mpi_comm_band=spaceComm_band,proc_distrb=mpi_enreg%proc_distrb)
call pawcprj_put(atindx1,cprj_k1,scf_history%cprj(:,:,ind2),dtset%natom,1,ibg,ikpt,1,isppol,&
& dtset%mband,dtset%mkmem,dtset%natom,nblockbd,nblockbd,dimcprj,my_nspinor,dtset%nsppol,0,&
& mpicomm=mpi_enreg%comm_kpt,mpi_comm_band=spaceComm_band,proc_distrb=mpi_enreg%proc_distrb)
end if
! if(istep1>=3) then
cg(:,icg+1+ibd:ibd+icg+inc)=cg(:,icg+1+ibd:ibd+icg+inc)+scf_history%alpha*deltawf1(:,:)+scf_history%beta*deltawf2(:,:)
! to be used later
! if(usepaw==1) then
! alpha(2)=zero
! beta(1)=one;beta(2)=zero
! alpha(1)=scf_history%alpha
! call pawcprj_zaxpby(alpha,beta,cprj_k1(:,iblockbd:iblockbd),cprj_k(:,iblockbd:iblockbd))
! alpha(1)=scf_history%beta
! call pawcprj_zaxpby(alpha,beta,cprj_k2(:,iblockbd:iblockbd),cprj_k(:,iblockbd:iblockbd))
! call pawcprj_put(atindx1,cprj_k,cprj,dtset%natom,1,ibg,ikpt,1,isppol,&
! & dtset%mband,dtset%mkmem,dtset%natom,nblockbd,nblockbd,dimcprj,my_nspinor,dtset%nsppol,0,&
! & mpicomm=mpi_enreg%comm_kpt,mpi_comm_band=spaceComm_band,proc_distrb=mpi_enreg%proc_distrb)
! end if
! else if (istep1==2) then
! cg(:,icg+1+ibd:ibd+icg+inc)=cg(:,icg+1+ibd:ibd+icg+inc)+scf_history%alpha*deltawf1(:,:)+scf_history%beta*wf1(:,:)
! ! cg(:,icg+1+ibd:ibd+icg+inc)=cg(:,icg+1+ibd:ibd+icg+inc)+deltawf1(:,:)
! if(usepaw==1) then
! alpha(2)=zero
! beta(1)=one;beta(2)=zero
! alpha(1)=scf_history%alpha
! call pawcprj_zaxpby(alpha,beta,cprj_k1(:,iblockbd:iblockbd),cprj_k(:,iblockbd:iblockbd))
! alpha(1)=scf_history%beta
! call pawcprj_zaxpby(alpha,beta,cprj_k2(:,iblockbd:iblockbd),cprj_k(:,iblockbd:iblockbd))
! call pawcprj_put(atindx1,cprj_k,cprj,dtset%natom,1,ibg,ikpt,1,isppol,&
! & dtset%mband,dtset%mkmem,dtset%natom,nblockbd,nblockbd,dimcprj,my_nspinor,dtset%nsppol,0,&
! & mpicomm=mpi_enreg%comm_kpt,mpi_comm_band=spaceComm_band,proc_distrb=mpi_enreg%proc_distrb)
! end if
! end if
ibd=ibd+inc
end do ! end loop on iblockbd
ABI_DEALLOCATE(deltawf1)
ABI_DEALLOCATE(deltawf2)
ABI_DEALLOCATE(wf1)
if (istep>=2) then
ABI_DEALLOCATE(cwavef)
ABI_DEALLOCATE(cwavef1)
ABI_DEALLOCATE(eig)
ABI_DEALLOCATE(evec)
ABI_DEALLOCATE(unm)
if(usepaw==1) then
call pawcprj_destroy(cprj_k)
ABI_DATATYPE_DEALLOCATE(cprj_k)
call pawcprj_destroy(cprj_k1)
ABI_DATATYPE_DEALLOCATE(cprj_k1)
call pawcprj_destroy(cprj_k2)
ABI_DATATYPE_DEALLOCATE(cprj_k2)
end if
end if
ibg=ibg+my_nspinor*nband_k
icg=icg+my_nspinor*nband_k*npw_k
! End big k point loop
end do
! End loop over spins
end do
if (usepaw==1) then
ABI_DEALLOCATE(dimcprj)
end if
if (istep>=2) then
if(usepaw==1) then
call pawcprj_destroy(cprj)
ABI_DATATYPE_DEALLOCATE(cprj)
end if
if (nprocband>1) then
ABI_DEALLOCATE(npw_block)
ABI_DEALLOCATE(npw_disp)
ABI_DEALLOCATE(bufsize)
ABI_DEALLOCATE(bufdisp)
ABI_DEALLOCATE(bufsize_wf)
ABI_DEALLOCATE(bufdisp_wf)
end if
end if
end subroutine extrapwf
!!***
| gpl-3.0 |
SamKChang/abinit-7.10.5_multipole | src/72_response/redgr.F90 | 1 | 4588 | !{\src2tex{textfont=tt}}
!!****f* ABINIT/redgr
!! NAME
!! redgr
!!
!! FUNCTION
!! Compute reduced gradients of a real function on the usual unshifted
!! fft grid. The gradient directions are the along the primitive
!! reciprocal lattice vectors.
!! The input function is intended to be a single spin component of
!! the valence charge density, the valence + core charge densities
!! or the first-order core charge density for use in frozen wf
!! elastic tensor calculations within the GGA.
!!
!! NOTES
!! Closely linked to xcden, but limited to Q=0, real charge densities,
!! and unshifted grids.
!!
!! COPYRIGHT
!! Copyright (C) 1998-2014 ABINIT group (DRH, DCA, XG, GMR)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors, see ~abinit/doc/developers/contributors.txt .
!!
!! INPUTS
!! mpi_enreg=informations about MPI parallelization
!! nfft=(effective) number of FFT grid points (for this processor)
!! ngfft(18)=contain all needed information about 3D FFT,
!! see ~abinit/doc/input_variables/vargs.htm#ngfft
!! frin(nfft)=real space input function
!!
!! OUTPUT
!! frredgr(nfft,3)= reduced gradient of input function (same units as frin)
!!
!! PARENTS
!! eltfrxc3
!!
!! CHILDREN
!! fourdp,timab
!!
!! SOURCE
#if defined HAVE_CONFIG_H
#include "config.h"
#endif
#include "abi_common.h"
subroutine redgr (frin,frredgr,mpi_enreg,nfft,ngfft,paral_kgb)
use defs_basis
use defs_abitypes
use m_profiling_abi
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'redgr'
use interfaces_18_timing
use interfaces_53_ffts
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(in) :: nfft,paral_kgb
type(MPI_type) :: mpi_enreg
!arrays
integer,intent(in) :: ngfft(18)
real(dp),intent(in) :: frin(nfft)
real(dp),intent(out) :: frredgr(nfft,3)
!Local variables-------------------------------
!scalars
integer :: cplex_tmp,i1,i2,i3,id,idir,ifft,ig,ii,ing,n1,n2,n3
!arrays
real(dp) :: tsec(2)
real(dp),allocatable :: gg(:,:),wkcmpx(:,:),work(:),workgr(:,:)
! *************************************************************************
!Only real arrays are treated
cplex_tmp=1
!Keep local copy of fft dimensions
n1=ngfft(1) ; n2=ngfft(2) ; n3=ngfft(3)
!In order to speed the routine, precompute the components of g, including 2pi factor
ABI_ALLOCATE(gg,(max(n1,n2,n3),3))
do ii=1,3
id=ngfft(ii)/2+2
do ing=1,ngfft(ii)
ig=ing-(ing/id)*ngfft(ii)-1
gg(ing,ii)=two_pi*ig
end do
! Note that the G <-> -G symmetry must be maintained
if(mod(ngfft(ii),2)==0)gg(ngfft(ii)/2+1,ii)=zero
end do
ABI_ALLOCATE(wkcmpx,(2,nfft))
ABI_ALLOCATE(work,(nfft))
ABI_ALLOCATE(workgr,(2,nfft))
!Obtain rho(G) in wkcmpx from input rho(r)
work(:)=frin(:)
call timab(82,1,tsec)
call fourdp(cplex_tmp,wkcmpx,work,-1,mpi_enreg,nfft,ngfft,paral_kgb,0)
call timab(82,2,tsec)
!Gradient calculation for three reduced components in turn.
!Code duplicated to remove logic from loops.
do idir=1,3
if(idir==1) then
!$OMP PARALLEL DO PRIVATE(ifft)
do i3=1,n3
ifft=(i3-1)*n1*n2
do i2=1,n2
do i1=1,n1
ifft=ifft+1
! Multiply by i 2pi G(idir)
workgr(2,ifft)= gg(i1,idir)*wkcmpx(1,ifft)
workgr(1,ifft)=-gg(i1,idir)*wkcmpx(2,ifft)
end do
end do
end do
else if(idir==2) then
!$OMP PARALLEL DO PRIVATE(ifft)
do i3=1,n3
ifft=(i3-1)*n1*n2
do i2=1,n2
do i1=1,n1
ifft=ifft+1
! Multiply by i 2pi G(idir)
workgr(2,ifft)= gg(i2,idir)*wkcmpx(1,ifft)
workgr(1,ifft)=-gg(i2,idir)*wkcmpx(2,ifft)
end do
end do
end do
else
!$OMP PARALLEL DO PRIVATE(ifft)
do i3=1,n3
ifft=(i3-1)*n1*n2
do i2=1,n2
do i1=1,n1
ifft=ifft+1
! Multiply by i 2pi G(idir)
workgr(2,ifft)= gg(i3,idir)*wkcmpx(1,ifft)
workgr(1,ifft)=-gg(i3,idir)*wkcmpx(2,ifft)
end do
end do
end do
end if !idir
call timab(82,1,tsec)
call fourdp(cplex_tmp,workgr,work,1,mpi_enreg,nfft,ngfft,paral_kgb,0)
call timab(82,2,tsec)
!$OMP PARALLEL DO
do ifft=1,nfft
frredgr(ifft,idir)=work(ifft)
end do
end do !idir
ABI_DEALLOCATE(gg)
ABI_DEALLOCATE(wkcmpx)
ABI_DEALLOCATE(work)
ABI_DEALLOCATE(workgr)
end subroutine redgr
!!***
| gpl-3.0 |
sungsujo/nacl-llvm-branches.llvm-gcc-trunk | gcc/testsuite/gfortran.dg/used_dummy_types_6.f90 | 52 | 1422 | ! { dg-do compile }
! Tests the fix for PR30554, the USE statements in potential_energy
! would cause a segfault because the pointer_info for nfree coming
! from constraint would not find the existing symtree coming directly
! from atom.
!
! The last two modules came up subsequently to the original fix. The
! PRIVATE statement caused a revival of the original problem. This
! was tracked down to an interaction between the symbols being set
! referenced during module read and the application of the access
! attribute.
!
! Contributed by Tobias Burnus <burnus@gcc.gnu.org>
MODULE ATOMS
INTEGER :: NFREE = 0
END MODULE ATOMS
MODULE CONSTRAINT
USE ATOMS, ONLY: NFREE
CONTAINS
SUBROUTINE ENERGY_CONSTRAINT ( HESSIAN )
REAL , DIMENSION(1:(3*NFREE*(3*NFREE+1))/2):: HESSIAN
END SUBROUTINE ENERGY_CONSTRAINT
END MODULE CONSTRAINT
MODULE POTENTIAL_ENERGY
USE ATOMS
USE CONSTRAINT, ONLY : ENERGY_CONSTRAINT
END MODULE POTENTIAL_ENERGY
MODULE P_CONSTRAINT
USE ATOMS, ONLY: NFREE
PRIVATE
PUBLIC :: ENERGY_CONSTRAINT
CONTAINS
SUBROUTINE ENERGY_CONSTRAINT ( HESSIAN )
REAL , DIMENSION(1:(3*NFREE*(3*NFREE+1))/2):: HESSIAN
END SUBROUTINE ENERGY_CONSTRAINT
END MODULE P_CONSTRAINT
MODULE P_POTENTIAL_ENERGY
USE ATOMS
USE CONSTRAINT, ONLY : ENERGY_CONSTRAINT
END MODULE P_POTENTIAL_ENERGY
! { dg-final { cleanup-modules "atoms constraint potential_energy p_constraint p_potential_energy" } }
| gpl-2.0 |
doslab/gcc-designated-initializer-support-cpp | gcc/testsuite/gfortran.dg/used_dummy_types_6.f90 | 52 | 1422 | ! { dg-do compile }
! Tests the fix for PR30554, the USE statements in potential_energy
! would cause a segfault because the pointer_info for nfree coming
! from constraint would not find the existing symtree coming directly
! from atom.
!
! The last two modules came up subsequently to the original fix. The
! PRIVATE statement caused a revival of the original problem. This
! was tracked down to an interaction between the symbols being set
! referenced during module read and the application of the access
! attribute.
!
! Contributed by Tobias Burnus <burnus@gcc.gnu.org>
MODULE ATOMS
INTEGER :: NFREE = 0
END MODULE ATOMS
MODULE CONSTRAINT
USE ATOMS, ONLY: NFREE
CONTAINS
SUBROUTINE ENERGY_CONSTRAINT ( HESSIAN )
REAL , DIMENSION(1:(3*NFREE*(3*NFREE+1))/2):: HESSIAN
END SUBROUTINE ENERGY_CONSTRAINT
END MODULE CONSTRAINT
MODULE POTENTIAL_ENERGY
USE ATOMS
USE CONSTRAINT, ONLY : ENERGY_CONSTRAINT
END MODULE POTENTIAL_ENERGY
MODULE P_CONSTRAINT
USE ATOMS, ONLY: NFREE
PRIVATE
PUBLIC :: ENERGY_CONSTRAINT
CONTAINS
SUBROUTINE ENERGY_CONSTRAINT ( HESSIAN )
REAL , DIMENSION(1:(3*NFREE*(3*NFREE+1))/2):: HESSIAN
END SUBROUTINE ENERGY_CONSTRAINT
END MODULE P_CONSTRAINT
MODULE P_POTENTIAL_ENERGY
USE ATOMS
USE CONSTRAINT, ONLY : ENERGY_CONSTRAINT
END MODULE P_POTENTIAL_ENERGY
! { dg-final { cleanup-modules "atoms constraint potential_energy p_constraint p_potential_energy" } }
| gpl-2.0 |
qsnake/abinit | src/77_suscep/getlambda.F90 | 1 | 3726 | !{\src2tex{textfont=tt}}
!!****f* ABINIT/getlambda
!! NAME
!! getlambda
!!
!! FUNCTION
!! Return the abcissas and weights for the coupling constant integration.
!!
!! COPYRIGHT
!! Copyright (C) 1998-2012 ABINIT group (DCA, MF, XG, GMR, LSI, YMN).
!! This file is distributed under the terms of the
!! GNU General Public License,see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!! For the initials of contributors,see ~abinit/doc/developers/contributors.txt.
!!
!! INPUTS
!! idyson = 1 solve the Dyson equation as linear system.
!! (Gauss-Legendre mesh for the coupling constant integration).
!! = 2 solve the Dyson equation as a differential equation
!! (linear mesh for the coupling constant integration).
!! = 3 solve the Dyson equation iteratively.
!! (Gauss-Legendre mesh for the coupling constant integration).
!! nlambda = number of mesh points.
!!
!! OUTPUT
!! lambda(nlambda) = abscissas for the coupling constant integration.
!! weight(nlambda) = weights for the coupling constant integration.
!!
!! SIDE EFFECTS
!!
!! WARNINGS
!!
!! TODO
!!
!! PARENTS
!! acfd_dyson
!!
!! CHILDREN
!! coeffs_gausslegint,leave_new,wrtout
!!
!! SOURCE
#if defined HAVE_CONFIG_H
#include "config.h"
#endif
#include "abi_common.h"
subroutine getlambda(idyson,lambda,nlambda,weight)
use m_profiling
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'getlambda'
use interfaces_14_hidewrite
use interfaces_16_hideleave
use interfaces_28_numeric_noabirule
!End of the abilint section
implicit none
!Arguments -------------------------------------------------------------
!scalars
integer,intent(in) :: idyson,nlambda
!arrays
real(dp),intent(out) :: lambda(nlambda),weight(nlambda)
!Local variables -------------------------------------------------------
!WARNING : This should be moved to a def_* file !
!scalars
integer,parameter :: solve_DE=2
integer :: ii
real(dp),parameter :: lambda_max=1._dp
real(dp) :: lambda_step
character(len=500) :: message
!***********************************************************************
!Check input parameters.
if (nlambda < 1) then
write (message,'(4a)') ch10,&
& ' getlambda: BUG - ',ch10,&
& ' nlambda (number of points for the coupling constant integration) must be >= 2.'
call wrtout(ab_out,message,'COLL')
call wrtout(std_out,message,'COLL')
call leave_new('COLL')
end if
!Calculate abscissas and weights.
lambda(1) = 0._dp; weight(1) = 0.5_dp
lambda(nlambda) = lambda_max; weight(nlambda) = 0.5_dp
if (nlambda > 2) then
if (idyson == solve_DE) then
! Linear mesh for the leap-frog solution of the Dyson equation.
lambda_step = 1._dp/(nlambda-1)
if (mod(nlambda,2) == 0) then
! Trapezoidal rule for an even number of supports.
do ii = 1,nlambda
weight(ii) = lambda_step
lambda(ii) = (ii-1)*lambda_step
end do
weight(1) = 0.5_dp*lambda_step
weight(nlambda) = 0.5_dp*lambda_step
else
! Simpson rule for an odd number of supports.
do ii = 1,nlambda
lambda(ii) = (ii-1)*lambda_step
weight(ii) = lambda_step/3._dp
end do
do ii = 2,nlambda-1,2
weight(ii) = 4._dp*weight(ii)
end do
do ii = 3,nlambda-1,2
weight(ii) = 2._dp*weight(ii)
end do
end if
else
! Gauss-Legendre quadrature.
call coeffs_gausslegint(0._dp,1._dp,lambda(2),weight(2),nlambda-2)
weight(1) = 0._dp; weight(nlambda) = 0._dp
end if
end if
end subroutine getlambda
!!***
| gpl-3.0 |
jamestwebber/scipy | scipy/sparse/linalg/eigen/arpack/ARPACK/SRC/cnapps.f | 38 | 17542 | c\BeginDoc
c
c\Name: cnapps
c
c\Description:
c Given the Arnoldi factorization
c
c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
c
c apply NP implicit shifts resulting in
c
c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
c
c where Q is an orthogonal matrix which is the product of rotations
c and reflections resulting from the NP bulge change sweeps.
c The updated Arnoldi factorization becomes:
c
c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
c
c\Usage:
c call cnapps
c ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ,
c WORKL, WORKD )
c
c\Arguments
c N Integer. (INPUT)
c Problem size, i.e. size of matrix A.
c
c KEV Integer. (INPUT/OUTPUT)
c KEV+NP is the size of the input matrix H.
c KEV is the size of the updated matrix HNEW.
c
c NP Integer. (INPUT)
c Number of implicit shifts to be applied.
c
c SHIFT Complex array of length NP. (INPUT)
c The shifts to be applied.
c
c V Complex N by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, V contains the current KEV+NP Arnoldi vectors.
c On OUTPUT, V contains the updated KEV Arnoldi vectors
c in the first KEV columns of V.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program.
c
c H Complex (KEV+NP) by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, H contains the current KEV+NP by KEV+NP upper
c Hessenberg matrix of the Arnoldi factorization.
c On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
c matrix in the KEV leading submatrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RESID Complex array of length N. (INPUT/OUTPUT)
c On INPUT, RESID contains the the residual vector r_{k+p}.
c On OUTPUT, RESID is the update residual vector rnew_{k}
c in the first KEV locations.
c
c Q Complex KEV+NP by KEV+NP work array. (WORKSPACE)
c Work array used to accumulate the rotations and reflections
c during the bulge chase sweep.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Complex work array of length (KEV+NP). (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end.
c
c WORKD Complex work array of length 2*N. (WORKSPACE)
c Distributed array used in the application of the accumulated
c orthogonal matrix Q.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx Complex
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c
c\Routines called:
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c cmout ARPACK utility routine that prints matrices
c cvout ARPACK utility routine that prints vectors.
c clacpy LAPACK matrix copy routine.
c clanhs LAPACK routine that computes various norms of a matrix.
c clartg LAPACK Givens rotation construction routine.
c claset LAPACK matrix initialization routine.
c slabad LAPACK routine for defining the underflow and overflow
c limits.
c slamch LAPACK routine that determines machine constants.
c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c cgemv Level 2 BLAS routine for matrix vector multiplication.
c caxpy Level 1 BLAS that computes a vector triad.
c ccopy Level 1 BLAS that copies one vector to another.
c cscal Level 1 BLAS that scales a vector.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: napps.F SID: 2.3 DATE OF SID: 3/28/97 RELEASE: 2
c
c\Remarks
c 1. In this version, each shift is applied to all the sublocks of
c the Hessenberg matrix H and not just to the submatrix that it
c comes from. Deflation as in LAPACK routine clahqr (QR algorithm
c for upper Hessenberg matrices ) is used.
c Upon output, the subdiagonals of H are enforced to be non-negative
c real numbers.
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine cnapps
& ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq,
& workl, workd )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer kev, ldh, ldq, ldv, n, np
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Complex
& h(ldh,kev+np), resid(n), shift(np),
& v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
c
c %------------%
c | Parameters |
c %------------%
c
Complex
& one, zero
Real
& rzero
parameter (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0),
& rzero = 0.0E+0)
c
c %------------------------%
c | Local Scalars & Arrays |
c %------------------------%
c
integer i, iend, istart, j, jj, kplusp, msglvl
logical first
Complex
& cdum, f, g, h11, h21, r, s, sigma, t
Real
& c, ovfl, smlnum, ulp, unfl, tst1
save first, ovfl, smlnum, ulp, unfl
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external caxpy, ccopy, cgemv, cscal, clacpy, clartg,
& cvout, claset, slabad, cmout, arscnd, ivout
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Real
& clanhs, slamch, slapy2
external clanhs, slamch, slapy2
c
c %----------------------%
c | Intrinsics Functions |
c %----------------------%
c
intrinsic abs, aimag, conjg, cmplx, max, min, real
c
c %---------------------%
c | Statement Functions |
c %---------------------%
c
Real
& cabs1
cabs1( cdum ) = abs( real( cdum ) ) + abs( aimag( cdum ) )
c
c %----------------%
c | Data statments |
c %----------------%
c
data first / .true. /
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
if (first) then
c
c %-----------------------------------------------%
c | Set machine-dependent constants for the |
c | stopping criterion. If norm(H) <= sqrt(OVFL), |
c | overflow should not occur. |
c | REFERENCE: LAPACK subroutine clahqr |
c %-----------------------------------------------%
c
unfl = slamch( 'safe minimum' )
ovfl = real(one / unfl)
call slabad( unfl, ovfl )
ulp = slamch( 'precision' )
smlnum = unfl*( n / ulp )
first = .false.
end if
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mcapps
c
kplusp = kev + np
c
c %--------------------------------------------%
c | Initialize Q to the identity to accumulate |
c | the rotations and reflections |
c %--------------------------------------------%
c
call claset ('All', kplusp, kplusp, zero, one, q, ldq)
c
c %----------------------------------------------%
c | Quick return if there are no shifts to apply |
c %----------------------------------------------%
c
if (np .eq. 0) go to 9000
c
c %----------------------------------------------%
c | Chase the bulge with the application of each |
c | implicit shift. Each shift is applied to the |
c | whole matrix including each block. |
c %----------------------------------------------%
c
do 110 jj = 1, np
sigma = shift(jj)
c
if (msglvl .gt. 2 ) then
call ivout (logfil, 1, jj, ndigit,
& '_napps: shift number.')
call cvout (logfil, 1, sigma, ndigit,
& '_napps: Value of the shift ')
end if
c
istart = 1
20 continue
c
do 30 i = istart, kplusp-1
c
c %----------------------------------------%
c | Check for splitting and deflation. Use |
c | a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine clahqr |
c %----------------------------------------%
c
tst1 = cabs1( h( i, i ) ) + cabs1( h( i+1, i+1 ) )
if( tst1.eq.rzero )
& tst1 = clanhs( '1', kplusp-jj+1, h, ldh, workl )
if ( abs(real(h(i+1,i)))
& .le. max(ulp*tst1, smlnum) ) then
if (msglvl .gt. 0) then
call ivout (logfil, 1, i, ndigit,
& '_napps: matrix splitting at row/column no.')
call ivout (logfil, 1, jj, ndigit,
& '_napps: matrix splitting with shift number.')
call cvout (logfil, 1, h(i+1,i), ndigit,
& '_napps: off diagonal element.')
end if
iend = i
h(i+1,i) = zero
go to 40
end if
30 continue
iend = kplusp
40 continue
c
if (msglvl .gt. 2) then
call ivout (logfil, 1, istart, ndigit,
& '_napps: Start of current block ')
call ivout (logfil, 1, iend, ndigit,
& '_napps: End of current block ')
end if
c
c %------------------------------------------------%
c | No reason to apply a shift to block of order 1 |
c | or if the current block starts after the point |
c | of compression since we'll discard this stuff |
c %------------------------------------------------%
c
if ( istart .eq. iend .or. istart .gt. kev) go to 100
c
h11 = h(istart,istart)
h21 = h(istart+1,istart)
f = h11 - sigma
g = h21
c
do 80 i = istart, iend-1
c
c %------------------------------------------------------%
c | Construct the plane rotation G to zero out the bulge |
c %------------------------------------------------------%
c
call clartg (f, g, c, s, r)
if (i .gt. istart) then
h(i,i-1) = r
h(i+1,i-1) = zero
end if
c
c %---------------------------------------------%
c | Apply rotation to the left of H; H <- G'*H |
c %---------------------------------------------%
c
do 50 j = i, kplusp
t = c*h(i,j) + s*h(i+1,j)
h(i+1,j) = -conjg(s)*h(i,j) + c*h(i+1,j)
h(i,j) = t
50 continue
c
c %---------------------------------------------%
c | Apply rotation to the right of H; H <- H*G |
c %---------------------------------------------%
c
do 60 j = 1, min(i+2,iend)
t = c*h(j,i) + conjg(s)*h(j,i+1)
h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
h(j,i) = t
60 continue
c
c %-----------------------------------------------------%
c | Accumulate the rotation in the matrix Q; Q <- Q*G' |
c %-----------------------------------------------------%
c
do 70 j = 1, min(i+jj, kplusp)
t = c*q(j,i) + conjg(s)*q(j,i+1)
q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
q(j,i) = t
70 continue
c
c %---------------------------%
c | Prepare for next rotation |
c %---------------------------%
c
if (i .lt. iend-1) then
f = h(i+1,i)
g = h(i+2,i)
end if
80 continue
c
c %-------------------------------%
c | Finished applying the shift. |
c %-------------------------------%
c
100 continue
c
c %---------------------------------------------------------%
c | Apply the same shift to the next block if there is any. |
c %---------------------------------------------------------%
c
istart = iend + 1
if (iend .lt. kplusp) go to 20
c
c %---------------------------------------------%
c | Loop back to the top to get the next shift. |
c %---------------------------------------------%
c
110 continue
c
c %---------------------------------------------------%
c | Perform a similarity transformation that makes |
c | sure that the compressed H will have non-negative |
c | real subdiagonal elements. |
c %---------------------------------------------------%
c
do 120 j=1,kev
if ( real( h(j+1,j) ) .lt. rzero .or.
& aimag( h(j+1,j) ) .ne. rzero ) then
t = h(j+1,j) / slapy2(real(h(j+1,j)),aimag(h(j+1,j)))
call cscal( kplusp-j+1, conjg(t), h(j+1,j), ldh )
call cscal( min(j+2, kplusp), t, h(1,j+1), 1 )
call cscal( min(j+np+1,kplusp), t, q(1,j+1), 1 )
h(j+1,j) = cmplx( real( h(j+1,j) ), rzero )
end if
120 continue
c
do 130 i = 1, kev
c
c %--------------------------------------------%
c | Final check for splitting and deflation. |
c | Use a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine clahqr. |
c | Note: Since the subdiagonals of the |
c | compressed H are nonnegative real numbers, |
c | we take advantage of this. |
c %--------------------------------------------%
c
tst1 = cabs1( h( i, i ) ) + cabs1( h( i+1, i+1 ) )
if( tst1 .eq. rzero )
& tst1 = clanhs( '1', kev, h, ldh, workl )
if( real( h( i+1,i ) ) .le. max( ulp*tst1, smlnum ) )
& h(i+1,i) = zero
130 continue
c
c %-------------------------------------------------%
c | Compute the (kev+1)-st column of (V*Q) and |
c | temporarily store the result in WORKD(N+1:2*N). |
c | This is needed in the residual update since we |
c | cannot GUARANTEE that the corresponding entry |
c | of H would be zero as in exact arithmetic. |
c %-------------------------------------------------%
c
if ( real( h(kev+1,kev) ) .gt. rzero )
& call cgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero,
& workd(n+1), 1)
c
c %----------------------------------------------------------%
c | Compute column 1 to kev of (V*Q) in backward order |
c | taking advantage of the upper Hessenberg structure of Q. |
c %----------------------------------------------------------%
c
do 140 i = 1, kev
call cgemv ('N', n, kplusp-i+1, one, v, ldv,
& q(1,kev-i+1), 1, zero, workd, 1)
call ccopy (n, workd, 1, v(1,kplusp-i+1), 1)
140 continue
c
c %-------------------------------------------------%
c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
c %-------------------------------------------------%
c
call clacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
c
c %--------------------------------------------------------------%
c | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
c %--------------------------------------------------------------%
c
if ( real( h(kev+1,kev) ) .gt. rzero )
& call ccopy (n, workd(n+1), 1, v(1,kev+1), 1)
c
c %-------------------------------------%
c | Update the residual vector: |
c | r <- sigmak*r + betak*v(:,kev+1) |
c | where |
c | sigmak = (e_{kev+p}'*Q)*e_{kev} |
c | betak = e_{kev+1}'*H*e_{kev} |
c %-------------------------------------%
c
call cscal (n, q(kplusp,kev), resid, 1)
if ( real( h(kev+1,kev) ) .gt. rzero )
& call caxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
c
if (msglvl .gt. 1) then
call cvout (logfil, 1, q(kplusp,kev), ndigit,
& '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
call cvout (logfil, 1, h(kev+1,kev), ndigit,
& '_napps: betak = e_{kev+1}^T*H*e_{kev}')
call ivout (logfil, 1, kev, ndigit,
& '_napps: Order of the final Hessenberg matrix ')
if (msglvl .gt. 2) then
call cmout (logfil, kev, kev, h, ldh, ndigit,
& '_napps: updated Hessenberg matrix H for next iteration')
end if
c
end if
c
9000 continue
call arscnd (t1)
tcapps = tcapps + (t1 - t0)
c
return
c
c %---------------%
c | End of cnapps |
c %---------------%
c
end
| bsd-3-clause |
SamKChang/abinit-7.10.5_multipole | src/43_ptgroups/m_ptgroups.F90 | 1 | 31552 | !{\src2tex{textfont=tt}}
!!****m* ABINIT/m_ptgroups
!! NAME
!! m_ptgroups
!!
!! FUNCTION
!! This module contains the irreducible representations and the
!! character tables of the 32 point groups.
!!
!! COPYRIGHT
!! Copyright (C) 2010-2014 ABINIT group (MG)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~abinit/COPYING
!! or http://www.gnu.org/copyleft/gpl.txt .
!!
#if defined HAVE_CONFIG_H
#include "config.h"
#endif
#include "abi_common.h"
module m_ptgroups
use defs_basis
use m_defs_ptgroups
use m_errors
use m_profiling_abi
use m_io_tools, only : open_file
use m_numeric_tools, only : get_trace, cmplx_sphcart
!use m_abilasi, only : xgeev, xginv
implicit none
private
public :: get_point_group
public :: get_classes
public :: show_character_tables
public :: destroy_point_group
public :: init_point_group
public :: print_point_group
public :: locate_sym
public :: destroy_irrep
public :: copy_irrep
public :: init_irrep
public :: sum_irreps
public :: mult_table
!public :: polish_irreps
interface destroy_irrep
module procedure destroy_irrep_0D
module procedure destroy_irrep_1D
end interface destroy_irrep
CONTAINS !===========================================================
!Structures
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/get_point_group
!! NAME
!! get_point_group
!!
!! FUNCTION
!!
!! INPUTS
!! ptg_name=point group name as returned by symptgroup.
!!
!! OUTPUT
!! nsym=Number of symmetries in the point group.
!! nclass=Number of classes.
!! sym(3,3,nsym)=Elements of the point group ordered by classe.
!! class_ids(2,nclass)=Initial and final index in sym, for each
!! Irreps(nclass)=Datatype gathering data on the different irreducible representations.
!!
!! NOTES
!!
!! PARENTS
!! m_ptgroups
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine get_point_group(ptg_name,nsym,nclass,sym,class_ids,class_names,Irreps)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'get_point_group'
use interfaces_43_ptgroups
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(out) :: nclass,nsym
character(len=5),intent(in) :: ptg_name
!arrays
integer,allocatable,intent(out) :: sym(:,:,:),class_ids(:,:)
character(len=5),allocatable,intent(out) :: class_names(:)
type(irrep_t),allocatable,intent(out) :: Irreps(:)
!Local variables-------------------------------
!scalars
integer :: irp,isym
character(len=500) :: msg
! *************************************************************************
SELECT CASE (TRIM(ADJUSTL(ptg_name)))
CASE ('1')
call ptg_C1 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('-1')
call ptg_Ci (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('2')
call ptg_C2 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('m',"-2") ! Abinit uses "-2"
call ptg_Cs (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('2/m')
call ptg_C2h (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('222')
call ptg_D2 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('mm2')
call ptg_C2v (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('mmm')
call ptg_D2h (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('4')
call ptg_C4 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('-4')
call ptg_S4 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('4/m')
call ptg_C4h (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('422')
call ptg_D4 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('4mm')
call ptg_C4v (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('-42m')
call ptg_D2d (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('4/mmm')
call ptg_D4h (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('3')
call ptg_C3 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('-3')
call ptg_C3i (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('32')
call ptg_D3 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('3m')
call ptg_C3v (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('-3m')
call ptg_D3d (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('6')
call ptg_C6 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('-6')
call ptg_C3h (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('6/m')
call ptg_C6h (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('622')
call ptg_D6 (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('6mm')
call ptg_C6v (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('-62m')
call ptg_D3h (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('6/mmm')
call ptg_D6h (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('23')
call ptg_T (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('m-3')
call ptg_Th (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('432')
call ptg_O (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('-43m')
call ptg_Td (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE ('m-3m')
call ptg_Oh (nsym,nclass,sym,class_ids,class_names,Irreps)
CASE DEFAULT
msg = " Unknown value for ptg_name: "//TRIM(ptg_name)
MSG_BUG(msg)
END SELECT
!
! Calculate the trace of each irreducible representation in order to have the character at hand.
do irp=1,SIZE(Irreps)
ABI_MALLOC(Irreps(irp)%trace,(nsym))
do isym=1,nsym
Irreps(irp)%trace(isym) = get_trace(Irreps(irp)%mat(:,:,isym))
end do
end do
end subroutine get_point_group
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/get_classes
!! NAME
!! get_classes
!!
!! FUNCTION
!! Given a set of nsym 3x3 operations in reciprocal or real space,
!! which are supposed to form a group, this routine divides the group into classes.
!!
!! INPUTS
!! nsym=number of symmetry operation.
!! sym(3,3,nsym)=The symmetry operations.
!!
!! OUTPUT
!! nclass=The number of classes
!! nelements(1:nclass)=For each class, the number of elements
!! elements_idx(ii,1:nclass)=For each class, this table gives the index
!! of its elements (ii=1,..,nelements(iclass))
!!
!! NOTES
!! * A class is defined as the set of distinct elements obtained by
!! considering for each element, S, of the group all its conjugate
!! elements X^-1 S X where X range over all the elements of the group.
!!
!! * It does not work in case of non-collinear magnetism.
!!
!! * The routine assumes that anti-ferromagnetic symmetries (if any) have been removed by the caller.
!!
!! PARENTS
!! m_esymm,m_ptgroups
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine get_classes(nsym,sym,nclass,nelements,elements_idx)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'get_classes'
use interfaces_32_util
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(in) :: nsym
integer,intent(out) :: nclass
!arrays
integer,intent(in) :: sym(3,3,nsym)
integer,intent(out) :: nelements(nsym),elements_idx(nsym,nsym)
!Local variables-------------------------------
!scalars
integer :: isym,jsym,ksym,identity_idx !,ierr
character(len=500) :: msg
!arrays
integer :: cjg(3,3),ss(3,3),xx(3,3),xxm1(3,3),test(3,3)
integer :: identity(3,3)
logical :: found(nsym),found_identity
!************************************************************************
! === Check if identity is present in the first position ===
identity=RESHAPE((/1,0,0,0,1,0,0,0,1/),(/3,3/)); found_identity=.FALSE.
do isym=1,nsym
if (ALL(sym(:,:,isym)==identity)) then
found_identity=.TRUE.; identity_idx=isym; EXIT
end if
end do
if (.not.found_identity.or.identity_idx/=1) then
write(msg,'(3a)')&
& ' Either identity is not present or it is not the first operation ',ch10,&
& ' check set of symmetry operations '
MSG_ERROR(msg)
end if
!
! Is it a group? Note that I assume that AFM sym.op (if any) have been pruned in the caller.
!dummy_symafm=1
!call chkgrp(nsym,dummy_symafm,sym,ierr)
!ABI_CHECK(ierr==0,"Error in group closure")
nclass=0; nelements(:)=0; elements_idx(:,:)=0; found(:)=.FALSE.
do isym=1,nsym
if (.not.found(isym)) then
nclass=nclass+1
ss(:,:)=sym(:,:,isym)
do jsym=1,nsym ! Form conjugate.
xx(:,:)=sym(:,:,jsym)
call mati3inv(xx,xxm1) ; xxm1=TRANSPOSE(xxm1)
cjg(:,:)=MATMUL(xxm1,MATMUL(ss,xx))
do ksym=1,nsym ! Is it already found?
test(:,:)=sym(:,:,ksym)
if (.not.found(ksym).and.(ALL((test-cjg)==0))) then
found(ksym)=.TRUE.
nelements(nclass)=nelements(nclass)+1
elements_idx(nelements(nclass),nclass)=ksym
end if
end do
end do
end if
end do
end subroutine get_classes
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/show_character_tables
!! NAME
!! show_character_tables
!!
!! FUNCTION
!! Printout of the caracter tables of the 32 point groups.
!!
!! INPUTS
!! [unit]=Unit number of output file. Defaults to std_out
!!
!! OUTPUT
!! Only writing.
!!
!! PARENTS
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine show_character_tables(unit)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'show_character_tables'
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,optional,intent(in) :: unit
!Local variables-------------------------------
integer :: igrp,my_unt
character(len=5) :: ptg_name
type(point_group_t) :: Ptg
!arrays
!integer,allocatable :: elements_idx(:,:),nelements(:)
! *********************************************************************
my_unt = std_out; if (PRESENT(unit)) my_unt=unit
do igrp=1,SIZE(ptgroup_names)
ptg_name = ptgroup_names(igrp)
call init_point_group(Ptg,ptg_name)
call print_point_group(Ptg,unit=my_unt)
!allocate(nelements(Ptg%nsym),elements_idx(Ptg%nsym,Ptg%nsym))
!call get_classes(Ptg%nsym,Ptg%sym,nclass,nelements,elements_idx)
!deallocate(nelements,elements_idx)
call destroy_point_group(Ptg)
end do
end subroutine show_character_tables
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/destroy_point_group
!! NAME
!! destroy_point_group
!!
!! FUNCTION
!! Deallocate all memory allocated in the point_group_t datatype.
!!
!! PARENTS
!! m_ptgroups
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine destroy_point_group(Ptg)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'destroy_point_group'
!End of the abilint section
implicit none
!Arguments ------------------------------------
type(point_group_t),intent(inout) :: Ptg
!Local variables-------------------------------
! *********************************************************************
!@point_group_t
if (allocated(Ptg%class_ids)) then
ABI_FREE(Ptg%class_ids)
end if
if (allocated(Ptg%sym)) then
ABI_FREE(Ptg%sym)
end if
if (allocated(Ptg%class_names)) then
ABI_FREE(Ptg%class_names)
end if
if (allocated(Ptg%Irreps)) then
call destroy_irrep(Ptg%Irreps)
ABI_DT_FREE(Ptg%Irreps)
end if
end subroutine destroy_point_group
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/init_point_group
!! NAME
!! init_point_group
!!
!! FUNCTION
!! Creation method for the point_group_t datatype.
!!
!! INPUTS
!! ptg_name=The name of the point group (International conventions).
!!
!! OUTPUT
!! The datatype completely initialized.
!!
!! PARENTS
!! m_esymm,m_ptgroups
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine init_point_group(Ptg,ptg_name)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'init_point_group'
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
character(len=5),intent(in) :: ptg_name
type(point_group_t),intent(inout) :: Ptg
!Local variables-------------------------------
! *********************************************************************
!@point_group_t
!call wrtout(std_out," Retrieving point group data for: "//TRIM(ptg_name),"COLL")
Ptg%gname = ptg_name
call get_point_group(Ptg%gname,Ptg%nsym,Ptg%nclass,Ptg%sym,Ptg%class_ids,Ptg%class_names,Ptg%Irreps)
end subroutine init_point_group
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/print_point_group
!! NAME
!! print_point_group
!!
!! FUNCTION
!!
!! INPUTS
!!
!! OUTPUT
!!
!! PARENTS
!! m_ptgroups
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine print_point_group(Ptg,header,unit,mode_paral,prtvol)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'print_point_group'
use interfaces_14_hidewrite
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,optional,intent(in) :: unit,prtvol
character(len=4),optional,intent(in) :: mode_paral
character(len=*),optional,intent(in) :: header
type(point_group_t),target,intent(in) :: Ptg
!Local variables-------------------------------
integer :: my_unt,my_prtvol,irp,icls,sidx
complex(dpc) :: trace
character(len=4) :: my_mode
character(len=500) :: msg
type(irrep_t),pointer :: Row
! *********************************************************************
my_unt =std_out; if (PRESENT(unit )) my_unt =unit
my_prtvol=0 ; if (PRESENT(prtvol )) my_prtvol=prtvol
my_mode ='COLL' ; if (PRESENT(mode_paral)) my_mode =mode_paral
msg=' ==== Point Group Table ==== '
if (PRESENT(header)) msg=' ==== '//TRIM(ADJUSTL(header))//' ==== '
call wrtout(my_unt,msg,my_mode)
write(std_out,*)REPEAT("=",80)
write(std_out,*)" Point group : ",TRIM(Ptg%gname)," Number of symmetries ",Ptg%nsym," Number of classes ",Ptg%nclass
write(std_out,"(a6)",advance="no")"Class "
do icls=1,Ptg%nclass
write(std_out,"('|',a10)",advance="no")Ptg%class_names(icls)
end do
write(std_out,"('|')",advance="no")
write(std_out,*)" "
write(std_out,"(a6)",advance="no")"Mult "
do icls=1,Ptg%nclass
write(std_out,"('|',i10)",advance="no")Ptg%class_ids(2,icls)-Ptg%class_ids(1,icls) + 1
end do
write(std_out,"('|')",advance="no")
write(std_out,*)" "
do irp=1,SIZE(Ptg%Irreps)
Row => Ptg%Irreps(irp)
write(std_out,'(a6)',advance="no")TRIM(Row%name)
do icls=1,Ptg%nclass
sidx = Ptg%class_ids(1,icls)
trace = Row%trace(sidx)
if (ABS(AIMAG(trace)) > 10**(-6)) then
write(std_out,"('|',(2f5.2))",advance="no")trace
else
write(std_out,"('|',(f10.2))",advance="no")REAL(trace)
end if
end do
write(std_out,"('|')",advance="no")
write(std_out,*)" "
end do
write(std_out,*)REPEAT("=",80)
end subroutine print_point_group
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/locate_sym
!! NAME
!! locate_sym
!!
!! FUNCTION
!! Given a symmetry operation asym, this routine returns its index in the Ptg%sym
!! array and the index of the class it belongs to.
!!
!! INPUTS
!!
!! OUTPUT
!!
!! PARENTS
!! m_esymm
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine locate_sym(Ptg,asym,sym_idx,cls_idx,ierr)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'locate_sym'
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(out) :: sym_idx,cls_idx
integer,optional,intent(out) :: ierr
type(point_group_t),intent(in) :: Ptg
!arrays
integer,intent(in) :: asym(3,3)
!Local variables-------------------------------
!scalars
integer :: isym,icls
character(len=500) :: msg
! *********************************************************************
sym_idx = 0
do isym=1,Ptg%nsym
if (ALL(asym == Ptg%sym(:,:,isym) )) then
sym_idx = isym
EXIT
end if
end do
cls_idx = 0
do icls=1,Ptg%nclass
if (sym_idx >= Ptg%class_ids(1,icls) .and. &
& sym_idx <= Ptg%class_ids(2,icls) ) then
cls_idx = icls
EXIT
end if
end do
if (PRESENT(ierr)) ierr=0
if (sym_idx==0 .or. cls_idx==0) then
write(msg,'(a,9(i0,1x),3a,i1,a,i1)')&
& " Symmetry: ",asym," not found in point group table ",ch10,&
& " sym_idx= ",sym_idx, " and cls_idx= ",cls_idx
if (PRESENT(ierr)) then
ierr=1
MSG_WARNING(msg)
else
MSG_ERROR(msg)
end if
end if
end subroutine locate_sym
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/mult_table
!! NAME
!! mult_table
!!
!! FUNCTION
!! Given a set of nsym 3x3 operations which are supposed to form a group,
!! this routine constructs the multiplication table of the group.
!!
!! INPUTS
!! nsym=number of symmetry operation
!! sym(3,3,nsym)=the operations
!!
!! OUTPUT
!! mtab(nsym,nsym)=The index of the product S_i * S_j in the input set sym.
!!
!! PARENTS
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine mult_table(nsym,sym,mtab)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'mult_table'
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(in) :: nsym
!arrays
integer,intent(in) :: sym(3,3,nsym)
integer,intent(out) :: mtab(nsym,nsym)
!Local variables-------------------------------
!scalars
integer :: isym,jsym,ksym
!character(len=500) :: msg
!arrays
integer :: prod_ij(3,3),found(nsym)
!************************************************************************
do jsym=1,nsym
found(:)=0 ! Each symmetry should compare only once in a given (row|col).
do isym=1,nsym
prod_ij = MATMUL(sym(:,:,isym),sym(:,:,jsym))
do ksym=1,nsym
if ( ALL(prod_ij == sym(:,:,ksym)) ) then
found(ksym)=found(ksym)+1
mtab(isym,jsym) = ksym
end if
end do
end do ! jsym
if ( ANY(found /= 1)) then
write(std_out,*)"found = ",found
MSG_ERROR("Input elements do not form a group")
end if
end do ! isym
end subroutine mult_table
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/init_groupk_from_file
!! NAME
!! init_groupk_from_file
!!
!! FUNCTION
!! Initialize the group_k_t datatype from an external database retrieved from
!! the Bilbao server via the ptg.py script.
!!
!! INPUTS
!! fname(len=*)=file name
!!
!! OUTPUT
!! ierr=Status error
!! Lgrps<group_k_t>=The structure completely initialized.
!!
!! TODO
!! This is a stub. I still have to complete the fileformat for the Bilbao database.
!!
!! PARENTS
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine init_groupk_from_file(Lgrps,spgroup,fname,nkpt,klist,ierr)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'init_groupk_from_file'
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(in) :: spgroup
integer,intent(out) :: ierr,nkpt
character(len=fnlen),intent(in) :: fname
!arrays
type(group_k_t),target,allocatable :: Lgrps(:)
real(dp),pointer :: klist(:,:)
!Local variables-------------------------------
!scalars
integer,parameter :: last_file_version=1
integer :: unt,fvers,ik,nsym_ltgk,isym,nirreps_k,irp,icls
integer :: irrep_idx,irrep_dim,sym_idx,ita_spgroup,nels,prev,now
character(len=IRREPNAME_LEN) :: irrep_name
character(len=1) :: basis
character(len=500) :: msg
type(group_k_t),pointer :: Gk
!arrays
integer,allocatable :: nelements(:),elements_idx(:,:)
real(dp) :: kpt(3)
character(len=10),allocatable :: kname(:)
type(irrep_t),pointer :: OneIrr
! *************************************************************************
ierr=0
if (open_file(fname,msg,newunit=unt,form="formatted") /=0) then
MSG_ERROR(msg)
end if
read(unt,*,ERR=10) ! Skip the header.
read(unt,*,ERR=10) fvers ! File version.
if (fvers > last_file_version) then
write(msg,"(2(a,i0))")" Found file format= ",fvers," but the latest supported version is: ",last_file_version
MSG_ERROR(msg)
end if
read(unt,*,ERR=10) ita_spgroup
read(unt,*,ERR=10) basis
if (spgroup/=ita_spgroup) then
write(msg,'(a,2i0)')&
& " Input space group does not match with the value reported on file: ",spgroup,ita_spgroup
MSG_ERROR(msg)
end if
if (basis /= "b") then
msg=" Wrong value for basis: "//TRIM(basis)
MSG_ERROR(msg)
end if
! * Read the list of the k-points.
read(unt,*,ERR=10) nkpt
ABI_DT_MALLOC(Lgrps,(nkpt))
ABI_MALLOC(klist,(3,nkpt))
ABI_MALLOC(kname,(nkpt))
do ik=1,nkpt
read(unt,*,ERR=10) klist(:,ik), kname(ik)
end do
! * Read tables for each k-point
do ik=1,nkpt
read(unt,*,ERR=10) kpt
read(unt,*,ERR=10) nsym_ltgk
Gk => Lgrps(ik)
Gk%spgroup = ita_spgroup
Gk%nsym = nsym_ltgk
Gk%point = kpt
ABI_MALLOC(Gk%sym,(3,3,nsym_ltgk))
ABI_MALLOC(Gk%tnons,(3,nsym_ltgk))
do isym=1,nsym_ltgk ! Read symmetries of the little group.
read(unt,*,ERR=10) Gk%sym(:,:,isym)
read(unt,*,ERR=10) Gk%tnons(:,isym)
end do
ABI_MALLOC(nelements,(nsym_ltgk))
ABI_MALLOC(elements_idx,(nsym_ltgk,nsym_ltgk))
call get_classes(nsym_ltgk,Gk%sym,Gk%nclass,nelements,elements_idx)
! The operations reported on the file are supposed to be packed in classes
! otherwise one should perform a rearrangement of the indices.
prev = 0
do icls=1,Gk%nclass
do isym=1,nelements(icls)
now = elements_idx(isym,icls)
if ( (now-prev) /= 1 ) then
write(msg,"(2(a,i0))")&
& " Symmetries on file are not ordered in classes. icls= ",icls,", isym= ",isym
MSG_ERROR(msg)
else
prev = now
end if
end do
end do
ABI_MALLOC(Gk%class_ids,(2,Gk%nclass))
do icls=1,Gk%nclass
nels = nelements(icls)
Gk%class_ids(1,icls) = elements_idx(1, icls)
Gk%class_ids(2,icls) = elements_idx(nels,icls)
end do
ABI_FREE(nelements)
ABI_FREE(elements_idx)
! Read the irreducible representations.
read(unt,*,ERR=10) nirreps_k
ABI_CHECK(Gk%nclass == nirreps_k,"Gk%nclass /= nirreps_k")
!$$ allocate(Gk%class_names(Gk%nclass))
ABI_DT_MALLOC(Gk%Irreps,(nirreps_k))
do irp=1,nirreps_k
OneIrr => Gk%Irreps(irp)
read(unt,*,ERR=10) irrep_idx, irrep_dim, irrep_name
call init_irrep(OneIrr,nsym_ltgk,irrep_dim,irrep_name)
do isym=1,nsym_ltgk
read(unt,*,ERR=10) sym_idx, OneIrr%mat(:,:,isym)
ABI_CHECK(sym_idx==irp,"sym_idx/=irp!")
! Matrix elements on file are in the form (rho, theta) with theta given in degrees.
call cmplx_sphcart(OneIrr%mat(:,:,isym),from="Sphere",units="Degrees")
OneIrr%trace(isym) = get_trace(OneIrr%mat(:,:,isym))
end do
end do
end do
close(unt)
RETURN
!
! Handle IO-error.
10 ierr=1
close(unt)
RETURN
end subroutine init_groupk_from_file
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/destroy_irrep_0D
!! NAME
!! destroy_irrep_0D
!!
!! FUNCTION
!! Deallocate all memory allocated in the irrep_t datatype.
!!
!! PARENTS
!! m_ptgroups
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine destroy_irrep_0D(Irrep)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'destroy_irrep_0D'
!End of the abilint section
implicit none
!Arguments ------------------------------------
type(irrep_t),intent(inout) :: Irrep
! *********************************************************************
!@irrep_t
if (allocated(Irrep%trace)) then
ABI_FREE(Irrep%trace)
end if
if (allocated(Irrep%mat)) then
ABI_FREE(Irrep%mat)
end if
end subroutine destroy_irrep_0D
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/destroy_irrep_1D
!! NAME
!! destroy_irrep_1D
!!
!! FUNCTION
!! Deallocate all memory allocated in the irrep_t datatype.
!!
!! PARENTS
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine destroy_irrep_1D(Irrep)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'destroy_irrep_1D'
!End of the abilint section
implicit none
!Arguments ------------------------------------
type(irrep_t),intent(inout) :: Irrep(:)
!Local variables-------------------------------
integer :: irp
! *********************************************************************
do irp=1,SIZE(Irrep)
call destroy_irrep_0D(Irrep(irp))
end do
end subroutine destroy_irrep_1D
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/copy_irrep
!! NAME
!! copy_irrep
!!
!! FUNCTION
!! Perform a copy of a set of irrep_t datatypes. Optionally one can multiply
!! by a phase factor.
!!
!! PARENTS
!! m_esymm
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine copy_irrep(In_irreps,Out_irreps,phase_fact)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'copy_irrep'
!End of the abilint section
implicit none
!Arguments ------------------------------------
type(irrep_t),intent(in) :: In_irreps(:)
type(irrep_t),intent(inout) :: Out_irreps(:)
complex(dpc),optional,intent(in) :: phase_fact(:)
!Local variables-------------------------------
!scalars
integer :: irp,dim1,dim2,in_nsym,in_dim,isym
character(len=500) :: msg
!arrays
complex(dpc) :: my_phase_fact(In_irreps(1)%nsym)
! *********************************************************************
!@irrep_t
dim1 = SIZE( In_irreps)
dim2 = SIZE(Out_irreps)
if (dim1/=dim2) then
msg = " irreps to be copied have different dimension"
MSG_ERROR(msg)
end if
my_phase_fact=cone
if (PRESENT(phase_fact)) then
my_phase_fact=phase_fact
if (SIZE(phase_fact) /= In_irreps(1)%nsym) then
msg = " irreps to be copied have different dimension"
MSG_ERROR(msg)
end if
end if
do irp=1,dim1
in_dim = In_irreps(irp)%dim
in_nsym = In_irreps(irp)%nsym
call init_irrep(Out_irreps(irp),in_nsym,in_dim)
Out_irreps(irp)%name = In_irreps(irp)%name
do isym=1,in_nsym
Out_irreps(irp)%mat(:,:,isym) = In_irreps(irp)%mat(:,:,isym) * my_phase_fact(isym)
Out_irreps(irp)%trace(isym) = get_trace(Out_irreps(irp)%mat(:,:,isym))
end do
end do
end subroutine copy_irrep
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/init_irrep
!! NAME
!! alloc_irrep
!!
!! FUNCTION
!! Initialize an instance of the irrep_t datatype.
!!
!! INPUTS
!! nsym=The number of symmetries.
!! irr_dim=The dimension of the irrep.
!! [irr_name]=The name of theirrep. "???" is used if not given
!!
!! OUTPUT
!! Irrep<irrep_t>=
!!
!! PARENTS
!!
!! CHILDREN
!!
!! SOURCE
subroutine init_irrep(Irrep,nsym,irr_dim,irr_name)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'init_irrep'
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(in) :: nsym
!arrays
integer,intent(in) :: irr_dim
character(len=*),optional,intent(in) :: irr_name
type(irrep_t),intent(inout) :: Irrep
!Local variables-------------------------------
!character(len=500) :: msg
! *********************************************************************
!@irrep_t
Irrep%dim = irr_dim
Irrep%nsym = nsym
Irrep%name = "???"
if (PRESENT(irr_name)) Irrep%name = irr_name
ABI_MALLOC(Irrep%mat,(irr_dim,irr_dim,nsym))
Irrep%mat = czero
ABI_MALLOC(Irrep%trace,(nsym))
Irrep%trace = czero
end subroutine init_irrep
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/sum_irreps
!! NAME
!! sum_irreps
!!
!! FUNCTION
!!
!! INPUTS
!!
!! OUTPUT
!!
!! PARENTS
!!
!! CHILDREN
!!
!! SOURCE
function sum_irreps(Irrep1,Irrep2,ii,jj,kk,ll) result(res)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'sum_irreps'
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
integer,intent(in) :: ii,jj,kk,ll
!arrays
type(irrep_t),intent(in) :: Irrep1,Irrep2
complex(dpc) :: res
!Local variables-------------------------------
integer :: isym,nsym,ierr
!character(len=500) :: msg
! *********************************************************************
ierr=0; res = czero
nsym = Irrep1%nsym
if (nsym /= Irrep2%nsym) then
MSG_WARNING("Irreps have different nsym")
ierr=ierr+1
end if
if (Irrep1%dim /= Irrep2%dim) then
MSG_WARNING("Irreps have different dimensions")
write(std_out,*)Irrep1%dim,Irrep2%dim
ierr=ierr+1
end if
if (ii>Irrep2%dim .or. jj>Irrep2%dim .or. &
& kk>Irrep1%dim .or. ll>Irrep1%dim) then
MSG_WARNING("Wrong indeces")
write(std_out,*)ii,Irrep2%dim,jj,Irrep2%dim,kk>Irrep1%dim,ll,Irrep1%dim
ierr=ierr+1
end if
if (ierr/=0) RETURN
do isym=1,nsym
res = res + DCONJG(Irrep1%mat(ii,jj,isym)) * Irrep2%mat(kk,ll,isym)
end do
end function sum_irreps
!!***
!----------------------------------------------------------------------
!!****f* m_ptgroups/destroy_group_k
!! NAME
!! destroy_group_k
!!
!! FUNCTION
!! Deallocate all memory allocate in the group_k_t.
!!
!! PARENTS
!!
!! CHILDREN
!! destroy_irrep
!!
!! SOURCE
subroutine destroy_group_k(Gk)
use defs_basis
!This section has been created automatically by the script Abilint (TD).
!Do not modify the following lines by hand.
#undef ABI_FUNC
#define ABI_FUNC 'destroy_group_k'
!End of the abilint section
implicit none
!Arguments ------------------------------------
!scalars
!arrays
type(group_k_t),intent(inout) :: Gk
! *************************************************************************
! integer
if (allocated(Gk%class_ids)) then
ABI_FREE(Gk%class_ids)
end if
if (allocated(Gk%sym)) then
ABI_FREE(Gk%sym)
end if
!real
if (allocated(Gk%tnons)) then
ABI_FREE(Gk%tnons)
end if
!character
if (allocated(Gk%class_names)) then
ABI_FREE(Gk%class_names)
end if
!type
if (allocated(Gk%Irreps)) then
call destroy_irrep(Gk%Irreps)
ABI_DT_FREE(Gk%Irreps)
end if
end subroutine destroy_group_k
END MODULE m_ptgroups
!!***
| gpl-3.0 |
doslab/gcc-designated-initializer-support-cpp | gcc/testsuite/gfortran.dg/namelist_39.f90 | 8 | 1360 | ! { dg-do run { target fd_truncate } }
! PR33421 and PR33253 Weird quotation of namelist output of character arrays
! Test case from Toon Moone, adapted by Jerry DeLisle <jvdelisle@gcc.gnu.org>
! Long names used to test line_buffer feature is working.
program test
implicit none
character(len=45) :: b01234567890123456789012345678901234567890123456789012345678901(3)
namelist /nam/ b01234567890123456789012345678901234567890123456789012345678901
b01234567890123456789012345678901234567890123456789012345678901 = 'x'
open(99)
write(99,'(4(a,/),a)') "&NAM", &
" b01234567890123456789012345678901234567890123456789012345678901(1)=' AAP NOOT MIES WIM ZUS JET',", &
" b01234567890123456789012345678901234567890123456789012345678901(2)='SURF.PRESSURE',", &
" b01234567890123456789012345678901234567890123456789012345678901(3)='APEKOOL',", &
" /"
rewind(99)
read(99,nml=nam)
close(99,status="delete")
if (b01234567890123456789012345678901234567890123456789012345678901(1).ne.&
" AAP NOOT MIES WIM ZUS JET ") call abort
if (b01234567890123456789012345678901234567890123456789012345678901(2).ne.&
"SURF.PRESSURE ") call abort
if (b01234567890123456789012345678901234567890123456789012345678901(3).ne.&
"APEKOOL ") call abort
end program test
| gpl-2.0 |
jjones-cavium/gcc | libgfortran/generated/_sqrt_c8.F90 | 15 | 1485 | ! Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_COMPLEX_8)
#ifdef HAVE_CSQRT
elemental function _gfortran_specific__sqrt_c8 (parm)
complex (kind=8), intent (in) :: parm
complex (kind=8) :: _gfortran_specific__sqrt_c8
_gfortran_specific__sqrt_c8 = sqrt (parm)
end function
#endif
#endif
| gpl-2.0 |
stephenR/gcc-fpp | gcc/testsuite/gfortran.dg/external_procedures_1.f90 | 185 | 1089 | ! { dg-do compile }
! { dg-options "-std=f95" }
!
! This tests the patch for PR25024.
! PR25024 - The external attribute for subroutine a would cause an ICE.
subroutine A ()
EXTERNAL A ! { dg-error "EXTERNAL attribute conflicts with SUBROUTINE" }
END
function ext (y) ! { dg-error "EXTERNAL attribute conflicts with FUNCTION" }
real ext, y
external ext
!ext = y * y
end function ext
function ext1 (y)
real ext1, y
external z ! OK no conflict
ext1 = y * y
end function ext1
program main
real ext, inval
external ext ! OK, valid external reference.
external main ! { dg-error "PROGRAM attribute conflicts with EXTERNAL" }
interface
function ext1 (y)
real ext1, y
external ext1
end function ext1 ! { dg-error "Duplicate EXTERNAL attribute" }
end interface
inval = 1.0
print *, ext(inval)
print *, ext1(inval)
print *, inv(inval)
contains
function inv (y) ! { dg-error "EXTERNAL attribute conflicts with FUNCTION" }
real inv, y
external inv
!inv = y * y * y
end function inv
end program main
| gpl-2.0 |
sungsujo/nacl-llvm-branches.llvm-gcc-trunk | libgfortran/generated/_dim_i8.F90 | 11 | 1716 | ! Copyright 2002 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 2 of the License, or (at your option) any later version.
!In addition to the permissions in the GNU General Public License, the
!Free Software Foundation gives you unlimited permission to link the
!compiled version of this file into combinations with other programs,
!and to distribute those combinations without any restriction coming
!from the use of this file. (The General Public License restrictions
!do apply in other respects; for example, they cover modification of
!the file, and distribution when not linked into a combine
!executable.)
!
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!You should have received a copy of the GNU General Public
!License along with libgfortran; see the file COPYING. If not,
!write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
!Boston, MA 02110-1301, USA.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_INTEGER_8)
elemental function specific__dim_i8 (p1, p2)
integer (kind=8), intent (in) :: p1, p2
integer (kind=8) :: specific__dim_i8
specific__dim_i8 = dim (p1, p2)
end function
#endif
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/cuncsd.f | 22 | 22483 | *> \brief \b CUNCSD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CUNCSD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cuncsd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cuncsd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cuncsd.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* RECURSIVE SUBROUTINE CUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
* SIGNS, M, P, Q, X11, LDX11, X12,
* LDX12, X21, LDX21, X22, LDX22, THETA,
* U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
* LDV2T, WORK, LWORK, RWORK, LRWORK,
* IWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
* $ LDX21, LDX22, LRWORK, LWORK, M, P, Q
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* REAL THETA( * )
* REAL RWORK( * )
* COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
* $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
* $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
* $ * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CUNCSD computes the CS decomposition of an M-by-M partitioned
*> unitary matrix X:
*>
*> [ I 0 0 | 0 0 0 ]
*> [ 0 C 0 | 0 -S 0 ]
*> [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H
*> X = [-----------] = [---------] [---------------------] [---------] .
*> [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ]
*> [ 0 S 0 | 0 C 0 ]
*> [ 0 0 I | 0 0 0 ]
*>
*> X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
*> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
*> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
*> which R = MIN(P,M-P,Q,M-Q).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBU1
*> \verbatim
*> JOBU1 is CHARACTER
*> = 'Y': U1 is computed;
*> otherwise: U1 is not computed.
*> \endverbatim
*>
*> \param[in] JOBU2
*> \verbatim
*> JOBU2 is CHARACTER
*> = 'Y': U2 is computed;
*> otherwise: U2 is not computed.
*> \endverbatim
*>
*> \param[in] JOBV1T
*> \verbatim
*> JOBV1T is CHARACTER
*> = 'Y': V1T is computed;
*> otherwise: V1T is not computed.
*> \endverbatim
*>
*> \param[in] JOBV2T
*> \verbatim
*> JOBV2T is CHARACTER
*> = 'Y': V2T is computed;
*> otherwise: V2T is not computed.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER
*> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
*> order;
*> otherwise: X, U1, U2, V1T, and V2T are stored in column-
*> major order.
*> \endverbatim
*>
*> \param[in] SIGNS
*> \verbatim
*> SIGNS is CHARACTER
*> = 'O': The lower-left block is made nonpositive (the
*> "other" convention);
*> otherwise: The upper-right block is made nonpositive (the
*> "default" convention).
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows and columns in X.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of rows in X11 and X12. 0 <= P <= M.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is INTEGER
*> The number of columns in X11 and X21. 0 <= Q <= M.
*> \endverbatim
*>
*> \param[in,out] X11
*> \verbatim
*> X11 is COMPLEX array, dimension (LDX11,Q)
*> On entry, part of the unitary matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX11
*> \verbatim
*> LDX11 is INTEGER
*> The leading dimension of X11. LDX11 >= MAX(1,P).
*> \endverbatim
*>
*> \param[in,out] X12
*> \verbatim
*> X12 is COMPLEX array, dimension (LDX12,M-Q)
*> On entry, part of the unitary matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX12
*> \verbatim
*> LDX12 is INTEGER
*> The leading dimension of X12. LDX12 >= MAX(1,P).
*> \endverbatim
*>
*> \param[in,out] X21
*> \verbatim
*> X21 is COMPLEX array, dimension (LDX21,Q)
*> On entry, part of the unitary matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX21
*> \verbatim
*> LDX21 is INTEGER
*> The leading dimension of X11. LDX21 >= MAX(1,M-P).
*> \endverbatim
*>
*> \param[in,out] X22
*> \verbatim
*> X22 is COMPLEX array, dimension (LDX22,M-Q)
*> On entry, part of the unitary matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX22
*> \verbatim
*> LDX22 is INTEGER
*> The leading dimension of X11. LDX22 >= MAX(1,M-P).
*> \endverbatim
*>
*> \param[out] THETA
*> \verbatim
*> THETA is REAL array, dimension (R), in which R =
*> MIN(P,M-P,Q,M-Q).
*> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
*> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
*> \endverbatim
*>
*> \param[out] U1
*> \verbatim
*> U1 is COMPLEX array, dimension (P)
*> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
*> \endverbatim
*>
*> \param[in] LDU1
*> \verbatim
*> LDU1 is INTEGER
*> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
*> MAX(1,P).
*> \endverbatim
*>
*> \param[out] U2
*> \verbatim
*> U2 is COMPLEX array, dimension (M-P)
*> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
*> matrix U2.
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*> LDU2 is INTEGER
*> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
*> MAX(1,M-P).
*> \endverbatim
*>
*> \param[out] V1T
*> \verbatim
*> V1T is COMPLEX array, dimension (Q)
*> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
*> matrix V1**H.
*> \endverbatim
*>
*> \param[in] LDV1T
*> \verbatim
*> LDV1T is INTEGER
*> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
*> MAX(1,Q).
*> \endverbatim
*>
*> \param[out] V2T
*> \verbatim
*> V2T is COMPLEX array, dimension (M-Q)
*> If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary
*> matrix V2**H.
*> \endverbatim
*>
*> \param[in] LDV2T
*> \verbatim
*> LDV2T is INTEGER
*> The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
*> MAX(1,M-Q).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the work array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension MAX(1,LRWORK)
*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
*> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
*> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
*> define the matrix in intermediate bidiagonal-block form
*> remaining after nonconvergence. INFO specifies the number
*> of nonzero PHI's.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER
*> The dimension of the array RWORK.
*>
*> If LRWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the RWORK array, returns
*> this value as the first entry of the work array, and no error
*> message related to LRWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: CBBCSD did not converge. See the description of RWORK
*> above for details.
*> \endverbatim
*
*> \par References:
* ================
*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2013
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
RECURSIVE SUBROUTINE CUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
$ SIGNS, M, P, Q, X11, LDX11, X12,
$ LDX12, X21, LDX21, X22, LDX22, THETA,
$ U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
$ LDV2T, WORK, LWORK, RWORK, LRWORK,
$ IWORK, INFO )
*
* -- LAPACK computational routine (version 3.5.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2013
*
* .. Scalar Arguments ..
CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
$ LDX21, LDX22, LRWORK, LWORK, M, P, Q
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL THETA( * )
REAL RWORK( * )
COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
$ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
$ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
$ * )
* ..
*
* ===================================================================
*
* .. Parameters ..
COMPLEX ONE, ZERO
PARAMETER ( ONE = (1.0E0,0.0E0),
$ ZERO = (0.0E0,0.0E0) )
* ..
* .. Local Scalars ..
CHARACTER TRANST, SIGNST
INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
$ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
$ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
$ ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
$ LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
$ LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
$ LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
$ LORGQRWORKOPT, LWORKMIN, LWORKOPT, P1, Q1
LOGICAL COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
$ WANTV1T, WANTV2T
INTEGER LRWORKMIN, LRWORKOPT
LOGICAL LRQUERY
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, CBBCSD, CLACPY, CLAPMR, CLAPMT, CLASCL,
$ CLASET, CUNBDB, CUNGLQ, CUNGQR
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions
INTRINSIC COS, INT, MAX, MIN, SIN
* ..
* .. Executable Statements ..
*
* Test input arguments
*
INFO = 0
WANTU1 = LSAME( JOBU1, 'Y' )
WANTU2 = LSAME( JOBU2, 'Y' )
WANTV1T = LSAME( JOBV1T, 'Y' )
WANTV2T = LSAME( JOBV2T, 'Y' )
COLMAJOR = .NOT. LSAME( TRANS, 'T' )
DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
LQUERY = LWORK .EQ. -1
LRQUERY = LRWORK .EQ. -1
IF( M .LT. 0 ) THEN
INFO = -7
ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
INFO = -8
ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
INFO = -9
ELSE IF ( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
INFO = -11
ELSE IF (.NOT. COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
INFO = -11
ELSE IF (COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
INFO = -13
ELSE IF (.NOT. COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
INFO = -13
ELSE IF (COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
INFO = -15
ELSE IF (.NOT. COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
INFO = -15
ELSE IF (COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
INFO = -17
ELSE IF (.NOT. COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
INFO = -17
ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
INFO = -20
ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
INFO = -22
ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
INFO = -24
ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
INFO = -26
END IF
*
* Work with transpose if convenient
*
IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
IF( COLMAJOR ) THEN
TRANST = 'T'
ELSE
TRANST = 'N'
END IF
IF( DEFAULTSIGNS ) THEN
SIGNST = 'O'
ELSE
SIGNST = 'D'
END IF
CALL CUNCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
$ Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
$ LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
$ U2, LDU2, WORK, LWORK, RWORK, LRWORK, IWORK,
$ INFO )
RETURN
END IF
*
* Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
* convenient
*
IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
IF( DEFAULTSIGNS ) THEN
SIGNST = 'O'
ELSE
SIGNST = 'D'
END IF
CALL CUNCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
$ M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
$ LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
$ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO )
RETURN
END IF
*
* Compute workspace
*
IF( INFO .EQ. 0 ) THEN
*
* Real workspace
*
IPHI = 2
IB11D = IPHI + MAX( 1, Q - 1 )
IB11E = IB11D + MAX( 1, Q )
IB12D = IB11E + MAX( 1, Q - 1 )
IB12E = IB12D + MAX( 1, Q )
IB21D = IB12E + MAX( 1, Q - 1 )
IB21E = IB21D + MAX( 1, Q )
IB22D = IB21E + MAX( 1, Q - 1 )
IB22E = IB22D + MAX( 1, Q )
IBBCSD = IB22E + MAX( 1, Q - 1 )
CALL CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
$ THETA, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T,
$ V2T, LDV2T, THETA, THETA, THETA, THETA, THETA,
$ THETA, THETA, THETA, RWORK, -1, CHILDINFO )
LBBCSDWORKOPT = INT( RWORK(1) )
LBBCSDWORKMIN = LBBCSDWORKOPT
LRWORKOPT = IBBCSD + LBBCSDWORKOPT - 1
LRWORKMIN = IBBCSD + LBBCSDWORKMIN - 1
RWORK(1) = LRWORKOPT
*
* Complex workspace
*
ITAUP1 = 2
ITAUP2 = ITAUP1 + MAX( 1, P )
ITAUQ1 = ITAUP2 + MAX( 1, M - P )
ITAUQ2 = ITAUQ1 + MAX( 1, Q )
IORGQR = ITAUQ2 + MAX( 1, M - Q )
CALL CUNGQR( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), U1, WORK, -1,
$ CHILDINFO )
LORGQRWORKOPT = INT( WORK(1) )
LORGQRWORKMIN = MAX( 1, M - Q )
IORGLQ = ITAUQ2 + MAX( 1, M - Q )
CALL CUNGLQ( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), U1, WORK, -1,
$ CHILDINFO )
LORGLQWORKOPT = INT( WORK(1) )
LORGLQWORKMIN = MAX( 1, M - Q )
IORBDB = ITAUQ2 + MAX( 1, M - Q )
CALL CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
$ X21, LDX21, X22, LDX22, THETA, THETA, U1, U2,
$ V1T, V2T, WORK, -1, CHILDINFO )
LORBDBWORKOPT = INT( WORK(1) )
LORBDBWORKMIN = LORBDBWORKOPT
LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
$ IORBDB + LORBDBWORKOPT ) - 1
LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
$ IORBDB + LORBDBWORKMIN ) - 1
WORK(1) = MAX(LWORKOPT,LWORKMIN)
*
IF( LWORK .LT. LWORKMIN
$ .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
INFO = -22
ELSE IF( LRWORK .LT. LRWORKMIN
$ .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
INFO = -24
ELSE
LORGQRWORK = LWORK - IORGQR + 1
LORGLQWORK = LWORK - IORGLQ + 1
LORBDBWORK = LWORK - IORBDB + 1
LBBCSDWORK = LRWORK - IBBCSD + 1
END IF
END IF
*
* Abort if any illegal arguments
*
IF( INFO .NE. 0 ) THEN
CALL XERBLA( 'CUNCSD', -INFO )
RETURN
ELSE IF( LQUERY .OR. LRQUERY ) THEN
RETURN
END IF
*
* Transform to bidiagonal block form
*
CALL CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
$ LDX21, X22, LDX22, THETA, RWORK(IPHI), WORK(ITAUP1),
$ WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
$ WORK(IORBDB), LORBDBWORK, CHILDINFO )
*
* Accumulate Householder reflectors
*
IF( COLMAJOR ) THEN
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
$ LORGQRWORK, INFO)
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
$ WORK(IORGQR), LORGQRWORK, INFO )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL CLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
$ LDV1T )
V1T(1, 1) = ONE
DO J = 2, Q
V1T(1,J) = ZERO
V1T(J,1) = ZERO
END DO
CALL CUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
$ WORK(IORGLQ), LORGLQWORK, INFO )
END IF
IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
CALL CLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
IF( M-P .GT. Q ) THEN
CALL CLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
$ V2T(P+1,P+1), LDV2T )
END IF
IF( M .GT. Q ) THEN
CALL CUNGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
$ WORK(IORGLQ), LORGLQWORK, INFO )
END IF
END IF
ELSE
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL CLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
CALL CUNGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
$ LORGLQWORK, INFO)
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL CLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
CALL CUNGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
$ WORK(IORGLQ), LORGLQWORK, INFO )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL CLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
$ LDV1T )
V1T(1, 1) = ONE
DO J = 2, Q
V1T(1,J) = ZERO
V1T(J,1) = ZERO
END DO
CALL CUNGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
$ WORK(IORGQR), LORGQRWORK, INFO )
END IF
IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
P1 = MIN( P+1, M )
Q1 = MIN( Q+1, M )
CALL CLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
IF ( M .GT. P+Q ) THEN
CALL CLACPY( 'L', M-P-Q, M-P-Q, X22(P1,Q1), LDX22,
$ V2T(P+1,P+1), LDV2T )
END IF
CALL CUNGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
$ WORK(IORGQR), LORGQRWORK, INFO )
END IF
END IF
*
* Compute the CSD of the matrix in bidiagonal-block form
*
CALL CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
$ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
$ LDV2T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
$ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
$ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
$ LBBCSDWORK, INFO )
*
* Permute rows and columns to place identity submatrices in top-
* left corner of (1,1)-block and/or bottom-right corner of (1,2)-
* block and/or bottom-right corner of (2,1)-block and/or top-left
* corner of (2,2)-block
*
IF( Q .GT. 0 .AND. WANTU2 ) THEN
DO I = 1, Q
IWORK(I) = M - P - Q + I
END DO
DO I = Q + 1, M - P
IWORK(I) = I - Q
END DO
IF( COLMAJOR ) THEN
CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
ELSE
CALL CLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
END IF
END IF
IF( M .GT. 0 .AND. WANTV2T ) THEN
DO I = 1, P
IWORK(I) = M - P - Q + I
END DO
DO I = P + 1, M - Q
IWORK(I) = I - P
END DO
IF( .NOT. COLMAJOR ) THEN
CALL CLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
ELSE
CALL CLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
END IF
END IF
*
RETURN
*
* End CUNCSD
*
END
| gpl-2.0 |
QEF/q-e | XClib/dft_setting_params.f90 | 2 | 3954 | !
! Copyright (C) 2020 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------
MODULE dft_setting_params
!----------------------------------------------------------------
!! Parameters that define the XC functionals.
!
USE kind_l, ONLY: DP
#if defined(__LIBXC)
USE xc_f03_lib_m
#endif
!
IMPLICIT NONE
!
SAVE
!
CHARACTER(LEN=32) :: dft = 'not set'
!! Full name of the XC functional
INTEGER, PARAMETER :: notset = -1
!! Value of indexes that have not been set yet
!
LOGICAL :: is_libxc(6) = .FALSE.
!! \(\text{is_libxc(i)}=TRUE\) if the i-th term of the input
!! functional is from Libxc
!
LOGICAL :: libxc_initialized(6) = .FALSE.
!! TRUE if libxc functionals have been initialized
!
#if defined(__LIBXC)
TYPE(xc_f03_func_t) :: xc_func(6)
!! pointers to libxc functional structs
TYPE(xc_f03_func_info_t) :: xc_info(6)
!! pointers to libxc info structs
INTEGER :: libxc_flags(6,0:15) = notset
!! flags related to specific features of libxc functionals
!! (see Libxc doc)
INTEGER :: n_ext_params(6) = 0
!! number of external parameters for each functional
REAL(DP) :: par_list(6,50)
!! list of external parameters
LOGICAL :: xc_kind_error = .FALSE.
!! some Libxc dfts are currently not usable in QE (for example
!! kinetic dfts). If one of them is detected this variable is
!! set to TRUE.
#endif
!
LOGICAL :: exx_started = .FALSE.
!! TRUE if Exact Exchange is active
REAL(DP) :: exx_fraction = 0.0_DP
!! Exact Exchange fraction parameter
!
INTEGER :: iexch = notset
!! LDA exchange index
INTEGER :: icorr = notset
!! LDA correlation index
REAL(DP) :: finite_size_cell_volume = -1._DP
!! Cell volume parameter for finite size correction
REAL(DP) :: rho_threshold_lda = 1.E-10_DP
!! Threshold value for the density in LDA
!
INTEGER :: igcx = notset
!! GGA exchange index
INTEGER :: igcc = notset
!! GGA correlation index
REAL(DP) :: rho_threshold_gga = 1.E-6_DP
!! Threshold value for the density in GGA
REAL(DP) :: grho_threshold_gga = 1.E-10_DP
!! Threshold value for the density gradient in GGA
REAL(DP) :: screening_parameter
!! Screening parameter for PBE exchange
REAL(DP) :: gau_parameter
!! Gaussian parameter for PBE exchange
!
INTEGER :: imeta = notset
!! MGGA exchange index
INTEGER :: imetac = notset
!! MGGA correlation index
REAL(DP) :: rho_threshold_mgga = 1.E-12_DP
!! Threshold value for the density in MGGA
REAL(DP) :: grho2_threshold_mgga = 1.E-24_DP
!! Threshold value for the density gradient (square modulus) in MGGA
REAL(DP) :: tau_threshold_mgga = 1.0E-12_DP
!! Threshold value for the density laplacian in MGGA
!
!
LOGICAL :: islda = .FALSE.
!! TRUE if the functional is LDA only
LOGICAL :: isgradient = .FALSE.
!! TRUE if the functional is GGA
LOGICAL :: has_finite_size_correction = .FALSE.
!! TRUE if finite size correction is present
LOGICAL :: finite_size_cell_volume_set = .FALSE.
!! TRUE if the cell volume has been set for finite size correction.
LOGICAL :: ismeta = .FALSE.
!! TRUE if the functional is MGGA
LOGICAL :: ishybrid = .FALSE.
!! TRUE if the functional is hybrid
LOGICAL :: scan_exx = .FALSE.
!! TRUE if SCAN0 functional is active
!
LOGICAL :: discard_input_dft = .FALSE.
!! TRUE if input DFT can be overwritten
INTEGER :: beeftype = -1
!! Index for BEEF functional
INTEGER :: beefvdw = 0
!! Index for vdw term of BEEF
!
END MODULE dft_setting_params
| gpl-2.0 |
markusappel/McCode | support/common/pgplot/src/pgqtxt.f | 6 | 2267 | C*PGQTXT -- find bounding box of text string
C%void cpgqtxt(float x, float y, float angle, float fjust, \
C% const char *text, float *xbox, float *ybox);
C+
SUBROUTINE PGQTXT (X, Y, ANGLE, FJUST, TEXT, XBOX, YBOX)
REAL X, Y, ANGLE, FJUST
CHARACTER*(*) TEXT
REAL XBOX(4), YBOX(4)
C
C This routine returns a bounding box for a text string. Instead
C of drawing the string as routine PGPTXT does, it returns in XBOX
C and YBOX the coordinates of the corners of a rectangle parallel
C to the string baseline that just encloses the string. The four
C corners are in the order: lower left, upper left, upper right,
C lower right (where left and right refer to the first and last
C characters in the string).
C
C If the string is blank or contains no drawable characters, all
C four elements of XBOX and YBOX are assigned the starting point
C of the string, (X,Y).
C
C Arguments:
C X, Y, ANGLE, FJUST, TEXT (input) : these arguments are the same as
C the corrresponding arguments in PGPTXT.
C XBOX, YBOX (output) : arrays of dimension 4; on output, they
C contain the world coordinates of the bounding
C box in (XBOX(1), YBOX(1)), ..., (XBOX(4), YBOX(4)).
C--
C 12-Sep-1993 - new routine [TJP].
C 8-Nov-1994 - return something for blank string [TJP].
C 14-Jan-1997 - additional explanation [TJP].
C-----------------------------------------------------------------------
INCLUDE 'pgplot.inc'
LOGICAL PGNOTO
INTEGER I, L, GRTRIM
REAL D, XP, YP, XPBOX(4), YPBOX(4), XOFFS, YOFFS
C
IF (PGNOTO('PGQTXT')) RETURN
C
L = GRTRIM(TEXT)
IF (L.LE.0) THEN
DO 15 I=1,4
XBOX(I) = X
YBOX(I) = Y
15 CONTINUE
ELSE
D = 0.0
IF (FJUST.NE.0.0) CALL GRLEN(TEXT(1:L),D)
XOFFS = PGXORG(PGID) - D*FJUST*COS(ANGLE/57.29578)
YOFFS = PGYORG(PGID) - D*FJUST*SIN(ANGLE/57.29578)
XP = X*PGXSCL(PGID) + XOFFS
YP = Y*PGYSCL(PGID) + YOFFS
CALL GRQTXT(ANGLE, XP, YP, TEXT(1:L), XPBOX, YPBOX)
DO 25 I=1,4
XBOX(I) = (XPBOX(I) - PGXORG(PGID))/PGXSCL(PGID)
YBOX(I) = (YPBOX(I) - PGYORG(PGID))/PGYSCL(PGID)
25 CONTINUE
END IF
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/zgbtf2.f | 24 | 8142 | *> \brief \b ZGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGBTF2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbtf2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbtf2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbtf2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, KL, KU, LDAB, M, N
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX*16 AB( LDAB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGBTF2 computes an LU factorization of a complex m-by-n band matrix
*> A using partial pivoting with row interchanges.
*>
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> The number of subdiagonals within the band of A. KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> The number of superdiagonals within the band of A. KU >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*> AB is COMPLEX*16 array, dimension (LDAB,N)
*> On entry, the matrix A in band storage, in rows KL+1 to
*> 2*KL+KU+1; rows 1 to KL of the array need not be set.
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
*>
*> On exit, details of the factorization: U is stored as an
*> upper triangular band matrix with KL+KU superdiagonals in
*> rows 1 to KL+KU+1, and the multipliers used during the
*> factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
*> See below for further details.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (min(M,N))
*> The pivot indices; for 1 <= i <= min(M,N), row i of the
*> matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
*> has been completed, but the factor U is exactly
*> singular, and division by zero will occur if it is used
*> to solve a system of equations.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complex16GBcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The band storage scheme is illustrated by the following example, when
*> M = N = 6, KL = 2, KU = 1:
*>
*> On entry: On exit:
*>
*> * * * + + + * * * u14 u25 u36
*> * * + + + + * * u13 u24 u35 u46
*> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
*> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
*> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
*> a31 a42 a53 a64 * * m31 m42 m53 m64 * *
*>
*> Array elements marked * are not used by the routine; elements marked
*> + need not be set on entry, but are required by the routine to store
*> elements of U, because of fill-in resulting from the row
*> interchanges.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER INFO, KL, KU, LDAB, M, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 AB( LDAB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J, JP, JU, KM, KV
* ..
* .. External Functions ..
INTEGER IZAMAX
EXTERNAL IZAMAX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGERU, ZSCAL, ZSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* KV is the number of superdiagonals in the factor U, allowing for
* fill-in.
*
KV = KU + KL
*
* Test the input parameters.
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( KL.LT.0 ) THEN
INFO = -3
ELSE IF( KU.LT.0 ) THEN
INFO = -4
ELSE IF( LDAB.LT.KL+KV+1 ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGBTF2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Gaussian elimination with partial pivoting
*
* Set fill-in elements in columns KU+2 to KV to zero.
*
DO 20 J = KU + 2, MIN( KV, N )
DO 10 I = KV - J + 2, KL
AB( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
* JU is the index of the last column affected by the current stage
* of the factorization.
*
JU = 1
*
DO 40 J = 1, MIN( M, N )
*
* Set fill-in elements in column J+KV to zero.
*
IF( J+KV.LE.N ) THEN
DO 30 I = 1, KL
AB( I, J+KV ) = ZERO
30 CONTINUE
END IF
*
* Find pivot and test for singularity. KM is the number of
* subdiagonal elements in the current column.
*
KM = MIN( KL, M-J )
JP = IZAMAX( KM+1, AB( KV+1, J ), 1 )
IPIV( J ) = JP + J - 1
IF( AB( KV+JP, J ).NE.ZERO ) THEN
JU = MAX( JU, MIN( J+KU+JP-1, N ) )
*
* Apply interchange to columns J to JU.
*
IF( JP.NE.1 )
$ CALL ZSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
$ AB( KV+1, J ), LDAB-1 )
IF( KM.GT.0 ) THEN
*
* Compute multipliers.
*
CALL ZSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
*
* Update trailing submatrix within the band.
*
IF( JU.GT.J )
$ CALL ZGERU( KM, JU-J, -ONE, AB( KV+2, J ), 1,
$ AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
$ LDAB-1 )
END IF
ELSE
*
* If pivot is zero, set INFO to the index of the pivot
* unless a zero pivot has already been found.
*
IF( INFO.EQ.0 )
$ INFO = J
END IF
40 CONTINUE
RETURN
*
* End of ZGBTF2
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/cposvx.f | 28 | 16696 | *> \brief <b> CPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPOSVX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cposvx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cposvx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cposvx.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
* S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
* RWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER EQUED, FACT, UPLO
* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
* REAL RCOND
* ..
* .. Array Arguments ..
* REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
* $ WORK( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
*> compute the solution to a complex system of linear equations
*> A * X = B,
*> where A is an N-by-N Hermitian positive definite matrix and X and B
*> are N-by-NRHS matrices.
*>
*> Error bounds on the solution and a condition estimate are also
*> provided.
*> \endverbatim
*
*> \par Description:
* =================
*>
*> \verbatim
*>
*> The following steps are performed:
*>
*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
*> the system:
*> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
*> Whether or not the system will be equilibrated depends on the
*> scaling of the matrix A, but if equilibration is used, A is
*> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
*>
*> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
*> factor the matrix A (after equilibration if FACT = 'E') as
*> A = U**H* U, if UPLO = 'U', or
*> A = L * L**H, if UPLO = 'L',
*> where U is an upper triangular matrix and L is a lower triangular
*> matrix.
*>
*> 3. If the leading i-by-i principal minor is not positive definite,
*> then the routine returns with INFO = i. Otherwise, the factored
*> form of A is used to estimate the condition number of the matrix
*> A. If the reciprocal of the condition number is less than machine
*> precision, INFO = N+1 is returned as a warning, but the routine
*> still goes on to solve for X and compute error bounds as
*> described below.
*>
*> 4. The system of equations is solved for X using the factored form
*> of A.
*>
*> 5. Iterative refinement is applied to improve the computed solution
*> matrix and calculate error bounds and backward error estimates
*> for it.
*>
*> 6. If equilibration was used, the matrix X is premultiplied by
*> diag(S) so that it solves the original system before
*> equilibration.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] FACT
*> \verbatim
*> FACT is CHARACTER*1
*> Specifies whether or not the factored form of the matrix A is
*> supplied on entry, and if not, whether the matrix A should be
*> equilibrated before it is factored.
*> = 'F': On entry, AF contains the factored form of A.
*> If EQUED = 'Y', the matrix A has been equilibrated
*> with scaling factors given by S. A and AF will not
*> be modified.
*> = 'N': The matrix A will be copied to AF and factored.
*> = 'E': The matrix A will be equilibrated if necessary, then
*> copied to AF and factored.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of linear equations, i.e., the order of the
*> matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the Hermitian matrix A, except if FACT = 'F' and
*> EQUED = 'Y', then A must contain the equilibrated matrix
*> diag(S)*A*diag(S). If UPLO = 'U', the leading
*> N-by-N upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced. A is not modified if
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] AF
*> \verbatim
*> AF is COMPLEX array, dimension (LDAF,N)
*> If FACT = 'F', then AF is an input argument and on entry
*> contains the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H, in the same storage
*> format as A. If EQUED .ne. 'N', then AF is the factored form
*> of the equilibrated matrix diag(S)*A*diag(S).
*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H of the original
*> matrix A.
*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H of the equilibrated
*> matrix A (see the description of A for the form of the
*> equilibrated matrix).
*> \endverbatim
*>
*> \param[in] LDAF
*> \verbatim
*> LDAF is INTEGER
*> The leading dimension of the array AF. LDAF >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] EQUED
*> \verbatim
*> EQUED is CHARACTER*1
*> Specifies the form of equilibration that was done.
*> = 'N': No equilibration (always true if FACT = 'N').
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
*> output argument.
*> \endverbatim
*>
*> \param[in,out] S
*> \verbatim
*> S is REAL array, dimension (N)
*> The scale factors for A; not accessed if EQUED = 'N'. S is
*> an input argument if FACT = 'F'; otherwise, S is an output
*> argument. If FACT = 'F' and EQUED = 'Y', each element of S
*> must be positive.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the N-by-NRHS righthand side matrix B.
*> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
*> B is overwritten by diag(S) * B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX,NRHS)
*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
*> the original system of equations. Note that if EQUED = 'Y',
*> A and B are modified on exit, and the solution to the
*> equilibrated system is inv(diag(S))*X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> The estimate of the reciprocal condition number of the matrix
*> A after equilibration (if done). If RCOND is less than the
*> machine precision (in particular, if RCOND = 0), the matrix
*> is singular to working precision. This condition is
*> indicated by a return code of INFO > 0.
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*> FERR is REAL array, dimension (NRHS)
*> The estimated forward error bound for each solution vector
*> X(j) (the j-th column of the solution matrix X).
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
*> is an estimated upper bound for the magnitude of the largest
*> element in (X(j) - XTRUE) divided by the magnitude of the
*> largest element in X(j). The estimate is as reliable as
*> the estimate for RCOND, and is almost always a slight
*> overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is REAL array, dimension (NRHS)
*> The componentwise relative backward error of each solution
*> vector X(j) (i.e., the smallest relative change in
*> any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, and i is
*> <= N: the leading minor of order i of A is
*> not positive definite, so the factorization
*> could not be completed, and the solution has not
*> been computed. RCOND = 0 is returned.
*> = N+1: U is nonsingular, but RCOND is less than machine
*> precision, meaning that the matrix is singular
*> to working precision. Nevertheless, the
*> solution and error bounds are computed because
*> there are a number of situations where the
*> computed solution can be more accurate than the
*> value of RCOND would suggest.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complexPOsolve
*
* =====================================================================
SUBROUTINE CPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
$ S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
$ RWORK, INFO )
*
* -- LAPACK driver routine (version 3.4.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* .. Scalar Arguments ..
CHARACTER EQUED, FACT, UPLO
INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
REAL RCOND
* ..
* .. Array Arguments ..
REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
$ WORK( * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL EQUIL, NOFACT, RCEQU
INTEGER I, INFEQU, J
REAL AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANHE, SLAMCH
EXTERNAL LSAME, CLANHE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLACPY, CLAQHE, CPOCON, CPOEQU, CPORFS, CPOTRF,
$ CPOTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
NOFACT = LSAME( FACT, 'N' )
EQUIL = LSAME( FACT, 'E' )
IF( NOFACT .OR. EQUIL ) THEN
EQUED = 'N'
RCEQU = .FALSE.
ELSE
RCEQU = LSAME( EQUED, 'Y' )
SMLNUM = SLAMCH( 'Safe minimum' )
BIGNUM = ONE / SMLNUM
END IF
*
* Test the input parameters.
*
IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
$ THEN
INFO = -1
ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
$ THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
$ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
INFO = -9
ELSE
IF( RCEQU ) THEN
SMIN = BIGNUM
SMAX = ZERO
DO 10 J = 1, N
SMIN = MIN( SMIN, S( J ) )
SMAX = MAX( SMAX, S( J ) )
10 CONTINUE
IF( SMIN.LE.ZERO ) THEN
INFO = -10
ELSE IF( N.GT.0 ) THEN
SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
ELSE
SCOND = ONE
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -14
END IF
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPOSVX', -INFO )
RETURN
END IF
*
IF( EQUIL ) THEN
*
* Compute row and column scalings to equilibrate the matrix A.
*
CALL CPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
IF( INFEQU.EQ.0 ) THEN
*
* Equilibrate the matrix.
*
CALL CLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
RCEQU = LSAME( EQUED, 'Y' )
END IF
END IF
*
* Scale the right hand side.
*
IF( RCEQU ) THEN
DO 30 J = 1, NRHS
DO 20 I = 1, N
B( I, J ) = S( I )*B( I, J )
20 CONTINUE
30 CONTINUE
END IF
*
IF( NOFACT .OR. EQUIL ) THEN
*
* Compute the Cholesky factorization A = U**H *U or A = L*L**H.
*
CALL CLACPY( UPLO, N, N, A, LDA, AF, LDAF )
CALL CPOTRF( UPLO, N, AF, LDAF, INFO )
*
* Return if INFO is non-zero.
*
IF( INFO.GT.0 )THEN
RCOND = ZERO
RETURN
END IF
END IF
*
* Compute the norm of the matrix A.
*
ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
*
* Compute the reciprocal of the condition number of A.
*
CALL CPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
*
* Compute the solution matrix X.
*
CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
CALL CPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
*
* Use iterative refinement to improve the computed solution and
* compute error bounds and backward error estimates for it.
*
CALL CPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
$ FERR, BERR, WORK, RWORK, INFO )
*
* Transform the solution matrix X to a solution of the original
* system.
*
IF( RCEQU ) THEN
DO 50 J = 1, NRHS
DO 40 I = 1, N
X( I, J ) = S( I )*X( I, J )
40 CONTINUE
50 CONTINUE
DO 60 J = 1, NRHS
FERR( J ) = FERR( J ) / SCOND
60 CONTINUE
END IF
*
* Set INFO = N+1 if the matrix is singular to working precision.
*
IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
$ INFO = N + 1
*
RETURN
*
* End of CPOSVX
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/ztrttp.f | 24 | 4817 | *> \brief \b ZTRTTP copies a triangular matrix from the standard full format (TR) to the standard packed format (TP).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZTRTTP + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrttp.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrttp.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrttp.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZTRTTP( UPLO, N, A, LDA, AP, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, N, LDA
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), AP( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZTRTTP copies a triangular matrix A from full format (TR) to standard
*> packed format (TP).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': A is upper triangular;
*> = 'L': A is lower triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices AP and A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the triangular matrix A. If UPLO = 'U', the leading
*> N-by-N upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] AP
*> \verbatim
*> AP is COMPLEX*16 array, dimension ( N*(N+1)/2 ),
*> On exit, the upper or lower triangular matrix A, packed
*> columnwise in a linear array. The j-th column of A is stored
*> in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complex16OTHERcomputational
*
* =====================================================================
SUBROUTINE ZTRTTP( UPLO, N, A, LDA, AP, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N, LDA
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), AP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
* ..
* .. Local Scalars ..
LOGICAL LOWER
INTEGER I, J, K
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
LOWER = LSAME( UPLO, 'L' )
IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZTRTTP', -INFO )
RETURN
END IF
*
IF( LOWER ) THEN
K = 0
DO J = 1, N
DO I = J, N
K = K + 1
AP( K ) = A( I, J )
END DO
END DO
ELSE
K = 0
DO J = 1, N
DO I = 1, J
K = K + 1
AP( K ) = A( I, J )
END DO
END DO
END IF
*
*
RETURN
*
* End of ZTRTTP
*
END
| gpl-2.0 |
linzhaoming/origin | vendor/gonum.org/v1/gonum/lapack/internal/testdata/dlasqtest/dlasq3.f | 59 | 12810 | *> \brief \b DLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASQ3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq3.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
* ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
* DN2, G, TAU )
*
* .. Scalar Arguments ..
* LOGICAL IEEE
* INTEGER I0, ITER, N0, NDIV, NFAIL, PP
* DOUBLE PRECISION DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
* $ QMAX, SIGMA, TAU
* ..
* .. Array Arguments ..
* DOUBLE PRECISION Z( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
*> In case of failure it changes shifts, and tries again until output
*> is positive.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] I0
*> \verbatim
*> I0 is INTEGER
*> First index.
*> \endverbatim
*>
*> \param[in,out] N0
*> \verbatim
*> N0 is INTEGER
*> Last index.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension ( 4*N )
*> Z holds the qd array.
*> \endverbatim
*>
*> \param[in,out] PP
*> \verbatim
*> PP is INTEGER
*> PP=0 for ping, PP=1 for pong.
*> PP=2 indicates that flipping was applied to the Z array
*> and that the initial tests for deflation should not be
*> performed.
*> \endverbatim
*>
*> \param[out] DMIN
*> \verbatim
*> DMIN is DOUBLE PRECISION
*> Minimum value of d.
*> \endverbatim
*>
*> \param[out] SIGMA
*> \verbatim
*> SIGMA is DOUBLE PRECISION
*> Sum of shifts used in current segment.
*> \endverbatim
*>
*> \param[in,out] DESIG
*> \verbatim
*> DESIG is DOUBLE PRECISION
*> Lower order part of SIGMA
*> \endverbatim
*>
*> \param[in] QMAX
*> \verbatim
*> QMAX is DOUBLE PRECISION
*> Maximum value of q.
*> \endverbatim
*>
*> \param[out] NFAIL
*> \verbatim
*> NFAIL is INTEGER
*> Number of times shift was too big.
*> \endverbatim
*>
*> \param[out] ITER
*> \verbatim
*> ITER is INTEGER
*> Number of iterations.
*> \endverbatim
*>
*> \param[out] NDIV
*> \verbatim
*> NDIV is INTEGER
*> Number of divisions.
*> \endverbatim
*>
*> \param[in] IEEE
*> \verbatim
*> IEEE is LOGICAL
*> Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
*> \endverbatim
*>
*> \param[in,out] TTYPE
*> \verbatim
*> TTYPE is INTEGER
*> Shift type.
*> \endverbatim
*>
*> \param[in,out] DMIN1
*> \verbatim
*> DMIN1 is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in,out] DMIN2
*> \verbatim
*> DMIN2 is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in,out] DN
*> \verbatim
*> DN is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in,out] DN1
*> \verbatim
*> DN1 is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in,out] DN2
*> \verbatim
*> DN2 is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in,out] G
*> \verbatim
*> G is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in,out] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION
*>
*> These are passed as arguments in order to save their values
*> between calls to DLASQ3.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERcomputational
*
* =====================================================================
SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
$ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
$ DN2, G, TAU )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
LOGICAL IEEE
INTEGER I0, ITER, N0, NDIV, NFAIL, PP
DOUBLE PRECISION DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
$ QMAX, SIGMA, TAU
* ..
* .. Array Arguments ..
DOUBLE PRECISION Z( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION CBIAS
PARAMETER ( CBIAS = 1.50D0 )
DOUBLE PRECISION ZERO, QURTR, HALF, ONE, TWO, HUNDRD
PARAMETER ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
$ ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
* ..
* .. Local Scalars ..
INTEGER IPN4, J4, N0IN, NN, TTYPE
DOUBLE PRECISION EPS, S, T, TEMP, TOL, TOL2
* ..
* .. External Subroutines ..
EXTERNAL DLASQ4, DLASQ5, DLASQ6
* ..
* .. External Function ..
DOUBLE PRECISION DLAMCH
LOGICAL DISNAN
EXTERNAL DISNAN, DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
N0IN = N0
EPS = DLAMCH( 'Precision' )
TOL = EPS*HUNDRD
TOL2 = TOL**2
*
* Check for deflation.
*
10 CONTINUE
*
IF( N0.LT.I0 )
$ RETURN
IF( N0.EQ.I0 )
$ GO TO 20
NN = 4*N0 + PP
IF( N0.EQ.( I0+1 ) )
$ GO TO 40
*
* Check whether E(N0-1) is negligible, 1 eigenvalue.
*
IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
$ Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
$ GO TO 30
*
20 CONTINUE
*
Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
N0 = N0 - 1
GO TO 10
*
* Check whether E(N0-2) is negligible, 2 eigenvalues.
*
30 CONTINUE
*
IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
$ Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
$ GO TO 50
*
40 CONTINUE
*
IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
S = Z( NN-3 )
Z( NN-3 ) = Z( NN-7 )
Z( NN-7 ) = S
END IF
T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2.AND.T.NE.ZERO ) THEN
S = Z( NN-3 )*( Z( NN-5 ) / T )
IF( S.LE.T ) THEN
S = Z( NN-3 )*( Z( NN-5 ) /
$ ( T*( ONE+SQRT( ONE+S / T ) ) ) )
ELSE
S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
END IF
T = Z( NN-7 ) + ( S+Z( NN-5 ) )
Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
Z( NN-7 ) = T
END IF
Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
N0 = N0 - 2
GO TO 10
*
50 CONTINUE
IF( PP.EQ.2 )
$ PP = 0
*
* Reverse the qd-array, if warranted.
*
IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
IPN4 = 4*( I0+N0 )
DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
TEMP = Z( J4-3 )
Z( J4-3 ) = Z( IPN4-J4-3 )
Z( IPN4-J4-3 ) = TEMP
TEMP = Z( J4-2 )
Z( J4-2 ) = Z( IPN4-J4-2 )
Z( IPN4-J4-2 ) = TEMP
TEMP = Z( J4-1 )
Z( J4-1 ) = Z( IPN4-J4-5 )
Z( IPN4-J4-5 ) = TEMP
TEMP = Z( J4 )
Z( J4 ) = Z( IPN4-J4-4 )
Z( IPN4-J4-4 ) = TEMP
60 CONTINUE
IF( N0-I0.LE.4 ) THEN
Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
Z( 4*N0-PP ) = Z( 4*I0-PP )
END IF
DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
$ Z( 4*I0+PP+3 ) )
Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
$ Z( 4*I0-PP+4 ) )
QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
DMIN = -ZERO
END IF
END IF
*
* Choose a shift.
*
! Print out DLASQ4 test cases
write(4,*) "{"
write(4,'(9999(g0))',advance="no") "z: []float64{"
do i = 1, NN
write (4,'(99999(e24.16,a))',advance="no") z(i), ","
end do
write (4,*) "},"
write (4,*) "i0: ", I0, ","
write (4,*) "n0: ", N0, ","
write (4,*) "pp: ", PP, ","
write (4,*) "n0in: ", N0IN, ","
write (4,*) "dmin: ", DMIN, ","
write (4,*) "dmin1:", DMIN1, ","
write (4,*) "dmin2:", DMIN2, ","
write (4,*) "dn: ", DN, ","
write (4,*) "dn1: ", DN1, ","
write (4,*) "dn2: ", DN2, ","
write (4,*) "tau: ", TAU, ","
write (4,*) "ttype: ", TTYPE, ","
write (4,*) "g: ", G, ","
CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
$ DN2, TAU, TTYPE, G )
write(4,'(9999(g0))',advance="no") "zOut: []float64{"
do i = 1, NN
write (4,'(99999(e24.16,a))',advance="no") z(i), ","
end do
write (4,*) "},"
write (4,*) "tauOut: ", TAU, ","
write (4,*) "ttypeOut: ", TTYPE, ","
write (4,*) "gOut: ", G, ","
write (4,*) "},"
*
* Call dqds until DMIN > 0.
*
70 CONTINUE
*
write(5,*) "{"
write(5,'(9999(g0))',advance="no") "z: []float64{"
do i = 1, NN
write (5,'(99999(e24.16,a))',advance="no") z(i), ","
end do
write (5,*) "},"
write (5,*) "i0: ", I0, ","
write (5,*) "n0: ", N0, ","
write (5,*) "pp: ", PP, ","
write (5,*) "tau: ", TAU, ","
write (5,*) "sigma: ", SIGMA, ","
write (5,*) "dmin: ", DMIN, ","
write (5,*) "dmin1:", DMIN1, ","
write (5,*) "dmin2:", DMIN2, ","
write (5,*) "dn: ", DN, ","
write (5,*) "dnm1: ", DN1, ","
write (5,*) "dnm2: ", DN2, ","
CALL DLASQ5( I0, N0, Z, PP, TAU, SIGMA, DMIN, DMIN1, DMIN2, DN,
$ DN1, DN2, IEEE, EPS )
write (5,*) "i0Out: ", I0, ","
write (5,*) "n0Out: ", N0, ","
write (5,*) "ppOut: ", PP, ","
write (5,*) "tauOut: ", TAU, ","
write (5,*) "sigmaOut: ", SIGMA, ","
write (5,*) "dminOut: ", DMIN, ","
write (5,*) "dmin1Out:", DMIN1, ","
write (5,*) "dmin2Out:", DMIN2, ","
write (5,*) "dnOut: ", DN, ","
write (5,*) "dnm1Out: ", DN1, ","
write (5,*) "dnm2Out: ", DN2, ","
write (5,*) "},"
*
NDIV = NDIV + ( N0-I0+2 )
ITER = ITER + 1
*
* Check status.
*
IF( DMIN.GE.ZERO .AND. DMIN1.GE.ZERO ) THEN
*
* Success.
*
GO TO 90
*
ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND.
$ Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
$ ABS( DN ).LT.TOL*SIGMA ) THEN
*
* Convergence hidden by negative DN.
*
Z( 4*( N0-1 )-PP+2 ) = ZERO
DMIN = ZERO
GO TO 90
ELSE IF( DMIN.LT.ZERO ) THEN
*
* TAU too big. Select new TAU and try again.
*
NFAIL = NFAIL + 1
IF( TTYPE.LT.-22 ) THEN
*
* Failed twice. Play it safe.
*
TAU = ZERO
ELSE IF( DMIN1.GT.ZERO ) THEN
*
* Late failure. Gives excellent shift.
*
TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
TTYPE = TTYPE - 11
ELSE
*
* Early failure. Divide by 4.
*
TAU = QURTR*TAU
TTYPE = TTYPE - 12
END IF
GO TO 70
ELSE IF( DISNAN( DMIN ) ) THEN
*
* NaN.
*
IF( TAU.EQ.ZERO ) THEN
GO TO 80
ELSE
TAU = ZERO
GO TO 70
END IF
ELSE
*
* Possible underflow. Play it safe.
*
GO TO 80
END IF
*
* Risk of underflow.
*
80 CONTINUE
CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
NDIV = NDIV + ( N0-I0+2 )
ITER = ITER + 1
TAU = ZERO
*
90 CONTINUE
IF( TAU.LT.SIGMA ) THEN
DESIG = DESIG + TAU
T = SIGMA + DESIG
DESIG = DESIG - ( T-SIGMA )
ELSE
T = SIGMA + TAU
DESIG = SIGMA - ( T-TAU ) + DESIG
END IF
SIGMA = T
*
RETURN
*
* End of DLASQ3
*
END
| apache-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/zgeqr2p.f | 19 | 5226 | *> \brief \b ZGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGEQR2P + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqr2p.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqr2p.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqr2p.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGEQR2P computes a QR factorization of a complex m by n matrix A:
*> A = Q * R.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the m by n matrix A.
*> On exit, the elements on and above the diagonal of the array
*> contain the min(m,n) by n upper trapezoidal matrix R (R is
*> upper triangular if m >= n); the elements below the diagonal,
*> with the array TAU, represent the unitary matrix Q as a
*> product of elementary reflectors (see Further Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX*16 array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors (see Further
*> Details).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complex16GEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of elementary reflectors
*>
*> Q = H(1) H(2) . . . H(k), where k = min(m,n).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**H
*>
*> where tau is a complex scalar, and v is a complex vector with
*> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
*> and tau in TAU(i).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, K
COMPLEX*16 ALPHA
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZLARF, ZLARFGP
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEQR2P', -INFO )
RETURN
END IF
*
K = MIN( M, N )
*
DO 10 I = 1, K
*
* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
*
CALL ZLARFGP( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
$ TAU( I ) )
IF( I.LT.N ) THEN
*
* Apply H(i)**H to A(i:m,i+1:n) from the left
*
ALPHA = A( I, I )
A( I, I ) = ONE
CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
$ DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
A( I, I ) = ALPHA
END IF
10 CONTINUE
RETURN
*
* End of ZGEQR2P
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/LIN/derrqrtp.f | 31 | 6965 | *> \brief \b DERRQRTP
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DERRQRTP( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DERRQRTP tests the error exits for the REAL routines
*> that use the QRT decomposition of a triangular-pentagonal matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DERRQRTP( PATH, NUNIT )
IMPLICIT NONE
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 2 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
* ..
* .. Local Arrays ..
DOUBLE PRECISION A( NMAX, NMAX ), T( NMAX, NMAX ), W( NMAX ),
$ B( NMAX, NMAX ), C( NMAX, NMAX )
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, DTPQRT2, DTPQRT,
$ DTPMQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
*
* Set the variables to innocuous values.
*
DO J = 1, NMAX
DO I = 1, NMAX
A( I, J ) = 1.D0 / DBLE( I+J )
C( I, J ) = 1.D0 / DBLE( I+J )
T( I, J ) = 1.D0 / DBLE( I+J )
END DO
W( J ) = 0.0
END DO
OK = .TRUE.
*
* Error exits for TPQRT factorization
*
* DTPQRT
*
SRNAMT = 'DTPQRT'
INFOT = 1
CALL DTPQRT( -1, 1, 0, 1, A, 1, B, 1, T, 1, W, INFO )
CALL CHKXER( 'DTPQRT', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTPQRT( 1, -1, 0, 1, A, 1, B, 1, T, 1, W, INFO )
CALL CHKXER( 'DTPQRT', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTPQRT( 0, 1, -1, 1, A, 1, B, 1, T, 1, W, INFO )
CALL CHKXER( 'DTPQRT', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTPQRT( 0, 1, 1, 1, A, 1, B, 1, T, 1, W, INFO )
CALL CHKXER( 'DTPQRT', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTPQRT( 0, 1, 0, 0, A, 1, B, 1, T, 1, W, INFO )
CALL CHKXER( 'DTPQRT', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTPQRT( 0, 1, 0, 2, A, 1, B, 1, T, 1, W, INFO )
CALL CHKXER( 'DTPQRT', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTPQRT( 1, 2, 0, 2, A, 1, B, 1, T, 1, W, INFO )
CALL CHKXER( 'DTPQRT', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DTPQRT( 2, 1, 0, 1, A, 1, B, 1, T, 1, W, INFO )
CALL CHKXER( 'DTPQRT', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DTPQRT( 2, 2, 1, 2, A, 2, B, 2, T, 1, W, INFO )
CALL CHKXER( 'DTPQRT', INFOT, NOUT, LERR, OK )
*
* DTPQRT2
*
SRNAMT = 'DTPQRT2'
INFOT = 1
CALL DTPQRT2( -1, 0, 0, A, 1, B, 1, T, 1, INFO )
CALL CHKXER( 'DTPQRT2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTPQRT2( 0, -1, 0, A, 1, B, 1, T, 1, INFO )
CALL CHKXER( 'DTPQRT2', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTPQRT2( 0, 0, -1, A, 1, B, 1, T, 1, INFO )
CALL CHKXER( 'DTPQRT2', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTPQRT2( 2, 2, 0, A, 1, B, 2, T, 2, INFO )
CALL CHKXER( 'DTPQRT2', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DTPQRT2( 2, 2, 0, A, 2, B, 1, T, 2, INFO )
CALL CHKXER( 'DTPQRT2', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTPQRT2( 2, 2, 0, A, 2, B, 2, T, 1, INFO )
CALL CHKXER( 'DTPQRT2', INFOT, NOUT, LERR, OK )
*
* DTPMQRT
*
SRNAMT = 'DTPMQRT'
INFOT = 1
CALL DTPMQRT( '/', 'N', 0, 0, 0, 0, 1, A, 1, T, 1, B, 1, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTPMQRT( 'L', '/', 0, 0, 0, 0, 1, A, 1, T, 1, B, 1, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTPMQRT( 'L', 'N', -1, 0, 0, 0, 1, A, 1, T, 1, B, 1, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTPMQRT( 'L', 'N', 0, -1, 0, 0, 1, A, 1, T, 1, B, 1, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTPMQRT( 'L', 'N', 0, 0, -1, 0, 1, A, 1, T, 1, B, 1, C, 1,
$ W, INFO )
INFOT = 6
CALL DTPMQRT( 'L', 'N', 0, 0, 0, -1, 1, A, 1, T, 1, B, 1, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DTPMQRT( 'L', 'N', 0, 0, 0, 0, 0, A, 1, T, 1, B, 1, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTPMQRT( 'R', 'N', 1, 2, 1, 1, 1, A, 1, T, 1, B, 1, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTPMQRT( 'L', 'N', 2, 1, 1, 1, 1, A, 1, T, 1, B, 1, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTPMQRT( 'R', 'N', 1, 1, 1, 1, 1, A, 1, T, 0, B, 1, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 13
CALL DTPMQRT( 'L', 'N', 1, 1, 1, 1, 1, A, 1, T, 1, B, 0, C, 1,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
INFOT = 15
CALL DTPMQRT( 'L', 'N', 1, 1, 1, 1, 1, A, 1, T, 1, B, 1, C, 0,
$ W, INFO )
CALL CHKXER( 'DTPMQRT', INFOT, NOUT, LERR, OK )
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of DERRQRT
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/cbdsqr.f | 20 | 25968 | *> \brief \b CBDSQR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CBDSQR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbdsqr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbdsqr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbdsqr.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
* LDU, C, LDC, RWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
* ..
* .. Array Arguments ..
* REAL D( * ), E( * ), RWORK( * )
* COMPLEX C( LDC, * ), U( LDU, * ), VT( LDVT, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CBDSQR computes the singular values and, optionally, the right and/or
*> left singular vectors from the singular value decomposition (SVD) of
*> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
*> zero-shift QR algorithm. The SVD of B has the form
*>
*> B = Q * S * P**H
*>
*> where S is the diagonal matrix of singular values, Q is an orthogonal
*> matrix of left singular vectors, and P is an orthogonal matrix of
*> right singular vectors. If left singular vectors are requested, this
*> subroutine actually returns U*Q instead of Q, and, if right singular
*> vectors are requested, this subroutine returns P**H*VT instead of
*> P**H, for given complex input matrices U and VT. When U and VT are
*> the unitary matrices that reduce a general matrix A to bidiagonal
*> form: A = U*B*VT, as computed by CGEBRD, then
*>
*> A = (U*Q) * S * (P**H*VT)
*>
*> is the SVD of A. Optionally, the subroutine may also compute Q**H*C
*> for a given complex input matrix C.
*>
*> See "Computing Small Singular Values of Bidiagonal Matrices With
*> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
*> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
*> no. 5, pp. 873-912, Sept 1990) and
*> "Accurate singular values and differential qd algorithms," by
*> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
*> Department, University of California at Berkeley, July 1992
*> for a detailed description of the algorithm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': B is upper bidiagonal;
*> = 'L': B is lower bidiagonal.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix B. N >= 0.
*> \endverbatim
*>
*> \param[in] NCVT
*> \verbatim
*> NCVT is INTEGER
*> The number of columns of the matrix VT. NCVT >= 0.
*> \endverbatim
*>
*> \param[in] NRU
*> \verbatim
*> NRU is INTEGER
*> The number of rows of the matrix U. NRU >= 0.
*> \endverbatim
*>
*> \param[in] NCC
*> \verbatim
*> NCC is INTEGER
*> The number of columns of the matrix C. NCC >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is REAL array, dimension (N)
*> On entry, the n diagonal elements of the bidiagonal matrix B.
*> On exit, if INFO=0, the singular values of B in decreasing
*> order.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is REAL array, dimension (N-1)
*> On entry, the N-1 offdiagonal elements of the bidiagonal
*> matrix B.
*> On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
*> will contain the diagonal and superdiagonal elements of a
*> bidiagonal matrix orthogonally equivalent to the one given
*> as input.
*> \endverbatim
*>
*> \param[in,out] VT
*> \verbatim
*> VT is COMPLEX array, dimension (LDVT, NCVT)
*> On entry, an N-by-NCVT matrix VT.
*> On exit, VT is overwritten by P**H * VT.
*> Not referenced if NCVT = 0.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*> LDVT is INTEGER
*> The leading dimension of the array VT.
*> LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
*> \endverbatim
*>
*> \param[in,out] U
*> \verbatim
*> U is COMPLEX array, dimension (LDU, N)
*> On entry, an NRU-by-N matrix U.
*> On exit, U is overwritten by U * Q.
*> Not referenced if NRU = 0.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of the array U. LDU >= max(1,NRU).
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC, NCC)
*> On entry, an N-by-NCC matrix C.
*> On exit, C is overwritten by Q**H * C.
*> Not referenced if NCC = 0.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C.
*> LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (2*N)
*> if NCVT = NRU = NCC = 0, (max(1, 4*N-4)) otherwise
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: If INFO = -i, the i-th argument had an illegal value
*> > 0: the algorithm did not converge; D and E contain the
*> elements of a bidiagonal matrix which is orthogonally
*> similar to the input matrix B; if INFO = i, i
*> elements of E have not converged to zero.
*> \endverbatim
*
*> \par Internal Parameters:
* =========================
*>
*> \verbatim
*> TOLMUL REAL, default = max(10,min(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> If it is positive, TOLMUL*EPS is the desired relative
*> precision in the computed singular values.
*> If it is negative, abs(TOLMUL*EPS*sigma_max) is the
*> desired absolute accuracy in the computed singular
*> values (corresponds to relative accuracy
*> abs(TOLMUL*EPS) in the largest singular value.
*> abs(TOLMUL) should be between 1 and 1/EPS, and preferably
*> between 10 (for fast convergence) and .1/EPS
*> (for there to be some accuracy in the results).
*> Default is to lose at either one eighth or 2 of the
*> available decimal digits in each computed singular value
*> (whichever is smaller).
*>
*> MAXITR INTEGER, default = 6
*> MAXITR controls the maximum number of passes of the
*> algorithm through its inner loop. The algorithms stops
*> (and so fails to converge) if the number of passes
*> through the inner loop exceeds MAXITR*N**2.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
$ LDU, C, LDC, RWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
* ..
* .. Array Arguments ..
REAL D( * ), E( * ), RWORK( * )
COMPLEX C( LDC, * ), U( LDU, * ), VT( LDVT, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
REAL ONE
PARAMETER ( ONE = 1.0E0 )
REAL NEGONE
PARAMETER ( NEGONE = -1.0E0 )
REAL HNDRTH
PARAMETER ( HNDRTH = 0.01E0 )
REAL TEN
PARAMETER ( TEN = 10.0E0 )
REAL HNDRD
PARAMETER ( HNDRD = 100.0E0 )
REAL MEIGTH
PARAMETER ( MEIGTH = -0.125E0 )
INTEGER MAXITR
PARAMETER ( MAXITR = 6 )
* ..
* .. Local Scalars ..
LOGICAL LOWER, ROTATE
INTEGER I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
$ NM12, NM13, OLDLL, OLDM
REAL ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
$ OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
$ SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
$ SN, THRESH, TOL, TOLMUL, UNFL
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH
EXTERNAL LSAME, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLASR, CSROT, CSSCAL, CSWAP, SLARTG, SLAS2,
$ SLASQ1, SLASV2, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL, SIGN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
LOWER = LSAME( UPLO, 'L' )
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NCVT.LT.0 ) THEN
INFO = -3
ELSE IF( NRU.LT.0 ) THEN
INFO = -4
ELSE IF( NCC.LT.0 ) THEN
INFO = -5
ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
$ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
INFO = -9
ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
INFO = -11
ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
$ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
INFO = -13
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CBDSQR', -INFO )
RETURN
END IF
IF( N.EQ.0 )
$ RETURN
IF( N.EQ.1 )
$ GO TO 160
*
* ROTATE is true if any singular vectors desired, false otherwise
*
ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
*
* If no singular vectors desired, use qd algorithm
*
IF( .NOT.ROTATE ) THEN
CALL SLASQ1( N, D, E, RWORK, INFO )
*
* If INFO equals 2, dqds didn't finish, try to finish
*
IF( INFO .NE. 2 ) RETURN
INFO = 0
END IF
*
NM1 = N - 1
NM12 = NM1 + NM1
NM13 = NM12 + NM1
IDIR = 0
*
* Get machine constants
*
EPS = SLAMCH( 'Epsilon' )
UNFL = SLAMCH( 'Safe minimum' )
*
* If matrix lower bidiagonal, rotate to be upper bidiagonal
* by applying Givens rotations on the left
*
IF( LOWER ) THEN
DO 10 I = 1, N - 1
CALL SLARTG( D( I ), E( I ), CS, SN, R )
D( I ) = R
E( I ) = SN*D( I+1 )
D( I+1 ) = CS*D( I+1 )
RWORK( I ) = CS
RWORK( NM1+I ) = SN
10 CONTINUE
*
* Update singular vectors if desired
*
IF( NRU.GT.0 )
$ CALL CLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), RWORK( N ),
$ U, LDU )
IF( NCC.GT.0 )
$ CALL CLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), RWORK( N ),
$ C, LDC )
END IF
*
* Compute singular values to relative accuracy TOL
* (By setting TOL to be negative, algorithm will compute
* singular values to absolute accuracy ABS(TOL)*norm(input matrix))
*
TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
TOL = TOLMUL*EPS
*
* Compute approximate maximum, minimum singular values
*
SMAX = ZERO
DO 20 I = 1, N
SMAX = MAX( SMAX, ABS( D( I ) ) )
20 CONTINUE
DO 30 I = 1, N - 1
SMAX = MAX( SMAX, ABS( E( I ) ) )
30 CONTINUE
SMINL = ZERO
IF( TOL.GE.ZERO ) THEN
*
* Relative accuracy desired
*
SMINOA = ABS( D( 1 ) )
IF( SMINOA.EQ.ZERO )
$ GO TO 50
MU = SMINOA
DO 40 I = 2, N
MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
SMINOA = MIN( SMINOA, MU )
IF( SMINOA.EQ.ZERO )
$ GO TO 50
40 CONTINUE
50 CONTINUE
SMINOA = SMINOA / SQRT( REAL( N ) )
THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
ELSE
*
* Absolute accuracy desired
*
THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
END IF
*
* Prepare for main iteration loop for the singular values
* (MAXIT is the maximum number of passes through the inner
* loop permitted before nonconvergence signalled.)
*
MAXIT = MAXITR*N*N
ITER = 0
OLDLL = -1
OLDM = -1
*
* M points to last element of unconverged part of matrix
*
M = N
*
* Begin main iteration loop
*
60 CONTINUE
*
* Check for convergence or exceeding iteration count
*
IF( M.LE.1 )
$ GO TO 160
IF( ITER.GT.MAXIT )
$ GO TO 200
*
* Find diagonal block of matrix to work on
*
IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
$ D( M ) = ZERO
SMAX = ABS( D( M ) )
SMIN = SMAX
DO 70 LLL = 1, M - 1
LL = M - LLL
ABSS = ABS( D( LL ) )
ABSE = ABS( E( LL ) )
IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
$ D( LL ) = ZERO
IF( ABSE.LE.THRESH )
$ GO TO 80
SMIN = MIN( SMIN, ABSS )
SMAX = MAX( SMAX, ABSS, ABSE )
70 CONTINUE
LL = 0
GO TO 90
80 CONTINUE
E( LL ) = ZERO
*
* Matrix splits since E(LL) = 0
*
IF( LL.EQ.M-1 ) THEN
*
* Convergence of bottom singular value, return to top of loop
*
M = M - 1
GO TO 60
END IF
90 CONTINUE
LL = LL + 1
*
* E(LL) through E(M-1) are nonzero, E(LL-1) is zero
*
IF( LL.EQ.M-1 ) THEN
*
* 2 by 2 block, handle separately
*
CALL SLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
$ COSR, SINL, COSL )
D( M-1 ) = SIGMX
E( M-1 ) = ZERO
D( M ) = SIGMN
*
* Compute singular vectors, if desired
*
IF( NCVT.GT.0 )
$ CALL CSROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT,
$ COSR, SINR )
IF( NRU.GT.0 )
$ CALL CSROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
IF( NCC.GT.0 )
$ CALL CSROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
$ SINL )
M = M - 2
GO TO 60
END IF
*
* If working on new submatrix, choose shift direction
* (from larger end diagonal element towards smaller)
*
IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
*
* Chase bulge from top (big end) to bottom (small end)
*
IDIR = 1
ELSE
*
* Chase bulge from bottom (big end) to top (small end)
*
IDIR = 2
END IF
END IF
*
* Apply convergence tests
*
IF( IDIR.EQ.1 ) THEN
*
* Run convergence test in forward direction
* First apply standard test to bottom of matrix
*
IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
$ ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
E( M-1 ) = ZERO
GO TO 60
END IF
*
IF( TOL.GE.ZERO ) THEN
*
* If relative accuracy desired,
* apply convergence criterion forward
*
MU = ABS( D( LL ) )
SMINL = MU
DO 100 LLL = LL, M - 1
IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
E( LLL ) = ZERO
GO TO 60
END IF
MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
SMINL = MIN( SMINL, MU )
100 CONTINUE
END IF
*
ELSE
*
* Run convergence test in backward direction
* First apply standard test to top of matrix
*
IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
$ ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
E( LL ) = ZERO
GO TO 60
END IF
*
IF( TOL.GE.ZERO ) THEN
*
* If relative accuracy desired,
* apply convergence criterion backward
*
MU = ABS( D( M ) )
SMINL = MU
DO 110 LLL = M - 1, LL, -1
IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
E( LLL ) = ZERO
GO TO 60
END IF
MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
SMINL = MIN( SMINL, MU )
110 CONTINUE
END IF
END IF
OLDLL = LL
OLDM = M
*
* Compute shift. First, test if shifting would ruin relative
* accuracy, and if so set the shift to zero.
*
IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
$ MAX( EPS, HNDRTH*TOL ) ) THEN
*
* Use a zero shift to avoid loss of relative accuracy
*
SHIFT = ZERO
ELSE
*
* Compute the shift from 2-by-2 block at end of matrix
*
IF( IDIR.EQ.1 ) THEN
SLL = ABS( D( LL ) )
CALL SLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
ELSE
SLL = ABS( D( M ) )
CALL SLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
END IF
*
* Test if shift negligible, and if so set to zero
*
IF( SLL.GT.ZERO ) THEN
IF( ( SHIFT / SLL )**2.LT.EPS )
$ SHIFT = ZERO
END IF
END IF
*
* Increment iteration count
*
ITER = ITER + M - LL
*
* If SHIFT = 0, do simplified QR iteration
*
IF( SHIFT.EQ.ZERO ) THEN
IF( IDIR.EQ.1 ) THEN
*
* Chase bulge from top to bottom
* Save cosines and sines for later singular vector updates
*
CS = ONE
OLDCS = ONE
DO 120 I = LL, M - 1
CALL SLARTG( D( I )*CS, E( I ), CS, SN, R )
IF( I.GT.LL )
$ E( I-1 ) = OLDSN*R
CALL SLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
RWORK( I-LL+1 ) = CS
RWORK( I-LL+1+NM1 ) = SN
RWORK( I-LL+1+NM12 ) = OLDCS
RWORK( I-LL+1+NM13 ) = OLDSN
120 CONTINUE
H = D( M )*CS
D( M ) = H*OLDCS
E( M-1 ) = H*OLDSN
*
* Update singular vectors
*
IF( NCVT.GT.0 )
$ CALL CLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
$ RWORK( N ), VT( LL, 1 ), LDVT )
IF( NRU.GT.0 )
$ CALL CLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
$ RWORK( NM13+1 ), U( 1, LL ), LDU )
IF( NCC.GT.0 )
$ CALL CLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
$ RWORK( NM13+1 ), C( LL, 1 ), LDC )
*
* Test convergence
*
IF( ABS( E( M-1 ) ).LE.THRESH )
$ E( M-1 ) = ZERO
*
ELSE
*
* Chase bulge from bottom to top
* Save cosines and sines for later singular vector updates
*
CS = ONE
OLDCS = ONE
DO 130 I = M, LL + 1, -1
CALL SLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
IF( I.LT.M )
$ E( I ) = OLDSN*R
CALL SLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
RWORK( I-LL ) = CS
RWORK( I-LL+NM1 ) = -SN
RWORK( I-LL+NM12 ) = OLDCS
RWORK( I-LL+NM13 ) = -OLDSN
130 CONTINUE
H = D( LL )*CS
D( LL ) = H*OLDCS
E( LL ) = H*OLDSN
*
* Update singular vectors
*
IF( NCVT.GT.0 )
$ CALL CLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
$ RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
IF( NRU.GT.0 )
$ CALL CLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
$ RWORK( N ), U( 1, LL ), LDU )
IF( NCC.GT.0 )
$ CALL CLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
$ RWORK( N ), C( LL, 1 ), LDC )
*
* Test convergence
*
IF( ABS( E( LL ) ).LE.THRESH )
$ E( LL ) = ZERO
END IF
ELSE
*
* Use nonzero shift
*
IF( IDIR.EQ.1 ) THEN
*
* Chase bulge from top to bottom
* Save cosines and sines for later singular vector updates
*
F = ( ABS( D( LL ) )-SHIFT )*
$ ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
G = E( LL )
DO 140 I = LL, M - 1
CALL SLARTG( F, G, COSR, SINR, R )
IF( I.GT.LL )
$ E( I-1 ) = R
F = COSR*D( I ) + SINR*E( I )
E( I ) = COSR*E( I ) - SINR*D( I )
G = SINR*D( I+1 )
D( I+1 ) = COSR*D( I+1 )
CALL SLARTG( F, G, COSL, SINL, R )
D( I ) = R
F = COSL*E( I ) + SINL*D( I+1 )
D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
IF( I.LT.M-1 ) THEN
G = SINL*E( I+1 )
E( I+1 ) = COSL*E( I+1 )
END IF
RWORK( I-LL+1 ) = COSR
RWORK( I-LL+1+NM1 ) = SINR
RWORK( I-LL+1+NM12 ) = COSL
RWORK( I-LL+1+NM13 ) = SINL
140 CONTINUE
E( M-1 ) = F
*
* Update singular vectors
*
IF( NCVT.GT.0 )
$ CALL CLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
$ RWORK( N ), VT( LL, 1 ), LDVT )
IF( NRU.GT.0 )
$ CALL CLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
$ RWORK( NM13+1 ), U( 1, LL ), LDU )
IF( NCC.GT.0 )
$ CALL CLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
$ RWORK( NM13+1 ), C( LL, 1 ), LDC )
*
* Test convergence
*
IF( ABS( E( M-1 ) ).LE.THRESH )
$ E( M-1 ) = ZERO
*
ELSE
*
* Chase bulge from bottom to top
* Save cosines and sines for later singular vector updates
*
F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
$ D( M ) )
G = E( M-1 )
DO 150 I = M, LL + 1, -1
CALL SLARTG( F, G, COSR, SINR, R )
IF( I.LT.M )
$ E( I ) = R
F = COSR*D( I ) + SINR*E( I-1 )
E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
G = SINR*D( I-1 )
D( I-1 ) = COSR*D( I-1 )
CALL SLARTG( F, G, COSL, SINL, R )
D( I ) = R
F = COSL*E( I-1 ) + SINL*D( I-1 )
D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
IF( I.GT.LL+1 ) THEN
G = SINL*E( I-2 )
E( I-2 ) = COSL*E( I-2 )
END IF
RWORK( I-LL ) = COSR
RWORK( I-LL+NM1 ) = -SINR
RWORK( I-LL+NM12 ) = COSL
RWORK( I-LL+NM13 ) = -SINL
150 CONTINUE
E( LL ) = F
*
* Test convergence
*
IF( ABS( E( LL ) ).LE.THRESH )
$ E( LL ) = ZERO
*
* Update singular vectors if desired
*
IF( NCVT.GT.0 )
$ CALL CLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
$ RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
IF( NRU.GT.0 )
$ CALL CLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
$ RWORK( N ), U( 1, LL ), LDU )
IF( NCC.GT.0 )
$ CALL CLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
$ RWORK( N ), C( LL, 1 ), LDC )
END IF
END IF
*
* QR iteration finished, go back and check convergence
*
GO TO 60
*
* All singular values converged, so make them positive
*
160 CONTINUE
DO 170 I = 1, N
IF( D( I ).LT.ZERO ) THEN
D( I ) = -D( I )
*
* Change sign of singular vectors, if desired
*
IF( NCVT.GT.0 )
$ CALL CSSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
END IF
170 CONTINUE
*
* Sort the singular values into decreasing order (insertion sort on
* singular values, but only one transposition per singular vector)
*
DO 190 I = 1, N - 1
*
* Scan for smallest D(I)
*
ISUB = 1
SMIN = D( 1 )
DO 180 J = 2, N + 1 - I
IF( D( J ).LE.SMIN ) THEN
ISUB = J
SMIN = D( J )
END IF
180 CONTINUE
IF( ISUB.NE.N+1-I ) THEN
*
* Swap singular values and vectors
*
D( ISUB ) = D( N+1-I )
D( N+1-I ) = SMIN
IF( NCVT.GT.0 )
$ CALL CSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
$ LDVT )
IF( NRU.GT.0 )
$ CALL CSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
IF( NCC.GT.0 )
$ CALL CSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
END IF
190 CONTINUE
GO TO 220
*
* Maximum number of iterations exceeded, failure to converge
*
200 CONTINUE
INFO = 0
DO 210 I = 1, N - 1
IF( E( I ).NE.ZERO )
$ INFO = INFO + 1
210 CONTINUE
220 CONTINUE
RETURN
*
* End of CBDSQR
*
END
| gpl-2.0 |
QEF/q-e | Modules/parameters.f90 | 2 | 1025 | !
! Copyright (C) 2001-2020 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
MODULE parameters
!
!! Upper limits on k-points, atoms and supercell size.
!
IMPLICIT NONE
SAVE
INTEGER, PARAMETER :: npk = 40000
!! max number of k-points
INTEGER, PARAMETER :: ntypx = 10
!! max number of different types of atom
INTEGER, PARAMETER :: nsx = ntypx
!! max number of atomic species (CP)
INTEGER, PARAMETER :: natx = 50
!! max number of atoms for DFT+U+V calculations
INTEGER, PARAMETER :: sc_size = 1
!! Defines the supercell in DFT+U+V as composed by the unit cells located
!! by (n1,n2,n3) in primitive vectors base with \(-\text{sc_size} \leq ni
!! \leq \text{sc_size}\) and \((2\text{sc_size}+1)^3\) is the number of cells.
INTEGER, PARAMETER :: nsolx = 10
!! max number of solvents (RISM)
END MODULE parameters
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/EIG/zdrgev.f | 29 | 34076 | *> \brief \b ZDRGEV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRGEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
* NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, QE, LDQE,
* ALPHA, BETA, ALPHA1, BETA1, WORK, LWORK, RWORK,
* RESULT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDQ, LDQE, LWORK, NOUNIT, NSIZES,
* $ NTYPES
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER ISEED( 4 ), NN( * )
* DOUBLE PRECISION RESULT( * ), RWORK( * )
* COMPLEX*16 A( LDA, * ), ALPHA( * ), ALPHA1( * ),
* $ B( LDA, * ), BETA( * ), BETA1( * ),
* $ Q( LDQ, * ), QE( LDQE, * ), S( LDA, * ),
* $ T( LDA, * ), WORK( * ), Z( LDQ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRGEV checks the nonsymmetric generalized eigenvalue problem driver
*> routine ZGGEV.
*>
*> ZGGEV computes for a pair of n-by-n nonsymmetric matrices (A,B) the
*> generalized eigenvalues and, optionally, the left and right
*> eigenvectors.
*>
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
*> or a ratio alpha/beta = w, such that A - w*B is singular. It is
*> usually represented as the pair (alpha,beta), as there is reasonalbe
*> interpretation for beta=0, and even for both being zero.
*>
*> A right generalized eigenvector corresponding to a generalized
*> eigenvalue w for a pair of matrices (A,B) is a vector r such that
*> (A - wB) * r = 0. A left generalized eigenvector is a vector l such
*> that l**H * (A - wB) = 0, where l**H is the conjugate-transpose of l.
*>
*> When ZDRGEV is called, a number of matrix "sizes" ("n's") and a
*> number of matrix "types" are specified. For each size ("n")
*> and each type of matrix, a pair of matrices (A, B) will be generated
*> and used for testing. For each matrix pair, the following tests
*> will be performed and compared with the threshhold THRESH.
*>
*> Results from ZGGEV:
*>
*> (1) max over all left eigenvalue/-vector pairs (alpha/beta,l) of
*>
*> | VL**H * (beta A - alpha B) |/( ulp max(|beta A|, |alpha B|) )
*>
*> where VL**H is the conjugate-transpose of VL.
*>
*> (2) | |VL(i)| - 1 | / ulp and whether largest component real
*>
*> VL(i) denotes the i-th column of VL.
*>
*> (3) max over all left eigenvalue/-vector pairs (alpha/beta,r) of
*>
*> | (beta A - alpha B) * VR | / ( ulp max(|beta A|, |alpha B|) )
*>
*> (4) | |VR(i)| - 1 | / ulp and whether largest component real
*>
*> VR(i) denotes the i-th column of VR.
*>
*> (5) W(full) = W(partial)
*> W(full) denotes the eigenvalues computed when both l and r
*> are also computed, and W(partial) denotes the eigenvalues
*> computed when only W, only W and r, or only W and l are
*> computed.
*>
*> (6) VL(full) = VL(partial)
*> VL(full) denotes the left eigenvectors computed when both l
*> and r are computed, and VL(partial) denotes the result
*> when only l is computed.
*>
*> (7) VR(full) = VR(partial)
*> VR(full) denotes the right eigenvectors computed when both l
*> and r are also computed, and VR(partial) denotes the result
*> when only l is computed.
*>
*>
*> Test Matrices
*> ---- --------
*>
*> The sizes of the test matrices are specified by an array
*> NN(1:NSIZES); the value of each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
*> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> (1) ( 0, 0 ) (a pair of zero matrices)
*>
*> (2) ( I, 0 ) (an identity and a zero matrix)
*>
*> (3) ( 0, I ) (an identity and a zero matrix)
*>
*> (4) ( I, I ) (a pair of identity matrices)
*>
*> t t
*> (5) ( J , J ) (a pair of transposed Jordan blocks)
*>
*> t ( I 0 )
*> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t )
*> ( 0 I ) ( 0 J )
*> and I is a k x k identity and J a (k+1)x(k+1)
*> Jordan block; k=(N-1)/2
*>
*> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal
*> matrix with those diagonal entries.)
*> (8) ( I, D )
*>
*> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big
*>
*> (10) ( small*D, big*I )
*>
*> (11) ( big*I, small*D )
*>
*> (12) ( small*I, big*D )
*>
*> (13) ( big*D, big*I )
*>
*> (14) ( small*D, small*I )
*>
*> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
*> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
*> t t
*> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices.
*>
*> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices
*> with random O(1) entries above the diagonal
*> and diagonal entries diag(T1) =
*> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
*> ( 0, N-3, N-4,..., 1, 0, 0 )
*>
*> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
*> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
*> s = machine precision.
*>
*> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
*>
*> N-5
*> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
*>
*> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
*> where r1,..., r(N-4) are random.
*>
*> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular
*> matrices.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZES
*> \verbatim
*> NSIZES is INTEGER
*> The number of sizes of matrices to use. If it is zero,
*> ZDRGES does nothing. NSIZES >= 0.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER array, dimension (NSIZES)
*> An array containing the sizes to be used for the matrices.
*> Zero values will be skipped. NN >= 0.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*> NTYPES is INTEGER
*> The number of elements in DOTYPE. If it is zero, ZDRGEV
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrix is in A. This
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size in NN a
*> matrix of that size and of type j will be generated.
*> If NTYPES is smaller than the maximum number of types
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
*> MAXTYP will not be generated. If NTYPES is larger
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*> will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The random number generator uses a linear
*> congruential sequence limited to small integers, and so
*> should produce machine independent random numbers. The
*> values of ISEED are changed on exit, and can be used in the
*> next call to ZDRGES to continue the same random number
*> sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error is
*> scaled to be O(1), so THRESH should be a reasonably small
*> multiple of 1, e.g., 10 or 100. In particular, it should
*> not depend on the precision (single vs. double) or the size
*> of the matrix. It must be at least zero.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*> NOUNIT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IERR not equal to 0.)
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension(LDA, max(NN))
*> Used to hold the original A matrix. Used as input only
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
*> DOTYPE(MAXTYP+1)=.TRUE.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A, B, S, and T.
*> It must be at least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension(LDA, max(NN))
*> Used to hold the original B matrix. Used as input only
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
*> DOTYPE(MAXTYP+1)=.TRUE.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is COMPLEX*16 array, dimension (LDA, max(NN))
*> The Schur form matrix computed from A by ZGGEV. On exit, S
*> contains the Schur form matrix corresponding to the matrix
*> in A.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX*16 array, dimension (LDA, max(NN))
*> The upper triangular matrix computed from B by ZGGEV.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX*16 array, dimension (LDQ, max(NN))
*> The (left) eigenvectors matrix computed by ZGGEV.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of Q and Z. It must
*> be at least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX*16 array, dimension( LDQ, max(NN) )
*> The (right) orthogonal matrix computed by ZGGEV.
*> \endverbatim
*>
*> \param[out] QE
*> \verbatim
*> QE is COMPLEX*16 array, dimension( LDQ, max(NN) )
*> QE holds the computed right or left eigenvectors.
*> \endverbatim
*>
*> \param[in] LDQE
*> \verbatim
*> LDQE is INTEGER
*> The leading dimension of QE. LDQE >= max(1,max(NN)).
*> \endverbatim
*>
*> \param[out] ALPHA
*> \verbatim
*> ALPHA is COMPLEX*16 array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is COMPLEX*16 array, dimension (max(NN))
*>
*> The generalized eigenvalues of (A,B) computed by ZGGEV.
*> ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th
*> generalized eigenvalue of A and B.
*> \endverbatim
*>
*> \param[out] ALPHA1
*> \verbatim
*> ALPHA1 is COMPLEX*16 array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] BETA1
*> \verbatim
*> BETA1 is COMPLEX*16 array, dimension (max(NN))
*>
*> Like ALPHAR, ALPHAI, BETA, these arrays contain the
*> eigenvalues of A and B, but those computed when ZGGEV only
*> computes a partial eigendecomposition, i.e. not the
*> eigenvalues and left and right eigenvectors.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The number of entries in WORK. LWORK >= N*(N+1)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (8*N)
*> Real workspace.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> The values computed by the tests described above.
*> The values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: A routine returned an error code. INFO is the
*> absolute value of the INFO value returned.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZDRGEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, QE, LDQE,
$ ALPHA, BETA, ALPHA1, BETA1, WORK, LWORK, RWORK,
$ RESULT, INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDQ, LDQE, LWORK, NOUNIT, NSIZES,
$ NTYPES
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER ISEED( 4 ), NN( * )
DOUBLE PRECISION RESULT( * ), RWORK( * )
COMPLEX*16 A( LDA, * ), ALPHA( * ), ALPHA1( * ),
$ B( LDA, * ), BETA( * ), BETA1( * ),
$ Q( LDQ, * ), QE( LDQE, * ), S( LDA, * ),
$ T( LDA, * ), WORK( * ), Z( LDQ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 26 )
* ..
* .. Local Scalars ..
LOGICAL BADNN
INTEGER I, IADD, IERR, IN, J, JC, JR, JSIZE, JTYPE,
$ MAXWRK, MINWRK, MTYPES, N, N1, NB, NERRS,
$ NMATS, NMAX, NTESTT
DOUBLE PRECISION SAFMAX, SAFMIN, ULP, ULPINV
COMPLEX*16 CTEMP
* ..
* .. Local Arrays ..
LOGICAL LASIGN( MAXTYP ), LBSIGN( MAXTYP )
INTEGER IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
$ KATYPE( MAXTYP ), KAZERO( MAXTYP ),
$ KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
$ KBZERO( MAXTYP ), KCLASS( MAXTYP ),
$ KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
DOUBLE PRECISION RMAGN( 0: 3 )
* ..
* .. External Functions ..
INTEGER ILAENV
DOUBLE PRECISION DLAMCH
COMPLEX*16 ZLARND
EXTERNAL ILAENV, DLAMCH, ZLARND
* ..
* .. External Subroutines ..
EXTERNAL ALASVM, DLABAD, XERBLA, ZGET52, ZGGEV, ZLACPY,
$ ZLARFG, ZLASET, ZLATM4, ZUNM2R
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, MAX, MIN, SIGN
* ..
* .. Data statements ..
DATA KCLASS / 15*1, 10*2, 1*3 /
DATA KZ1 / 0, 1, 2, 1, 3, 3 /
DATA KZ2 / 0, 0, 1, 2, 1, 1 /
DATA KADD / 0, 0, 0, 0, 3, 2 /
DATA KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
$ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
DATA KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
$ 1, 1, -4, 2, -4, 8*8, 0 /
DATA KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
$ 4*5, 4*3, 1 /
DATA KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
$ 4*6, 4*4, 1 /
DATA KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
$ 2, 1 /
DATA KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
$ 2, 1 /
DATA KTRIAN / 16*0, 10*1 /
DATA LASIGN / 6*.FALSE., .TRUE., .FALSE., 2*.TRUE.,
$ 2*.FALSE., 3*.TRUE., .FALSE., .TRUE.,
$ 3*.FALSE., 5*.TRUE., .FALSE. /
DATA LBSIGN / 7*.FALSE., .TRUE., 2*.FALSE.,
$ 2*.TRUE., 2*.FALSE., .TRUE., .FALSE., .TRUE.,
$ 9*.FALSE. /
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
*
BADNN = .FALSE.
NMAX = 1
DO 10 J = 1, NSIZES
NMAX = MAX( NMAX, NN( J ) )
IF( NN( J ).LT.0 )
$ BADNN = .TRUE.
10 CONTINUE
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADNN ) THEN
INFO = -2
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -3
ELSE IF( THRESH.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
INFO = -9
ELSE IF( LDQ.LE.1 .OR. LDQ.LT.NMAX ) THEN
INFO = -14
ELSE IF( LDQE.LE.1 .OR. LDQE.LT.NMAX ) THEN
INFO = -17
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* NB refers to the optimal block size for the immediately
* following subroutine, as returned by ILAENV.
*
MINWRK = 1
IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
MINWRK = NMAX*( NMAX+1 )
NB = MAX( 1, ILAENV( 1, 'ZGEQRF', ' ', NMAX, NMAX, -1, -1 ),
$ ILAENV( 1, 'ZUNMQR', 'LC', NMAX, NMAX, NMAX, -1 ),
$ ILAENV( 1, 'ZUNGQR', ' ', NMAX, NMAX, NMAX, -1 ) )
MAXWRK = MAX( 2*NMAX, NMAX*( NB+1 ), NMAX*( NMAX+1 ) )
WORK( 1 ) = MAXWRK
END IF
*
IF( LWORK.LT.MINWRK )
$ INFO = -23
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZDRGEV', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
$ RETURN
*
ULP = DLAMCH( 'Precision' )
SAFMIN = DLAMCH( 'Safe minimum' )
SAFMIN = SAFMIN / ULP
SAFMAX = ONE / SAFMIN
CALL DLABAD( SAFMIN, SAFMAX )
ULPINV = ONE / ULP
*
* The values RMAGN(2:3) depend on N, see below.
*
RMAGN( 0 ) = ZERO
RMAGN( 1 ) = ONE
*
* Loop over sizes, types
*
NTESTT = 0
NERRS = 0
NMATS = 0
*
DO 220 JSIZE = 1, NSIZES
N = NN( JSIZE )
N1 = MAX( 1, N )
RMAGN( 2 ) = SAFMAX*ULP / DBLE( N1 )
RMAGN( 3 ) = SAFMIN*ULPINV*N1
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 210 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 210
NMATS = NMATS + 1
*
* Save ISEED in case of an error.
*
DO 20 J = 1, 4
IOLDSD( J ) = ISEED( J )
20 CONTINUE
*
* Generate test matrices A and B
*
* Description of control parameters:
*
* KZLASS: =1 means w/o rotation, =2 means w/ rotation,
* =3 means random.
* KATYPE: the "type" to be passed to ZLATM4 for computing A.
* KAZERO: the pattern of zeros on the diagonal for A:
* =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
* =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
* =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of
* non-zero entries.)
* KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
* =2: large, =3: small.
* LASIGN: .TRUE. if the diagonal elements of A are to be
* multiplied by a random magnitude 1 number.
* KBTYPE, KBZERO, KBMAGN, LBSIGN: the same, but for B.
* KTRIAN: =0: don't fill in the upper triangle, =1: do.
* KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
* RMAGN: used to implement KAMAGN and KBMAGN.
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 100
IERR = 0
IF( KCLASS( JTYPE ).LT.3 ) THEN
*
* Generate A (w/o rotation)
*
IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
IN = 2*( ( N-1 ) / 2 ) + 1
IF( IN.NE.N )
$ CALL ZLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
ELSE
IN = N
END IF
CALL ZLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
$ KZ2( KAZERO( JTYPE ) ), LASIGN( JTYPE ),
$ RMAGN( KAMAGN( JTYPE ) ), ULP,
$ RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
$ ISEED, A, LDA )
IADD = KADD( KAZERO( JTYPE ) )
IF( IADD.GT.0 .AND. IADD.LE.N )
$ A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) )
*
* Generate B (w/o rotation)
*
IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
IN = 2*( ( N-1 ) / 2 ) + 1
IF( IN.NE.N )
$ CALL ZLASET( 'Full', N, N, CZERO, CZERO, B, LDA )
ELSE
IN = N
END IF
CALL ZLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
$ KZ2( KBZERO( JTYPE ) ), LBSIGN( JTYPE ),
$ RMAGN( KBMAGN( JTYPE ) ), ONE,
$ RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
$ ISEED, B, LDA )
IADD = KADD( KBZERO( JTYPE ) )
IF( IADD.NE.0 .AND. IADD.LE.N )
$ B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) )
*
IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
*
* Include rotations
*
* Generate Q, Z as Householder transformations times
* a diagonal matrix.
*
DO 40 JC = 1, N - 1
DO 30 JR = JC, N
Q( JR, JC ) = ZLARND( 3, ISEED )
Z( JR, JC ) = ZLARND( 3, ISEED )
30 CONTINUE
CALL ZLARFG( N+1-JC, Q( JC, JC ), Q( JC+1, JC ), 1,
$ WORK( JC ) )
WORK( 2*N+JC ) = SIGN( ONE, DBLE( Q( JC, JC ) ) )
Q( JC, JC ) = CONE
CALL ZLARFG( N+1-JC, Z( JC, JC ), Z( JC+1, JC ), 1,
$ WORK( N+JC ) )
WORK( 3*N+JC ) = SIGN( ONE, DBLE( Z( JC, JC ) ) )
Z( JC, JC ) = CONE
40 CONTINUE
CTEMP = ZLARND( 3, ISEED )
Q( N, N ) = CONE
WORK( N ) = CZERO
WORK( 3*N ) = CTEMP / ABS( CTEMP )
CTEMP = ZLARND( 3, ISEED )
Z( N, N ) = CONE
WORK( 2*N ) = CZERO
WORK( 4*N ) = CTEMP / ABS( CTEMP )
*
* Apply the diagonal matrices
*
DO 60 JC = 1, N
DO 50 JR = 1, N
A( JR, JC ) = WORK( 2*N+JR )*
$ DCONJG( WORK( 3*N+JC ) )*
$ A( JR, JC )
B( JR, JC ) = WORK( 2*N+JR )*
$ DCONJG( WORK( 3*N+JC ) )*
$ B( JR, JC )
50 CONTINUE
60 CONTINUE
CALL ZUNM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, A,
$ LDA, WORK( 2*N+1 ), IERR )
IF( IERR.NE.0 )
$ GO TO 90
CALL ZUNM2R( 'R', 'C', N, N, N-1, Z, LDQ, WORK( N+1 ),
$ A, LDA, WORK( 2*N+1 ), IERR )
IF( IERR.NE.0 )
$ GO TO 90
CALL ZUNM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, B,
$ LDA, WORK( 2*N+1 ), IERR )
IF( IERR.NE.0 )
$ GO TO 90
CALL ZUNM2R( 'R', 'C', N, N, N-1, Z, LDQ, WORK( N+1 ),
$ B, LDA, WORK( 2*N+1 ), IERR )
IF( IERR.NE.0 )
$ GO TO 90
END IF
ELSE
*
* Random matrices
*
DO 80 JC = 1, N
DO 70 JR = 1, N
A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
$ ZLARND( 4, ISEED )
B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
$ ZLARND( 4, ISEED )
70 CONTINUE
80 CONTINUE
END IF
*
90 CONTINUE
*
IF( IERR.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'Generator', IERR, N, JTYPE,
$ IOLDSD
INFO = ABS( IERR )
RETURN
END IF
*
100 CONTINUE
*
DO 110 I = 1, 7
RESULT( I ) = -ONE
110 CONTINUE
*
* Call ZGGEV to compute eigenvalues and eigenvectors.
*
CALL ZLACPY( ' ', N, N, A, LDA, S, LDA )
CALL ZLACPY( ' ', N, N, B, LDA, T, LDA )
CALL ZGGEV( 'V', 'V', N, S, LDA, T, LDA, ALPHA, BETA, Q,
$ LDQ, Z, LDQ, WORK, LWORK, RWORK, IERR )
IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
RESULT( 1 ) = ULPINV
WRITE( NOUNIT, FMT = 9999 )'ZGGEV1', IERR, N, JTYPE,
$ IOLDSD
INFO = ABS( IERR )
GO TO 190
END IF
*
* Do the tests (1) and (2)
*
CALL ZGET52( .TRUE., N, A, LDA, B, LDA, Q, LDQ, ALPHA, BETA,
$ WORK, RWORK, RESULT( 1 ) )
IF( RESULT( 2 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Left', 'ZGGEV1',
$ RESULT( 2 ), N, JTYPE, IOLDSD
END IF
*
* Do the tests (3) and (4)
*
CALL ZGET52( .FALSE., N, A, LDA, B, LDA, Z, LDQ, ALPHA,
$ BETA, WORK, RWORK, RESULT( 3 ) )
IF( RESULT( 4 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Right', 'ZGGEV1',
$ RESULT( 4 ), N, JTYPE, IOLDSD
END IF
*
* Do test (5)
*
CALL ZLACPY( ' ', N, N, A, LDA, S, LDA )
CALL ZLACPY( ' ', N, N, B, LDA, T, LDA )
CALL ZGGEV( 'N', 'N', N, S, LDA, T, LDA, ALPHA1, BETA1, Q,
$ LDQ, Z, LDQ, WORK, LWORK, RWORK, IERR )
IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
RESULT( 1 ) = ULPINV
WRITE( NOUNIT, FMT = 9999 )'ZGGEV2', IERR, N, JTYPE,
$ IOLDSD
INFO = ABS( IERR )
GO TO 190
END IF
*
DO 120 J = 1, N
IF( ALPHA( J ).NE.ALPHA1( J ) .OR. BETA( J ).NE.
$ BETA1( J ) )RESULT( 5 ) = ULPINV
120 CONTINUE
*
* Do test (6): Compute eigenvalues and left eigenvectors,
* and test them
*
CALL ZLACPY( ' ', N, N, A, LDA, S, LDA )
CALL ZLACPY( ' ', N, N, B, LDA, T, LDA )
CALL ZGGEV( 'V', 'N', N, S, LDA, T, LDA, ALPHA1, BETA1, QE,
$ LDQE, Z, LDQ, WORK, LWORK, RWORK, IERR )
IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
RESULT( 1 ) = ULPINV
WRITE( NOUNIT, FMT = 9999 )'ZGGEV3', IERR, N, JTYPE,
$ IOLDSD
INFO = ABS( IERR )
GO TO 190
END IF
*
DO 130 J = 1, N
IF( ALPHA( J ).NE.ALPHA1( J ) .OR. BETA( J ).NE.
$ BETA1( J ) )RESULT( 6 ) = ULPINV
130 CONTINUE
*
DO 150 J = 1, N
DO 140 JC = 1, N
IF( Q( J, JC ).NE.QE( J, JC ) )
$ RESULT( 6 ) = ULPINV
140 CONTINUE
150 CONTINUE
*
* Do test (7): Compute eigenvalues and right eigenvectors,
* and test them
*
CALL ZLACPY( ' ', N, N, A, LDA, S, LDA )
CALL ZLACPY( ' ', N, N, B, LDA, T, LDA )
CALL ZGGEV( 'N', 'V', N, S, LDA, T, LDA, ALPHA1, BETA1, Q,
$ LDQ, QE, LDQE, WORK, LWORK, RWORK, IERR )
IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
RESULT( 1 ) = ULPINV
WRITE( NOUNIT, FMT = 9999 )'ZGGEV4', IERR, N, JTYPE,
$ IOLDSD
INFO = ABS( IERR )
GO TO 190
END IF
*
DO 160 J = 1, N
IF( ALPHA( J ).NE.ALPHA1( J ) .OR. BETA( J ).NE.
$ BETA1( J ) )RESULT( 7 ) = ULPINV
160 CONTINUE
*
DO 180 J = 1, N
DO 170 JC = 1, N
IF( Z( J, JC ).NE.QE( J, JC ) )
$ RESULT( 7 ) = ULPINV
170 CONTINUE
180 CONTINUE
*
* End of Loop -- Check for RESULT(j) > THRESH
*
190 CONTINUE
*
NTESTT = NTESTT + 7
*
* Print out tests which fail.
*
DO 200 JR = 1, 7
IF( RESULT( JR ).GE.THRESH ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUNIT, FMT = 9997 )'ZGV'
*
* Matrix types
*
WRITE( NOUNIT, FMT = 9996 )
WRITE( NOUNIT, FMT = 9995 )
WRITE( NOUNIT, FMT = 9994 )'Orthogonal'
*
* Tests performed
*
WRITE( NOUNIT, FMT = 9993 )
*
END IF
NERRS = NERRS + 1
IF( RESULT( JR ).LT.10000.0D0 ) THEN
WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
$ RESULT( JR )
ELSE
WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
$ RESULT( JR )
END IF
END IF
200 CONTINUE
*
210 CONTINUE
220 CONTINUE
*
* Summary
*
CALL ALASVM( 'ZGV', NOUNIT, NERRS, NTESTT, 0 )
*
WORK( 1 ) = MAXWRK
*
RETURN
*
9999 FORMAT( ' ZDRGEV: ', A, ' returned INFO=', I6, '.', / 3X, 'N=',
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
9998 FORMAT( ' ZDRGEV: ', A, ' Eigenvectors from ', A, ' incorrectly ',
$ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 3X,
$ 'N=', I4, ', JTYPE=', I3, ', ISEED=(', 3( I4, ',' ), I5,
$ ')' )
*
9997 FORMAT( / 1X, A3, ' -- Complex Generalized eigenvalue problem ',
$ 'driver' )
*
9996 FORMAT( ' Matrix types (see ZDRGEV for details): ' )
*
9995 FORMAT( ' Special Matrices:', 23X,
$ '(J''=transposed Jordan block)',
$ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ',
$ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ',
$ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I',
$ ') 11=(large*I, small*D) 13=(large*D, large*I)', /
$ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ',
$ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' )
9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
$ / ' 16=Transposed Jordan Blocks 19=geometric ',
$ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ',
$ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ',
$ 'alpha, beta=0,1 21=random alpha, beta=0,1',
$ / ' Large & Small Matrices:', / ' 22=(large, small) ',
$ '23=(small,large) 24=(small,small) 25=(large,large)',
$ / ' 26=random O(1) matrices.' )
*
9993 FORMAT( / ' Tests performed: ',
$ / ' 1 = max | ( b A - a B )''*l | / const.,',
$ / ' 2 = | |VR(i)| - 1 | / ulp,',
$ / ' 3 = max | ( b A - a B )*r | / const.',
$ / ' 4 = | |VL(i)| - 1 | / ulp,',
$ / ' 5 = 0 if W same no matter if r or l computed,',
$ / ' 6 = 0 if l same no matter if l computed,',
$ / ' 7 = 0 if r same no matter if r computed,', / 1X )
9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
$ 4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
$ 4( I4, ',' ), ' result ', I2, ' is', 1P, D10.3 )
*
* End of ZDRGEV
*
END
| gpl-2.0 |
QEF/q-e | KCW/src/kcw_allocate_q.f90 | 2 | 1648 | !
! Copyright (C) 2003-2021 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine kcw_allocate_q
!-----------------------------------------------------------------------
!
! Dynamical allocation of arrays: quantities needed for the linear
! response problem
!
USE ions_base, ONLY : nat
USE wvfct, ONLY : nbnd, npwx
USE noncollin_module, ONLY : npol, nspin_mag
USE fft_base, ONLY : dfftp
USE wavefunctions, ONLY : evc
USE becmod, ONLY : allocate_bec_type, becp
USE uspp, ONLY : nkb, okvan
USE qpoint, ONLY : nksq, eigqts
USE lrus, ONLY : becp1
USE eqv, ONLY : dpsi, evq, dmuxc, dvpsi
USE control_lr, ONLY : lgamma
!
IMPLICIT NONE
INTEGER :: ik
!
IF (lgamma) THEN
! q=0 : evq is a pointer to evc
evq => evc
ELSE
! q/=0 : evq is allocated and calculated at point k+q
ALLOCATE (evq(npwx*npol,nbnd))
ENDIF
!
ALLOCATE (dvpsi(npwx*npol,nbnd))
ALLOCATE (dpsi(npwx*npol,nbnd))
ALLOCATE (dmuxc(dfftp%nnr,nspin_mag,nspin_mag))
!
CALL allocate_bec_type ( nkb, nbnd, becp )
IF (okvan) THEN
ALLOCATE (eigqts(nat))
ALLOCATE (becp1(nksq))
DO ik = 1,nksq
CALL allocate_bec_type ( nkb, nbnd, becp1(ik) )
ENDDO
ENDIF
!
RETURN
!
end subroutine kcw_allocate_q
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/LIN/schkgb.f | 32 | 25373 | *> \brief \b SCHKGB
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS,
* NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B,
* X, XACT, WORK, RWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER LA, LAFAC, NM, NN, NNB, NNS, NOUT
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
* $ NVAL( * )
* REAL A( * ), AFAC( * ), B( * ), RWORK( * ),
* $ WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SCHKGB tests SGBTRF, -TRS, -RFS, and -CON
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NM
*> \verbatim
*> NM is INTEGER
*> The number of values of M contained in the vector MVAL.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NNB
*> \verbatim
*> NNB is INTEGER
*> The number of values of NB contained in the vector NBVAL.
*> \endverbatim
*>
*> \param[in] NBVAL
*> \verbatim
*> NBVAL is INTEGER array, dimension (NNB)
*> The values of the blocksize NB.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is REAL array, dimension (LA)
*> \endverbatim
*>
*> \param[in] LA
*> \verbatim
*> LA is INTEGER
*> The length of the array A. LA >= (KLMAX+KUMAX+1)*NMAX
*> where KLMAX is the largest entry in the local array KLVAL,
*> KUMAX is the largest entry in the local array KUVAL and
*> NMAX is the largest entry in the input array NVAL.
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is REAL array, dimension (LAFAC)
*> \endverbatim
*>
*> \param[in] LAFAC
*> \verbatim
*> LAFAC is INTEGER
*> The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX
*> where KLMAX is the largest entry in the local array KLVAL,
*> KUMAX is the largest entry in the local array KUVAL and
*> NMAX is the largest entry in the input array NVAL.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is REAL array, dimension (NMAX*NSMAX)
*> where NSMAX is the largest entry in NSVAL.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is REAL array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is REAL array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension
*> (NMAX*max(3,NSMAX,NMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension
*> (max(NMAX,2*NSMAX))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (2*NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS,
$ NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B,
$ X, XACT, WORK, RWORK, IWORK, NOUT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER LA, LAFAC, NM, NN, NNB, NNS, NOUT
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
$ NVAL( * )
REAL A( * ), AFAC( * ), B( * ), RWORK( * ),
$ WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
INTEGER NTYPES, NTESTS
PARAMETER ( NTYPES = 8, NTESTS = 7 )
INTEGER NBW, NTRAN
PARAMETER ( NBW = 4, NTRAN = 3 )
* ..
* .. Local Scalars ..
LOGICAL TRFCON, ZEROT
CHARACTER DIST, NORM, TRANS, TYPE, XTYPE
CHARACTER*3 PATH
INTEGER I, I1, I2, IKL, IKU, IM, IMAT, IN, INB, INFO,
$ IOFF, IRHS, ITRAN, IZERO, J, K, KL, KOFF, KU,
$ LDA, LDAFAC, LDB, M, MODE, N, NB, NERRS, NFAIL,
$ NIMAT, NKL, NKU, NRHS, NRUN
REAL AINVNM, ANORM, ANORMI, ANORMO, CNDNUM, RCOND,
$ RCONDC, RCONDI, RCONDO
* ..
* .. Local Arrays ..
CHARACTER TRANSS( NTRAN )
INTEGER ISEED( 4 ), ISEEDY( 4 ), KLVAL( NBW ),
$ KUVAL( NBW )
REAL RESULT( NTESTS )
* ..
* .. External Functions ..
REAL SGET06, SLANGB, SLANGE
EXTERNAL SGET06, SLANGB, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASUM, SCOPY, SERRGE, SGBCON,
$ SGBRFS, SGBT01, SGBT02, SGBT05, SGBTRF, SGBTRS,
$ SGET04, SLACPY, SLARHS, SLASET, SLATB4, SLATMS,
$ XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 / ,
$ TRANSS / 'N', 'T', 'C' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Single precision'
PATH( 2: 3 ) = 'GB'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL SERRGE( PATH, NOUT )
INFOT = 0
CALL XLAENV( 2, 2 )
*
* Initialize the first value for the lower and upper bandwidths.
*
KLVAL( 1 ) = 0
KUVAL( 1 ) = 0
*
* Do for each value of M in MVAL
*
DO 160 IM = 1, NM
M = MVAL( IM )
*
* Set values to use for the lower bandwidth.
*
KLVAL( 2 ) = M + ( M+1 ) / 4
*
* KLVAL( 2 ) = MAX( M-1, 0 )
*
KLVAL( 3 ) = ( 3*M-1 ) / 4
KLVAL( 4 ) = ( M+1 ) / 4
*
* Do for each value of N in NVAL
*
DO 150 IN = 1, NN
N = NVAL( IN )
XTYPE = 'N'
*
* Set values to use for the upper bandwidth.
*
KUVAL( 2 ) = N + ( N+1 ) / 4
*
* KUVAL( 2 ) = MAX( N-1, 0 )
*
KUVAL( 3 ) = ( 3*N-1 ) / 4
KUVAL( 4 ) = ( N+1 ) / 4
*
* Set limits on the number of loop iterations.
*
NKL = MIN( M+1, 4 )
IF( N.EQ.0 )
$ NKL = 2
NKU = MIN( N+1, 4 )
IF( M.EQ.0 )
$ NKU = 2
NIMAT = NTYPES
IF( M.LE.0 .OR. N.LE.0 )
$ NIMAT = 1
*
DO 140 IKL = 1, NKL
*
* Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This
* order makes it easier to skip redundant values for small
* values of M.
*
KL = KLVAL( IKL )
DO 130 IKU = 1, NKU
*
* Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This
* order makes it easier to skip redundant values for
* small values of N.
*
KU = KUVAL( IKU )
*
* Check that A and AFAC are big enough to generate this
* matrix.
*
LDA = KL + KU + 1
LDAFAC = 2*KL + KU + 1
IF( ( LDA*N ).GT.LA .OR. ( LDAFAC*N ).GT.LAFAC ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
IF( N*( KL+KU+1 ).GT.LA ) THEN
WRITE( NOUT, FMT = 9999 )LA, M, N, KL, KU,
$ N*( KL+KU+1 )
NERRS = NERRS + 1
END IF
IF( N*( 2*KL+KU+1 ).GT.LAFAC ) THEN
WRITE( NOUT, FMT = 9998 )LAFAC, M, N, KL, KU,
$ N*( 2*KL+KU+1 )
NERRS = NERRS + 1
END IF
GO TO 130
END IF
*
DO 120 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 120
*
* Skip types 2, 3, or 4 if the matrix size is too
* small.
*
ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
IF( ZEROT .AND. N.LT.IMAT-1 )
$ GO TO 120
*
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN
*
* Set up parameters with SLATB4 and generate a
* test matrix with SLATMS.
*
CALL SLATB4( PATH, IMAT, M, N, TYPE, KL, KU,
$ ANORM, MODE, CNDNUM, DIST )
*
KOFF = MAX( 1, KU+2-N )
DO 20 I = 1, KOFF - 1
A( I ) = ZERO
20 CONTINUE
SRNAMT = 'SLATMS'
CALL SLATMS( M, N, DIST, ISEED, TYPE, RWORK,
$ MODE, CNDNUM, ANORM, KL, KU, 'Z',
$ A( KOFF ), LDA, WORK, INFO )
*
* Check the error code from SLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'SLATMS', INFO, 0, ' ', M,
$ N, KL, KU, -1, IMAT, NFAIL,
$ NERRS, NOUT )
GO TO 120
END IF
ELSE IF( IZERO.GT.0 ) THEN
*
* Use the same matrix for types 3 and 4 as for
* type 2 by copying back the zeroed out column.
*
CALL SCOPY( I2-I1+1, B, 1, A( IOFF+I1 ), 1 )
END IF
*
* For types 2, 3, and 4, zero one or more columns of
* the matrix to test that INFO is returned correctly.
*
IZERO = 0
IF( ZEROT ) THEN
IF( IMAT.EQ.2 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.3 ) THEN
IZERO = MIN( M, N )
ELSE
IZERO = MIN( M, N ) / 2 + 1
END IF
IOFF = ( IZERO-1 )*LDA
IF( IMAT.LT.4 ) THEN
*
* Store the column to be zeroed out in B.
*
I1 = MAX( 1, KU+2-IZERO )
I2 = MIN( KL+KU+1, KU+1+( M-IZERO ) )
CALL SCOPY( I2-I1+1, A( IOFF+I1 ), 1, B, 1 )
*
DO 30 I = I1, I2
A( IOFF+I ) = ZERO
30 CONTINUE
ELSE
DO 50 J = IZERO, N
DO 40 I = MAX( 1, KU+2-J ),
$ MIN( KL+KU+1, KU+1+( M-J ) )
A( IOFF+I ) = ZERO
40 CONTINUE
IOFF = IOFF + LDA
50 CONTINUE
END IF
END IF
*
* These lines, if used in place of the calls in the
* loop over INB, cause the code to bomb on a Sun
* SPARCstation.
*
* ANORMO = SLANGB( 'O', N, KL, KU, A, LDA, RWORK )
* ANORMI = SLANGB( 'I', N, KL, KU, A, LDA, RWORK )
*
* Do for each blocksize in NBVAL
*
DO 110 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
*
* Compute the LU factorization of the band matrix.
*
IF( M.GT.0 .AND. N.GT.0 )
$ CALL SLACPY( 'Full', KL+KU+1, N, A, LDA,
$ AFAC( KL+1 ), LDAFAC )
SRNAMT = 'SGBTRF'
CALL SGBTRF( M, N, KL, KU, AFAC, LDAFAC, IWORK,
$ INFO )
*
* Check error code from SGBTRF.
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'SGBTRF', INFO, IZERO,
$ ' ', M, N, KL, KU, NB, IMAT,
$ NFAIL, NERRS, NOUT )
TRFCON = .FALSE.
*
*+ TEST 1
* Reconstruct matrix from factors and compute
* residual.
*
CALL SGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC,
$ IWORK, WORK, RESULT( 1 ) )
*
* Print information about the tests so far that
* did not pass the threshold.
*
IF( RESULT( 1 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 )M, N, KL, KU, NB,
$ IMAT, 1, RESULT( 1 )
NFAIL = NFAIL + 1
END IF
NRUN = NRUN + 1
*
* Skip the remaining tests if this is not the
* first block size or if M .ne. N.
*
IF( INB.GT.1 .OR. M.NE.N )
$ GO TO 110
*
ANORMO = SLANGB( 'O', N, KL, KU, A, LDA, RWORK )
ANORMI = SLANGB( 'I', N, KL, KU, A, LDA, RWORK )
*
IF( INFO.EQ.0 ) THEN
*
* Form the inverse of A so we can get a good
* estimate of CNDNUM = norm(A) * norm(inv(A)).
*
LDB = MAX( 1, N )
CALL SLASET( 'Full', N, N, ZERO, ONE, WORK,
$ LDB )
SRNAMT = 'SGBTRS'
CALL SGBTRS( 'No transpose', N, KL, KU, N,
$ AFAC, LDAFAC, IWORK, WORK, LDB,
$ INFO )
*
* Compute the 1-norm condition number of A.
*
AINVNM = SLANGE( 'O', N, N, WORK, LDB,
$ RWORK )
IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDO = ONE
ELSE
RCONDO = ( ONE / ANORMO ) / AINVNM
END IF
*
* Compute the infinity-norm condition number of
* A.
*
AINVNM = SLANGE( 'I', N, N, WORK, LDB,
$ RWORK )
IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDI = ONE
ELSE
RCONDI = ( ONE / ANORMI ) / AINVNM
END IF
ELSE
*
* Do only the condition estimate if INFO.NE.0.
*
TRFCON = .TRUE.
RCONDO = ZERO
RCONDI = ZERO
END IF
*
* Skip the solve tests if the matrix is singular.
*
IF( TRFCON )
$ GO TO 90
*
DO 80 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
XTYPE = 'N'
*
DO 70 ITRAN = 1, NTRAN
TRANS = TRANSS( ITRAN )
IF( ITRAN.EQ.1 ) THEN
RCONDC = RCONDO
NORM = 'O'
ELSE
RCONDC = RCONDI
NORM = 'I'
END IF
*
*+ TEST 2:
* Solve and compute residual for A * X = B.
*
SRNAMT = 'SLARHS'
CALL SLARHS( PATH, XTYPE, ' ', TRANS, N,
$ N, KL, KU, NRHS, A, LDA,
$ XACT, LDB, B, LDB, ISEED,
$ INFO )
XTYPE = 'C'
CALL SLACPY( 'Full', N, NRHS, B, LDB, X,
$ LDB )
*
SRNAMT = 'SGBTRS'
CALL SGBTRS( TRANS, N, KL, KU, NRHS, AFAC,
$ LDAFAC, IWORK, X, LDB, INFO )
*
* Check error code from SGBTRS.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGBTRS', INFO, 0,
$ TRANS, N, N, KL, KU, -1,
$ IMAT, NFAIL, NERRS, NOUT )
*
CALL SLACPY( 'Full', N, NRHS, B, LDB,
$ WORK, LDB )
CALL SGBT02( TRANS, M, N, KL, KU, NRHS, A,
$ LDA, X, LDB, WORK, LDB,
$ RESULT( 2 ) )
*
*+ TEST 3:
* Check solution from generated exact
* solution.
*
CALL SGET04( N, NRHS, X, LDB, XACT, LDB,
$ RCONDC, RESULT( 3 ) )
*
*+ TESTS 4, 5, 6:
* Use iterative refinement to improve the
* solution.
*
SRNAMT = 'SGBRFS'
CALL SGBRFS( TRANS, N, KL, KU, NRHS, A,
$ LDA, AFAC, LDAFAC, IWORK, B,
$ LDB, X, LDB, RWORK,
$ RWORK( NRHS+1 ), WORK,
$ IWORK( N+1 ), INFO )
*
* Check error code from SGBRFS.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGBRFS', INFO, 0,
$ TRANS, N, N, KL, KU, NRHS,
$ IMAT, NFAIL, NERRS, NOUT )
*
CALL SGET04( N, NRHS, X, LDB, XACT, LDB,
$ RCONDC, RESULT( 4 ) )
CALL SGBT05( TRANS, N, KL, KU, NRHS, A,
$ LDA, B, LDB, X, LDB, XACT,
$ LDB, RWORK, RWORK( NRHS+1 ),
$ RESULT( 5 ) )
DO 60 K = 2, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9996 )TRANS, N,
$ KL, KU, NRHS, IMAT, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
60 CONTINUE
NRUN = NRUN + 5
70 CONTINUE
80 CONTINUE
*
*+ TEST 7:
* Get an estimate of RCOND = 1/CNDNUM.
*
90 CONTINUE
DO 100 ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
ANORM = ANORMO
RCONDC = RCONDO
NORM = 'O'
ELSE
ANORM = ANORMI
RCONDC = RCONDI
NORM = 'I'
END IF
SRNAMT = 'SGBCON'
CALL SGBCON( NORM, N, KL, KU, AFAC, LDAFAC,
$ IWORK, ANORM, RCOND, WORK,
$ IWORK( N+1 ), INFO )
*
* Check error code from SGBCON.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGBCON', INFO, 0,
$ NORM, N, N, KL, KU, -1, IMAT,
$ NFAIL, NERRS, NOUT )
*
RESULT( 7 ) = SGET06( RCOND, RCONDC )
*
* Print information about the tests that did
* not pass the threshold.
*
IF( RESULT( 7 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9995 )NORM, N, KL, KU,
$ IMAT, 7, RESULT( 7 )
NFAIL = NFAIL + 1
END IF
NRUN = NRUN + 1
100 CONTINUE
*
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
160 CONTINUE
*
* Print a summary of the results.
*
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' *** In SCHKGB, LA=', I5, ' is too small for M=', I5,
$ ', N=', I5, ', KL=', I4, ', KU=', I4,
$ / ' ==> Increase LA to at least ', I5 )
9998 FORMAT( ' *** In SCHKGB, LAFAC=', I5, ' is too small for M=', I5,
$ ', N=', I5, ', KL=', I4, ', KU=', I4,
$ / ' ==> Increase LAFAC to at least ', I5 )
9997 FORMAT( ' M =', I5, ', N =', I5, ', KL=', I5, ', KU=', I5,
$ ', NB =', I4, ', type ', I1, ', test(', I1, ')=', G12.5 )
9996 FORMAT( ' TRANS=''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5,
$ ', NRHS=', I3, ', type ', I1, ', test(', I1, ')=', G12.5 )
9995 FORMAT( ' NORM =''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5,
$ ',', 10X, ' type ', I1, ', test(', I1, ')=', G12.5 )
*
RETURN
*
* End of SCHKGB
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | ranlib/src/src-splitted/genf.f90 | 2 | 1782 | REAL FUNCTION genf(dfn,dfd)
!**********************************************************************
!
! REAL FUNCTION GENF( DFN, DFD )
! GENerate random deviate from the F distribution
!
!
! Function
!
!
! Generates a random deviate from the F (variance ratio)
! distribution with DFN degrees of freedom in the numerator
! and DFD degrees of freedom in the denominator.
!
!
! Arguments
!
!
! DFN --> Numerator degrees of freedom
! (Must be positive)
! REAL DFN
! DFD --> Denominator degrees of freedom
! (Must be positive)
! REAL DFD
!
!
! Method
!
!
! Directly generates ratio of chisquare variates
!
!**********************************************************************
! .. Scalar Arguments ..
REAL dfd,dfn
! ..
! .. Local Scalars ..
REAL xden,xnum
! ..
! .. External Functions ..
REAL genchi
EXTERNAL genchi
! ..
! .. Executable Statements ..
IF (.NOT. (dfn.LE.0.0.OR.dfd.LE.0.0)) GO TO 10
WRITE (*,*) 'Degrees of freedom nonpositive in GENF - abort!'
WRITE (*,*) 'DFN value: ',dfn,'DFD value: ',dfd
STOP 'Degrees of freedom nonpositive in GENF - abort!'
10 xnum = genchi(dfn)/dfn
! GENF = ( GENCHI( DFN ) / DFN ) / ( GENCHI( DFD ) / DFD )
xden = genchi(dfd)/dfd
IF (.NOT. (xden.LE. (1.0E-38*xnum))) GO TO 20
WRITE (*,*) ' GENF - generated numbers would cause overflow'
WRITE (*,*) ' Numerator ',xnum,' Denominator ',xden
WRITE (*,*) ' GENF returning 1.0E38'
genf = 1.0E38
GO TO 30
20 genf = xnum/xden
30 RETURN
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/dpftrs.f | 29 | 8451 | *> \brief \b DPFTRS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DPFTRS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrs.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrs.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrs.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANSR, UPLO
* INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( 0: * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DPFTRS solves a system of linear equations A*X = B with a symmetric
*> positive definite matrix A using the Cholesky factorization
*> A = U**T*U or A = L*L**T computed by DPFTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANSR
*> \verbatim
*> TRANSR is CHARACTER*1
*> = 'N': The Normal TRANSR of RFP A is stored;
*> = 'T': The Transpose TRANSR of RFP A is stored.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of RFP A is stored;
*> = 'L': Lower triangle of RFP A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ).
*> The triangular factor U or L from the Cholesky factorization
*> of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF.
*> See note below for more details about RFP A.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On entry, the right hand side matrix B.
*> On exit, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> We first consider Rectangular Full Packed (RFP) Format when N is
*> even. We give an example where N = 6.
*>
*> AP is Upper AP is Lower
*>
*> 00 01 02 03 04 05 00
*> 11 12 13 14 15 10 11
*> 22 23 24 25 20 21 22
*> 33 34 35 30 31 32 33
*> 44 45 40 41 42 43 44
*> 55 50 51 52 53 54 55
*>
*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
*> the transpose of the first three columns of AP upper.
*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
*> the transpose of the last three columns of AP lower.
*> This covers the case N even and TRANSR = 'N'.
*>
*> RFP A RFP A
*>
*> 03 04 05 33 43 53
*> 13 14 15 00 44 54
*> 23 24 25 10 11 55
*> 33 34 35 20 21 22
*> 00 44 45 30 31 32
*> 01 11 55 40 41 42
*> 02 12 22 50 51 52
*>
*> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
*> transpose of RFP A above. One therefore gets:
*>
*>
*> RFP A RFP A
*>
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
*>
*>
*> We then consider Rectangular Full Packed (RFP) Format when N is
*> odd. We give an example where N = 5.
*>
*> AP is Upper AP is Lower
*>
*> 00 01 02 03 04 00
*> 11 12 13 14 10 11
*> 22 23 24 20 21 22
*> 33 34 30 31 32 33
*> 44 40 41 42 43 44
*>
*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
*> the transpose of the first two columns of AP upper.
*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
*> the transpose of the last two columns of AP lower.
*> This covers the case N odd and TRANSR = 'N'.
*>
*> RFP A RFP A
*>
*> 02 03 04 00 33 43
*> 12 13 14 10 11 44
*> 22 23 24 20 21 22
*> 00 33 34 30 31 32
*> 01 11 44 40 41 42
*>
*> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
*> transpose of RFP A above. One therefore gets:
*>
*> RFP A RFP A
*>
*> 02 12 22 00 01 00 10 20 30 40 50
*> 03 13 23 33 11 33 11 21 31 41 51
*> 04 14 24 34 44 43 44 22 32 42 52
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER TRANSR, UPLO
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( 0: * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LOWER, NORMALTRANSR
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, DTFSM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NORMALTRANSR = LSAME( TRANSR, 'N' )
LOWER = LSAME( UPLO, 'L' )
IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
INFO = -1
ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DPFTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
* start execution: there are two triangular solves
*
IF( LOWER ) THEN
CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
$ LDB )
CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
$ LDB )
ELSE
CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
$ LDB )
CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
$ LDB )
END IF
*
RETURN
*
* End of DPFTRS
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/EIG/cget38.f | 32 | 15905 | *> \brief \b CGET38
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGET38( RMAX, LMAX, NINFO, KNT, NIN )
*
* .. Scalar Arguments ..
* INTEGER KNT, NIN
* ..
* .. Array Arguments ..
* INTEGER LMAX( 3 ), NINFO( 3 )
* REAL RMAX( 3 )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGET38 tests CTRSEN, a routine for estimating condition numbers of a
*> cluster of eigenvalues and/or its associated right invariant subspace
*>
*> The test matrices are read from a file with logical unit number NIN.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[out] RMAX
*> \verbatim
*> RMAX is REAL array, dimension (3)
*> Values of the largest test ratios.
*> RMAX(1) = largest residuals from CHST01 or comparing
*> different calls to CTRSEN
*> RMAX(2) = largest error in reciprocal condition
*> numbers taking their conditioning into account
*> RMAX(3) = largest error in reciprocal condition
*> numbers not taking their conditioning into
*> account (may be larger than RMAX(2))
*> \endverbatim
*>
*> \param[out] LMAX
*> \verbatim
*> LMAX is INTEGER array, dimension (3)
*> LMAX(i) is example number where largest test ratio
*> RMAX(i) is achieved. Also:
*> If CGEHRD returns INFO nonzero on example i, LMAX(1)=i
*> If CHSEQR returns INFO nonzero on example i, LMAX(2)=i
*> If CTRSEN returns INFO nonzero on example i, LMAX(3)=i
*> \endverbatim
*>
*> \param[out] NINFO
*> \verbatim
*> NINFO is INTEGER array, dimension (3)
*> NINFO(1) = No. of times CGEHRD returned INFO nonzero
*> NINFO(2) = No. of times CHSEQR returned INFO nonzero
*> NINFO(3) = No. of times CTRSEN returned INFO nonzero
*> \endverbatim
*>
*> \param[out] KNT
*> \verbatim
*> KNT is INTEGER
*> Total number of examples tested.
*> \endverbatim
*>
*> \param[in] NIN
*> \verbatim
*> NIN is INTEGER
*> Input logical unit number.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CGET38( RMAX, LMAX, NINFO, KNT, NIN )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER KNT, NIN
* ..
* .. Array Arguments ..
INTEGER LMAX( 3 ), NINFO( 3 )
REAL RMAX( 3 )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER LDT, LWORK
PARAMETER ( LDT = 20, LWORK = 2*LDT*( 10+LDT ) )
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
REAL EPSIN
PARAMETER ( EPSIN = 5.9605E-8 )
COMPLEX CZERO
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, ISCL, ISRT, ITMP, J, KMIN, M, N, NDIM
REAL BIGNUM, EPS, S, SEP, SEPIN, SEPTMP, SIN,
$ SMLNUM, STMP, TNRM, TOL, TOLIN, V, VMAX, VMIN,
$ VMUL
* ..
* .. Local Arrays ..
LOGICAL SELECT( LDT )
INTEGER IPNT( LDT ), ISELEC( LDT )
REAL RESULT( 2 ), RWORK( LDT ), VAL( 3 ),
$ WSRT( LDT )
COMPLEX Q( LDT, LDT ), QSAV( LDT, LDT ),
$ QTMP( LDT, LDT ), T( LDT, LDT ),
$ TMP( LDT, LDT ), TSAV( LDT, LDT ),
$ TSAV1( LDT, LDT ), TTMP( LDT, LDT ), W( LDT ),
$ WORK( LWORK ), WTMP( LDT )
* ..
* .. External Functions ..
REAL CLANGE, SLAMCH
EXTERNAL CLANGE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CGEHRD, CHSEQR, CHST01, CLACPY, CSSCAL, CTRSEN,
$ CUNGHR, SLABAD
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG, MAX, REAL, SQRT
* ..
* .. Executable Statements ..
*
EPS = SLAMCH( 'P' )
SMLNUM = SLAMCH( 'S' ) / EPS
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
*
* EPSIN = 2**(-24) = precision to which input data computed
*
EPS = MAX( EPS, EPSIN )
RMAX( 1 ) = ZERO
RMAX( 2 ) = ZERO
RMAX( 3 ) = ZERO
LMAX( 1 ) = 0
LMAX( 2 ) = 0
LMAX( 3 ) = 0
KNT = 0
NINFO( 1 ) = 0
NINFO( 2 ) = 0
NINFO( 3 ) = 0
VAL( 1 ) = SQRT( SMLNUM )
VAL( 2 ) = ONE
VAL( 3 ) = SQRT( SQRT( BIGNUM ) )
*
* Read input data until N=0. Assume input eigenvalues are sorted
* lexicographically (increasing by real part, then decreasing by
* imaginary part)
*
10 CONTINUE
READ( NIN, FMT = * )N, NDIM, ISRT
IF( N.EQ.0 )
$ RETURN
READ( NIN, FMT = * )( ISELEC( I ), I = 1, NDIM )
DO 20 I = 1, N
READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
20 CONTINUE
READ( NIN, FMT = * )SIN, SEPIN
*
TNRM = CLANGE( 'M', N, N, TMP, LDT, RWORK )
DO 200 ISCL = 1, 3
*
* Scale input matrix
*
KNT = KNT + 1
CALL CLACPY( 'F', N, N, TMP, LDT, T, LDT )
VMUL = VAL( ISCL )
DO 30 I = 1, N
CALL CSSCAL( N, VMUL, T( 1, I ), 1 )
30 CONTINUE
IF( TNRM.EQ.ZERO )
$ VMUL = ONE
CALL CLACPY( 'F', N, N, T, LDT, TSAV, LDT )
*
* Compute Schur form
*
CALL CGEHRD( N, 1, N, T, LDT, WORK( 1 ), WORK( N+1 ), LWORK-N,
$ INFO )
IF( INFO.NE.0 ) THEN
LMAX( 1 ) = KNT
NINFO( 1 ) = NINFO( 1 ) + 1
GO TO 200
END IF
*
* Generate unitary matrix
*
CALL CLACPY( 'L', N, N, T, LDT, Q, LDT )
CALL CUNGHR( N, 1, N, Q, LDT, WORK( 1 ), WORK( N+1 ), LWORK-N,
$ INFO )
*
* Compute Schur form
*
DO 50 J = 1, N - 2
DO 40 I = J + 2, N
T( I, J ) = CZERO
40 CONTINUE
50 CONTINUE
CALL CHSEQR( 'S', 'V', N, 1, N, T, LDT, W, Q, LDT, WORK, LWORK,
$ INFO )
IF( INFO.NE.0 ) THEN
LMAX( 2 ) = KNT
NINFO( 2 ) = NINFO( 2 ) + 1
GO TO 200
END IF
*
* Sort, select eigenvalues
*
DO 60 I = 1, N
IPNT( I ) = I
SELECT( I ) = .FALSE.
60 CONTINUE
IF( ISRT.EQ.0 ) THEN
DO 70 I = 1, N
WSRT( I ) = REAL( W( I ) )
70 CONTINUE
ELSE
DO 80 I = 1, N
WSRT( I ) = AIMAG( W( I ) )
80 CONTINUE
END IF
DO 100 I = 1, N - 1
KMIN = I
VMIN = WSRT( I )
DO 90 J = I + 1, N
IF( WSRT( J ).LT.VMIN ) THEN
KMIN = J
VMIN = WSRT( J )
END IF
90 CONTINUE
WSRT( KMIN ) = WSRT( I )
WSRT( I ) = VMIN
ITMP = IPNT( I )
IPNT( I ) = IPNT( KMIN )
IPNT( KMIN ) = ITMP
100 CONTINUE
DO 110 I = 1, NDIM
SELECT( IPNT( ISELEC( I ) ) ) = .TRUE.
110 CONTINUE
*
* Compute condition numbers
*
CALL CLACPY( 'F', N, N, Q, LDT, QSAV, LDT )
CALL CLACPY( 'F', N, N, T, LDT, TSAV1, LDT )
CALL CTRSEN( 'B', 'V', SELECT, N, T, LDT, Q, LDT, WTMP, M, S,
$ SEP, WORK, LWORK, INFO )
IF( INFO.NE.0 ) THEN
LMAX( 3 ) = KNT
NINFO( 3 ) = NINFO( 3 ) + 1
GO TO 200
END IF
SEPTMP = SEP / VMUL
STMP = S
*
* Compute residuals
*
CALL CHST01( N, 1, N, TSAV, LDT, T, LDT, Q, LDT, WORK, LWORK,
$ RWORK, RESULT )
VMAX = MAX( RESULT( 1 ), RESULT( 2 ) )
IF( VMAX.GT.RMAX( 1 ) ) THEN
RMAX( 1 ) = VMAX
IF( NINFO( 1 ).EQ.0 )
$ LMAX( 1 ) = KNT
END IF
*
* Compare condition number for eigenvalue cluster
* taking its condition number into account
*
V = MAX( TWO*REAL( N )*EPS*TNRM, SMLNUM )
IF( TNRM.EQ.ZERO )
$ V = ONE
IF( V.GT.SEPTMP ) THEN
TOL = ONE
ELSE
TOL = V / SEPTMP
END IF
IF( V.GT.SEPIN ) THEN
TOLIN = ONE
ELSE
TOLIN = V / SEPIN
END IF
TOL = MAX( TOL, SMLNUM / EPS )
TOLIN = MAX( TOLIN, SMLNUM / EPS )
IF( EPS*( SIN-TOLIN ).GT.STMP+TOL ) THEN
VMAX = ONE / EPS
ELSE IF( SIN-TOLIN.GT.STMP+TOL ) THEN
VMAX = ( SIN-TOLIN ) / ( STMP+TOL )
ELSE IF( SIN+TOLIN.LT.EPS*( STMP-TOL ) ) THEN
VMAX = ONE / EPS
ELSE IF( SIN+TOLIN.LT.STMP-TOL ) THEN
VMAX = ( STMP-TOL ) / ( SIN+TOLIN )
ELSE
VMAX = ONE
END IF
IF( VMAX.GT.RMAX( 2 ) ) THEN
RMAX( 2 ) = VMAX
IF( NINFO( 2 ).EQ.0 )
$ LMAX( 2 ) = KNT
END IF
*
* Compare condition numbers for invariant subspace
* taking its condition number into account
*
IF( V.GT.SEPTMP*STMP ) THEN
TOL = SEPTMP
ELSE
TOL = V / STMP
END IF
IF( V.GT.SEPIN*SIN ) THEN
TOLIN = SEPIN
ELSE
TOLIN = V / SIN
END IF
TOL = MAX( TOL, SMLNUM / EPS )
TOLIN = MAX( TOLIN, SMLNUM / EPS )
IF( EPS*( SEPIN-TOLIN ).GT.SEPTMP+TOL ) THEN
VMAX = ONE / EPS
ELSE IF( SEPIN-TOLIN.GT.SEPTMP+TOL ) THEN
VMAX = ( SEPIN-TOLIN ) / ( SEPTMP+TOL )
ELSE IF( SEPIN+TOLIN.LT.EPS*( SEPTMP-TOL ) ) THEN
VMAX = ONE / EPS
ELSE IF( SEPIN+TOLIN.LT.SEPTMP-TOL ) THEN
VMAX = ( SEPTMP-TOL ) / ( SEPIN+TOLIN )
ELSE
VMAX = ONE
END IF
IF( VMAX.GT.RMAX( 2 ) ) THEN
RMAX( 2 ) = VMAX
IF( NINFO( 2 ).EQ.0 )
$ LMAX( 2 ) = KNT
END IF
*
* Compare condition number for eigenvalue cluster
* without taking its condition number into account
*
IF( SIN.LE.REAL( 2*N )*EPS .AND. STMP.LE.REAL( 2*N )*EPS ) THEN
VMAX = ONE
ELSE IF( EPS*SIN.GT.STMP ) THEN
VMAX = ONE / EPS
ELSE IF( SIN.GT.STMP ) THEN
VMAX = SIN / STMP
ELSE IF( SIN.LT.EPS*STMP ) THEN
VMAX = ONE / EPS
ELSE IF( SIN.LT.STMP ) THEN
VMAX = STMP / SIN
ELSE
VMAX = ONE
END IF
IF( VMAX.GT.RMAX( 3 ) ) THEN
RMAX( 3 ) = VMAX
IF( NINFO( 3 ).EQ.0 )
$ LMAX( 3 ) = KNT
END IF
*
* Compare condition numbers for invariant subspace
* without taking its condition number into account
*
IF( SEPIN.LE.V .AND. SEPTMP.LE.V ) THEN
VMAX = ONE
ELSE IF( EPS*SEPIN.GT.SEPTMP ) THEN
VMAX = ONE / EPS
ELSE IF( SEPIN.GT.SEPTMP ) THEN
VMAX = SEPIN / SEPTMP
ELSE IF( SEPIN.LT.EPS*SEPTMP ) THEN
VMAX = ONE / EPS
ELSE IF( SEPIN.LT.SEPTMP ) THEN
VMAX = SEPTMP / SEPIN
ELSE
VMAX = ONE
END IF
IF( VMAX.GT.RMAX( 3 ) ) THEN
RMAX( 3 ) = VMAX
IF( NINFO( 3 ).EQ.0 )
$ LMAX( 3 ) = KNT
END IF
*
* Compute eigenvalue condition number only and compare
* Update Q
*
VMAX = ZERO
CALL CLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
CALL CLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
SEPTMP = -ONE
STMP = -ONE
CALL CTRSEN( 'E', 'V', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
$ M, STMP, SEPTMP, WORK, LWORK, INFO )
IF( INFO.NE.0 ) THEN
LMAX( 3 ) = KNT
NINFO( 3 ) = NINFO( 3 ) + 1
GO TO 200
END IF
IF( S.NE.STMP )
$ VMAX = ONE / EPS
IF( -ONE.NE.SEPTMP )
$ VMAX = ONE / EPS
DO 130 I = 1, N
DO 120 J = 1, N
IF( TTMP( I, J ).NE.T( I, J ) )
$ VMAX = ONE / EPS
IF( QTMP( I, J ).NE.Q( I, J ) )
$ VMAX = ONE / EPS
120 CONTINUE
130 CONTINUE
*
* Compute invariant subspace condition number only and compare
* Update Q
*
CALL CLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
CALL CLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
SEPTMP = -ONE
STMP = -ONE
CALL CTRSEN( 'V', 'V', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
$ M, STMP, SEPTMP, WORK, LWORK, INFO )
IF( INFO.NE.0 ) THEN
LMAX( 3 ) = KNT
NINFO( 3 ) = NINFO( 3 ) + 1
GO TO 200
END IF
IF( -ONE.NE.STMP )
$ VMAX = ONE / EPS
IF( SEP.NE.SEPTMP )
$ VMAX = ONE / EPS
DO 150 I = 1, N
DO 140 J = 1, N
IF( TTMP( I, J ).NE.T( I, J ) )
$ VMAX = ONE / EPS
IF( QTMP( I, J ).NE.Q( I, J ) )
$ VMAX = ONE / EPS
140 CONTINUE
150 CONTINUE
*
* Compute eigenvalue condition number only and compare
* Do not update Q
*
CALL CLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
CALL CLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
SEPTMP = -ONE
STMP = -ONE
CALL CTRSEN( 'E', 'N', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
$ M, STMP, SEPTMP, WORK, LWORK, INFO )
IF( INFO.NE.0 ) THEN
LMAX( 3 ) = KNT
NINFO( 3 ) = NINFO( 3 ) + 1
GO TO 200
END IF
IF( S.NE.STMP )
$ VMAX = ONE / EPS
IF( -ONE.NE.SEPTMP )
$ VMAX = ONE / EPS
DO 170 I = 1, N
DO 160 J = 1, N
IF( TTMP( I, J ).NE.T( I, J ) )
$ VMAX = ONE / EPS
IF( QTMP( I, J ).NE.QSAV( I, J ) )
$ VMAX = ONE / EPS
160 CONTINUE
170 CONTINUE
*
* Compute invariant subspace condition number only and compare
* Do not update Q
*
CALL CLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
CALL CLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
SEPTMP = -ONE
STMP = -ONE
CALL CTRSEN( 'V', 'N', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
$ M, STMP, SEPTMP, WORK, LWORK, INFO )
IF( INFO.NE.0 ) THEN
LMAX( 3 ) = KNT
NINFO( 3 ) = NINFO( 3 ) + 1
GO TO 200
END IF
IF( -ONE.NE.STMP )
$ VMAX = ONE / EPS
IF( SEP.NE.SEPTMP )
$ VMAX = ONE / EPS
DO 190 I = 1, N
DO 180 J = 1, N
IF( TTMP( I, J ).NE.T( I, J ) )
$ VMAX = ONE / EPS
IF( QTMP( I, J ).NE.QSAV( I, J ) )
$ VMAX = ONE / EPS
180 CONTINUE
190 CONTINUE
IF( VMAX.GT.RMAX( 1 ) ) THEN
RMAX( 1 ) = VMAX
IF( NINFO( 1 ).EQ.0 )
$ LMAX( 1 ) = KNT
END IF
200 CONTINUE
GO TO 10
*
* End of CGET38
*
END
| gpl-2.0 |
linzhaoming/origin | vendor/github.com/gonum/lapack/internal/testdata/dlasqtest/ilaenv.f | 129 | 18298 | *> \brief \b ILAENV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ILAENV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilaenv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilaenv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilaenv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
*
* .. Scalar Arguments ..
* CHARACTER*( * ) NAME, OPTS
* INTEGER ISPEC, N1, N2, N3, N4
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ILAENV is called from the LAPACK routines to choose problem-dependent
*> parameters for the local environment. See ISPEC for a description of
*> the parameters.
*>
*> ILAENV returns an INTEGER
*> if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC
*> if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value.
*>
*> This version provides a set of parameters which should give good,
*> but not optimal, performance on many of the currently available
*> computers. Users are encouraged to modify this subroutine to set
*> the tuning parameters for their particular machine using the option
*> and problem size information in the arguments.
*>
*> This routine will not function correctly if it is converted to all
*> lower case. Converting it to all upper case is allowed.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ISPEC
*> \verbatim
*> ISPEC is INTEGER
*> Specifies the parameter to be returned as the value of
*> ILAENV.
*> = 1: the optimal blocksize; if this value is 1, an unblocked
*> algorithm will give the best performance.
*> = 2: the minimum block size for which the block routine
*> should be used; if the usable block size is less than
*> this value, an unblocked routine should be used.
*> = 3: the crossover point (in a block routine, for N less
*> than this value, an unblocked routine should be used)
*> = 4: the number of shifts, used in the nonsymmetric
*> eigenvalue routines (DEPRECATED)
*> = 5: the minimum column dimension for blocking to be used;
*> rectangular blocks must have dimension at least k by m,
*> where k is given by ILAENV(2,...) and m by ILAENV(5,...)
*> = 6: the crossover point for the SVD (when reducing an m by n
*> matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
*> this value, a QR factorization is used first to reduce
*> the matrix to a triangular form.)
*> = 7: the number of processors
*> = 8: the crossover point for the multishift QR method
*> for nonsymmetric eigenvalue problems (DEPRECATED)
*> = 9: maximum size of the subproblems at the bottom of the
*> computation tree in the divide-and-conquer algorithm
*> (used by xGELSD and xGESDD)
*> =10: ieee NaN arithmetic can be trusted not to trap
*> =11: infinity arithmetic can be trusted not to trap
*> 12 <= ISPEC <= 16:
*> xHSEQR or one of its subroutines,
*> see IPARMQ for detailed explanation
*> \endverbatim
*>
*> \param[in] NAME
*> \verbatim
*> NAME is CHARACTER*(*)
*> The name of the calling subroutine, in either upper case or
*> lower case.
*> \endverbatim
*>
*> \param[in] OPTS
*> \verbatim
*> OPTS is CHARACTER*(*)
*> The character options to the subroutine NAME, concatenated
*> into a single character string. For example, UPLO = 'U',
*> TRANS = 'T', and DIAG = 'N' for a triangular routine would
*> be specified as OPTS = 'UTN'.
*> \endverbatim
*>
*> \param[in] N1
*> \verbatim
*> N1 is INTEGER
*> \endverbatim
*>
*> \param[in] N2
*> \verbatim
*> N2 is INTEGER
*> \endverbatim
*>
*> \param[in] N3
*> \verbatim
*> N3 is INTEGER
*> \endverbatim
*>
*> \param[in] N4
*> \verbatim
*> N4 is INTEGER
*> Problem dimensions for the subroutine NAME; these may not all
*> be required.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The following conventions have been used when calling ILAENV from the
*> LAPACK routines:
*> 1) OPTS is a concatenation of all of the character options to
*> subroutine NAME, in the same order that they appear in the
*> argument list for NAME, even if they are not used in determining
*> the value of the parameter specified by ISPEC.
*> 2) The problem dimensions N1, N2, N3, N4 are specified in the order
*> that they appear in the argument list for NAME. N1 is used
*> first, N2 second, and so on, and unused problem dimensions are
*> passed a value of -1.
*> 3) The parameter value returned by ILAENV is checked for validity in
*> the calling subroutine. For example, ILAENV is used to retrieve
*> the optimal blocksize for STRTRI as follows:
*>
*> NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
*> IF( NB.LE.1 ) NB = MAX( 1, N )
*> \endverbatim
*>
* =====================================================================
INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER*( * ) NAME, OPTS
INTEGER ISPEC, N1, N2, N3, N4
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, IC, IZ, NB, NBMIN, NX
LOGICAL CNAME, SNAME
CHARACTER C1*1, C2*2, C4*2, C3*3, SUBNAM*6
* ..
* .. Intrinsic Functions ..
INTRINSIC CHAR, ICHAR, INT, MIN, REAL
* ..
* .. External Functions ..
INTEGER IEEECK, IPARMQ
EXTERNAL IEEECK, IPARMQ
* ..
* .. Executable Statements ..
*
GO TO ( 10, 10, 10, 80, 90, 100, 110, 120,
$ 130, 140, 150, 160, 160, 160, 160, 160 )ISPEC
*
* Invalid value for ISPEC
*
ILAENV = -1
RETURN
*
10 CONTINUE
*
* Convert NAME to upper case if the first character is lower case.
*
ILAENV = 1
SUBNAM = NAME
IC = ICHAR( SUBNAM( 1: 1 ) )
IZ = ICHAR( 'Z' )
IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN
*
* ASCII character set
*
IF( IC.GE.97 .AND. IC.LE.122 ) THEN
SUBNAM( 1: 1 ) = CHAR( IC-32 )
DO 20 I = 2, 6
IC = ICHAR( SUBNAM( I: I ) )
IF( IC.GE.97 .AND. IC.LE.122 )
$ SUBNAM( I: I ) = CHAR( IC-32 )
20 CONTINUE
END IF
*
ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN
*
* EBCDIC character set
*
IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
$ ( IC.GE.145 .AND. IC.LE.153 ) .OR.
$ ( IC.GE.162 .AND. IC.LE.169 ) ) THEN
SUBNAM( 1: 1 ) = CHAR( IC+64 )
DO 30 I = 2, 6
IC = ICHAR( SUBNAM( I: I ) )
IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
$ ( IC.GE.145 .AND. IC.LE.153 ) .OR.
$ ( IC.GE.162 .AND. IC.LE.169 ) )SUBNAM( I:
$ I ) = CHAR( IC+64 )
30 CONTINUE
END IF
*
ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN
*
* Prime machines: ASCII+128
*
IF( IC.GE.225 .AND. IC.LE.250 ) THEN
SUBNAM( 1: 1 ) = CHAR( IC-32 )
DO 40 I = 2, 6
IC = ICHAR( SUBNAM( I: I ) )
IF( IC.GE.225 .AND. IC.LE.250 )
$ SUBNAM( I: I ) = CHAR( IC-32 )
40 CONTINUE
END IF
END IF
*
C1 = SUBNAM( 1: 1 )
SNAME = C1.EQ.'S' .OR. C1.EQ.'D'
CNAME = C1.EQ.'C' .OR. C1.EQ.'Z'
IF( .NOT.( CNAME .OR. SNAME ) )
$ RETURN
C2 = SUBNAM( 2: 3 )
C3 = SUBNAM( 4: 6 )
C4 = C3( 2: 3 )
*
GO TO ( 50, 60, 70 )ISPEC
*
50 CONTINUE
*
* ISPEC = 1: block size
*
* In these examples, separate code is provided for setting NB for
* real and complex. We assume that NB will take the same value in
* single or double precision.
*
NB = 1
*
IF( C2.EQ.'GE' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
ELSE IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR.
$ C3.EQ.'QLF' ) THEN
IF( SNAME ) THEN
NB = 32
ELSE
NB = 32
END IF
ELSE IF( C3.EQ.'HRD' ) THEN
IF( SNAME ) THEN
NB = 32
ELSE
NB = 32
END IF
ELSE IF( C3.EQ.'BRD' ) THEN
IF( SNAME ) THEN
NB = 32
ELSE
NB = 32
END IF
ELSE IF( C3.EQ.'TRI' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( C2.EQ.'PO' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( C2.EQ.'SY' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN
NB = 32
ELSE IF( SNAME .AND. C3.EQ.'GST' ) THEN
NB = 64
END IF
ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
IF( C3.EQ.'TRF' ) THEN
NB = 64
ELSE IF( C3.EQ.'TRD' ) THEN
NB = 32
ELSE IF( C3.EQ.'GST' ) THEN
NB = 64
END IF
ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
END IF
ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
END IF
ELSE IF( C2.EQ.'GB' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
IF( N4.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
ELSE
IF( N4.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
END IF
END IF
ELSE IF( C2.EQ.'PB' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
IF( N2.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
ELSE
IF( N2.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
END IF
END IF
ELSE IF( C2.EQ.'TR' ) THEN
IF( C3.EQ.'TRI' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( C2.EQ.'LA' ) THEN
IF( C3.EQ.'UUM' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( SNAME .AND. C2.EQ.'ST' ) THEN
IF( C3.EQ.'EBZ' ) THEN
NB = 1
END IF
END IF
ILAENV = NB
RETURN
*
60 CONTINUE
*
* ISPEC = 2: minimum block size
*
NBMIN = 2
IF( C2.EQ.'GE' ) THEN
IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ.
$ 'QLF' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
ELSE IF( C3.EQ.'HRD' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
ELSE IF( C3.EQ.'BRD' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
ELSE IF( C3.EQ.'TRI' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
END IF
ELSE IF( C2.EQ.'SY' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NBMIN = 8
ELSE
NBMIN = 8
END IF
ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN
NBMIN = 2
END IF
ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
IF( C3.EQ.'TRD' ) THEN
NBMIN = 2
END IF
ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
END IF
ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
END IF
END IF
ILAENV = NBMIN
RETURN
*
70 CONTINUE
*
* ISPEC = 3: crossover point
*
NX = 0
IF( C2.EQ.'GE' ) THEN
IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ.
$ 'QLF' ) THEN
IF( SNAME ) THEN
NX = 128
ELSE
NX = 128
END IF
ELSE IF( C3.EQ.'HRD' ) THEN
IF( SNAME ) THEN
NX = 128
ELSE
NX = 128
END IF
ELSE IF( C3.EQ.'BRD' ) THEN
IF( SNAME ) THEN
NX = 128
ELSE
NX = 128
END IF
END IF
ELSE IF( C2.EQ.'SY' ) THEN
IF( SNAME .AND. C3.EQ.'TRD' ) THEN
NX = 32
END IF
ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
IF( C3.EQ.'TRD' ) THEN
NX = 32
END IF
ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NX = 128
END IF
END IF
ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NX = 128
END IF
END IF
END IF
ILAENV = NX
RETURN
*
80 CONTINUE
*
* ISPEC = 4: number of shifts (used by xHSEQR)
*
ILAENV = 6
RETURN
*
90 CONTINUE
*
* ISPEC = 5: minimum column dimension (not used)
*
ILAENV = 2
RETURN
*
100 CONTINUE
*
* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD)
*
ILAENV = INT( REAL( MIN( N1, N2 ) )*1.6E0 )
RETURN
*
110 CONTINUE
*
* ISPEC = 7: number of processors (not used)
*
ILAENV = 1
RETURN
*
120 CONTINUE
*
* ISPEC = 8: crossover point for multishift (used by xHSEQR)
*
ILAENV = 50
RETURN
*
130 CONTINUE
*
* ISPEC = 9: maximum size of the subproblems at the bottom of the
* computation tree in the divide-and-conquer algorithm
* (used by xGELSD and xGESDD)
*
ILAENV = 25
RETURN
*
140 CONTINUE
*
* ISPEC = 10: ieee NaN arithmetic can be trusted not to trap
*
* ILAENV = 0
ILAENV = 1
IF( ILAENV.EQ.1 ) THEN
ILAENV = IEEECK( 1, 0.0, 1.0 )
END IF
RETURN
*
150 CONTINUE
*
* ISPEC = 11: infinity arithmetic can be trusted not to trap
*
* ILAENV = 0
ILAENV = 1
IF( ILAENV.EQ.1 ) THEN
ILAENV = IEEECK( 0, 0.0, 1.0 )
END IF
RETURN
*
160 CONTINUE
*
* 12 <= ISPEC <= 16: xHSEQR or one of its subroutines.
*
ILAENV = IPARMQ( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
RETURN
*
* End of ILAENV
*
END
| apache-2.0 |
pts-eduardoacuna/pachy-learning | vendor/gonum.org/v1/gonum/lapack/internal/testdata/dlasqtest/ilaenv.f | 129 | 18298 | *> \brief \b ILAENV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ILAENV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilaenv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilaenv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilaenv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
*
* .. Scalar Arguments ..
* CHARACTER*( * ) NAME, OPTS
* INTEGER ISPEC, N1, N2, N3, N4
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ILAENV is called from the LAPACK routines to choose problem-dependent
*> parameters for the local environment. See ISPEC for a description of
*> the parameters.
*>
*> ILAENV returns an INTEGER
*> if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC
*> if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value.
*>
*> This version provides a set of parameters which should give good,
*> but not optimal, performance on many of the currently available
*> computers. Users are encouraged to modify this subroutine to set
*> the tuning parameters for their particular machine using the option
*> and problem size information in the arguments.
*>
*> This routine will not function correctly if it is converted to all
*> lower case. Converting it to all upper case is allowed.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ISPEC
*> \verbatim
*> ISPEC is INTEGER
*> Specifies the parameter to be returned as the value of
*> ILAENV.
*> = 1: the optimal blocksize; if this value is 1, an unblocked
*> algorithm will give the best performance.
*> = 2: the minimum block size for which the block routine
*> should be used; if the usable block size is less than
*> this value, an unblocked routine should be used.
*> = 3: the crossover point (in a block routine, for N less
*> than this value, an unblocked routine should be used)
*> = 4: the number of shifts, used in the nonsymmetric
*> eigenvalue routines (DEPRECATED)
*> = 5: the minimum column dimension for blocking to be used;
*> rectangular blocks must have dimension at least k by m,
*> where k is given by ILAENV(2,...) and m by ILAENV(5,...)
*> = 6: the crossover point for the SVD (when reducing an m by n
*> matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
*> this value, a QR factorization is used first to reduce
*> the matrix to a triangular form.)
*> = 7: the number of processors
*> = 8: the crossover point for the multishift QR method
*> for nonsymmetric eigenvalue problems (DEPRECATED)
*> = 9: maximum size of the subproblems at the bottom of the
*> computation tree in the divide-and-conquer algorithm
*> (used by xGELSD and xGESDD)
*> =10: ieee NaN arithmetic can be trusted not to trap
*> =11: infinity arithmetic can be trusted not to trap
*> 12 <= ISPEC <= 16:
*> xHSEQR or one of its subroutines,
*> see IPARMQ for detailed explanation
*> \endverbatim
*>
*> \param[in] NAME
*> \verbatim
*> NAME is CHARACTER*(*)
*> The name of the calling subroutine, in either upper case or
*> lower case.
*> \endverbatim
*>
*> \param[in] OPTS
*> \verbatim
*> OPTS is CHARACTER*(*)
*> The character options to the subroutine NAME, concatenated
*> into a single character string. For example, UPLO = 'U',
*> TRANS = 'T', and DIAG = 'N' for a triangular routine would
*> be specified as OPTS = 'UTN'.
*> \endverbatim
*>
*> \param[in] N1
*> \verbatim
*> N1 is INTEGER
*> \endverbatim
*>
*> \param[in] N2
*> \verbatim
*> N2 is INTEGER
*> \endverbatim
*>
*> \param[in] N3
*> \verbatim
*> N3 is INTEGER
*> \endverbatim
*>
*> \param[in] N4
*> \verbatim
*> N4 is INTEGER
*> Problem dimensions for the subroutine NAME; these may not all
*> be required.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The following conventions have been used when calling ILAENV from the
*> LAPACK routines:
*> 1) OPTS is a concatenation of all of the character options to
*> subroutine NAME, in the same order that they appear in the
*> argument list for NAME, even if they are not used in determining
*> the value of the parameter specified by ISPEC.
*> 2) The problem dimensions N1, N2, N3, N4 are specified in the order
*> that they appear in the argument list for NAME. N1 is used
*> first, N2 second, and so on, and unused problem dimensions are
*> passed a value of -1.
*> 3) The parameter value returned by ILAENV is checked for validity in
*> the calling subroutine. For example, ILAENV is used to retrieve
*> the optimal blocksize for STRTRI as follows:
*>
*> NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
*> IF( NB.LE.1 ) NB = MAX( 1, N )
*> \endverbatim
*>
* =====================================================================
INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER*( * ) NAME, OPTS
INTEGER ISPEC, N1, N2, N3, N4
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, IC, IZ, NB, NBMIN, NX
LOGICAL CNAME, SNAME
CHARACTER C1*1, C2*2, C4*2, C3*3, SUBNAM*6
* ..
* .. Intrinsic Functions ..
INTRINSIC CHAR, ICHAR, INT, MIN, REAL
* ..
* .. External Functions ..
INTEGER IEEECK, IPARMQ
EXTERNAL IEEECK, IPARMQ
* ..
* .. Executable Statements ..
*
GO TO ( 10, 10, 10, 80, 90, 100, 110, 120,
$ 130, 140, 150, 160, 160, 160, 160, 160 )ISPEC
*
* Invalid value for ISPEC
*
ILAENV = -1
RETURN
*
10 CONTINUE
*
* Convert NAME to upper case if the first character is lower case.
*
ILAENV = 1
SUBNAM = NAME
IC = ICHAR( SUBNAM( 1: 1 ) )
IZ = ICHAR( 'Z' )
IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN
*
* ASCII character set
*
IF( IC.GE.97 .AND. IC.LE.122 ) THEN
SUBNAM( 1: 1 ) = CHAR( IC-32 )
DO 20 I = 2, 6
IC = ICHAR( SUBNAM( I: I ) )
IF( IC.GE.97 .AND. IC.LE.122 )
$ SUBNAM( I: I ) = CHAR( IC-32 )
20 CONTINUE
END IF
*
ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN
*
* EBCDIC character set
*
IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
$ ( IC.GE.145 .AND. IC.LE.153 ) .OR.
$ ( IC.GE.162 .AND. IC.LE.169 ) ) THEN
SUBNAM( 1: 1 ) = CHAR( IC+64 )
DO 30 I = 2, 6
IC = ICHAR( SUBNAM( I: I ) )
IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
$ ( IC.GE.145 .AND. IC.LE.153 ) .OR.
$ ( IC.GE.162 .AND. IC.LE.169 ) )SUBNAM( I:
$ I ) = CHAR( IC+64 )
30 CONTINUE
END IF
*
ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN
*
* Prime machines: ASCII+128
*
IF( IC.GE.225 .AND. IC.LE.250 ) THEN
SUBNAM( 1: 1 ) = CHAR( IC-32 )
DO 40 I = 2, 6
IC = ICHAR( SUBNAM( I: I ) )
IF( IC.GE.225 .AND. IC.LE.250 )
$ SUBNAM( I: I ) = CHAR( IC-32 )
40 CONTINUE
END IF
END IF
*
C1 = SUBNAM( 1: 1 )
SNAME = C1.EQ.'S' .OR. C1.EQ.'D'
CNAME = C1.EQ.'C' .OR. C1.EQ.'Z'
IF( .NOT.( CNAME .OR. SNAME ) )
$ RETURN
C2 = SUBNAM( 2: 3 )
C3 = SUBNAM( 4: 6 )
C4 = C3( 2: 3 )
*
GO TO ( 50, 60, 70 )ISPEC
*
50 CONTINUE
*
* ISPEC = 1: block size
*
* In these examples, separate code is provided for setting NB for
* real and complex. We assume that NB will take the same value in
* single or double precision.
*
NB = 1
*
IF( C2.EQ.'GE' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
ELSE IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR.
$ C3.EQ.'QLF' ) THEN
IF( SNAME ) THEN
NB = 32
ELSE
NB = 32
END IF
ELSE IF( C3.EQ.'HRD' ) THEN
IF( SNAME ) THEN
NB = 32
ELSE
NB = 32
END IF
ELSE IF( C3.EQ.'BRD' ) THEN
IF( SNAME ) THEN
NB = 32
ELSE
NB = 32
END IF
ELSE IF( C3.EQ.'TRI' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( C2.EQ.'PO' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( C2.EQ.'SY' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN
NB = 32
ELSE IF( SNAME .AND. C3.EQ.'GST' ) THEN
NB = 64
END IF
ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
IF( C3.EQ.'TRF' ) THEN
NB = 64
ELSE IF( C3.EQ.'TRD' ) THEN
NB = 32
ELSE IF( C3.EQ.'GST' ) THEN
NB = 64
END IF
ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
END IF
ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
END IF
ELSE IF( C2.EQ.'GB' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
IF( N4.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
ELSE
IF( N4.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
END IF
END IF
ELSE IF( C2.EQ.'PB' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
IF( N2.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
ELSE
IF( N2.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
END IF
END IF
ELSE IF( C2.EQ.'TR' ) THEN
IF( C3.EQ.'TRI' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( C2.EQ.'LA' ) THEN
IF( C3.EQ.'UUM' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( SNAME .AND. C2.EQ.'ST' ) THEN
IF( C3.EQ.'EBZ' ) THEN
NB = 1
END IF
END IF
ILAENV = NB
RETURN
*
60 CONTINUE
*
* ISPEC = 2: minimum block size
*
NBMIN = 2
IF( C2.EQ.'GE' ) THEN
IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ.
$ 'QLF' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
ELSE IF( C3.EQ.'HRD' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
ELSE IF( C3.EQ.'BRD' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
ELSE IF( C3.EQ.'TRI' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
END IF
ELSE IF( C2.EQ.'SY' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NBMIN = 8
ELSE
NBMIN = 8
END IF
ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN
NBMIN = 2
END IF
ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
IF( C3.EQ.'TRD' ) THEN
NBMIN = 2
END IF
ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
END IF
ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
END IF
END IF
ILAENV = NBMIN
RETURN
*
70 CONTINUE
*
* ISPEC = 3: crossover point
*
NX = 0
IF( C2.EQ.'GE' ) THEN
IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ.
$ 'QLF' ) THEN
IF( SNAME ) THEN
NX = 128
ELSE
NX = 128
END IF
ELSE IF( C3.EQ.'HRD' ) THEN
IF( SNAME ) THEN
NX = 128
ELSE
NX = 128
END IF
ELSE IF( C3.EQ.'BRD' ) THEN
IF( SNAME ) THEN
NX = 128
ELSE
NX = 128
END IF
END IF
ELSE IF( C2.EQ.'SY' ) THEN
IF( SNAME .AND. C3.EQ.'TRD' ) THEN
NX = 32
END IF
ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
IF( C3.EQ.'TRD' ) THEN
NX = 32
END IF
ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NX = 128
END IF
END IF
ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NX = 128
END IF
END IF
END IF
ILAENV = NX
RETURN
*
80 CONTINUE
*
* ISPEC = 4: number of shifts (used by xHSEQR)
*
ILAENV = 6
RETURN
*
90 CONTINUE
*
* ISPEC = 5: minimum column dimension (not used)
*
ILAENV = 2
RETURN
*
100 CONTINUE
*
* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD)
*
ILAENV = INT( REAL( MIN( N1, N2 ) )*1.6E0 )
RETURN
*
110 CONTINUE
*
* ISPEC = 7: number of processors (not used)
*
ILAENV = 1
RETURN
*
120 CONTINUE
*
* ISPEC = 8: crossover point for multishift (used by xHSEQR)
*
ILAENV = 50
RETURN
*
130 CONTINUE
*
* ISPEC = 9: maximum size of the subproblems at the bottom of the
* computation tree in the divide-and-conquer algorithm
* (used by xGELSD and xGESDD)
*
ILAENV = 25
RETURN
*
140 CONTINUE
*
* ISPEC = 10: ieee NaN arithmetic can be trusted not to trap
*
* ILAENV = 0
ILAENV = 1
IF( ILAENV.EQ.1 ) THEN
ILAENV = IEEECK( 1, 0.0, 1.0 )
END IF
RETURN
*
150 CONTINUE
*
* ISPEC = 11: infinity arithmetic can be trusted not to trap
*
* ILAENV = 0
ILAENV = 1
IF( ILAENV.EQ.1 ) THEN
ILAENV = IEEECK( 0, 0.0, 1.0 )
END IF
RETURN
*
160 CONTINUE
*
* 12 <= ISPEC <= 16: xHSEQR or one of its subroutines.
*
ILAENV = IPARMQ( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
RETURN
*
* End of ILAENV
*
END
| gpl-3.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/EIG/sstt22.f | 32 | 7054 | *> \brief \b SSTT22
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
* LDWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER KBAND, LDU, LDWORK, M, N
* ..
* .. Array Arguments ..
* REAL AD( * ), AE( * ), RESULT( 2 ), SD( * ),
* $ SE( * ), U( LDU, * ), WORK( LDWORK, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SSTT22 checks a set of M eigenvalues and eigenvectors,
*>
*> A U = U S
*>
*> where A is symmetric tridiagonal, the columns of U are orthogonal,
*> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
*> Two tests are performed:
*>
*> RESULT(1) = | U' A U - S | / ( |A| m ulp )
*>
*> RESULT(2) = | I - U'U | / ( m ulp )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrix. If it is zero, SSTT22 does nothing.
*> It must be at least zero.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of eigenpairs to check. If it is zero, SSTT22
*> does nothing. It must be at least zero.
*> \endverbatim
*>
*> \param[in] KBAND
*> \verbatim
*> KBAND is INTEGER
*> The bandwidth of the matrix S. It may only be zero or one.
*> If zero, then S is diagonal, and SE is not referenced. If
*> one, then S is symmetric tri-diagonal.
*> \endverbatim
*>
*> \param[in] AD
*> \verbatim
*> AD is REAL array, dimension (N)
*> The diagonal of the original (unfactored) matrix A. A is
*> assumed to be symmetric tridiagonal.
*> \endverbatim
*>
*> \param[in] AE
*> \verbatim
*> AE is REAL array, dimension (N)
*> The off-diagonal of the original (unfactored) matrix A. A
*> is assumed to be symmetric tridiagonal. AE(1) is ignored,
*> AE(2) is the (1,2) and (2,1) element, etc.
*> \endverbatim
*>
*> \param[in] SD
*> \verbatim
*> SD is REAL array, dimension (N)
*> The diagonal of the (symmetric tri-) diagonal matrix S.
*> \endverbatim
*>
*> \param[in] SE
*> \verbatim
*> SE is REAL array, dimension (N)
*> The off-diagonal of the (symmetric tri-) diagonal matrix S.
*> Not referenced if KBSND=0. If KBAND=1, then AE(1) is
*> ignored, SE(2) is the (1,2) and (2,1) element, etc.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is REAL array, dimension (LDU, N)
*> The orthogonal matrix in the decomposition.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U. LDU must be at least N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LDWORK, M+1)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*> LDWORK is INTEGER
*> The leading dimension of WORK. LDWORK must be at least
*> max(1,M).
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (2)
*> The values computed by the two tests described above. The
*> values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
$ LDWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER KBAND, LDU, LDWORK, M, N
* ..
* .. Array Arguments ..
REAL AD( * ), AE( * ), RESULT( 2 ), SD( * ),
$ SE( * ), U( LDU, * ), WORK( LDWORK, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K
REAL ANORM, AUKJ, ULP, UNFL, WNORM
* ..
* .. External Functions ..
REAL SLAMCH, SLANGE, SLANSY
EXTERNAL SLAMCH, SLANGE, SLANSY
* ..
* .. External Subroutines ..
EXTERNAL SGEMM
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 .OR. M.LE.0 )
$ RETURN
*
UNFL = SLAMCH( 'Safe minimum' )
ULP = SLAMCH( 'Epsilon' )
*
* Do Test 1
*
* Compute the 1-norm of A.
*
IF( N.GT.1 ) THEN
ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) )
DO 10 J = 2, N - 1
ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+
$ ABS( AE( J-1 ) ) )
10 CONTINUE
ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) )
ELSE
ANORM = ABS( AD( 1 ) )
END IF
ANORM = MAX( ANORM, UNFL )
*
* Norm of U'AU - S
*
DO 40 I = 1, M
DO 30 J = 1, M
WORK( I, J ) = ZERO
DO 20 K = 1, N
AUKJ = AD( K )*U( K, J )
IF( K.NE.N )
$ AUKJ = AUKJ + AE( K )*U( K+1, J )
IF( K.NE.1 )
$ AUKJ = AUKJ + AE( K-1 )*U( K-1, J )
WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ
20 CONTINUE
30 CONTINUE
WORK( I, I ) = WORK( I, I ) - SD( I )
IF( KBAND.EQ.1 ) THEN
IF( I.NE.1 )
$ WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 )
IF( I.NE.N )
$ WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I )
END IF
40 CONTINUE
*
WNORM = SLANSY( '1', 'L', M, WORK, M, WORK( 1, M+1 ) )
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
ELSE
RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP )
END IF
END IF
*
* Do Test 2
*
* Compute U'U - I
*
CALL SGEMM( 'T', 'N', M, M, N, ONE, U, LDU, U, LDU, ZERO, WORK,
$ M )
*
DO 50 J = 1, M
WORK( J, J ) = WORK( J, J ) - ONE
50 CONTINUE
*
RESULT( 2 ) = MIN( REAL( M ), SLANGE( '1', M, M, WORK, M, WORK( 1,
$ M+1 ) ) ) / ( M*ULP )
*
RETURN
*
* End of SSTT22
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/zlanhp.f | 26 | 8330 | *> \brief \b ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLANHP + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhp.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhp.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhp.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
*
* .. Scalar Arguments ..
* CHARACTER NORM, UPLO
* INTEGER N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION WORK( * )
* COMPLEX*16 AP( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLANHP returns the value of the one norm, or the Frobenius norm, or
*> the infinity norm, or the element of largest absolute value of a
*> complex hermitian matrix A, supplied in packed form.
*> \endverbatim
*>
*> \return ZLANHP
*> \verbatim
*>
*> ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*> (
*> ( norm1(A), NORM = '1', 'O' or 'o'
*> (
*> ( normI(A), NORM = 'I' or 'i'
*> (
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*>
*> where norm1 denotes the one norm of a matrix (maximum column sum),
*> normI denotes the infinity norm of a matrix (maximum row sum) and
*> normF denotes the Frobenius norm of a matrix (square root of sum of
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies the value to be returned in ZLANHP as described
*> above.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> hermitian matrix A is supplied.
*> = 'U': Upper triangular part of A is supplied
*> = 'L': Lower triangular part of A is supplied
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0. When N = 0, ZLANHP is
*> set to zero.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*> The upper or lower triangle of the hermitian matrix A, packed
*> columnwise in a linear array. The j-th column of A is stored
*> in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> Note that the imaginary parts of the diagonal elements need
*> not be set and are assumed to be zero.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*> WORK is not referenced.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER NORM, UPLO
INTEGER N
* ..
* .. Array Arguments ..
DOUBLE PRECISION WORK( * )
COMPLEX*16 AP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K
DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
* .. External Subroutines ..
EXTERNAL ZLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
IF( LSAME( UPLO, 'U' ) ) THEN
K = 0
DO 20 J = 1, N
DO 10 I = K + 1, K + J - 1
SUM = ABS( AP( I ) )
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
10 CONTINUE
K = K + J
SUM = ABS( DBLE( AP( K ) ) )
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
20 CONTINUE
ELSE
K = 1
DO 40 J = 1, N
SUM = ABS( DBLE( AP( K ) ) )
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
DO 30 I = K + 1, K + N - J
SUM = ABS( AP( I ) )
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
30 CONTINUE
K = K + N - J + 1
40 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
$ ( NORM.EQ.'1' ) ) THEN
*
* Find normI(A) ( = norm1(A), since A is hermitian).
*
VALUE = ZERO
K = 1
IF( LSAME( UPLO, 'U' ) ) THEN
DO 60 J = 1, N
SUM = ZERO
DO 50 I = 1, J - 1
ABSA = ABS( AP( K ) )
SUM = SUM + ABSA
WORK( I ) = WORK( I ) + ABSA
K = K + 1
50 CONTINUE
WORK( J ) = SUM + ABS( DBLE( AP( K ) ) )
K = K + 1
60 CONTINUE
DO 70 I = 1, N
SUM = WORK( I )
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
70 CONTINUE
ELSE
DO 80 I = 1, N
WORK( I ) = ZERO
80 CONTINUE
DO 100 J = 1, N
SUM = WORK( J ) + ABS( DBLE( AP( K ) ) )
K = K + 1
DO 90 I = J + 1, N
ABSA = ABS( AP( K ) )
SUM = SUM + ABSA
WORK( I ) = WORK( I ) + ABSA
K = K + 1
90 CONTINUE
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
100 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
K = 2
IF( LSAME( UPLO, 'U' ) ) THEN
DO 110 J = 2, N
CALL ZLASSQ( J-1, AP( K ), 1, SCALE, SUM )
K = K + J
110 CONTINUE
ELSE
DO 120 J = 1, N - 1
CALL ZLASSQ( N-J, AP( K ), 1, SCALE, SUM )
K = K + N - J + 1
120 CONTINUE
END IF
SUM = 2*SUM
K = 1
DO 130 I = 1, N
IF( DBLE( AP( K ) ).NE.ZERO ) THEN
ABSA = ABS( DBLE( AP( K ) ) )
IF( SCALE.LT.ABSA ) THEN
SUM = ONE + SUM*( SCALE / ABSA )**2
SCALE = ABSA
ELSE
SUM = SUM + ( ABSA / SCALE )**2
END IF
END IF
IF( LSAME( UPLO, 'U' ) ) THEN
K = K + I + 1
ELSE
K = K + N - I + 1
END IF
130 CONTINUE
VALUE = SCALE*SQRT( SUM )
END IF
*
ZLANHP = VALUE
RETURN
*
* End of ZLANHP
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/cgetrs.f | 29 | 6059 | *> \brief \b CGETRS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGETRS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetrs.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetrs.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetrs.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGETRS solves a system of linear equations
*> A * X = B, A**T * X = B, or A**H * X = B
*> with a general N-by-N matrix A using the LU factorization computed
*> by CGETRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
*> = 'C': A**H * X = B (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The factors L and U from the factorization A = P*L*U
*> as computed by CGETRF.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from CGETRF; for 1<=i<=N, row i of the
*> matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the right hand side matrix B.
*> On exit, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexGEcomputational
*
* =====================================================================
SUBROUTINE CGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLASWP, CTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOTRAN = LSAME( TRANS, 'N' )
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGETRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
IF( NOTRAN ) THEN
*
* Solve A * X = B.
*
* Apply row interchanges to the right hand sides.
*
CALL CLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
*
* Solve L*X = B, overwriting B with X.
*
CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,
$ ONE, A, LDA, B, LDB )
*
* Solve U*X = B, overwriting B with X.
*
CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
$ NRHS, ONE, A, LDA, B, LDB )
ELSE
*
* Solve A**T * X = B or A**H * X = B.
*
* Solve U**T *X = B or U**H *X = B, overwriting B with X.
*
CALL CTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
$ A, LDA, B, LDB )
*
* Solve L**T *X = B, or L**H *X = B overwriting B with X.
*
CALL CTRSM( 'Left', 'Lower', TRANS, 'Unit', N, NRHS, ONE, A,
$ LDA, B, LDB )
*
* Apply row interchanges to the solution vectors.
*
CALL CLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
END IF
*
RETURN
*
* End of CGETRS
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/BLAS/SRC/dcabs1.f | 30 | 1299 | *> \brief \b DCABS1
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION DCABS1(Z)
*
* .. Scalar Arguments ..
* COMPLEX*16 Z
* ..
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DCABS1 computes absolute value of a double complex number
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_blas_level1
*
* =====================================================================
DOUBLE PRECISION FUNCTION DCABS1(Z)
*
* -- Reference BLAS level1 routine (version 3.4.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
COMPLEX*16 Z
* ..
* ..
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ABS,DBLE,DIMAG
*
DCABS1 = ABS(DBLE(Z)) + ABS(DIMAG(Z))
RETURN
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/LIN/slattb.f | 32 | 22039 | *> \brief \b SLATTB
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB,
* LDAB, B, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, TRANS, UPLO
* INTEGER IMAT, INFO, KD, LDAB, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL AB( LDAB, * ), B( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLATTB generates a triangular test matrix in 2-dimensional storage.
*> IMAT and UPLO uniquely specify the properties of the test matrix,
*> which is returned in the array A.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IMAT
*> \verbatim
*> IMAT is INTEGER
*> An integer key describing which matrix to generate for this
*> path.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A will be upper or lower
*> triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies whether the matrix or its transpose will be used.
*> = 'N': No transpose
*> = 'T': Transpose
*> = 'C': Conjugate transpose (= transpose)
*> \endverbatim
*>
*> \param[out] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> The seed vector for the random number generator (used in
*> SLATMS). Modified on exit.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix to be generated.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of superdiagonals or subdiagonals of the banded
*> triangular matrix A. KD >= 0.
*> \endverbatim
*>
*> \param[out] AB
*> \verbatim
*> AB is REAL array, dimension (LDAB,N)
*> The upper or lower triangular banded matrix A, stored in the
*> first KD+1 rows of AB. Let j be a column of A, 1<=j<=n.
*> If UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j.
*> If UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KD+1.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB,
$ LDAB, B, WORK, INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER IMAT, INFO, KD, LDAB, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL AB( LDAB, * ), B( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, TWO, ZERO
PARAMETER ( ONE = 1.0E+0, TWO = 2.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
CHARACTER DIST, PACKIT, TYPE
CHARACTER*3 PATH
INTEGER I, IOFF, IY, J, JCOUNT, KL, KU, LENJ, MODE
REAL ANORM, BIGNUM, BNORM, BSCAL, CNDNUM, PLUS1,
$ PLUS2, REXP, SFAC, SMLNUM, STAR1, TEXP, TLEFT,
$ TNORM, TSCAL, ULP, UNFL
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
REAL SLAMCH, SLARND
EXTERNAL LSAME, ISAMAX, SLAMCH, SLARND
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SLABAD, SLARNV, SLATB4, SLATMS, SSCAL,
$ SSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL, SIGN, SQRT
* ..
* .. Executable Statements ..
*
PATH( 1: 1 ) = 'Single precision'
PATH( 2: 3 ) = 'TB'
UNFL = SLAMCH( 'Safe minimum' )
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
SMLNUM = UNFL
BIGNUM = ( ONE-ULP ) / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
IF( ( IMAT.GE.6 .AND. IMAT.LE.9 ) .OR. IMAT.EQ.17 ) THEN
DIAG = 'U'
ELSE
DIAG = 'N'
END IF
INFO = 0
*
* Quick return if N.LE.0.
*
IF( N.LE.0 )
$ RETURN
*
* Call SLATB4 to set parameters for SLATMS.
*
UPPER = LSAME( UPLO, 'U' )
IF( UPPER ) THEN
CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
KU = KD
IOFF = 1 + MAX( 0, KD-N+1 )
KL = 0
PACKIT = 'Q'
ELSE
CALL SLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
KL = KD
IOFF = 1
KU = 0
PACKIT = 'B'
END IF
*
* IMAT <= 5: Non-unit triangular matrix
*
IF( IMAT.LE.5 ) THEN
CALL SLATMS( N, N, DIST, ISEED, TYPE, B, MODE, CNDNUM, ANORM,
$ KL, KU, PACKIT, AB( IOFF, 1 ), LDAB, WORK, INFO )
*
* IMAT > 5: Unit triangular matrix
* The diagonal is deliberately set to something other than 1.
*
* IMAT = 6: Matrix is the identity
*
ELSE IF( IMAT.EQ.6 ) THEN
IF( UPPER ) THEN
DO 20 J = 1, N
DO 10 I = MAX( 1, KD+2-J ), KD
AB( I, J ) = ZERO
10 CONTINUE
AB( KD+1, J ) = J
20 CONTINUE
ELSE
DO 40 J = 1, N
AB( 1, J ) = J
DO 30 I = 2, MIN( KD+1, N-J+1 )
AB( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
END IF
*
* IMAT > 6: Non-trivial unit triangular matrix
*
* A unit triangular matrix T with condition CNDNUM is formed.
* In this version, T only has bandwidth 2, the rest of it is zero.
*
ELSE IF( IMAT.LE.9 ) THEN
TNORM = SQRT( CNDNUM )
*
* Initialize AB to zero.
*
IF( UPPER ) THEN
DO 60 J = 1, N
DO 50 I = MAX( 1, KD+2-J ), KD
AB( I, J ) = ZERO
50 CONTINUE
AB( KD+1, J ) = REAL( J )
60 CONTINUE
ELSE
DO 80 J = 1, N
DO 70 I = 2, MIN( KD+1, N-J+1 )
AB( I, J ) = ZERO
70 CONTINUE
AB( 1, J ) = REAL( J )
80 CONTINUE
END IF
*
* Special case: T is tridiagonal. Set every other offdiagonal
* so that the matrix has norm TNORM+1.
*
IF( KD.EQ.1 ) THEN
IF( UPPER ) THEN
AB( 1, 2 ) = SIGN( TNORM, SLARND( 2, ISEED ) )
LENJ = ( N-3 ) / 2
CALL SLARNV( 2, ISEED, LENJ, WORK )
DO 90 J = 1, LENJ
AB( 1, 2*( J+1 ) ) = TNORM*WORK( J )
90 CONTINUE
ELSE
AB( 2, 1 ) = SIGN( TNORM, SLARND( 2, ISEED ) )
LENJ = ( N-3 ) / 2
CALL SLARNV( 2, ISEED, LENJ, WORK )
DO 100 J = 1, LENJ
AB( 2, 2*J+1 ) = TNORM*WORK( J )
100 CONTINUE
END IF
ELSE IF( KD.GT.1 ) THEN
*
* Form a unit triangular matrix T with condition CNDNUM. T is
* given by
* | 1 + * |
* | 1 + |
* T = | 1 + * |
* | 1 + |
* | 1 + * |
* | 1 + |
* | . . . |
* Each element marked with a '*' is formed by taking the product
* of the adjacent elements marked with '+'. The '*'s can be
* chosen freely, and the '+'s are chosen so that the inverse of
* T will have elements of the same magnitude as T.
*
* The two offdiagonals of T are stored in WORK.
*
STAR1 = SIGN( TNORM, SLARND( 2, ISEED ) )
SFAC = SQRT( TNORM )
PLUS1 = SIGN( SFAC, SLARND( 2, ISEED ) )
DO 110 J = 1, N, 2
PLUS2 = STAR1 / PLUS1
WORK( J ) = PLUS1
WORK( N+J ) = STAR1
IF( J+1.LE.N ) THEN
WORK( J+1 ) = PLUS2
WORK( N+J+1 ) = ZERO
PLUS1 = STAR1 / PLUS2
*
* Generate a new *-value with norm between sqrt(TNORM)
* and TNORM.
*
REXP = SLARND( 2, ISEED )
IF( REXP.LT.ZERO ) THEN
STAR1 = -SFAC**( ONE-REXP )
ELSE
STAR1 = SFAC**( ONE+REXP )
END IF
END IF
110 CONTINUE
*
* Copy the tridiagonal T to AB.
*
IF( UPPER ) THEN
CALL SCOPY( N-1, WORK, 1, AB( KD, 2 ), LDAB )
CALL SCOPY( N-2, WORK( N+1 ), 1, AB( KD-1, 3 ), LDAB )
ELSE
CALL SCOPY( N-1, WORK, 1, AB( 2, 1 ), LDAB )
CALL SCOPY( N-2, WORK( N+1 ), 1, AB( 3, 1 ), LDAB )
END IF
END IF
*
* IMAT > 9: Pathological test cases. These triangular matrices
* are badly scaled or badly conditioned, so when used in solving a
* triangular system they may cause overflow in the solution vector.
*
ELSE IF( IMAT.EQ.10 ) THEN
*
* Type 10: Generate a triangular matrix with elements between
* -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
* Make the right hand side large so that it requires scaling.
*
IF( UPPER ) THEN
DO 120 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
AB( KD+1, J ) = SIGN( TWO, AB( KD+1, J ) )
120 CONTINUE
ELSE
DO 130 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
IF( LENJ.GT.0 )
$ CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
AB( 1, J ) = SIGN( TWO, AB( 1, J ) )
130 CONTINUE
END IF
*
* Set the right hand side so that the largest value is BIGNUM.
*
CALL SLARNV( 2, ISEED, N, B )
IY = ISAMAX( N, B, 1 )
BNORM = ABS( B( IY ) )
BSCAL = BIGNUM / MAX( ONE, BNORM )
CALL SSCAL( N, BSCAL, B, 1 )
*
ELSE IF( IMAT.EQ.11 ) THEN
*
* Type 11: Make the first diagonal element in the solve small to
* cause immediate overflow when dividing by T(j,j).
* In type 11, the offdiagonal elements are small (CNORM(j) < 1).
*
CALL SLARNV( 2, ISEED, N, B )
TSCAL = ONE / REAL( KD+1 )
IF( UPPER ) THEN
DO 140 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
CALL SSCAL( LENJ-1, TSCAL, AB( KD+2-LENJ, J ), 1 )
AB( KD+1, J ) = SIGN( ONE, AB( KD+1, J ) )
140 CONTINUE
AB( KD+1, N ) = SMLNUM*AB( KD+1, N )
ELSE
DO 150 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
IF( LENJ.GT.1 )
$ CALL SSCAL( LENJ-1, TSCAL, AB( 2, J ), 1 )
AB( 1, J ) = SIGN( ONE, AB( 1, J ) )
150 CONTINUE
AB( 1, 1 ) = SMLNUM*AB( 1, 1 )
END IF
*
ELSE IF( IMAT.EQ.12 ) THEN
*
* Type 12: Make the first diagonal element in the solve small to
* cause immediate overflow when dividing by T(j,j).
* In type 12, the offdiagonal elements are O(1) (CNORM(j) > 1).
*
CALL SLARNV( 2, ISEED, N, B )
IF( UPPER ) THEN
DO 160 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
AB( KD+1, J ) = SIGN( ONE, AB( KD+1, J ) )
160 CONTINUE
AB( KD+1, N ) = SMLNUM*AB( KD+1, N )
ELSE
DO 170 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
AB( 1, J ) = SIGN( ONE, AB( 1, J ) )
170 CONTINUE
AB( 1, 1 ) = SMLNUM*AB( 1, 1 )
END IF
*
ELSE IF( IMAT.EQ.13 ) THEN
*
* Type 13: T is diagonal with small numbers on the diagonal to
* make the growth factor underflow, but a small right hand side
* chosen so that the solution does not overflow.
*
IF( UPPER ) THEN
JCOUNT = 1
DO 190 J = N, 1, -1
DO 180 I = MAX( 1, KD+1-( J-1 ) ), KD
AB( I, J ) = ZERO
180 CONTINUE
IF( JCOUNT.LE.2 ) THEN
AB( KD+1, J ) = SMLNUM
ELSE
AB( KD+1, J ) = ONE
END IF
JCOUNT = JCOUNT + 1
IF( JCOUNT.GT.4 )
$ JCOUNT = 1
190 CONTINUE
ELSE
JCOUNT = 1
DO 210 J = 1, N
DO 200 I = 2, MIN( N-J+1, KD+1 )
AB( I, J ) = ZERO
200 CONTINUE
IF( JCOUNT.LE.2 ) THEN
AB( 1, J ) = SMLNUM
ELSE
AB( 1, J ) = ONE
END IF
JCOUNT = JCOUNT + 1
IF( JCOUNT.GT.4 )
$ JCOUNT = 1
210 CONTINUE
END IF
*
* Set the right hand side alternately zero and small.
*
IF( UPPER ) THEN
B( 1 ) = ZERO
DO 220 I = N, 2, -2
B( I ) = ZERO
B( I-1 ) = SMLNUM
220 CONTINUE
ELSE
B( N ) = ZERO
DO 230 I = 1, N - 1, 2
B( I ) = ZERO
B( I+1 ) = SMLNUM
230 CONTINUE
END IF
*
ELSE IF( IMAT.EQ.14 ) THEN
*
* Type 14: Make the diagonal elements small to cause gradual
* overflow when dividing by T(j,j). To control the amount of
* scaling needed, the matrix is bidiagonal.
*
TEXP = ONE / REAL( KD+1 )
TSCAL = SMLNUM**TEXP
CALL SLARNV( 2, ISEED, N, B )
IF( UPPER ) THEN
DO 250 J = 1, N
DO 240 I = MAX( 1, KD+2-J ), KD
AB( I, J ) = ZERO
240 CONTINUE
IF( J.GT.1 .AND. KD.GT.0 )
$ AB( KD, J ) = -ONE
AB( KD+1, J ) = TSCAL
250 CONTINUE
B( N ) = ONE
ELSE
DO 270 J = 1, N
DO 260 I = 3, MIN( N-J+1, KD+1 )
AB( I, J ) = ZERO
260 CONTINUE
IF( J.LT.N .AND. KD.GT.0 )
$ AB( 2, J ) = -ONE
AB( 1, J ) = TSCAL
270 CONTINUE
B( 1 ) = ONE
END IF
*
ELSE IF( IMAT.EQ.15 ) THEN
*
* Type 15: One zero diagonal element.
*
IY = N / 2 + 1
IF( UPPER ) THEN
DO 280 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
IF( J.NE.IY ) THEN
AB( KD+1, J ) = SIGN( TWO, AB( KD+1, J ) )
ELSE
AB( KD+1, J ) = ZERO
END IF
280 CONTINUE
ELSE
DO 290 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
IF( J.NE.IY ) THEN
AB( 1, J ) = SIGN( TWO, AB( 1, J ) )
ELSE
AB( 1, J ) = ZERO
END IF
290 CONTINUE
END IF
CALL SLARNV( 2, ISEED, N, B )
CALL SSCAL( N, TWO, B, 1 )
*
ELSE IF( IMAT.EQ.16 ) THEN
*
* Type 16: Make the offdiagonal elements large to cause overflow
* when adding a column of T. In the non-transposed case, the
* matrix is constructed to cause overflow when adding a column in
* every other step.
*
TSCAL = UNFL / ULP
TSCAL = ( ONE-ULP ) / TSCAL
DO 310 J = 1, N
DO 300 I = 1, KD + 1
AB( I, J ) = ZERO
300 CONTINUE
310 CONTINUE
TEXP = ONE
IF( KD.GT.0 ) THEN
IF( UPPER ) THEN
DO 330 J = N, 1, -KD
DO 320 I = J, MAX( 1, J-KD+1 ), -2
AB( 1+( J-I ), I ) = -TSCAL / REAL( KD+2 )
AB( KD+1, I ) = ONE
B( I ) = TEXP*( ONE-ULP )
IF( I.GT.MAX( 1, J-KD+1 ) ) THEN
AB( 2+( J-I ), I-1 ) = -( TSCAL / REAL( KD+2 ) )
$ / REAL( KD+3 )
AB( KD+1, I-1 ) = ONE
B( I-1 ) = TEXP*REAL( ( KD+1 )*( KD+1 )+KD )
END IF
TEXP = TEXP*TWO
320 CONTINUE
B( MAX( 1, J-KD+1 ) ) = ( REAL( KD+2 ) /
$ REAL( KD+3 ) )*TSCAL
330 CONTINUE
ELSE
DO 350 J = 1, N, KD
TEXP = ONE
LENJ = MIN( KD+1, N-J+1 )
DO 340 I = J, MIN( N, J+KD-1 ), 2
AB( LENJ-( I-J ), J ) = -TSCAL / REAL( KD+2 )
AB( 1, J ) = ONE
B( J ) = TEXP*( ONE-ULP )
IF( I.LT.MIN( N, J+KD-1 ) ) THEN
AB( LENJ-( I-J+1 ), I+1 ) = -( TSCAL /
$ REAL( KD+2 ) ) / REAL( KD+3 )
AB( 1, I+1 ) = ONE
B( I+1 ) = TEXP*REAL( ( KD+1 )*( KD+1 )+KD )
END IF
TEXP = TEXP*TWO
340 CONTINUE
B( MIN( N, J+KD-1 ) ) = ( REAL( KD+2 ) /
$ REAL( KD+3 ) )*TSCAL
350 CONTINUE
END IF
ELSE
DO 360 J = 1, N
AB( 1, J ) = ONE
B( J ) = REAL( J )
360 CONTINUE
END IF
*
ELSE IF( IMAT.EQ.17 ) THEN
*
* Type 17: Generate a unit triangular matrix with elements
* between -1 and 1, and make the right hand side large so that it
* requires scaling.
*
IF( UPPER ) THEN
DO 370 J = 1, N
LENJ = MIN( J-1, KD )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+1-LENJ, J ) )
AB( KD+1, J ) = REAL( J )
370 CONTINUE
ELSE
DO 380 J = 1, N
LENJ = MIN( N-J, KD )
IF( LENJ.GT.0 )
$ CALL SLARNV( 2, ISEED, LENJ, AB( 2, J ) )
AB( 1, J ) = REAL( J )
380 CONTINUE
END IF
*
* Set the right hand side so that the largest value is BIGNUM.
*
CALL SLARNV( 2, ISEED, N, B )
IY = ISAMAX( N, B, 1 )
BNORM = ABS( B( IY ) )
BSCAL = BIGNUM / MAX( ONE, BNORM )
CALL SSCAL( N, BSCAL, B, 1 )
*
ELSE IF( IMAT.EQ.18 ) THEN
*
* Type 18: Generate a triangular matrix with elements between
* BIGNUM/KD and BIGNUM so that at least one of the column
* norms will exceed BIGNUM.
*
TLEFT = BIGNUM / MAX( ONE, REAL( KD ) )
TSCAL = BIGNUM*( REAL( KD ) / REAL( KD+1 ) )
IF( UPPER ) THEN
DO 400 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
DO 390 I = KD + 2 - LENJ, KD + 1
AB( I, J ) = SIGN( TLEFT, AB( I, J ) ) +
$ TSCAL*AB( I, J )
390 CONTINUE
400 CONTINUE
ELSE
DO 420 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
DO 410 I = 1, LENJ
AB( I, J ) = SIGN( TLEFT, AB( I, J ) ) +
$ TSCAL*AB( I, J )
410 CONTINUE
420 CONTINUE
END IF
CALL SLARNV( 2, ISEED, N, B )
CALL SSCAL( N, TWO, B, 1 )
END IF
*
* Flip the matrix if the transpose will be used.
*
IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
IF( UPPER ) THEN
DO 430 J = 1, N / 2
LENJ = MIN( N-2*J+1, KD+1 )
CALL SSWAP( LENJ, AB( KD+1, J ), LDAB-1,
$ AB( KD+2-LENJ, N-J+1 ), -1 )
430 CONTINUE
ELSE
DO 440 J = 1, N / 2
LENJ = MIN( N-2*J+1, KD+1 )
CALL SSWAP( LENJ, AB( 1, J ), 1, AB( LENJ, N-J+2-LENJ ),
$ -LDAB+1 )
440 CONTINUE
END IF
END IF
*
RETURN
*
* End of SLATTB
*
END
| gpl-2.0 |
omni-compiler/omni-compiler | tests/XMP/NOT-IMPLEMENTED/59/reduction_async21.f90 | 2 | 3339 | ! testp101.f
! loop»Ø¼¨Ê¸¤Èreflect»Ø¼¨Ê¸¤Î¥Æ¥¹¥È
program main
include 'xmp_lib.h'
integer,parameter:: N=1000
!$xmp nodes p(4,*)
!$xmp template t1(N,N)
!$xmp template t2(N,N)
!$xmp template t3(N,N)
!$xmp distribute t1(block,block) onto p
!$xmp distribute t2(block,block) onto p
!$xmp distribute t3(block,block) onto p
integer a1(N,N), a2(N,N)
real*8 b1(N,N), b2(N,N)
real*4 c1(N,N), c2(N,N)
!$xmp align a1(i,j) with t1(i,j)
!$xmp align a2(i,j) with t1(i,j)
!$xmp align b1(i,j) with t2(i,j)
!$xmp align b2(i,j) with t2(i,j)
!$xmp align c1(i,j) with t3(i,j)
!$xmp align c2(i,j) with t3(i,j)
!$xmp shadow a2(1,1)
!$xmp shadow b2(2,2)
!$xmp shadow c2(3,3)
character(len=3) result
!$xmp loop (i,j) on t1(i,j)
do j=1, N
do i=1, N
a1(i,j) = 0
a2(i,j) = (j-1)*N+i
enddo
enddo
!$xmp loop (i,j) on t2(i,j)
do j=1, N
do i=1, N
b1(i,j) = 0.0
b2(i,j) = dble((j-1)*N+i)
enddo
enddo
!$xmp loop (i,j) on t3(i,j)
do j=1, N
do i=1, N
c1(i,j) = 0.0
c2(i,j) = real((j-1)*N+i)
enddo
enddo
result = 'OK '
!$xmp loop (i,j) on t1(i,j)
do j=2, N-1
do i=2, N-1
!$xmp reflect (a2) async(1)
if(a1(i,j) .ne. 0) result = 'NG1'
!$xmp wait_async(1)
do jj=j-1, j+1
do ii=i-1, i+1
a1(i,j) = a1(i,j)+a2(ii,jj)
enddo
enddo
a1(i,j) = a1(i,j)/9
enddo
enddo
!$xmp loop (i,j) on t2(i,j)
do j=3, N-2
do i=3, N-2
!$xmp reflect (b2) async(1)
if(b1(i,j) .ne. 0) result = 'NG2'
!$xmp wait_async(1)
do jj=j-2, j+2
do ii=i-2, i+2
b1(i,j) = b1(i,j)+b2(ii,jj)
enddo
enddo
b1(i,j) = b1(i,j)/25.0
enddo
enddo
!$xmp loop (i,j) on t3(i,j)
do j=4, N-3
do i=4, N-3
!$xmp reflect (c2) async(1)
if(c1(i,j) .ne. 0) result = 'NG3'
!$xmp wait_async(1)
do jj=j-3, j+3
do ii=i-3, i+3
c1(i,j) = c1(i,j)+c2(ii,jj)
enddo
enddo
c1(i,j) = c1(i,j)/49.0
enddo
enddo
!$xmp loop (i,j) on t1(i,j)
do j=1, N
do i=1, N
if(i.eq.1.or.i.eq.N.or.j.eq.1.or.j.eq.N) then
if(a1(i,j) .ne. 0) result = 'NG4'
else
if(a1(i,j) .ne. (j-1)*N+i) result = 'NG5'
endif
enddo
enddo
!$xmp loop (i,j) on t2(i,j)
do j=1, N
do i=1, N
if(i.le.2.or.i.ge.N-1.or.j.le.2.or.j.ge.N-1) then
if(b1(i,j) .ne. 0.0) result = 'NG6'
else
if(abs(b1(i,j)-dble((j-1)*N+i)) .gt. 0.000001)
$ result = 'NG7'
endif
enddo
enddo
!$xmp loop (i,j) on t3(i,j)
do j=1, N
do i=1, N
if(i.le.3.or.i.ge.N-2.or.j.le.3.or.j.ge.N-2) then
if(c1(i,j) .ne. 0.0) result = 'NG8'
else
if(abs(c1(i,j)-real((j-1)*N+i)) .gt. 1) then
result = 'NG9'
endif
endif
enddo
enddo
print *, xmp_node_num(), 'testp101.f ', result
end
| lgpl-3.0 |
omni-compiler/omni-compiler | tests/XMP/global-view/reduction/F/plus.f90 | 1 | 1729 | program main
include 'xmp_lib.h'
integer,parameter:: N=1000
!$xmp nodes p(4)
!$xmp template t(N)
!$xmp distribute t(cyclic) onto p
integer a(N), sa
real*8 b(N), sb
real*4 c(N), sc
integer procs, w, result, w1(4)
!$xmp align a(i) with t(i)
!$xmp align b(i) with t(i)
!$xmp align c(i) with t(i)
sa = 0
sb = 0.0
sc = 0.0
!$xmp loop on t(i)
do i=1, N
a(i) = 1
b(i) = 0.5
c(i) = 0.01
end do
!$xmp loop on t(i)
do i=1, N
sa = sa+a(i)
enddo
!$xmp reduction(+:sa) on p(1:2)
!$xmp loop on t(i)
do i=1, N
sb = sb+b(i)
enddo
!$xmp reduction(+:sb) on p(2:3)
!$xmp loop on t(i)
do i=1, N
sc = sc+c(i)
enddo
!$xmp reduction(+:sc) on p(3:4)
procs = xmp_num_nodes()
w1(:) = N/procs
result = 0
if(xmp_node_num().eq.1) then
if( sa .ne. (w1(1)+w1(2)) .or. abs(sb-(dble(w1(1))*0.5)) .gt. 0.000001 .or. abs(sc-(real(w1(1))*0.01)) .gt. 0.0001) then
result = -1
endif
else if(xmp_node_num().eq.2) then
if( sa .ne. (w1(1)+w1(2)) .or. abs(sb-(dble(w1(2)+w1(3))*0.5)) .gt. 0.000001 .or. abs(sc-(real(w1(2))*0.01)) .gt. 0.0001) then
result = -1
endif
else if(xmp_node_num().eq.3)then
if( sa .ne. (w1(3)) .or. abs(sb-(dble(w1(2)+w1(3))*0.5)) .gt. 0.000001 .or. abs(sc-(real(w1(3)+w1(4))*0.01)) .gt. 0.0001) then
result = -1
endif
else if(xmp_node_num().eq.4)then
if( sa .ne. (w1(4)) .or. abs(sb-(dble(w1(4))*0.5)) .gt. 0.000001 .or. abs(sc-(real(w1(3)+w1(4))*0.01)) .gt. 0.0001) then
result = -1
endif
endif
!$xmp reduction(+:result)
!$xmp task on p(1)
if( result .eq. 0 ) then
write(*,*) "PASS"
else
write(*,*) "ERROR"
call exit(1)
endif
!$xmp end task
end program main
| lgpl-3.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/dgelqf.f | 55 | 7572 | *> \brief \b DGELQF
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGELQF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelqf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelqf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelqf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGELQF computes an LQ factorization of a real M-by-N matrix A:
*> A = L * Q.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, the elements on and below the diagonal of the array
*> contain the m-by-min(m,n) lower trapezoidal matrix L (L is
*> lower triangular if m <= n); the elements above the diagonal,
*> with the array TAU, represent the orthogonal matrix Q as a
*> product of elementary reflectors (see Further Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors (see Further
*> Details).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is the
*> optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleGEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of elementary reflectors
*>
*> Q = H(k) . . . H(2) H(1), where k = min(m,n).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**T
*>
*> where tau is a real scalar, and v is a real vector with
*> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
*> and tau in TAU(i).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
$ NBMIN, NX
* ..
* .. External Subroutines ..
EXTERNAL DGELQ2, DLARFB, DLARFT, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
NB = ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
LWKOPT = M*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGELQF', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
K = MIN( M, N )
IF( K.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
NBMIN = 2
NX = 0
IWS = M
IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
* Determine when to cross over from blocked to unblocked code.
*
NX = MAX( 0, ILAENV( 3, 'DGELQF', ' ', M, N, -1, -1 ) )
IF( NX.LT.K ) THEN
*
* Determine if workspace is large enough for blocked code.
*
LDWORK = M
IWS = LDWORK*NB
IF( LWORK.LT.IWS ) THEN
*
* Not enough workspace to use optimal NB: reduce NB and
* determine the minimum value of NB.
*
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'DGELQF', ' ', M, N, -1,
$ -1 ) )
END IF
END IF
END IF
*
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
* Use blocked code initially
*
DO 10 I = 1, K - NX, NB
IB = MIN( K-I+1, NB )
*
* Compute the LQ factorization of the current block
* A(i:i+ib-1,i:n)
*
CALL DGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
$ IINFO )
IF( I+IB.LE.M ) THEN
*
* Form the triangular factor of the block reflector
* H = H(i) H(i+1) . . . H(i+ib-1)
*
CALL DLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
$ LDA, TAU( I ), WORK, LDWORK )
*
* Apply H to A(i+ib:m,i:n) from the right
*
CALL DLARFB( 'Right', 'No transpose', 'Forward',
$ 'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
$ LDA, WORK, LDWORK, A( I+IB, I ), LDA,
$ WORK( IB+1 ), LDWORK )
END IF
10 CONTINUE
ELSE
I = 1
END IF
*
* Use unblocked code to factor the last or only block.
*
IF( I.LE.K )
$ CALL DGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
$ IINFO )
*
WORK( 1 ) = IWS
RETURN
*
* End of DGELQF
*
END
| gpl-2.0 |
linzhaoming/origin | vendor/gonum.org/v1/gonum/lapack/internal/testdata/dlasqtest/testdlasq4.f90 | 59 | 11159 | program testdlasq4
implicit none
! Dlasq4 tests
integer :: i0, n0, pp, ttype, iter, nDiv, n, n0in
real(kind=8), dimension(401) :: z
real(kind=8) :: dmin, desig, qmax, dmin1, dmin2, dn, dn1, dn2, g, tau, sigma
logical :: ieee
z(1:401) = (/2.9266499599402414D+02, &
2.9276699640004830D+02, &
2.9210200041216615D+02, &
2.9171973344922628D+02, &
2.9254120660184350D+02, &
2.9246923723528141D+02, &
2.8739845025761718D+02, &
2.8713781898215319D+02, &
2.9216230331620721D+02, &
2.9216609319427272D+02, &
2.9037912623973870D+02, &
2.9019341222762625D+02, &
2.9184732870824223D+02, &
2.9211597271231784D+02, &
2.9133173969911888D+02, &
2.9116703928303986D+02, &
2.9158395177813247D+02, &
2.9142053084921997D+02, &
2.8936184155474774D+02, &
2.9014388604362898D+02, &
2.9216722380092682D+02, &
2.9216917065163557D+02, &
2.9033857172870131D+02, &
2.9017428768626024D+02, &
2.9187084534700494D+02, &
2.9185392666684271D+02, &
2.8851014988393416D+02, &
2.8849290783118727D+02, &
2.9182506564169046D+02, &
2.9184679532940385D+02, &
2.9022222656964715D+02, &
2.9051820223150668D+02, &
2.9219746119018231D+02, &
2.9219997046052623D+02, &
2.9076912988009974D+02, &
2.9110108536012547D+02, &
2.9226281758828725D+02, &
2.9246883105892533D+02, &
2.9221612201279271D+02, &
2.9059157967819368D+02, &
2.9112833071623868D+02, &
2.9210680427275844D+02, &
2.9199887004058536D+02, &
2.9151030826460186D+02, &
2.9154564759046622D+02, &
2.9212462005167004D+02, &
2.9212108612522559D+02, &
2.9225720737270348D+02, &
2.9226471402909704D+02, &
2.9186949422820902D+02, &
2.9179442772569342D+02, &
2.9025839700680774D+02, &
2.9028281327393216D+02, &
2.9168280284451140D+02, &
2.9168036127921908D+02, &
2.9115346030764749D+02, &
2.9115401102000044D+02, &
2.9212282665919003D+02, &
2.9212277159409672D+02, &
2.9212554020600300D+02, &
2.9212559651286460D+02, &
2.9050907549403615D+02, &
2.9050344542208029D+02, &
2.9211004769628386D+02, &
2.9211127836880860D+02, &
2.9159257985266015D+02, &
2.9158027318883302D+02, &
2.9042716308833894D+02, &
2.9043622253245718D+02, &
2.9134221002346220D+02, &
2.9134130414047053D+02, &
2.9193179671375327D+02, &
2.9193426987096007D+02, &
2.9145366956406895D+02, &
2.9145119646828226D+02, &
2.9144876630819033D+02, &
2.9145122608379586D+02, &
2.9058395601500280D+02, &
2.9055935887314877D+02, &
2.9123982459393329D+02, &
2.9125037059550806D+02, &
2.9111624624209884D+02, &
2.9110570030194424D+02, &
2.9250004994137356D+02, &
2.9254994096967755D+02, &
2.9166071282413282D+02, &
2.9116180260251298D+02, &
2.8862845048087325D+02, &
2.8925662460652461D+02, &
2.9012609983518610D+02, &
2.9010672249354360D+02, &
2.9142999275190090D+02, &
2.9150806548221971D+02, &
2.9078477842534176D+02, &
2.8840517363552317D+02, &
2.8946267131307206D+02, &
2.9189614533792309D+02, &
2.9232617409967031D+02, &
2.9223702224333306D+02, &
2.9149978725880743D+02, &
2.9168777367421643D+02, &
2.9213296087125275D+02, &
2.9211416223585388D+02, &
2.9151431726536367D+02, &
2.9159900781717892D+02, &
2.9215362494632291D+02, &
2.9214515589728342D+02, &
2.9229900293632022D+02, &
2.9231644811476662D+02, &
2.9119079594655176D+02, &
2.9016344223508082D+02, &
2.9040052826233938D+02, &
2.9146756071890462D+02, &
2.9216592215429023D+02, &
2.9212317137116514D+02, &
2.9220217331561315D+02, &
2.9227234439098311D+02, &
2.9210931773273273D+02, &
2.9139146663504778D+02, &
2.9047426145779627D+02, &
2.9113243832972501D+02, &
2.9163901100086372D+02, &
2.9155399887833846D+02, &
2.9145039523229758D+02, &
2.9151950918932886D+02, &
2.9116352441156198D+02, &
2.9094410515950784D+02, &
2.9056083843332891D+02, &
2.9097140423254604D+02, &
2.9185385310744653D+02, &
2.9181279658894493D+02, &
2.9031697123096876D+02, &
2.9033298229128292D+02, &
2.9212507489852788D+02, &
2.9212491479406674D+02, &
2.9123248207180859D+02, &
2.9123278004625678D+02, &
2.9210890357464513D+02, &
2.9210887378334229D+02, &
2.9240010366769212D+02, &
2.9240021314868147D+02, &
2.9212046105624000D+02, &
2.9212035158139264D+02, &
2.9215242607939217D+02, &
2.9215256473001551D+02, &
2.9086373488934720D+02, &
2.9084987044121846D+02, &
2.9162085042968522D+02, &
2.9163097873649599D+02, &
2.9113228736441005D+02, &
2.9112215911901944D+02, &
2.9210393504686402D+02, &
2.9211255232953414D+02, &
2.9191445519642213D+02, &
2.9182828243114074D+02, &
2.9127013482394887D+02, &
2.9129823908392501D+02, &
2.9220880435635905D+02, &
2.9220599393650343D+02, &
2.9144676491963560D+02, &
2.9145286023012017D+02, &
2.9148058174349006D+02, &
2.9147448649442555D+02, &
2.9186619188590822D+02, &
2.9187731897876392D+02, &
2.9151148084374620D+02, &
2.9150035381231066D+02, &
2.9224292392669071D+02, &
2.9224832614828313D+02, &
2.9140236136264468D+02, &
2.9134833920814032D+02, &
2.9241531971951883D+02, &
2.9247972954055604D+02, &
2.9164613863843044D+02, &
2.8920404894780614D+02, &
2.8913485112658549D+02, &
2.9142701775363003D+02, &
2.9213449277295280D+02, &
2.9191925854858397D+02, &
2.9217029610406047D+02, &
2.9224915292105180D+02, &
2.9220325626287905D+02, &
2.9212439945202976D+02, &
2.9057154227612733D+02, &
2.9093384291672965D+02, &
2.9183595231931184D+02, &
2.9179972231667176D+02, &
2.9133916987034183D+02, &
2.9135453536038978D+02, &
2.9047085843212886D+02, &
2.9031720414585078D+02, &
2.9113106705127024D+02, &
2.9119455617800747D+02, &
2.9230127009862616D+02, &
2.9229492119209442D+02, &
2.9098170102485551D+02, &
2.9110028345622749D+02, &
2.9215236246918653D+02, &
2.9215215113995436D+02, &
2.9124650182241129D+02, &
2.9124684419934567D+02, &
2.9216244260160767D+02, &
2.9216240837005626D+02, &
2.9314769094184447D+02, &
2.9314772207133655D+02, &
2.9212215646682506D+02, &
2.9212184517804621D+02, &
2.9224739389310008D+02, &
2.9224802593241526D+02, &
2.8978611958992855D+02, &
2.8915408641678846D+02, &
2.9118533307571403D+02, &
2.9194553410039072D+02, &
2.9244688594134544D+02, &
2.9237086584501975D+02, &
2.9189894464487475D+02, &
2.9210832103555418D+02, &
2.9227685116407457D+02, &
2.9225842459914986D+02, &
2.9224821267514392D+02, &
2.9226591109467802D+02, &
2.9158625025645608D+02, &
2.9140926612253548D+02, &
2.9125298964526195D+02, &
2.9136239316241648D+02, &
2.9182040805585694D+02, &
2.9171100460012258D+02, &
2.9126693393315793D+02, &
2.9130800749967943D+02, &
2.9084722625682167D+02, &
2.9043649120580767D+02, &
2.9153791610078673D+02, &
2.9210440912405335D+02, &
2.9188686486416555D+02, &
2.9138068978583891D+02, &
2.9158124399039616D+02, &
2.9213540811751852D+02, &
2.9211624446790427D+02, &
2.9138960755567365D+02, &
2.9060415959100914D+02, &
2.9118025885063923D+02, &
2.9132902926505932D+02, &
2.9120918643494110D+02, &
2.9222955158764825D+02, &
2.9236106160611405D+02, &
2.9219941546106151D+02, &
2.9167905448737707D+02, &
2.8956733560159137D+02, &
2.9016660738228080D+02, &
2.9069372888915495D+02, &
2.9058385568123452D+02, &
2.9219861470697771D+02, &
2.9223599112669444D+02, &
2.9150234673408067D+02, &
2.9112858259833354D+02, &
2.9011809831967531D+02, &
2.9046138673473865D+02, &
2.9176526297220903D+02, &
2.9173093419212285D+02, &
2.9150067445343569D+02, &
2.9152418894132262D+02, &
2.9197021328944544D+02, &
2.9194669886297868D+02, &
2.9168012546172463D+02, &
2.9169701864791432D+02, &
2.9061916960844030D+02, &
2.9045023836074438D+02, &
2.9212529304266053D+02, &
2.9217230349727680D+02, &
2.9156357220873417D+02, &
2.9093467723991887D+02, &
2.9015918793416472D+02, &
2.9095983823965622D+02, &
2.9124303667219704D+02, &
2.9116297170306802D+02, &
2.9162557939634507D+02, &
2.9193291492830070D+02, &
2.9138731414547760D+02, &
2.9079978674942083D+02, &
2.9159254111122891D+02, &
2.9228695093326087D+02, &
2.9225423965335352D+02, &
2.9126542837357596D+02, &
2.9173807466948557D+02, &
2.9270696227984581D+02, &
2.9274075480094893D+02, &
2.9210759999419366D+02, &
2.9091701924155882D+02, &
2.9163130710260498D+02, &
2.9157158980248664D+02, &
2.9031984685457667D+02, &
2.8939239820067894D+02, &
2.9070124438246870D+02, &
2.9196350995833507D+02, &
2.9189730956351508D+02, &
2.9047434516138509D+02, &
2.9050934070611282D+02, &
2.9179387236503283D+02, &
2.9179037287198020D+02, &
2.9197909575321057D+02, &
2.9198343084479546D+02, &
2.9146450345905629D+02, &
2.9146016842889151D+02, &
2.9233889755268928D+02, &
2.9234209014701219D+02, &
2.9032302536354865D+02, &
2.8837665454569191D+02, &
2.8923259893670223D+02, &
2.9119948081590582D+02, &
2.9158422265927129D+02, &
2.9138706789415261D+02, &
2.9131767302238063D+02, &
2.9147948119882238D+02, &
2.9186937598758146D+02, &
2.9170756787255982D+02, &
2.9181460198203825D+02, &
2.9210008868832023D+02, &
2.9132088639794199D+02, &
2.9113460155819826D+02, &
2.9159448593680958D+02, &
2.9214172380575934D+02, &
2.9182660907964311D+02, &
2.8938570202792107D+02, &
2.8829979954353007D+02, &
2.9064250900128923D+02, &
2.9110347860364448D+02, &
2.9039527564479215D+02, &
2.9152783923893156D+02, &
2.9213818222324863D+02, &
2.9211881276563861D+02, &
2.9133414472425187D+02, &
2.9125375097531855D+02, &
2.9190226937530139D+02, &
2.9164903795105636D+02, &
2.8851961249369930D+02, &
2.8835729910731652D+02, &
2.9144629542849515D+02, &
2.9171485796658368D+02, &
2.9126891989861593D+02, &
2.9051052150188838D+02, &
2.9113570969073521D+02, &
2.9141652614094619D+02, &
2.9133186866181995D+02, &
2.8912484642922516D+02, &
2.8915669391948876D+02, &
2.9117142770169869D+02, &
2.9117110928821620D+02, &
2.9183490795481288D+02, &
2.9183646161652371D+02, &
2.9254379194824975D+02, &
2.9254363658822064D+02, &
2.9192127768678108D+02, &
2.9192154096878102D+02, &
2.9151073810022524D+02, &
2.9151047487964541D+02, &
2.9013993357169915D+02, &
2.9014000572685774D+02, &
2.9145714571416084D+02, &
2.9145713856006512D+02, &
2.9196091751473017D+02, &
2.9196093255283131D+02, &
2.9195731369267685D+02, &
2.9195729871599588D+02, &
2.9149460806187619D+02, &
2.9149461579988633D+02, &
2.9034687539457741D+02, &
2.9034679862867739D+02, &
2.9010765498373922D+02, &
2.9010767881379803D+02, &
2.8967492890608241D+02, &
2.8967469674750663D+02, &
2.9215189060671338D+02, &
2.9215194287124120D+02, &
2.8956132995364590D+02, &
2.8950907156783751D+02, &
2.9210783379750950D+02, &
2.9211890340058585D+02, &
2.9139896954309916D+02, &
2.9128827357375536D+02, &
2.9190012628763964D+02, &
2.9212457714005234D+02, &
2.9221336158434212D+02, &
2.9217879707919576D+02, &
2.9127472708852724D+02, &
2.9132783649002283D+02, &
2.9227509889951233D+02, &
2.9226978796550475D+02, &
2.9142078378447616D+02, &
2.9142906715955786D+02, &
2.9017517054475991D+02, &
2.8992337408144391D+02, &
2.8477362931531121D+02, &
2.8514676291150971D+02, &
2.8393423954726200D+02, &
2.8313625395453965D+02, &
2.8449999402409759D+02, &
2.8534282615303522D+02, &
2.8523140662657408D+02, &
2.8739845025761718D+02, &
2.8713781898215319D+02, &
0.0000000000000000D+00/)
i0 = 1
n0 = 100
pp = 1
n0in = 100
dmin = 7.9798559272231942D+282
dmin1 = 7.9798559272231942D+282
dmin2 = 2.3215857579138407D+285
dn = 2.3140662657409930D+284
dn1 = 7.9798559272231942D+282
dn2 = 8.2833136615500372D+288
g = 2.5000000000000000D-01
tau = 6.1420124051338430D+283
ttype = -4
ieee = .True.
print *, "Starting Dlasq4"
call Dlasq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau, ttype, g)
print *, "Done calling dlasq4"
print *, "tau = ", tau
print *, tau, ttype, g
end | apache-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/cgeqlf.f | 25 | 8099 | *> \brief \b CGEQLF
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGEQLF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqlf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqlf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqlf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGEQLF computes a QL factorization of a complex M-by-N matrix A:
*> A = Q * L.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
*> if m >= n, the lower triangle of the subarray
*> A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
*> if m <= n, the elements on and below the (n-m)-th
*> superdiagonal contain the M-by-N lower trapezoidal matrix L;
*> the remaining elements, with the array TAU, represent the
*> unitary matrix Q as a product of elementary reflectors
*> (see Further Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors (see Further
*> Details).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexGEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of elementary reflectors
*>
*> Q = H(k) . . . H(2) H(1), where k = min(m,n).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**H
*>
*> where tau is a complex scalar, and v is a complex vector with
*> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
*> A(1:m-k+i-1,n-k+i), and tau in TAU(i).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
$ MU, NB, NBMIN, NU, NX
* ..
* .. External Subroutines ..
EXTERNAL CGEQL2, CLARFB, CLARFT, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
*
IF( INFO.EQ.0 ) THEN
K = MIN( M, N )
IF( K.EQ.0 ) THEN
LWKOPT = 1
ELSE
NB = ILAENV( 1, 'CGEQLF', ' ', M, N, -1, -1 )
LWKOPT = N*NB
END IF
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGEQLF', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( K.EQ.0 ) THEN
RETURN
END IF
*
NBMIN = 2
NX = 1
IWS = N
IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
* Determine when to cross over from blocked to unblocked code.
*
NX = MAX( 0, ILAENV( 3, 'CGEQLF', ' ', M, N, -1, -1 ) )
IF( NX.LT.K ) THEN
*
* Determine if workspace is large enough for blocked code.
*
LDWORK = N
IWS = LDWORK*NB
IF( LWORK.LT.IWS ) THEN
*
* Not enough workspace to use optimal NB: reduce NB and
* determine the minimum value of NB.
*
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'CGEQLF', ' ', M, N, -1,
$ -1 ) )
END IF
END IF
END IF
*
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
* Use blocked code initially.
* The last kk columns are handled by the block method.
*
KI = ( ( K-NX-1 ) / NB )*NB
KK = MIN( K, KI+NB )
*
DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
IB = MIN( K-I+1, NB )
*
* Compute the QL factorization of the current block
* A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1)
*
CALL CGEQL2( M-K+I+IB-1, IB, A( 1, N-K+I ), LDA, TAU( I ),
$ WORK, IINFO )
IF( N-K+I.GT.1 ) THEN
*
* Form the triangular factor of the block reflector
* H = H(i+ib-1) . . . H(i+1) H(i)
*
CALL CLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB,
$ A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
*
* Apply H**H to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
*
CALL CLARFB( 'Left', 'Conjugate transpose', 'Backward',
$ 'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
$ A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
$ WORK( IB+1 ), LDWORK )
END IF
10 CONTINUE
MU = M - K + I + NB - 1
NU = N - K + I + NB - 1
ELSE
MU = M
NU = N
END IF
*
* Use unblocked code to factor the last or only block
*
IF( MU.GT.0 .AND. NU.GT.0 )
$ CALL CGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO )
*
WORK( 1 ) = IWS
RETURN
*
* End of CGEQLF
*
END
| gpl-2.0 |
e-q/scipy | scipy/sparse/linalg/eigen/arpack/ARPACK/SRC/cngets.f | 141 | 5563 | c\BeginDoc
c
c\Name: cngets
c
c\Description:
c Given the eigenvalues of the upper Hessenberg matrix H,
c computes the NP shifts AMU that are zeros of the polynomial of
c degree NP which filters out components of the unwanted eigenvectors
c corresponding to the AMU's based on some given criteria.
c
c NOTE: call this even in the case of user specified shifts in order
c to sort the eigenvalues, and error bounds of H for later use.
c
c\Usage:
c call cngets
c ( ISHIFT, WHICH, KEV, NP, RITZ, BOUNDS )
c
c\Arguments
c ISHIFT Integer. (INPUT)
c Method for selecting the implicit shifts at each iteration.
c ISHIFT = 0: user specified shifts
c ISHIFT = 1: exact shift with respect to the matrix H.
c
c WHICH Character*2. (INPUT)
c Shift selection criteria.
c 'LM' -> want the KEV eigenvalues of largest magnitude.
c 'SM' -> want the KEV eigenvalues of smallest magnitude.
c 'LR' -> want the KEV eigenvalues of largest REAL part.
c 'SR' -> want the KEV eigenvalues of smallest REAL part.
c 'LI' -> want the KEV eigenvalues of largest imaginary part.
c 'SI' -> want the KEV eigenvalues of smallest imaginary part.
c
c KEV Integer. (INPUT)
c The number of desired eigenvalues.
c
c NP Integer. (INPUT)
c The number of shifts to compute.
c
c RITZ Complex array of length KEV+NP. (INPUT/OUTPUT)
c On INPUT, RITZ contains the the eigenvalues of H.
c On OUTPUT, RITZ are sorted so that the unwanted
c eigenvalues are in the first NP locations and the wanted
c portion is in the last KEV locations. When exact shifts are
c selected, the unwanted part corresponds to the shifts to
c be applied. Also, if ISHIFT .eq. 1, the unwanted eigenvalues
c are further sorted so that the ones with largest Ritz values
c are first.
c
c BOUNDS Complex array of length KEV+NP. (INPUT/OUTPUT)
c Error bounds corresponding to the ordering in RITZ.
c
c
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx Complex
c
c\Routines called:
c csortc ARPACK sorting routine.
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c cvout ARPACK utility routine that prints vectors.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: ngets.F SID: 2.2 DATE OF SID: 4/20/96 RELEASE: 2
c
c\Remarks
c 1. This routine does not keep complex conjugate pairs of
c eigenvalues together.
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine cngets ( ishift, which, kev, np, ritz, bounds)
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
character*2 which
integer ishift, kev, np
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Complex
& bounds(kev+np), ritz(kev+np)
c
c %------------%
c | Parameters |
c %------------%
c
Complex
& one, zero
parameter (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0))
c
c %---------------%
c | Local Scalars |
c %---------------%
c
integer msglvl
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external cvout, csortc, arscnd
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mcgets
c
call csortc (which, .true., kev+np, ritz, bounds)
c
if ( ishift .eq. 1 ) then
c
c %-------------------------------------------------------%
c | Sort the unwanted Ritz values used as shifts so that |
c | the ones with largest Ritz estimates are first |
c | This will tend to minimize the effects of the |
c | forward instability of the iteration when the shifts |
c | are applied in subroutine cnapps. |
c | Be careful and use 'SM' since we want to sort BOUNDS! |
c %-------------------------------------------------------%
c
call csortc ( 'SM', .true., np, bounds, ritz )
c
end if
c
call arscnd (t1)
tcgets = tcgets + (t1 - t0)
c
if (msglvl .gt. 0) then
call ivout (logfil, 1, kev, ndigit, '_ngets: KEV is')
call ivout (logfil, 1, np, ndigit, '_ngets: NP is')
call cvout (logfil, kev+np, ritz, ndigit,
& '_ngets: Eigenvalues of current H matrix ')
call cvout (logfil, kev+np, bounds, ndigit,
& '_ngets: Ritz estimates of the current KEV+NP Ritz values')
end if
c
return
c
c %---------------%
c | End of cngets |
c %---------------%
c
end
| bsd-3-clause |
omni-compiler/omni-compiler | samples/XMP/NPB-CG/Local-view/common/print_results.f | 16 | 3698 |
subroutine print_results(name, class, n1, n2, n3, niter,
> nprocs_compiled, nprocs_total,
> t, mops, optype, verified, npbversion,
> compiletime, cs1, cs2, cs3, cs4, cs5, cs6, cs7)
implicit none
character*2 name
character*1 class
integer n1, n2, n3, niter, nprocs_compiled, nprocs_total, j
double precision t, mops
character optype*24, size*15
logical verified
character*(*) npbversion, compiletime,
> cs1, cs2, cs3, cs4, cs5, cs6, cs7
write (*, 2) name
2 format(//, ' ', A2, ' Benchmark Completed.')
write (*, 3) Class
3 format(' Class = ', 12x, a12)
c If this is not a grid-based problem (EP, FT, CG), then
c we only print n1, which contains some measure of the
c problem size. In that case, n2 and n3 are both zero.
c Otherwise, we print the grid size n1xn2xn3
if ((n2 .eq. 0) .and. (n3 .eq. 0)) then
if (name(1:2) .eq. 'EP') then
write(size, '(f15.0)' ) 2.d0**n1
j = 15
if (size(j:j) .eq. '.') j = j - 1
write (*,42) size(1:j)
42 format(' Size = ',9x, a15)
else
write (*,44) n1
44 format(' Size = ',12x, i12)
endif
else
write (*, 4) n1,n2,n3
4 format(' Size = ',9x, i4,'x',i4,'x',i4)
endif
write (*, 5) niter
5 format(' Iterations = ', 12x, i12)
write (*, 6) t
6 format(' Time in seconds = ',12x, f12.2)
write (*,7) nprocs_total
7 format(' Total processes = ', 12x, i12)
write (*,8) nprocs_compiled
8 format(' Compiled procs = ', 12x, i12)
write (*,9) mops
9 format(' Mop/s total = ',12x, f12.2)
write (*,10) mops/float( nprocs_total )
10 format(' Mop/s/process = ', 12x, f12.2)
write(*, 11) optype
11 format(' Operation type = ', a24)
if (verified) then
write(*,12) ' SUCCESSFUL'
else
write(*,12) 'UNSUCCESSFUL'
endif
12 format(' Verification = ', 12x, a)
write(*,13) npbversion
13 format(' Version = ', 12x, a12)
write(*,14) compiletime
14 format(' Compile date = ', 12x, a12)
write (*,121) cs1
121 format(/, ' Compile options:', /,
> ' MPIF77 = ', A)
write (*,122) cs2
122 format(' FLINK = ', A)
write (*,123) cs3
123 format(' FMPI_LIB = ', A)
write (*,124) cs4
124 format(' FMPI_INC = ', A)
write (*,125) cs5
125 format(' FFLAGS = ', A)
write (*,126) cs6
126 format(' FLINKFLAGS = ', A)
write(*, 127) cs7
127 format(' RAND = ', A)
write (*,130)
130 format(//' Please send feedbacks and/or'
> ' the results of this run to:'//
> ' NPB Development Team '/
> ' Internet: npb@nas.nasa.gov'//)
c 130 format(//' Please send the results of this run to:'//
c > ' NPB Development Team '/
c > ' Internet: npb@nas.nasa.gov'/
c > ' '/
c > ' If email is not available, send this to:'//
c > ' MS T27A-1'/
c > ' NASA Ames Research Center'/
c > ' Moffett Field, CA 94035-1000'//
c > ' Fax: 650-604-3957'//)
return
end
| lgpl-3.0 |
QEF/q-e | PHonon/PH/phcom.f90 | 1 | 18048 | !
! Copyright (C) 2001-2018 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
!
MODULE modes
!
!! Common variables for the phonon program needed to describe the modes
!! and the small group of q.
!
USE kinds, ONLY : DP
!
SAVE
!
INTEGER :: nirr
!! number of irreducible representations contained in the dynamical matrix
INTEGER :: nmodes
!! number of modes
INTEGER, ALLOCATABLE, TARGET :: npert(:) !(3 * nat )
!! the number of perturbations per IR
INTEGER :: npertx
!! max number of perturbations per IR
COMPLEX (DP), ALLOCATABLE :: u(:,:) !(3 * nat, 3 * nat)
!! the transformation modes patterns
COMPLEX (DP), ALLOCATABLE :: t(:,:,:,:) !(npertx, npertx, 48,3 * nat),
!! the mode for deltarho
COMPLEX (DP), ALLOCATABLE :: tmq(:,:,:) !(npertx, npertx, 3 * nat)
!! the symmetry in the base of the pattern
! the symmetry q<->-q in the base of the pa
!
CHARACTER(15), ALLOCATABLE :: name_rap_mode(:)
!! symmetry type of each mode
INTEGER, ALLOCATABLE :: num_rap_mode(:)
!! number of the representation for each mode
!
END MODULE modes
!
MODULE cryst_ph
!
!! This module contains the variables that describe properties of the
!! crystal that are needed by the phonon program and are not in pw data
!! probably these variables should be in the common of pw.
!! These variables are sets immediately after reading the pw variables.
!
USE kinds, ONLY : DP
!
SAVE
!
LOGICAL :: magnetic_sym
!! TRUE in the non-collinear magnetic case
!
END MODULE cryst_ph
!
MODULE dynmat
!
!! The dynamical matrix
!
USE kinds, ONLY : DP
!
SAVE
!
COMPLEX(DP), ALLOCATABLE :: dyn00(:,:) ! (3 * nat, 3 * nat)
!! the initial dynamical matrix
COMPLEX(DP), ALLOCATABLE :: dyn(:,:) ! (3 * nat, 3 * nat)
!! the dynamical matrix
COMPLEX(DP), ALLOCATABLE :: dyn_rec(:,:) ! (3 * nat, 3 * nat)
!! the contribution of each representation to the dynamical matrix
REAL (DP), ALLOCATABLE :: w2(:) ! (3 * nat)
!! omega^2
!
! DFPT+U
COMPLEX(DP), ALLOCATABLE :: dyn_hub_bare(:,:) ! (3*nat,*3nat)
!! the bare part of the Hubbard dynamical matrix
COMPLEX(DP), ALLOCATABLE :: dyn_hub_scf(:,:) ! (3*nat,*3nat)
!! the scf part of the Hubbard dynamical matrix
!
END MODULE dynmat
!
!
MODULE efield_mod
!
!! The variables for the electric field perturbation.
!
USE kinds, ONLY : DP
!
SAVE
!
REAL (DP) :: epsilon (3, 3)
!! the dielectric constant
REAL (DP), ALLOCATABLE :: zstareu(:,:,:) !(3, 3, nat),
!! the effective charges Z(E,Us) (E=scf,Us=bare)
REAL (DP), ALLOCATABLE :: zstarue(:,:,:) !(3, nat, 3)
!! the effective charges Z(Us,E) (Us=scf,E=bare)
COMPLEX (DP), ALLOCATABLE :: &
zstareu0(:,:), &! 3, 3 * nat),
zstarue0(:,:), &! 3 * nat, 3)
zstarue0_rec(:,:) ! 3 * nat, 3)
! the effective charges
!
END MODULE efield_mod
!
!
MODULE nlcc_ph
!
!! The variables needed for non-linear core correction.
!
USE kinds, ONLY : DP
!
SAVE
!
COMPLEX (DP), ALLOCATABLE, TARGET :: drc(:,:) ! (ngm, ntyp)
!! contain the rhoc (without structure fac) for all atomic types.
!
END MODULE nlcc_ph
!
!
MODULE phus
!
!! These are additional variables needed for the linear response
!! program with the US pseudopotentials.
!
USE kinds, ONLY : DP
USE becmod, ONLY : bec_type
!
SAVE
!
REAL (DP), ALLOCATABLE :: alphasum(:,:,:,:) ! (nhm*(nhm+1)/2,3,nat,nspin)
!! used to compute modes. It contains \(\sum_i \langle \psi_i| d/du
!! (|\beta_n><beta_m|) | \psi_i\rangle + (m-n)\)
! dipole moment of each Q.
! These variables contains the five integrals defined in PRB 64, 35118 (2001)
COMPLEX (DP), ALLOCATABLE :: int1(:,:,:,:,:) ! nhm, nhm, 3, nat, nspin),&
!! int1 -> \int V_eff d/du (Q) d^3r
COMPLEX (DP), ALLOCATABLE :: int2(:,:,:,:,:) ! nhm, nhm, 3,nat, nat),&
!! int2 -> \int d/du (V_loc) Q d^3r
COMPLEX (DP), ALLOCATABLE :: int4(:,:,:,:,:) ! nhm*(nhm+1)/2, 3, 3, nat, nspin),&
!! int4 -> \int V_eff d^2/dudu (Q) d^3r
COMPLEX (DP), ALLOCATABLE :: int5(:,:,:,:,:) ! nhm*(nhm+1)/2, 3, 3, nat, nat),&
!! int5 -> \int d/du (V_loc) d/du (Q) d^3r
COMPLEX (DP), ALLOCATABLE :: int1_nc(:,:,:,:,:) ! nhm, nhm, 3, nat, nspin),&
!! int1 - noncollinear
COMPLEX (DP), ALLOCATABLE :: int2_so(:,:,:,:,:,:) ! nhm, nhm, 3, nat,nat,nspin),&
!! int2 - spin-orbit
COMPLEX (DP), ALLOCATABLE :: int4_nc(:,:,:,:,:,:) ! nhm, nhm, 3, 3, nat, nspin),&
!! int4 - noncollinear
COMPLEX (DP), ALLOCATABLE :: int5_so(:,:,:,:,:,:,:) ! nhm*(nhm+1)/2, 3, 3, nat, nat, nspin),&
!! int5 - spin-orbit
!
! int3 -> \int d\du (V_Hxc) Q d^3r .... generalized to Delta V_Hxc and move to lr_us in LR_Modules
!
COMPLEX (DP), ALLOCATABLE :: becsum_nc(:,:,:,:) ! nhm*(nhm+1)/2,nat,npol,npol)
!! it contains \(\sum_i \langle\psi_i | \beta_n\rangle\langle\beta_m| \psi_i \rangle + (m-n)\)
COMPLEX (DP), ALLOCATABLE :: becsumort(:,:,:,:) ! nhm*(nhm+1)/2,nat,nspin,3*nat)
!! it contains \(\text{alphasum}+\sum_i \langle\psi_i | \beta_n\rangle\langle\beta_m| \delta \psi_i \rangle\)
COMPLEX (DP), ALLOCATABLE :: alphasum_nc(:,:,:,:,:) ! nhm*(nhm+1)/2,3,nat,npol,npol)
!
!
type(bec_type), ALLOCATABLE, TARGET :: alphap(:,:) ! nkbtot, nbnd, 3, nksq)
!! contains \( \langle d\du (\beta_n) | \psi_i \rangle\)
!
END MODULE phus
!
!
MODULE partial
!
!! The variables needed for partial computation of dynamical matrix.
!
USE kinds, ONLY : DP
!
SAVE
!
INTEGER, ALLOCATABLE :: atomo(:)
!! (nat) : list of the atoms that moves
INTEGER :: nat_todo
!! number of atoms to compute
INTEGER :: nat_todo_input
!! nat_todo given in input
LOGICAL, ALLOCATABLE :: comp_irr(:) !(3*nat)
!! TRUE if this irr.rep. has to be computed
LOGICAL, ALLOCATABLE :: done_irr(:) ! (3*nat)
!! TRUE if this irr.rep. has been done
LOGICAL :: all_comp
!! if TRUE all representation have been computed
INTERFACE
SUBROUTINE set_local_atomo(nat, nat_todo_, atomo_, nsym, irt, nat_l, atomo_l)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nat, nat_todo_, nsym, atomo_(nat_todo_), irt(48,nat)
!! :nat: total number of atoms
!! :nat_todo: number of atoms effectively displaced
!! :nsym: number of symmetries in the system
!! :atomo: list of atoms to be displaced before symmetrization
!! :irt: atoms corresponding atom for each sym operation and atom
INTEGER,INTENT(OUT) :: nat_l
!! actual number of atoms to be displaced considering symmetries
INTEGER,ALLOCATABLE,INTENT(OUT) :: atomo_l(:)
!! list with the indeces of all the atoms to be displaced
END SUBROUTINE set_local_atomo
END INTERFACE
END MODULE partial
!
MODULE gamma_gamma
!
INTEGER, ALLOCATABLE :: has_equivalent(:)
!! 0 if the atom has to be calculated
INTEGER, ALLOCATABLE :: with_symmetry(:)
!! calculated by symmetry
INTEGER, ALLOCATABLE :: n_equiv_atoms(:)
!! number of equivalent atoms
INTEGER, ALLOCATABLE :: equiv_atoms(:,:)
!! which atoms are equivalent
INTEGER :: n_diff_sites
!! Number of different sites
INTEGER :: nasr
!! atom calculated with asr
LOGICAL :: asr
!! if TRUE apply the asr
!
END MODULE gamma_gamma
!
MODULE control_ph
!
!! The variables controlling the phonon run.
!
USE kinds, ONLY : DP
USE parameters, ONLY: npk
!
SAVE
!
INTEGER, PARAMETER :: maxter = 150
!! maximum number of iterations
INTEGER :: niter_ph
!! maximum number of iterations (read from input)
INTEGER :: nmix_ph
!! mixing type
INTEGER :: start_irr
!! initial representation
INTEGER :: last_irr
!! last representation of this run
INTEGER :: current_iq
!! current q point
INTEGER :: start_q
!! initial q in the list
INTEGER :: last_q
!! last_q in the list
!
REAL(DP) :: tr2_ph
!! threshold for phonon calculation
REAL(DP) :: alpha_mix(maxter)
!! the mixing parameter
CHARACTER(LEN=10) :: where_rec='no_recover'
!! where the ph run recovered
CHARACTER(LEN=12) :: electron_phonon
CHARACTER(LEN=256) :: flmixdpot, tmp_dir_ph, tmp_dir_phq
INTEGER :: rec_code=-1000
!! code for recover
INTEGER :: rec_code_read=-1000
!! code for recover. Not changed during the run
LOGICAL :: lgamma_gamma
!! if TRUE this is a q=0 computation with k=0 only
LOGICAL :: convt
!! if TRUE the phonon has converged
LOGICAL :: epsil
!! if TRUE computes dielec. const and eff. charges
LOGICAL :: done_epsil=.FALSE.
!! TRUE when diel. constant is available
LOGICAL :: trans
!! if TRUE computes phonons
LOGICAL :: zue
!! if TRUE computes eff. charges as induced polarization
LOGICAL :: done_zue=.FALSE.
!! TRUE when the eff. charges are available
LOGICAL :: zeu
!! if TRUE computes eff. charges as induced forces
LOGICAL :: done_zeu=.FALSE.
!! TRUE when the eff. charges are available
LOGICAL :: done_start_zstar=.FALSE.
!
LOGICAL :: only_wfc=.FALSE.
!! if TRUE computes only bands
LOGICAL :: only_init=.FALSE.
!! if TRUE computes only initial stuff
LOGICAL :: with_ext_images=.FALSE.
!! if TRUE use an external driver to decide what each image does.
LOGICAL :: always_run=.FALSE.
!! if TRUE the code do not stop after doing partial representations
!! always_run=.TRUE., only for testing purposes
LOGICAL :: recover
!! if TRUE the run restarts
LOGICAL :: low_directory_check=.FALSE.
!! if TRUE search on the phsave directory only the representations
!! requested in input.
LOGICAL :: ext_restart
!! if TRUE there is a restart file
LOGICAL :: ext_recover
!! if TRUE there is a recover file
LOGICAL :: lnoloc
!! if TRUE calculates the dielectric constant neglecting local field effects
LOGICAL :: search_sym=.TRUE.
!! if TRUE search the mode symmetry
LOGICAL :: search_sym_save=.TRUE.
!! save search symmetry
LOGICAL :: lnscf
!! if TRUE the run makes first a nscf calculation
LOGICAL :: ldisp
!! if TRUE the run calculates full phonon dispersion
LOGICAL :: reduce_io
!! if TRUE reduces needed I/O
LOGICAL :: done_bands
!! if TRUE the bands have been calculated
LOGICAL :: bands_computed=.FALSE.
!! if TRUE the bands were computed in this run
LOGICAL :: nogg
!! if TRUE gamma_gamma tricks are disabled
LOGICAL :: u_from_file=.FALSE.
!! if TRUE the u are on file
LOGICAL :: recover_read=.FALSE.
!! if TRUE the recover data have been read
LOGICAL :: ldiag=.FALSE.
!! if TRUE force the diagonalization
LOGICAL :: lqdir=.FALSE.
!! if TRUE each q writes in its directory
LOGICAL :: qplot=.FALSE.
!! if TRUE the q are read from input
LOGICAL :: xmldyn=.FALSE.
!! if TRUE the dynamical matrix is in xml form
LOGICAL :: all_done
!! if TRUE all representations have been done
!
LOGICAL :: newgrid=.FALSE.
!! if TRUE use new k-point grid nk1,nk2,nk3
INTEGER :: nk1,nk2,nk3, k1,k2,k3
!! new Monkhorst-Pack k-point grid
!
END MODULE control_ph
!
!
MODULE freq_ph
!
!! The variables for computing frequency dependent dielectric constant.
!
USE kinds, ONLY : DP
!
SAVE
!
LOGICAL :: fpol
!! if TRUE dynamic dielectric constant is computed
LOGICAL :: done_fpol
!! if TRUE all dynamic dielectric constant is computed
!
INTEGER :: nfs
!! number of frequencies
!
INTEGER :: current_iu
!! the current frequency
!
REAL (KIND=DP), ALLOCATABLE :: fiu(:)
!! values of frequency
!
REAL (KIND=DP), ALLOCATABLE :: polar(:,:,:)
!! values of frequency
LOGICAL, ALLOCATABLE :: comp_iu(:)
!! values of frequency to calculate in this ru
!
LOGICAL, ALLOCATABLE :: done_iu(:)
!! values of frequency already calculated
!
END MODULE freq_ph
!
!
MODULE units_ph
!
!! The units of the files and the record lengths.
!
SAVE
!
INTEGER :: iuvkb
!! unit with vkb
INTEGER :: iubar
!! unit with the part DV_bare
INTEGER :: lrbar
!! length of the DV_bare
INTEGER :: iuebar
!! unit with the part DV_bare for the electric field
INTEGER :: lrebar
!! length of the DV_bare fro the electric field
INTEGER :: iupsir
!! unit with evc in real space
INTEGER :: iudrhous, lrdrhous
INTEGER :: iudyn
!! the unit for the dynamical matrix
INTEGER :: iupdyn
!! the unit for the partial dynamical matrix
INTEGER :: iunrec
!! the unit with the recover data
INTEGER :: iudvscf
!! the unit where the delta Vscf is written
INTEGER :: iudrho
!! the unit where the delta rho is written
INTEGER :: lrdrho
!! the length of the deltarho files
INTEGER :: iucom
!! the unit of the bare commutator in US case
INTEGER :: lrcom
!! the length of the bare commutator in US case
INTEGER :: iudvkb3, lrdvkb3
INTEGER :: iuint3paw
!! the unit of the int3_paw coefficients
INTEGER :: lint3paw
!! the length of the int3_paw coefficients
INTEGER :: iundnsscf
!! the unit of dnsscf, for DFPT+U
INTEGER :: iudvpsi
!! unit of DV_SCF * psi
INTEGER :: lrdvpsi
!! length of DV_SCF * psi
INTEGER :: iugauge
!! Unit for reading and writing gauge information in ahc.f90
!
LOGICAL, ALLOCATABLE :: this_dvkb3_is_on_file(:), &
this_pcxpsi_is_on_file(:,:)
!
END MODULE units_ph
!
!
MODULE output
!
!! The name of the files.
!
SAVE
!
CHARACTER (LEN=256) :: fildyn
!! output file for the dynamical matrix
CHARACTER (LEN=256) :: fildvscf
!! output file for deltavscf
CHARACTER (LEN=256) :: fildrho
!! output file for deltarho
!
END MODULE output
!
!
MODULE disp
!
USE kinds, ONLY: DP
!
SAVE
!
INTEGER :: nq1, nq2, nq3
!! number of q-points in each direction
INTEGER :: nqs
!! number of q points to be calculated
REAL(DP), ALLOCATABLE :: x_q(:,:)
!! coordinates of the q points
REAL(DP), ALLOCATABLE :: wq(:)
!! for plot
REAL(DP), ALLOCATABLE :: omega_disp(:,:)
LOGICAL, ALLOCATABLE :: lgamma_iq(:)
!! if TRUE this q is gamma.
LOGICAL, ALLOCATABLE :: done_iq(:)
!! if TRUE this q point has been already calculated
LOGICAL, ALLOCATABLE :: comp_iq(:)
!! if TRUE this q point has to be calculated
!
END MODULE disp
MODULE grid_irr_iq
!
INTEGER, ALLOCATABLE :: npert_irr_iq(:,:)
!! for each q and irr: the number of perturbations
INTEGER, ALLOCATABLE :: irr_iq(:)
!! number of irreducible representation per q point
INTEGER, ALLOCATABLE :: nsymq_iq(:)
!! dimension of the small group of q for each q
!
LOGICAL, ALLOCATABLE :: comp_irr_iq(:,:)
!! for each q and irr: if TRUE this representation has to be calculated
LOGICAL, ALLOCATABLE :: done_irr_iq(:,:)
!! for each q and irr: if TRUE this representation has been already
!! calculated
LOGICAL, ALLOCATABLE :: done_elph_iq(:,:)
!! for each q and irr: if TRUE the elph of this representation has
!! been already calculated
LOGICAL, ALLOCATABLE :: done_bands(:)
!! nqs, if TRUE the bands of this q have been calculated
!
END MODULE grid_irr_iq
MODULE ldaU_ph
!
USE kinds, ONLY : DP
USE parameters, ONLY : ntypx
!
SAVE
! ... atomic wfc's at k
COMPLEX(DP), ALLOCATABLE, TARGET :: wfcatomk(:,:)
!! atomic wfc at k
COMPLEX(DP), ALLOCATABLE, TARGET :: dwfcatomk(:,:,:)
!! derivative of atomic wfc at k
COMPLEX(DP), ALLOCATABLE, TARGET :: sdwfcatomk(:,:)
!! S * derivative of atomic wfc at k
!
! ... atomic wfc's at k+q
COMPLEX(DP), POINTER :: wfcatomkpq(:,:)
!! atomic wfc at k+q
COMPLEX(DP), POINTER :: dwfcatomkpq(:,:,:)
!! derivative of atomic wfc at k+q
COMPLEX(DP), POINTER :: sdwfcatomkpq(:,:)
!! S * derivative of atomic wfc at k+q
!
COMPLEX(DP), ALLOCATABLE, TARGET :: dvkb(:,:,:)
!! derivative of beta funtions at k
COMPLEX(DP), POINTER :: vkbkpq(:,:)
!! beta funtions at k+q
COMPLEX(DP), POINTER :: dvkbkpq(:,:,:)
!! derivative of beta funtions at k+q
!
! Various arrays for the response occupation matrix
COMPLEX(DP), ALLOCATABLE :: dnsbare(:,:,:,:,:,:)
!! bare derivative of ns
COMPLEX(DP), ALLOCATABLE :: dnsbare_all_modes(:,:,:,:,:)
!! bare derivative of ns for all modes
COMPLEX(DP), ALLOCATABLE :: dnsscf_all_modes(:,:,:,:,:)
!! SCF derivative of ns for all modes
COMPLEX(DP), ALLOCATABLE :: dnsorth(:,:,:,:,:)
!! valence component of dns
COMPLEX(DP), ALLOCATABLE :: dnsorth_cart(:,:,:,:,:,:)
!! same as above, but in cart. coordinates
!
COMPLEX (DP), ALLOCATABLE :: proj1(:,:), &
proj2(:,:), &
projpb(:,:), &
projpdb(:,:,:)
! Arrays to store scalar products between vectors
! projpb = <psi|beta>
! projpdb = <psi|dbeta>
!
!
LOGICAL :: read_dns_bare
!! if TRUE read the first bare derivative of ns from file
CHARACTER(LEN=4) :: d2ns_type
!! type of approximation to compute the second bare derivative
!! of atomic occupation matrix ns
!
END MODULE ldaU_ph
MODULE nc_mag_aux
USE kinds, ONLY : DP
SAVE
COMPLEX (DP), ALLOCATABLE :: &
deeq_nc_save(:,:,:,:,:), &
int1_nc_save(:,:,:,:,:,:), &
int3_save(:, :, :, :, :, :)
END MODULE nc_mag_aux
!MODULE qpoint_aux
! USE kinds, ONLY : DP
! USE becmod, ONLY : bec_type
! SAVE
! INTEGER, ALLOCATABLE :: ikmks(:) ! index of -k for magnetic calculations
! INTEGER, ALLOCATABLE :: ikmkmqs(:) ! index of -k-q for magnetic calculations
! TYPE(bec_type), ALLOCATABLE :: becpt(:), alphapt(:,:)
!END MODULE qpoint_aux
MODULE phcom
USE dynmat
USE eqv
USE efield_mod
USE nlcc_ph
USE phus
USE partial
USE control_ph
USE freq_ph
USE units_ph
USE output
USE gamma_gamma
USE disp
USE grid_irr_iq
USE ldaU_ph
USE nc_mag_aux
! USE qpoint_aux
END MODULE phcom
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/zspsv.f | 29 | 6945 | *> \brief <b> ZSPSV computes the solution to system of linear equations A * X = B for OTHER matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZSPSV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspsv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspsv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspsv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX*16 AP( * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZSPSV computes the solution to a complex system of linear equations
*> A * X = B,
*> where A is an N-by-N symmetric matrix stored in packed format and X
*> and B are N-by-NRHS matrices.
*>
*> The diagonal pivoting method is used to factor A as
*> A = U * D * U**T, if UPLO = 'U', or
*> A = L * D * L**T, if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, D is symmetric and block diagonal with 1-by-1
*> and 2-by-2 diagonal blocks. The factored form of A is then used to
*> solve the system of equations A * X = B.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of linear equations, i.e., the order of the
*> matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*> On entry, the upper or lower triangle of the symmetric matrix
*> A, packed columnwise in a linear array. The j-th column of A
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
*> a packed triangular matrix in the same storage format as A.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> Details of the interchanges and the block structure of D, as
*> determined by ZSPTRF. If IPIV(k) > 0, then rows and columns
*> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
*> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
*> then rows and columns k-1 and -IPIV(k) were interchanged and
*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
*> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
*> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
*> diagonal block.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
*> On entry, the N-by-NRHS right hand side matrix B.
*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
*> has been completed, but the block diagonal matrix D is
*> exactly singular, so the solution could not be
*> computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16OTHERsolve
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The packed storage scheme is illustrated by the following example
*> when N = 4, UPLO = 'U':
*>
*> Two-dimensional storage of the symmetric matrix A:
*>
*> a11 a12 a13 a14
*> a22 a23 a24
*> a33 a34 (aij = aji)
*> a44
*>
*> Packed storage of the upper triangle of A:
*>
*> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
*
* -- LAPACK driver routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 AP( * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZSPTRF, ZSPTRS
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZSPSV ', -INFO )
RETURN
END IF
*
* Compute the factorization A = U*D*U**T or A = L*D*L**T.
*
CALL ZSPTRF( UPLO, N, AP, IPIV, INFO )
IF( INFO.EQ.0 ) THEN
*
* Solve the system A*X = B, overwriting B with X.
*
CALL ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
*
END IF
RETURN
*
* End of ZSPSV
*
END
| gpl-2.0 |
Punzo/wcslib | Fortran/wcsfix_data.f | 1 | 1901 | *=======================================================================
*
* WCSLIB 7.1 - an implementation of the FITS WCS standard.
* Copyright (C) 1995-2020, Mark Calabretta
*
* This file is part of WCSLIB.
*
* WCSLIB is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* WCSLIB is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with WCSLIB. If not, see http://www.gnu.org/licenses.
*
* Direct correspondence concerning WCSLIB to mark@calabretta.id.au
*
* Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
* http://www.atnf.csiro.au/people/Mark.Calabretta
* $Id: wcsfix_data.f,v 7.1 2019/12/31 13:25:19 mcalabre Exp $
*=======================================================================
BLOCK DATA WCSFIX_BLOCK_DATA
CHARACTER WCSFIX_ERRMSG(-1:10)*80
COMMON /WCSFIX_DATA/ WCSFIX_ERRMSG
DATA WCSFIX_ERRMSG /
: 'No change (not an error)',
: 'Success',
: 'Null wcsprm pointer passed',
: 'Memory allocation failed',
: 'Linear transformation matrix is singular',
: 'Inconsistent or unrecognized coordinate axis types',
: 'Invalid parameter value',
: 'Invalid coordinate transformation parameters',
: 'Ill-conditioned coordinate transformation parameters',
: 'All of the corner pixel coordinates are invalid',
: 'Could not determine reference pixel coordinate',
: 'Could not determine reference pixel value'/
END
| lgpl-3.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/dormr2.f | 24 | 7355 | *> \brief \b DORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sgerqf (unblocked algorithm).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DORMR2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormr2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormr2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormr2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
* WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS
* INTEGER INFO, K, LDA, LDC, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DORMR2 overwrites the general real m by n matrix C with
*>
*> Q * C if SIDE = 'L' and TRANS = 'N', or
*>
*> Q**T* C if SIDE = 'L' and TRANS = 'T', or
*>
*> C * Q if SIDE = 'R' and TRANS = 'N', or
*>
*> C * Q**T if SIDE = 'R' and TRANS = 'T',
*>
*> where Q is a real orthogonal matrix defined as the product of k
*> elementary reflectors
*>
*> Q = H(1) H(2) . . . H(k)
*>
*> as returned by DGERQF. Q is of order m if SIDE = 'L' and of order n
*> if SIDE = 'R'.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q**T from the Left
*> = 'R': apply Q or Q**T from the Right
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': apply Q (No transpose)
*> = 'T': apply Q' (Transpose)
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines
*> the matrix Q.
*> If SIDE = 'L', M >= K >= 0;
*> if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension
*> (LDA,M) if SIDE = 'L',
*> (LDA,N) if SIDE = 'R'
*> The i-th row must contain the vector which defines the
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
*> DGERQF in the last k rows of its array argument A.
*> A is modified by the routine but restored on exit.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,K).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION array, dimension (K)
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i), as returned by DGERQF.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension (LDC,N)
*> On entry, the m by n matrix C.
*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension
*> (N) if SIDE = 'L',
*> (M) if SIDE = 'R'
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup doubleOTHERcomputational
*
* =====================================================================
SUBROUTINE DORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
$ WORK, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER INFO, K, LDA, LDC, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LEFT, NOTRAN
INTEGER I, I1, I2, I3, MI, NI, NQ
DOUBLE PRECISION AII
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DLARF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
NOTRAN = LSAME( TRANS, 'N' )
*
* NQ is the order of Q
*
IF( LEFT ) THEN
NQ = M
ELSE
NQ = N
END IF
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORMR2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
$ RETURN
*
IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. ( .NOT.LEFT .AND. NOTRAN ) )
$ THEN
I1 = 1
I2 = K
I3 = 1
ELSE
I1 = K
I2 = 1
I3 = -1
END IF
*
IF( LEFT ) THEN
NI = N
ELSE
MI = M
END IF
*
DO 10 I = I1, I2, I3
IF( LEFT ) THEN
*
* H(i) is applied to C(1:m-k+i,1:n)
*
MI = M - K + I
ELSE
*
* H(i) is applied to C(1:m,1:n-k+i)
*
NI = N - K + I
END IF
*
* Apply H(i)
*
AII = A( I, NQ-K+I )
A( I, NQ-K+I ) = ONE
CALL DLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAU( I ), C, LDC,
$ WORK )
A( I, NQ-K+I ) = AII
10 CONTINUE
RETURN
*
* End of DORMR2
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/dgehrd.f | 21 | 10784 | *> \brief \b DGEHRD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGEHRD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgehrd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgehrd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgehrd.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER IHI, ILO, INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGEHRD reduces a real general matrix A to upper Hessenberg form H by
*> an orthogonal similarity transformation: Q**T * A * Q = H .
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*>
*> It is assumed that A is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to DGEBAL; otherwise they should be
*> set to 1 and N respectively. See Further Details.
*> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the N-by-N general matrix to be reduced.
*> On exit, the upper triangle and the first subdiagonal of A
*> are overwritten with the upper Hessenberg matrix H, and the
*> elements below the first subdiagonal, with the array TAU,
*> represent the orthogonal matrix Q as a product of elementary
*> reflectors. See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION array, dimension (N-1)
*> The scalar factors of the elementary reflectors (see Further
*> Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
*> zero.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleGEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of (ihi-ilo) elementary
*> reflectors
*>
*> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**T
*>
*> where tau is a real scalar, and v is a real vector with
*> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
*> exit in A(i+2:ihi,i), and tau in TAU(i).
*>
*> The contents of A are illustrated by the following example, with
*> n = 7, ilo = 2 and ihi = 6:
*>
*> on entry, on exit,
*>
*> ( a a a a a a a ) ( a a h h h h a )
*> ( a a a a a a ) ( a h h h h a )
*> ( a a a a a a ) ( h h h h h h )
*> ( a a a a a a ) ( v2 h h h h h )
*> ( a a a a a a ) ( v2 v3 h h h h )
*> ( a a a a a a ) ( v2 v3 v4 h h h )
*> ( a ) ( a )
*>
*> where a denotes an element of the original matrix A, h denotes a
*> modified element of the upper Hessenberg matrix H, and vi denotes an
*> element of the vector defining H(i).
*>
*> This file is a slight modification of LAPACK-3.0's DGEHRD
*> subroutine incorporating improvements proposed by Quintana-Orti and
*> Van de Geijn (2006). (See DLAHR2.)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NBMAX, LDT
PARAMETER ( NBMAX = 64, LDT = NBMAX+1 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0,
$ ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IB, IINFO, IWS, J, LDWORK, LWKOPT, NB,
$ NBMIN, NH, NX
DOUBLE PRECISION EI
* ..
* .. Local Arrays ..
DOUBLE PRECISION T( LDT, NBMAX )
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DGEHD2, DGEMM, DLAHR2, DLARFB, DTRMM,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -2
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGEHRD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
*
DO 10 I = 1, ILO - 1
TAU( I ) = ZERO
10 CONTINUE
DO 20 I = MAX( 1, IHI ), N - 1
TAU( I ) = ZERO
20 CONTINUE
*
* Quick return if possible
*
NH = IHI - ILO + 1
IF( NH.LE.1 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Determine the block size
*
NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
NBMIN = 2
IWS = 1
IF( NB.GT.1 .AND. NB.LT.NH ) THEN
*
* Determine when to cross over from blocked to unblocked code
* (last block is always handled by unblocked code)
*
NX = MAX( NB, ILAENV( 3, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
IF( NX.LT.NH ) THEN
*
* Determine if workspace is large enough for blocked code
*
IWS = N*NB
IF( LWORK.LT.IWS ) THEN
*
* Not enough workspace to use optimal NB: determine the
* minimum value of NB, and reduce NB or force use of
* unblocked code
*
NBMIN = MAX( 2, ILAENV( 2, 'DGEHRD', ' ', N, ILO, IHI,
$ -1 ) )
IF( LWORK.GE.N*NBMIN ) THEN
NB = LWORK / N
ELSE
NB = 1
END IF
END IF
END IF
END IF
LDWORK = N
*
IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
*
* Use unblocked code below
*
I = ILO
*
ELSE
*
* Use blocked code
*
DO 40 I = ILO, IHI - 1 - NX, NB
IB = MIN( NB, IHI-I )
*
* Reduce columns i:i+ib-1 to Hessenberg form, returning the
* matrices V and T of the block reflector H = I - V*T*V**T
* which performs the reduction, and also the matrix Y = A*V*T
*
CALL DLAHR2( IHI, I, IB, A( 1, I ), LDA, TAU( I ), T, LDT,
$ WORK, LDWORK )
*
* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
* right, computing A := A - Y * V**T. V(i+ib,ib-1) must be set
* to 1
*
EI = A( I+IB, I+IB-1 )
A( I+IB, I+IB-1 ) = ONE
CALL DGEMM( 'No transpose', 'Transpose',
$ IHI, IHI-I-IB+1,
$ IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
$ A( 1, I+IB ), LDA )
A( I+IB, I+IB-1 ) = EI
*
* Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
* right
*
CALL DTRMM( 'Right', 'Lower', 'Transpose',
$ 'Unit', I, IB-1,
$ ONE, A( I+1, I ), LDA, WORK, LDWORK )
DO 30 J = 0, IB-2
CALL DAXPY( I, -ONE, WORK( LDWORK*J+1 ), 1,
$ A( 1, I+J+1 ), 1 )
30 CONTINUE
*
* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
* left
*
CALL DLARFB( 'Left', 'Transpose', 'Forward',
$ 'Columnwise',
$ IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA, T, LDT,
$ A( I+1, I+IB ), LDA, WORK, LDWORK )
40 CONTINUE
END IF
*
* Use unblocked code to reduce the rest of the matrix
*
CALL DGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
WORK( 1 ) = IWS
*
RETURN
*
* End of DGEHRD
*
END
| gpl-2.0 |
markusappel/McCode | support/common/pgplot/examples/pgdemo7.f | 6 | 7968 | PROGRAM PGDEM7
C
C Demonstration program for 3D surface plotting routine FREDDY.
C
INTEGER PGBEG
REAL A(51,51), R, SIZE
INTEGER I, J
C
IF (PGBEG(0, '?', 1, 1) .NE. 1) THEN
STOP
END IF
C
C Calculate a sample data array.
C
DO 20 I=1,51
DO 10 J=1,51
R = (I-26)**2 + (J-26)**2
R = 0.5*SQRT(R)
IF (R.GT.0.0) THEN
A(I,J) = SIN(R)/R
ELSE
A(I,J) = 1.0
END IF
10 CONTINUE
20 CONTINUE
C
C FREDDY assumes the window is square of size SIZE.
C
SIZE = 1.0
CALL PGENV(0., SIZE, 0., SIZE, 1, -2)
CALL FREDDY(A,51,51, SIZE, 25.0)
CALL PGEND
END
C-----------------------------------------------------------------------
SUBROUTINE FREDDY(ARRAY,KX,NY,SIZE,ANGLE)
INTEGER KX, NY
REAL ARRAY(KX,NY), SIZE, ANGLE
C
C Draws isometric plot of array
C
REAL FMAX,FMIN,DELTAX,DELTAY,DELTAV,SINE,PEAK,X,DX,HEIGHT
INTEGER I,J,KI,KJ,NX,MX,MY,STEP,LEFT,RIGHT,IT,MN,INCX
LOGICAL VISBLE
COMMON /FREDCM/ DELTAX,X,STEP,LEFT,RIGHT,IT,NX,VISBLE
C
MN = KX*NY
NX = KX
C Check array size:
IF(NX.LT.2 .OR. NY.LT.2) RETURN
FMAX = ARRAY(1,1)
FMIN = FMAX
DO 20 J=1,NY
DO 10 I=1,NX
FMIN = AMIN1(ARRAY(I,J),FMIN)
FMAX = AMAX1(ARRAY(I,J),FMAX)
10 CONTINUE
20 CONTINUE
DELTAX = SIZE/(NX+NY)
SINE = SIN(ANGLE/58.)
DELTAY = DELTAX*SINE
HEIGHT = SIZE*(1.-ABS(SINE))
DELTAV = HEIGHT
FMAX = FMAX-FMIN
IF(FMAX.LT.0.0001) FMAX = DELTAV
DELTAV = DELTAV/FMAX
MX = NX+1
MY = NY+1
STEP = MX
C
C Start PGPLOT buffering.
C
CALL PGBBUF
C
C Work our way down the Y axis, then up the X axis,
C calculating the Y plotter coordinates for each
C column of the plot, doing the hidden-line suppression
C at the same time.
C
DO 50 J=1,NY
KJ = MY-J
KI = 1
C ( KI,KJ are coordinates of bottom of column)
ARRAY(KI,KJ) = DELTAY*(KI+KJ) + DELTAV*(ARRAY(KI,KJ)-FMIN)
30 PEAK = ARRAY(KI,KJ)
40 KI = KI+1
KJ = KJ+1
IF(KI.GT.NX .OR. KJ.GT.NY) GOTO 50
ARRAY(KI,KJ) = DELTAY*(KI+KJ) + DELTAV*(ARRAY(KI,KJ)-FMIN)
IF(ARRAY(KI,KJ).GT.PEAK) GOTO 30
IF(ARRAY(KI,KJ).LE.PEAK) ARRAY(KI,KJ) = -ABS(ARRAY(KI,KJ))
GOTO 40
50 CONTINUE
C
C Now to work our way up the X axis
C
DO 80 I=2,NX
KI = I
KJ = 1
ARRAY(KI,KJ) = DELTAY*(KI+KJ)+DELTAV*(ARRAY(KI,KJ)-FMIN)
60 PEAK = ARRAY(KI,KJ)
70 KI = KI+1
KJ = KJ+1
IF(KI.GT.NX .OR. KJ.GT.NY) GOTO 80
ARRAY(KI,KJ) = DELTAY*(KI+KJ)+DELTAV*(ARRAY(KI,KJ)-FMIN)
IF(ARRAY(KI,KJ).GT.PEAK) GOTO 60
IF(ARRAY(KI,KJ).LE.PEAK) ARRAY(KI,KJ) = -ABS(ARRAY(KI,KJ))
GOTO 70
80 CONTINUE
C
C Draw a line along the bottom of the vertical faces
C
CALL PGMOVE(DELTAX*(NX+NY-2), DELTAY*(MX))
CALL PGDRAW(DELTAX*(NY-1), DELTAY*2)
CALL PGDRAW(0.0, DELTAY*MY)
C
C Array is now ready for plotting. If a point is
C positive, then it is to be plotted at that Y
C coordinate; if it is negative, then it is
C invisible, but at minus that Y coordinate (the point
C where the line heading towards it disappears has to
C be determined by finding the intersection of it and
C the cresting line).
C
C Plot rows:
C
DO 110 J=1,NY,2
KJ = MY-J
DX = DELTAX*(J-2)
X = DX+DELTAX
CALL PGMOVE(X,DELTAY*(KJ+1))
CALL PGDRAW(X,ARRAY(1,KJ))
VISBLE = .TRUE.
DO 90 I=2,NX
RIGHT = I+NX*(KJ-1)
LEFT = RIGHT-1
IT = RIGHT
X = DX+DELTAX*I
CALL FREDGO(ARRAY,MN)
90 CONTINUE
C
C Now at far end of row so come back
C
KJ = KJ-1
IF(KJ.LE.0) GOTO 170
VISBLE = ARRAY(NX,KJ).GE.0.0
DX = DELTAX*(NX+J)
IF(VISBLE) CALL PGMOVE(DX-DELTAX,ARRAY(NX,KJ))
DELTAX = -DELTAX
DO 100 I=2,NX
KI = MX-I
LEFT = KI+NX*(KJ-1)
RIGHT = LEFT+1
IT = LEFT
X = DX+DELTAX*I
CALL FREDGO(ARRAY,MN)
100 CONTINUE
C
X = DX+DELTAX*NX
IF(.NOT.VISBLE) CALL PGMOVE(X,ARRAY(1,KJ))
CALL PGDRAW(X,DELTAY*(KJ+1))
C (set DELTAX positive for return trip)
DELTAX = -DELTAX
110 CONTINUE
C
C Now do the columns:
C as we fell out of the last DO-loop we do the
C columns in ascending-X order
C
INCX = 1
KI = 1
C (set DELTAX -ve since scanning R to L)
120 DX = DELTAX*(KI+NY-1)
DELTAX = -DELTAX
X = DX+DELTAX
CALL PGMOVE(X,ARRAY(1,1))
130 VISBLE = .TRUE.
DO 140 J=2,NY
LEFT = KI+NX*(J-1)
RIGHT = LEFT-NX
IT = LEFT
X = DX+DELTAX*J
CALL FREDGO(ARRAY,MN)
140 CONTINUE
C
C At far end, increment X and check still inside array
C
KI = KI+INCX
IF(KI.LE.0 .OR. KI.GT.NX) GOTO 180
VISBLE = ARRAY(KI,NY).GE.0.0
DELTAX = -DELTAX
DX = DELTAX*(KI-2)
X = DX+DELTAX
IF(VISBLE) CALL PGMOVE(X,ARRAY(KI,NY))
DO 150 J=2,NY
KJ = MY-J
RIGHT = KI+NX*(KJ-1)
LEFT = RIGHT+NX
IT = RIGHT
X = DX+DELTAX*J
CALL FREDGO(ARRAY,MN)
150 CONTINUE
C
X = DX+DELTAX*NY
IF(.NOT.VISBLE) CALL PGMOVE(X,ARRAY(KI,1))
IF(KI.EQ.1) GOTO 180
CALL PGDRAW(X,DELTAY*(KI+1))
KI = KI+INCX
IF(KI.GT.NX) GOTO 180
IF(KI.EQ.1) GOTO 120
160 DELTAX = -DELTAX
DX = DELTAX*(1-KI-NY)
X = DX+DELTAX
CALL PGMOVE(X,DELTAY*(KI+1))
CALL PGDRAW(X,ARRAY(KI,1))
GOTO 130
C
C Do columns backwards because ended rows at far end of X
C
170 KI = NX
INCX = -1
DX = DELTAX*(KI+NY)
GOTO 160
C
C
180 CALL PGEBUF
END
C-----------------------------------------------------------------------
SUBROUTINE FREDGO(ARRAY,MN)
INTEGER MN
REAL ARRAY(MN)
C
INTEGER STEP,LEFT,RIGHT,IT,NX
LOGICAL VISBLE
REAL AL,AR,BL,EM,XX,X,Y,DELTAX
COMMON /FREDCM/ DELTAX,X,STEP,LEFT,RIGHT,IT,NX,VISBLE
C
C Test visibility
C
IF(ARRAY(IT).LT.0.0) GOTO 80
C
C This point is visible - was last?
C
IF(VISBLE) GOTO 50
C
C No: calculate point where this line vanishes
C
10 IF(LEFT.LE.NX .OR. MOD(LEFT-1,NX).EQ.0 .OR.
1 RIGHT.LE.NX .OR. MOD(RIGHT-1,NX).EQ.0) GOTO 100
AL = ABS(ARRAY(LEFT))
AR = ABS(ARRAY(RIGHT))
IF(ARRAY(LEFT).LT.0.0) GOTO 70
C Right-hand point is crested
20 RIGHT = RIGHT-STEP
IF(ARRAY(RIGHT).LT.0.0) GOTO 20
C Left-hand end of cresting line is either
C RIGHT+NX or RIGHT-1
LEFT = RIGHT+NX
IF(ARRAY(LEFT).LT.0.0) LEFT = RIGHT-1
C
C RIGHT and LEFT index into the endpoints of the
C cresting line
30 BL = ABS(ARRAY(LEFT))
EM = ABS(ARRAY(RIGHT))-BL
XX = EM-AR+AL
IF(ABS(XX).LT.0.0001) GOTO 60
XX = (AL-BL)/XX
40 Y = EM*XX+BL
IF(DELTAX.GT.0.0) XX = 1.0-XX
XX = X-XX*DELTAX
IF(VISBLE) GOTO 90
C Drawing a line from an invisible point
C to a visible one
CALL PGMOVE(XX,Y)
VISBLE = .TRUE.
50 CALL PGDRAW(X,ARRAY(IT))
RETURN
C
60 XX = 0.5
GOTO 40
C
C Left-hand point crested
C
70 LEFT = LEFT-STEP
IF(ARRAY(LEFT).LT.0.0) GOTO 70
C
C Right-hand end of cresting line is either LEFT+1 or LEFT-NX
C
RIGHT = LEFT+1
IF(ARRAY(RIGHT).LT.0.0) RIGHT = LEFT-NX
GOTO 30
C
C This point is invisible; if last one was too, then forget it;
C else draw a line towards it
C
80 IF(.NOT.VISBLE) RETURN
GOTO 10
C
90 CALL PGDRAW(XX,Y)
100 VISBLE = .FALSE.
RETURN
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/BLAS/SRC/caxpy.f | 26 | 2274 | *> \brief \b CAXPY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)
*
* .. Scalar Arguments ..
* COMPLEX CA
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*),CY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CAXPY constant times a vector plus a vector.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_blas_level1
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)
*
* -- Reference BLAS level1 routine (version 3.4.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
COMPLEX CA
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
COMPLEX CX(*),CY(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,IX,IY
* ..
* .. External Functions ..
REAL SCABS1
EXTERNAL SCABS1
* ..
IF (N.LE.0) RETURN
IF (SCABS1(CA).EQ.0.0E+0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
*
* code for both increments equal to 1
*
DO I = 1,N
CY(I) = CY(I) + CA*CX(I)
END DO
ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO I = 1,N
CY(IY) = CY(IY) + CA*CX(IX)
IX = IX + INCX
IY = IY + INCY
END DO
END IF
*
RETURN
END
| gpl-2.0 |
JohnGBaker/gleam | cmplx_roots_sg.f90 | 1 | 56751 | ! Copyright 2012 Jan Skowron & Andrew Gould
!
! Licensed under the Apache License, Version 2.0 (the "License");
! you may not use this file except in compliance with the License.
! You may obtain a copy of the License at
!
! http://www.apache.org/licenses/LICENSE-2.0
!
! Unless required by applicable law or agreed to in writing, software
! distributed under the License is distributed on an "AS IS" BASIS,
! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
! See the License for the specific language governing permissions and
! limitations under the License.
!
!-------------------------------------------------------------------!
!
! The authors also release this file under the GNU Lesser General
! Public License version 2 or any later version, as well as under
! a "customary scientific license", which implies
! that if this code was important in the scientific process or
! for the results of your scientific work, we ask for the
! appropriate citation of the Paper (Skowron & Gould 2012).
!
!-------------------------------------------------------------------!
!
! No Subroutine
!
! 1 cmplx_roots_gen - general polynomial solver, works for random degree, not as fast or robust as cmplx_roots_5
! 2 cmplx_roots_5 - complex roots finding algorithm taylored for 5th order polynomial (with failsafes for polishing)
! 3 sort_5_points_by_separation - sorting of an array of 5 points, 1st most isolated, 4th and 5th - closest
! 4 sort_5_points_by_separation_i - sorting same as above, returns array of indicies rather than sorted array
! 5 find_2_closest_from_5 - finds closest pair of 5 points
! 6 cmplx_laguerre - Laguerre's method with simplified Adams' stopping criterion
! 7 cmplx_newton_spec - Newton's method with stopping criterion calculated every 10 steps
! 8 cmplx_laguerre2newton - three regime method: Laguerre's, Second-order General method and Newton's
! 9 solve_quadratic_eq - quadratic equation solver
! 10 solve_cubic_eq - cubic equation solver based on Lagrange's method
! 11 divide_poly_1 - division of the polynomial by (x-p)
!
! fortran 90 code
!
! Paper: Skowron & Gould 2012
! "General Complex Polynomial Root Solver and Its Further Optimization for Binary Microlenses"
!
! for a full text see:
! http://www.astrouw.edu.pl/~jskowron/cmplx_roots_sg/
! or http://arxiv.org/find/astro-ph
! or http://www.adsabs.harvard.edu/abstract_service.html
! see also file NOTICE and LICENSE
!
!-------------------------------------------------------------------!
! _1_ CMPLX_ROOTS_GEN !
!-------------------------------------------------------------------!
subroutine cmplx_roots_gen(roots, poly, degree, polish_roots_after, use_roots_as_starting_points)
! This subroutine finds roots of a complex polynomial.
! It is general, however less fast or robust than cmplx_roots_5
! which contains failsafe checks in the polishing stage, but is
! designed only for 5th order polynomials.
! It uses a new dynamic root finding algorithm (see the Paper).
!
! It can use Laguerre's method (subroutine cmplx_laguerre)
! or Laguerre->SG->Newton method (subroutine
! cmplx_laguerre2newton - this is default choice) to find
! roots. It divides polynomial one by one by found roots. At the
! end it finds last root from Viete's formula for quadratic
! equation. Finally, it polishes all found roots using a full
! polynomial and Newton's or Laguerre's method (default is
! Laguerre's - subroutine cmplx_laguerre).
! You can change default choices by commenting out and uncommenting
! certain lines in the code below.
!
! Note:
! - we solve for the last root with Viete's formula rather
! than doing full Laguerre step (which is time consuming
! and unnecessary)
! - we do not introduce any preference to real roots
! - in Laguerre implementation we omit unneccesarry calculation of
! absolute values of denominator
! - we do not sort roots. If you need to sort
! roots - we have provided sorting subroutine called:
! sort_5_points_by_separation, which sorts points from most
! isolated to most close. Algorithm in this routine can be
! easily used for number of points different than 5.
!
implicit none
! roots - array which will hold all roots that had been found.
! If the flag 'use_roots_as_starting_points' is set to
! .true., then instead of point (0,0) we use value from
! this array as starting point for cmplx_laguerre
! poly - is an array of polynomial cooefs, length = degree+1,
! poly(1) is a constant term:
! 1 2 3
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + ...
! degree - degree of the polynomial and size of 'roots' array
! polish_roots_after - after all roots have been found by dividing
! original polynomial by each root found,
! you can opt in to polish all roots using full
! polynomial
! use_roots_as_starting_points - usually we start Laguerre's
! method from point (0,0), but you can decide to use the
! values of 'roots' array as starting point for each new
! root that is searched for. This is useful if you have
! very rough idea where some of the roots can be.
!
integer, parameter :: RK = 8
integer, intent(in) :: degree
complex(kind=RK), dimension(degree+1), intent(in) :: poly ! coeffs of the polynomial
complex(kind=RK), dimension(degree), intent(inout) :: roots
logical, intent(in) :: polish_roots_after, use_roots_as_starting_points
complex(kind=RK), dimension(degree+1) :: poly2
complex(kind=RK), parameter :: zero = cmplx(0d0,0d0,RK)
integer :: i, n, iter
logical :: success
complex(kind=RK) :: coef, prev
poly2=poly
! initialize starting points
if(.not.use_roots_as_starting_points) roots=zero
! skip small degree polynomials from doing Laguerre's method
if(degree<=1)then
if(degree==1) roots(1)=-poly(2)/poly(1)
return
endif
do n=degree, 3, -1
! find root with Laguerre's method
!call cmplx_laguerre(poly2, n, roots(n), iter, success)
! or
! find root with (Laguerre's method -> SG method -> Newton's method)
call cmplx_laguerre2newton(poly2, n, roots(n), iter, success, 2)
if(.not.success) then
roots(n)=zero
call cmplx_laguerre(poly2, n, roots(n), iter, success)
endif
! divide the polynomial by this root
coef=poly2(n+1)
do i=n,1,-1
prev=poly2(i)
poly2(i)=coef
coef=prev+roots(n)*coef
enddo
! variable coef now holds a remainder - should be close to 0
enddo
! find all but last root with Laguerre's method
!call cmplx_laguerre(poly2, 2, roots(2), iter, success)
! or
call cmplx_laguerre2newton(poly2, 2, roots(2), iter, success, 2)
if(.not.success) then
call solve_quadratic_eq(roots(2),roots(1),poly2)
else
! calculate last root from Viete's formula
roots(1)=-(roots(2)+poly2(2)/poly2(3))
endif
if(polish_roots_after)then
do n=1, degree ! polish roots one-by-one with a full polynomial
call cmplx_laguerre(poly, degree, roots(n), iter, success)
!call cmplx_newton_spec(poly, degree, roots(n), iter, success)
enddo
endif
return
end
!-------------------------------------------------------------------!
! _2_ CMPLX_ROOTS_5 !
!-------------------------------------------------------------------!
subroutine cmplx_roots_5(roots, first_3_roots_order_changed, poly, polish_only)
implicit none
! Subroutine finds or polishes roots of a complex polynomial
! (degree=5)
! This routine is especially tailored for solving binary lens
! equation in form of 5th order polynomial.
!
! Use of this routine, in comparission to 'cmplx_roots_gen' can yield
! consideribly faster code, because it makes polishing of the roots
! (that come in as a guess from previous solutions) secure by
! implementing additional checks on the result of polishing.
! If those checks are not satisfied then routine reverts to the
! robust algorithm. These checks are designed to work for 5th order
! polynomial originated from binary lens equation.
!
! Usage:
!
! polish_only == false - I do not know the roots, routine should
! find them from scratch. At the end it
! sorts roots from the most distant to closest.
! Two last roots are the closest (in no particular
! order).
! polish_only = true - I do know the roots pretty well, for example
! I have changed the coefficiens of the polynomial
! only a bit, so the two closest roots are
! most likely still the closest ones.
! If the output flag 'first_3_roots_order_changed'
! is returned as 'false', then first 3 returned roots
! are in the same order as initialy given to the
! routine. The last two roots are the closest ones,
! but in no specific order (!).
! If 'first_3_roots_order_changed' is 'true' then
! it means that all roots had been resorted.
! Two last roots are the closest ones. First is most
! isolated one.
!
!
! If you do not know the position of the roots just use flag
! polish_only=.false. In this case routine will find the roots by
! itself.
! Returns all five roots in the 'roots' array.
!
! poly - is an array of polynomial cooefs, length = degree+1
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + poly(4) x^3 + ...
! roots - roots of the polynomial ('out' and optionally 'in')
!
!
! Jan Skowron 2011
!
integer, parameter :: degree=5
integer, parameter :: RK=8 ! kind for real and complex variables
complex(kind=RK), dimension(degree), intent(inout) :: roots
logical, intent(out) :: first_3_roots_order_changed
complex(kind=RK), dimension(degree+1), intent(in) :: poly
logical, intent(in) :: polish_only
!------------------------------------------------------------------
!
complex(kind=RK) :: remainder, roots_robust(degree)
real(kind=RK) :: d2min
integer :: iter, loops, go_to_robust, m, root4, root5, i, i2
complex(kind=RK), dimension(degree+1) :: poly2
!integer, dimension(degree) :: sorted_ind
complex(kind=RK), parameter :: zero=cmplx(0d0,0d0,RK)
logical :: succ
!---------------------------------------
go_to_robust=0
if(.not.polish_only) then
! initialize roots
roots=zero
go_to_robust=1
endif
first_3_roots_order_changed=.false.
do loops=1,3
! ROBUST
! (we do not know the roots)
if(go_to_robust>0) then
if(go_to_robust>2)then ! something is wrong
roots=roots_robust ! return not-polished roots, because polishing creates errors
return
endif
poly2=poly ! copy coeffs
do m=degree,4,-1 ! find the roots one-by-one (until 3 are left to be found)
call cmplx_laguerre2newton(poly2, m, roots(m), iter, succ, 2)
if(.not.succ)then
roots(m)=zero
call cmplx_laguerre(poly2, m, roots(m), iter, succ)
endif
! divide polynomial by this root
call divide_poly_1(poly2, remainder, roots(m), poly2, m)
enddo
! find last 3 roots with cubic euqation solver (Lagrange's method)
call solve_cubic_eq(roots(1),roots(2),roots(3),poly2)
! all roots found
! sort roots - first will be most isolated, last two will be the closest
call sort_5_points_by_separation(roots)
! copy roots in case something will go wrong during polishing
roots_robust=roots
! set flag, that roots have been resorted
first_3_roots_order_changed=.true.
endif ! go_to_robust>0
! POLISH
! (we know the roots approximately, and we guess that last two are closest)
!---------------------
poly2=poly ! copy coeffs
do m=1,degree-2
!do m=1,degree ! POWN - polish only with Newton (option)
! polish roots with full polynomial
call cmplx_newton_spec(poly2, degree, roots(m), iter, succ)
if(.not.succ)then
! go back to robust
go_to_robust=go_to_robust+1
roots=zero
exit
endif
enddo ! m=1,degree-2
if(succ) then
! comment out division and quadratic if you (POWN) polish with Newton only
do m=1,degree-2
call divide_poly_1(poly2, remainder, roots(m), poly2, degree-m+1)
enddo
! last two roots are found with quadratic equation solver
! (this is faster and more robust, although little less accurate)
call solve_quadratic_eq(roots(degree-1), &
roots(degree ),poly2)
! all roots found and polished
! TEST ORDER
! test closest roots if they are the same pair as given to polish
call find_2_closest_from_5(root4,root5, d2min, roots)
! check if the closest roots are not too close, this could happen
! when using polishing with Newton only, when two roots erroneously
! colapsed to the same root. This check is not needed for polishing
! 3 roots by Newton and using quadratic for the remaining two.
! If the real roots are so close indeed (very low probability), this will just
! take more time and the unpolished result be returned at the end
! but algorithm will work, and will return accurate enough result
!if(d2min<1d-18) then ! POWN - polish only with Newton
! go_to_robust=go_to_robust+1 ! POWN - polish only with Newton
!else ! POWN - polish only with Newton
if((root4<degree-1).or.(root5<degree-1)) then
! after polishing some of the 3 far roots become one of the 2 closest ones
! go back to robust
if(go_to_robust>0)then
! if came from robust
! copy two most isolated roots as starting points for new robust
do i=1,degree-3
roots(degree-i+1)=roots_robust(i)
enddo
else
! came from users initial guess
! copy some 2 roots (except the closest ones)
i2=degree
do i=1,degree
if((i/=root4).and.(i/=root5))then
roots(i2)=roots(i)
i2=i2-1
endif
if(i2<=3) exit ! do not copy those that will be done by cubic in robust
enddo
endif
go_to_robust=go_to_robust+1
else
! root4 and root5 comes from the initial closest pair
! most common case
return
endif
!endif ! POWN - polish only with Newton
endif !
!---------------------
enddo ! loops
return
end
!-------------------------------------------------------------------!
! _3_ SORT_5_POINTS_BY_SEPARATION !
!-------------------------------------------------------------------!
subroutine sort_5_points_by_separation(points)
! Sort array of five points
! Most isolated point will become the first point in the array
! The closest points will be the last two points in the array
!
! Algorithm works well for all dimensions. We put n=5 as
! a hardcoded value just for optimization purposes.
implicit none
integer, parameter :: RK=8
integer, parameter :: n=5 ! works for different n as well, but is faster for n as constant (optimization)
complex(kind=RK), dimension(n), intent(inout) :: points
integer, dimension(n) :: sorted_points
complex(kind=RK), dimension(n) :: savepoints
integer :: i
call sort_5_points_by_separation_i(sorted_points, points)
savepoints=points
do i=1,n
points(i)=savepoints(sorted_points(i))
enddo
return
end
!-------------------------------------------------------------------!
! _4_ SORT_5_POINTS_BY_SEPARATION_I !
!-------------------------------------------------------------------!
subroutine sort_5_points_by_separation_i(sorted_points, points)
! Return index array that sorts array of five points
! Index of the most isolated point will appear on the firts place
! of the output array.
! The indices of the closest 2 points will be at the last two
! places in the 'sorted_points' array
!
! Algorithm works well for all dimensions. We put n=5 as
! a hardcoded value just for optimization purposes.
implicit none
integer, parameter :: RK=8
integer, parameter :: n=5 ! works for different n as well, but is faster for n as constant (optimization)
integer, dimension(n), intent(out) :: sorted_points
complex(kind=RK), dimension(n), intent(in) :: points
real(kind=RK) :: dmin, d1, d2, d
real(kind=RK), dimension(n,n) :: distances2
integer :: ki, kj, ind2, put
real(kind=RK), dimension(n) :: neigh1st, neigh2nd
complex(kind=RK) :: p
distances2=1d100
dmin=1d100
do kj=1, n
do ki=1, kj-1
p=points(ki)-points(kj)
d=conjg(p)*p
distances2(ki,kj)=d
distances2(kj,ki)=d
enddo
enddo
! find neighbours
neigh1st=1d100
neigh2nd=1d100
do kj=1, n
do ki=1, n
d=distances2(kj,ki)
if(d<neigh2nd(kj))then
if(d<neigh1st(kj))then
neigh2nd(kj)=neigh1st(kj)
neigh1st(kj)=d
else
neigh2nd(kj)=d
endif
endif
enddo
enddo
! initialize sorted_points
do ki=1,n
sorted_points(ki)=ki
enddo
! sort the rest 1..n-2
do kj=2,n
d1=neigh1st(kj)
d2=neigh2nd(kj)
put=1
do ki=kj-1,1,-1
ind2=sorted_points(ki)
d=neigh1st(ind2)
if(d>=d1) then
if(d==d1)then
if(neigh2nd(ind2)>d2)then
put=ki+1
exit
endif
else
put=ki+1
exit
endif
endif
sorted_points(ki+1)=sorted_points(ki)
enddo
sorted_points(put)=kj
enddo
return
end
!-------------------------------------------------------------------!
! _5_ FIND_2_CLOSEST_FROM_5 !
!-------------------------------------------------------------------!
subroutine find_2_closest_from_5(i1,i2, d2min, points)
! Returns indices of the two closest points out of array of 5
implicit none
integer, parameter :: RK=8
integer, parameter :: n=5 ! will work for other n too, but it is faster with n as constant
integer, intent(out) :: i1, i2
!real(kind=RK), dimension(n,n) :: distances2
complex(kind=RK), dimension(n), intent(in) :: points
real(kind=RK), intent(out) :: d2min ! square of minimal distance
real(kind=RK) :: d2min1, d2
integer :: i,j
complex(kind=RK) :: p
d2min1=1d100
do j=1,n
!distances2(j,j)=0d0
do i=1,j-1
p=points(i)-points(j)
d2=conjg(p)*p
!distances2(i,j)=d2
!distances2(j,i)=d2
if(d2<=d2min1)then
i1=i
i2=j
d2min1=d2
endif
enddo
enddo
d2min=d2min1
end
!-------------------------------------------------------------------!
! _6_ CMPLX_LAGUERRE !
!-------------------------------------------------------------------!
recursive subroutine cmplx_laguerre(poly, degree, root, iter, success)
implicit none
! Subroutine finds one root of a complex polynomial using
! Laguerre's method. In every loop it calculates simplified
! Adams' stopping criterion for the value of the polynomial.
!
! Uses 'root' value as a starting point (!!!!!)
! Remember to initialize 'root' to some initial guess or to
! point (0,0) if you have no prior knowledge.
!
! poly - is an array of polynomial cooefs
! length = degree+1, poly(1) is constant
! 1 2 3
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + ...
! degree - a degree of the polynomial
! root - input: guess for the value of a root
! output: a root of the polynomial
! iter - number of iterations performed (the number of polynomial
! evaluations and stopping criterion evaluation)
! success - is false if routine reaches maximum number of iterations
!
! For a summary of the method go to:
! http://en.wikipedia.org/wiki/Laguerre's_method
!
integer, parameter :: RK=8 ! kind for real and complex variables
integer, parameter :: MAX_ITERS=200 ! Laguerre is used as a failsafe
! constants needed to break cycles in the scheme
integer, parameter :: FRAC_JUMP_EVERY=10
integer, parameter :: FRAC_JUMP_LEN=10
real(kind=RK), dimension(FRAC_JUMP_LEN), parameter :: FRAC_JUMPS=(/0.64109297d0, &
0.91577881d0, 0.25921289d0, 0.50487203d0, &
0.08177045d0, 0.13653241d0, 0.306162d0 , &
0.37794326d0, 0.04618805d0, 0.75132137d0/) ! some random numbers
real(kind=RK), parameter :: pi = 3.141592653589793d0
real(kind=RK) :: faq ! jump length
real(kind=RK), parameter :: FRAC_ERR = 2.0d-15 ! fractional error for kind=8 (see. Adams 1967 Eqs 9 and 10)
integer, intent(in) :: degree
complex(kind=RK), dimension(degree+1), intent(in) :: poly
integer, intent(out) :: iter
complex(kind=RK), intent(inout) :: root
logical, intent(out) :: success
complex(kind=RK) :: p ! value of polynomial
complex(kind=RK) :: dp ! value of 1st derivative
complex(kind=RK) :: d2p_half ! value of 2nd derivative
integer :: i, k
logical :: good_to_go
!complex(kind=RK) :: G, H, G2
complex(kind=RK) :: denom, denom_sqrt, dx, newroot
real(kind=RK) :: ek, absroot, abs2p
complex(kind=RK) :: fac_netwon, fac_extra, F_half, c_one_nth
real(kind=RK) :: one_nth, n_1_nth, two_n_div_n_1
complex(kind=RK), parameter :: c_one=cmplx(1d0,0d0,RK)
complex(kind=RK), parameter :: zero=cmplx(0d0,0d0,RK)
real(kind=RK) :: stopping_crit2
!---------------------------------------
iter=0
success=.true.
! next if-endif block is an EXTREME failsafe, not usually needed, and thus turned off in this version.
if(.false.)then ! change false-->true if you would like to use caution about having first coefficient == 0
if(degree<0) then
write(*,*) 'Error: cmplx_laguerre: degree<0'
return
endif
if(poly(degree+1)==zero) then
if(degree==0) return
call cmplx_laguerre(poly, degree-1, root, iter, success)
return
endif
if(degree<=1)then
if(degree==0) then ! we know from previous check than poly(1) not equal zero
success=.false.
write(*,*) 'Warning: cmplx_laguerre: degree=0 and poly(1)/=0, no roots'
return
else
root=-poly(1)/poly(2)
return
endif
endif
endif
! end EXTREME failsafe
good_to_go=.false.
one_nth=1d0/degree
n_1_nth=(degree-1d0)*one_nth
two_n_div_n_1=2d0/n_1_nth
c_one_nth=cmplx(one_nth,0d0,RK)
do i=1,MAX_ITERS
! prepare stoping criterion
ek=abs(poly(degree+1))
absroot=abs(root)
! calculate value of polynomial and its first two derivatives
p =poly(degree+1)
dp =zero
d2p_half=zero
do k=degree,1,-1 ! Horner Scheme, see for eg. Numerical Recipes Sec. 5.3 how to evaluate polynomials and derivatives
d2p_half=dp + d2p_half*root
dp =p + dp*root
p =poly(k)+p*root ! b_k
! Adams, Duane A., 1967, "A stopping criterion for polynomial root finding",
! Communications of the ACM, Volume 10 Issue 10, Oct. 1967, p. 655
! ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/67/55/CS-TR-67-55.pdf
! Eq 8.
ek=absroot*ek+abs(p)
enddo
iter=iter+1
abs2p=conjg(p)*p
if(abs2p==0d0) return
stopping_crit2=(FRAC_ERR*ek)**2
if(abs2p<stopping_crit2) then ! (simplified a little Eq. 10 of Adams 1967)
! do additional iteration if we are less than 10x from stopping criterion
if(abs2p<0.01d0*stopping_crit2) then
return ! return immediately, because we are at very good place
else
good_to_go=.true. ! do one iteration more
endif
else
good_to_go=.false. ! reset if we are outside the zone of the root
endif
faq=1d0
fac_netwon=p/dp
fac_extra=d2p_half/dp
F_half=fac_netwon*fac_extra
denom_sqrt=sqrt(c_one-two_n_div_n_1*F_half)
!G=dp/p ! gradient of ln(p)
!G2=G*G
!H=G2-2d0*d2p_half/p ! second derivative of ln(p)
!denom_sqrt=sqrt( (degree-1)*(degree*H-G2) )
! NEXT LINE PROBABLY CAN BE COMMENTED OUT
if(real(denom_sqrt)>=0d0)then
! real part of a square root is positive for probably all compilers. You can
! test this on your compiler and if so, you can omit this check
denom=c_one_nth+n_1_nth*denom_sqrt
else
denom=c_one_nth-n_1_nth*denom_sqrt
endif
if(denom==zero)then !test if demoninators are > 0.0 not to divide by zero
dx=(absroot+1d0)*exp(cmplx(0d0,FRAC_JUMPS(mod(i,FRAC_JUMP_LEN)+1)*2*pi,RK)) ! make some random jump
else
dx=fac_netwon/denom
!dx=degree/denom
endif
newroot=root-dx
if(newroot==root) return ! nothing changes -> return
if(good_to_go)then ! this was jump already after stopping criterion was met
root=newroot
return
endif
if(mod(i,FRAC_JUMP_EVERY)==0) then ! decide whether to do a jump of modified length (to break cycles)
faq=FRAC_JUMPS(mod(i/FRAC_JUMP_EVERY-1,FRAC_JUMP_LEN)+1)
newroot=root-faq*dx ! do jump of some semi-random length (0<faq<1)
endif
root=newroot
enddo
success=.false.
! too many iterations here
end
!-------------------------------------------------------------------!
! _7_ CMPLX_NEWTON_SPEC !
!-------------------------------------------------------------------!
recursive subroutine cmplx_newton_spec(poly, degree, root, iter, success)
implicit none
! Subroutine finds one root of a complex polynomial using
! Newton's method. It calculates simplified Adams' stopping
! criterion for the value of the polynomial once per 10 iterations (!),
! after initial iteration. This is done to speed up calculations
! when polishing roots that are known preety well, and stopping
! criterion does significantly change in their neighborhood.
!
! Uses 'root' value as a starting point (!!!!!)
! Remember to initialize 'root' to some initial guess.
! Do not initilize 'root' to point (0,0) if the polynomial
! coefficients are strictly real, because it will make going
! to imaginary roots impossible.
!
! poly - is an array of polynomial cooefs
! length = degree+1, poly(1) is constant
! 1 2 3
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + ...
! degree - a degree of the polynomial
! root - input: guess for the value of a root
! output: a root of the polynomial
! iter - number of iterations performed (the number of polynomial
! evaluations)
! success - is false if routine reaches maximum number of iterations
!
! For a summary of the method go to:
! http://en.wikipedia.org/wiki/Newton's_method
!
integer, parameter :: RK=8 ! kind for real and complex variables
integer, parameter :: MAX_ITERS=50
! constants needed to break cycles in the scheme
integer, parameter :: FRAC_JUMP_EVERY=10
integer, parameter :: FRAC_JUMP_LEN=10
real(kind=RK), dimension(FRAC_JUMP_LEN), parameter :: FRAC_JUMPS=(/0.64109297d0, &
0.91577881d0, 0.25921289d0, 0.50487203d0, &
0.08177045d0, 0.13653241d0, 0.306162d0 , &
0.37794326d0, 0.04618805d0, 0.75132137d0/) ! some random numbers
real(kind=8), parameter :: pi = 3.141592653589793d0
real(kind=RK) :: faq ! jump length
real(kind=RK), parameter :: FRAC_ERR = 2.0d-15 ! fractional error for kind=8 (see. Adams 1967 Eqs 9 and 10)
integer, intent(in) :: degree
complex(kind=RK), dimension(degree+1), intent(in) :: poly
integer, intent(out) :: iter
complex(kind=RK), intent(inout) :: root
logical, intent(out) :: success
complex(kind=RK) :: p ! value of polynomial
complex(kind=RK) :: dp ! value of 1st derivative
integer :: i, k
logical :: good_to_go
complex(kind=RK) :: dx, newroot
real(kind=RK) :: ek, absroot, abs2p
complex(kind=RK), parameter :: zero=cmplx(0d0,0d0,RK)
real(kind=RK) :: stopping_crit2
!---------------------------------------
iter=0
success=.true.
! next if-endif block is an EXTREME failsafe, not usually needed, and thus turned off in this version.
if(.false.)then ! change false-->true if you would like to use caution about having first coefficient == 0
if(degree<0) then
write(*,*) 'Error: cmplx_newton_spec: degree<0'
return
endif
if(poly(degree+1)==zero) then
if(degree==0) return
call cmplx_newton_spec(poly, degree-1, root, iter, success)
return
endif
if(degree<=1)then
if(degree==0) then ! we know from previous check than poly(1) not equal zero
success=.false.
write(*,*) 'Warning: cmplx_newton_spec: degree=0 and poly(1)/=0, no roots'
return
else
root=-poly(1)/poly(2)
return
endif
endif
endif
! end EXTREME failsafe
good_to_go=.false.
do i=1,MAX_ITERS
faq=1d0
! prepare stoping criterion
! calculate value of polynomial and its first two derivatives
p =poly(degree+1)
dp =zero
if(mod(i,10)==1) then ! calculate stopping criterion every tenth iteration
ek=abs(poly(degree+1))
absroot=abs(root)
do k=degree,1,-1 ! Horner Scheme, see for eg. Numerical Recipes Sec. 5.3 how to evaluate polynomials and derivatives
dp =p + dp*root
p =poly(k)+p*root ! b_k
! Adams, Duane A., 1967, "A stopping criterion for polynomial root finding",
! Communications of the ACM, Volume 10 Issue 10, Oct. 1967, p. 655
! ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/67/55/CS-TR-67-55.pdf
! Eq 8.
ek=absroot*ek+abs(p)
enddo
stopping_crit2=(FRAC_ERR*ek)**2
else ! calculate just the value and derivative
do k=degree,1,-1 ! Horner Scheme, see for eg. Numerical Recipes Sec. 5.3 how to evaluate polynomials and derivatives
dp =p + dp*root
p =poly(k)+p*root ! b_k
enddo
endif
iter=iter+1
abs2p=conjg(p)*p
if(abs2p==0d0) return
if(abs2p<stopping_crit2) then ! (simplified a little Eq. 10 of Adams 1967)
if(dp==zero) return ! if we have problem with zero, but we are close to the root, just accept
! do additional iteration if we are less than 10x from stopping criterion
if(abs2p<0.01d0*stopping_crit2) then
return ! return immediately, because we are at very good place
else
good_to_go=.true. ! do one iteration more
endif
else
good_to_go=.false. ! reset if we are outside the zone of the root
endif
if(dp==zero)then
! problem with zero
dx=(abs(root)+1d0)*exp(cmplx(0d0,FRAC_JUMPS(mod(i,FRAC_JUMP_LEN)+1)*2*pi,RK)) ! make some random jump
else
dx=p/dp ! Newton method, see http://en.wikipedia.org/wiki/Newton's_method
endif
newroot=root-dx
if(newroot==root) return ! nothing changes -> return
if(good_to_go)then ! this was jump already after stopping criterion was met
root=newroot
return
endif
if(mod(i,FRAC_JUMP_EVERY)==0) then ! decide whether to do a jump of modified length (to break cycles)
faq=FRAC_JUMPS(mod(i/FRAC_JUMP_EVERY-1,FRAC_JUMP_LEN)+1)
newroot=root-faq*dx ! do jump of some semi-random length (0<faq<1)
endif
root=newroot
enddo
success=.false.
return
! too many iterations here
end
!-------------------------------------------------------------------!
! _8_ CMPLX_LAGUERRE2NEWTON !
!-------------------------------------------------------------------!
recursive subroutine cmplx_laguerre2newton(poly, degree, root, iter, success, starting_mode)
implicit none
! Subroutine finds one root of a complex polynomial using
! Laguerre's method, Second-order General method and Newton's
! method - depending on the value of function F, which is a
! combination of second derivative, first derivative and
! value of polynomial [F=-(p"*p)/(p'p')].
!
! Subroutine has 3 modes of operation. It starts with mode=2
! which is the Laguerre's method, and continues until F
! becames F<0.50, at which point, it switches to mode=1,
! i.e., SG method (see paper). While in the first two
! modes, routine calculates stopping criterion once per every
! iteration. Switch to the last mode, Newton's method, (mode=0)
! happens when becomes F<0.05. In this mode, routine calculates
! stopping criterion only once, at the beginning, under an
! assumption that we are already very close to the root.
! If there are more than 10 iterations in Newton's mode,
! it means that in fact we were far from the root, and
! routine goes back to Laguerre's method (mode=2).
!
! Uses 'root' value as a starting point (!!!!!)
! Remember to initialize 'root' to some initial guess or to
! point (0,0) if you have no prior knowledge.
!
! poly - is an array of polynomial cooefs
! length = degree+1, poly(1) is constant
! 1 2 3
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + ...
! degree - a degree of the polynomial
! root - input: guess for the value of a root
! output: a root of the polynomial
! iter - number of iterations performed (the number of polynomial
! evaluations and stopping criterion evaluation)
! success - is false if routine reaches maximum number of iterations
! starting_mode - this should be by default = 2. However if you
! choose to start with SG method put 1 instead.
! Zero will cause the routine to
! start with Newton for first 10 iterations, and
! then go back to mode 2.
!
!
! For a summary of the method see the paper: Skowron & Gould (2012)
!
integer, parameter :: RK=8 ! kind for real and complex variables
integer, parameter :: MAX_ITERS=50
! constants needed to break cycles in the scheme
integer, parameter :: FRAC_JUMP_EVERY=10
integer, parameter :: FRAC_JUMP_LEN=10
real(kind=RK), dimension(FRAC_JUMP_LEN), parameter :: FRAC_JUMPS=(/0.64109297d0, &
0.91577881d0, 0.25921289d0, 0.50487203d0, &
0.08177045d0, 0.13653241d0, 0.306162d0 , &
0.37794326d0, 0.04618805d0, 0.75132137d0/) ! some random numbers
real(kind=RK), parameter :: pi = 3.141592653589793d0
real(kind=RK) :: faq ! jump length
real(kind=RK), parameter :: FRAC_ERR = 2.0d-15 ! fractional error for kind=8 (see. Adams 1967 Eqs 9 and 10)
integer, intent(in) :: degree
complex(kind=RK), dimension(degree+1), intent(in) :: poly
integer, intent(out) :: iter
complex(kind=RK), intent(inout) :: root
integer, intent(in) :: starting_mode
logical, intent(out) :: success
complex(kind=RK) :: p ! value of polynomial
complex(kind=RK) :: dp ! value of 1st derivative
complex(kind=RK) :: d2p_half ! value of 2nd derivative
integer :: i, j, k
logical :: good_to_go
!complex(kind=RK) :: G, H, G2
complex(kind=RK) :: denom, denom_sqrt, dx, newroot
real(kind=RK) :: ek, absroot, abs2p, abs2_F_half
complex(kind=RK) :: fac_netwon, fac_extra, F_half, c_one_nth
real(kind=RK) :: one_nth, n_1_nth, two_n_div_n_1
integer :: mode
complex(kind=RK), parameter :: c_one=cmplx(1d0,0d0,RK)
complex(kind=RK), parameter :: zero=cmplx(0d0,0d0,RK)
real(kind=RK) :: stopping_crit2
iter=0
success=.true.
! next if-endif block is an EXTREME failsafe, not usually needed, and thus turned off in this version.
if(.false.)then ! change false-->true if you would like to use caution about having first coefficient == 0
if(degree<0) then
write(*,*) 'Error: cmplx_laguerre2newton: degree<0'
return
endif
if(poly(degree+1)==zero) then
if(degree==0) return
call cmplx_laguerre2newton(poly, degree-1, root, iter, success, starting_mode)
return
endif
if(degree<=1)then
if(degree==0) then ! we know from previous check than poly(1) not equal zero
success=.false.
write(*,*) 'Warning: cmplx_laguerre2newton: degree=0 and poly(1)/=0, no roots'
return
else
root=-poly(1)/poly(2)
return
endif
endif
endif
! end EXTREME failsafe
j=1
good_to_go=.false.
mode=starting_mode ! mode=2 full laguerre, mode=1 SG, mode=0 newton
do ! infinite loop, just to be able to come back from newton, if more than 10 iteration there
!------------------------------------------------------------- mode 2
if(mode>=2) then ! LAGUERRE'S METHOD
one_nth=1d0/degree
n_1_nth=(degree-1d0)*one_nth
two_n_div_n_1=2d0/n_1_nth
c_one_nth=cmplx(one_nth,0d0,RK)
do i=1,MAX_ITERS !
faq=1d0
! prepare stoping criterion
ek=abs(poly(degree+1))
absroot=abs(root)
! calculate value of polynomial and its first two derivatives
p =poly(degree+1)
dp =zero
d2p_half=zero
do k=degree,1,-1 ! Horner Scheme, see for eg. Numerical Recipes Sec. 5.3 how to evaluate polynomials and derivatives
d2p_half=dp + d2p_half*root
dp =p + dp*root
p =poly(k)+p*root ! b_k
! Adams, Duane A., 1967, "A stopping criterion for polynomial root finding",
! Communications of the ACM, Volume 10 Issue 10, Oct. 1967, p. 655
! ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/67/55/CS-TR-67-55.pdf
! Eq 8.
ek=absroot*ek+abs(p)
enddo
abs2p=conjg(p)*p !abs(p)
iter=iter+1
if(abs2p==0d0) return
stopping_crit2=(FRAC_ERR*ek)**2
if(abs2p<stopping_crit2) then ! (simplified a little Eq. 10 of Adams 1967)
! do additional iteration if we are less than 10x from stopping criterion
if(abs2p<0.01d0*stopping_crit2) then ! ten times better than stopping criterion
return ! return immediately, because we are at very good place
else
good_to_go=.true. ! do one iteration more
endif
else
good_to_go=.false. ! reset if we are outside the zone of the root
endif
fac_netwon=p/dp
fac_extra=d2p_half/dp
F_half=fac_netwon*fac_extra
abs2_F_half=conjg(F_half)*F_half
if(abs2_F_half<=0.0625d0)then ! F<0.50, F/2<0.25
! go to SG method
if(abs2_F_half<=0.000625d0)then ! F<0.05, F/2<0.025
mode=0 ! go to Newton's
else
mode=1 ! go to SG
endif
endif
denom_sqrt=sqrt(c_one-two_n_div_n_1*F_half)
! NEXT LINE PROBABLY CAN BE COMMENTED OUT
if(real(denom_sqrt)>=0d0)then
! real part of a square root is positive for probably all compilers. You can
! test this on your compiler and if so, you can omit this check
denom=c_one_nth+n_1_nth*denom_sqrt
else
denom=c_one_nth-n_1_nth*denom_sqrt
endif
if(denom==zero)then !test if demoninators are > 0.0 not to divide by zero
dx=(abs(root)+1d0)*exp(cmplx(0d0,FRAC_JUMPS(mod(i,FRAC_JUMP_LEN)+1)*2*pi,RK)) ! make some random jump
else
dx=fac_netwon/denom
endif
newroot=root-dx
if(newroot==root) return ! nothing changes -> return
if(good_to_go)then ! this was jump already after stopping criterion was met
root=newroot
return
endif
if(mode/=2) then
root=newroot
j=i+1 ! remember iteration index
exit ! go to Newton's or SG
endif
if(mod(i,FRAC_JUMP_EVERY)==0) then ! decide whether to do a jump of modified length (to break cycles)
faq=FRAC_JUMPS(mod(i/FRAC_JUMP_EVERY-1,FRAC_JUMP_LEN)+1)
newroot=root-faq*dx ! do jump of some semi-random length (0<faq<1)
endif
root=newroot
enddo ! do mode 2
if(i>=MAX_ITERS) then
success=.false.
return
endif
endif ! if mode 2
!------------------------------------------------------------- mode 1
if(mode==1) then ! SECOND-ORDER GENERAL METHOD (SG)
do i=j,MAX_ITERS !
faq=1d0
! calculate value of polynomial and its first two derivatives
p =poly(degree+1)
dp =zero
d2p_half=zero
if(mod(i-j,10)==0)then
! prepare stoping criterion
ek=abs(poly(degree+1))
absroot=abs(root)
do k=degree,1,-1 ! Horner Scheme, see for eg. Numerical Recipes Sec. 5.3 how to evaluate polynomials and derivatives
d2p_half=dp + d2p_half*root
dp =p + dp*root
p =poly(k)+p*root ! b_k
! Adams, Duane A., 1967, "A stopping criterion for polynomial root finding",
! Communications of the ACM, Volume 10 Issue 10, Oct. 1967, p. 655
! ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/67/55/CS-TR-67-55.pdf
! Eq 8.
ek=absroot*ek+abs(p)
enddo
stopping_crit2=(FRAC_ERR*ek)**2
else
do k=degree,1,-1 ! Horner Scheme, see for eg. Numerical Recipes Sec. 5.3 how to evaluate polynomials and derivatives
d2p_half=dp + d2p_half*root
dp =p + dp*root
p =poly(k)+p*root ! b_k
enddo
endif
abs2p=conjg(p)*p !abs(p)**2
iter=iter+1
if(abs2p==0d0) return
if(abs2p<stopping_crit2) then ! (simplified a little Eq. 10 of Adams 1967)
if(dp==zero) return
! do additional iteration if we are less than 10x from stopping criterion
if(abs2p<0.01d0*stopping_crit2) then ! ten times better than stopping criterion
return ! return immediately, because we are at very good place
else
good_to_go=.true. ! do one iteration more
endif
else
good_to_go=.false. ! reset if we are outside the zone of the root
endif
if(dp==zero)then !test if demoninators are > 0.0 not to divide by zero
dx=(abs(root)+1d0)*exp(cmplx(0d0,FRAC_JUMPS(mod(i,FRAC_JUMP_LEN)+1)*2*pi,RK)) ! make some random jump
else
fac_netwon=p/dp
fac_extra=d2p_half/dp
F_half=fac_netwon*fac_extra
abs2_F_half=conjg(F_half)*F_half
if(abs2_F_half<=0.000625d0)then ! F<0.05, F/2<0.025
mode=0 ! set Newton's, go there after jump
endif
dx=fac_netwon*(c_one+F_half) ! SG
endif
newroot=root-dx
if(newroot==root) return ! nothing changes -> return
if(good_to_go)then ! this was jump already after stopping criterion was met
root=newroot
return
endif
if(mode/=1) then
root=newroot
j=i+1 ! remember iteration number
exit ! go to Newton's
endif
if(mod(i,FRAC_JUMP_EVERY)==0) then ! decide whether to do a jump of modified length (to break cycles)
faq=FRAC_JUMPS(mod(i/FRAC_JUMP_EVERY-1,FRAC_JUMP_LEN)+1)
newroot=root-faq*dx ! do jump of some semi-random length (0<faq<1)
endif
root=newroot
enddo ! do mode 1
if(i>=MAX_ITERS) then
success=.false.
return
endif
endif ! if mode 1
!------------------------------------------------------------- mode 0
if(mode==0) then ! NEWTON'S METHOD
do i=j,j+10 ! do only 10 iterations the most, then go back to full Laguerre's
faq=1d0
! calculate value of polynomial and its first two derivatives
p =poly(degree+1)
dp =zero
if(i==j)then ! calculate stopping crit only once at the begining
! prepare stoping criterion
ek=abs(poly(degree+1))
absroot=abs(root)
do k=degree,1,-1 ! Horner Scheme, see for eg. Numerical Recipes Sec. 5.3 how to evaluate polynomials and derivatives
dp =p + dp*root
p =poly(k)+p*root ! b_k
! Adams, Duane A., 1967, "A stopping criterion for polynomial root finding",
! Communications of the ACM, Volume 10 Issue 10, Oct. 1967, p. 655
! ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/67/55/CS-TR-67-55.pdf
! Eq 8.
ek=absroot*ek+abs(p)
enddo
stopping_crit2=(FRAC_ERR*ek)**2
else !
do k=degree,1,-1 ! Horner Scheme, see for eg. Numerical Recipes Sec. 5.3 how to evaluate polynomials and derivatives
dp =p + dp*root
p =poly(k)+p*root ! b_k
enddo
endif
abs2p=conjg(p)*p !abs(p)**2
iter=iter+1
if(abs2p==0d0) return
if(abs2p<stopping_crit2) then ! (simplified a little Eq. 10 of Adams 1967)
if(dp==zero) return
! do additional iteration if we are less than 10x from stopping criterion
if(abs2p<0.01d0*stopping_crit2) then ! ten times better than stopping criterion
return ! return immediately, because we are at very good place
else
good_to_go=.true. ! do one iteration more
endif
else
good_to_go=.false. ! reset if we are outside the zone of the root
endif
if(dp==zero)then ! test if demoninators are > 0.0 not to divide by zero
dx=(abs(root)+1d0)*exp(cmplx(0d0,FRAC_JUMPS(mod(i,FRAC_JUMP_LEN)+1)*2*pi,RK)) ! make some random jump
else
dx=p/dp
endif
newroot=root-dx
if(newroot==root) return ! nothing changes -> return
if(good_to_go)then
root=newroot
return
endif
! this loop is done only 10 times. So skip this check
!if(mod(i,FRAC_JUMP_EVERY)==0) then ! decide whether to do a jump of modified length (to break cycles)
! faq=FRAC_JUMPS(mod(i/FRAC_JUMP_EVERY-1,FRAC_JUMP_LEN)+1)
! newroot=root-faq*dx ! do jump of some semi-random length (0<faq<1)
!endif
root=newroot
enddo ! do mode 0 10 times
if(iter>=MAX_ITERS) then
! too many iterations here
success=.false.
return
endif
mode=2 ! go back to Laguerre's. This happens when we were unable to converge in 10 iterations with Newton's
endif ! if mode 0
enddo ! end of infinite loop
!-------------------------------------------------------------
success=.false.
end
!-------------------------------------------------------------------!
! _9_ SOLVE_QUADRATIC_EQ !
!-------------------------------------------------------------------!
subroutine solve_quadratic_eq(x0,x1,poly)
! Quadratic equation solver for complex polynomial (degree=2)
implicit none
complex(kind=8), intent(out) :: x0, x1
complex(kind=8), dimension(*), intent(in) :: poly ! coeffs of the polynomial
! poly - is an array of polynomial cooefs, length = degree+1, poly(1) is constant
! 1 2 3
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2
complex(kind=8) :: a, b, c, b2, delta
complex(kind=8) :: val, x
integer :: i
a=poly(3)
b=poly(2)
c=poly(1)
! quadratic equation: a z^2 + b z + c = 0
b2=b*b
delta=sqrt(b2-4d0*(a*c))
if( real(conjg(b)*delta)>=0d0 )then ! scallar product to decide the sign yielding bigger magnitude
x0=-0.5d0*(b+delta)
else
x0=-0.5d0*(b-delta)
endif
if(x0==cmplx(0d0,0d0,8))then
x1=cmplx(0d0,0d0,8)
else ! Viete's formula
x1=c/x0
x0=x0/a
endif
if(.false.)then ! print the results
x=x0
val=poly(3)
do i=2,1,-1
val=val*x+poly(i)
enddo
write(*,'(2f19.15,a3,2f19.15)') x,' ->',val
x=x1
val=poly(3)
do i=2,1,-1
val=val*x+poly(i)
enddo
write(*,'(2f19.15,a3,2f19.15)') x,' ->',val
endif
end
!-------------------------------------------------------------------!
! _10_ SOLVE_CUBIC_EQ !
!-------------------------------------------------------------------!
subroutine solve_cubic_eq(x0,x1,x2,poly)
! Cubic equation solver for complex polynomial (degree=3)
! http://en.wikipedia.org/wiki/Cubic_function Lagrange's method
implicit none
complex(kind=8), intent(out) :: x0, x1, x2
complex(kind=8), dimension(*), intent(in) :: poly ! coeffs of the polynomial
! poly - is an array of polynomial cooefs, length = degree+1, poly(1) is constant
! 1 2 3 4
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + poly(4) x^3
complex(kind=8), parameter :: zeta =cmplx(-0.5d0, 0.8660254037844386d0, 8) ! sqrt3(1)
complex(kind=8), parameter :: zeta2=cmplx(-0.5d0,-0.8660254037844386d0, 8) ! sqrt3(1)**2
real(kind=8), parameter :: third=0.3333333333333333d0 ! 1/3
complex(kind=8) :: s0, s1, s2
complex(kind=8) :: E1 ! x0+x1+x2
complex(kind=8) :: E2 ! x0x1+x1x2+x2x0
complex(kind=8) :: E3 ! x0x1x2
complex(kind=8) :: A, B, a_1, E12
complex(kind=8) :: delta, A2
complex(kind=8) :: val, x
integer :: i
a_1=poly(4)**(-1)
E1=-poly(3)*a_1
E2=poly(2)*a_1
E3=-poly(1)*a_1
s0=E1
E12=E1*E1
A=2d0*E1*E12-9d0*E1*E2+27d0*E3 ! = s1^3 + s2^3
B=E12-3d0*E2 ! = s1 s2
! quadratic equation: z^2-Az+B^3=0 where roots are equal to s1^3 and s2^3
A2=A*A
delta=sqrt(A2-4d0*(B*B*B))
if( real(conjg(A)*delta)>=0d0 )then ! scallar product to decide the sign yielding bigger magnitude
s1=(0.5d0*(A+delta))**third
else
s1=(0.5d0*(A-delta))**third
endif
if(s1==cmplx(0d0,0d0,8))then
s2=cmplx(0d0,0d0,8)
else
s2=B/s1
endif
x0=third*(s0+s1+s2)
x1=third*(s0+s1*zeta2+s2*zeta )
x2=third*(s0+s1*zeta +s2*zeta2)
if(.false.)then ! print the results
x=x0
val=poly(4)
do i=3,1,-1
val=val*x+poly(i)
enddo
write(*,'(2f19.15,a3,2f19.15)') x,' ->',val
x=x1
val=poly(4)
do i=3,1,-1
val=val*x+poly(i)
enddo
write(*,'(2f19.15,a3,2f19.15)') x,' ->',val
x=x2
val=poly(4)
do i=3,1,-1
val=val*x+poly(i)
enddo
write(*,'(2f19.15,a3,2f19.15)') x,' ->',val
endif
end
!-------------------------------------------------------------------!
! _11_ DIVIDE_POLY_1 !
!-------------------------------------------------------------------!
subroutine divide_poly_1(polyout, remainder, p, polyin, degree)
! Subroutine will divide polynomial 'polyin' by (x-p)
! results will be returned in polynomial 'polyout' of degree-1
! The remainder of the division will be returned in 'remainder'
!
! You can provide same array as 'polyin' and 'polyout' - this
! routine will work fine, though it will not set to zero the
! unused, highest coefficient in the output array. You just have
! remember the proper degree of a polynomial.
implicit none
integer, intent(in) :: degree
complex(kind=8), dimension(degree), intent(out) :: polyout
complex(kind=8), intent(out) :: remainder
complex(kind=8), intent(in) :: p
complex(kind=8), dimension(degree+1), intent(in) :: polyin ! coeffs of the polynomial
! poly - is an array of polynomial cooefs, length = degree+1, poly(1) is constant
! 1 2 3
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + ...
integer :: i
complex(kind=8) :: coef, prev
coef=polyin(degree+1)
polyout=polyin(1:degree)
do i=degree,1,-1
prev=polyout(i)
polyout(i)=coef
coef=prev+p*coef
enddo
remainder=coef
return
end
!-------------------------------------------------------------------!
! _12_ EVAL_POLY !
!-------------------------------------------------------------------!
complex(kind=8) function eval_poly(x, poly, degree, errk)
! Evaluation of the complex polynomial 'poly' of a given degree
! at the point 'x'. This routine calculates also the simplified
! Adams' (1967) stopping criterion. ('errk' should be multiplied
! by 2d-15 for double precisioni,real*8, arithmetic)
implicit none
complex(kind=8), intent(in) :: x
integer, intent(in) :: degree
real(kind=8), intent(out) :: errk !
complex(kind=8), dimension(degree+1), intent(in) :: poly ! coeffs of the polynomial
! poly - is an array of polynomial cooefs, length = degree+1, poly(1) is constant
! 1 2 3
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + ...
integer :: i
complex(kind=8) :: val
real(kind=8) :: absx
! prepare stoping criterion
errk=abs(poly(degree+1))
val=poly(degree+1)
absx=abs(x)
do i=degree,1,-1 ! Horner Scheme, see for eg. Numerical Recipes Sec. 5.3 how to evaluate polynomials and derivatives
val=val*x+poly(i)
! Adams, Duane A., 1967, "A stopping criterion for polynomial root finding",
! Communications of the ACM, Volume 10 Issue 10, Oct. 1967, p. 655
! ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/67/55/CS-TR-67-55.pdf
! Eq 8.
errk=errk*absx+abs(val)
enddo
eval_poly=val
! if(abs(val)<2d-15*errk) return ! (simplified a little Eq. 10 of Adams 1967)
return
end
!-------------------------------------------------------------------!
! _13_ MULTIPLY_POLY_1 !
!-------------------------------------------------------------------!
subroutine multiply_poly_1(polyout, p, polyin, degree)
! Subroutine will multiply polynomial 'polyin' by (x-p)
! results will be returned in polynomial 'polyout' of degree+1
!
! You can provide same array as 'polyin' and 'polyout' - this
! routine will work fine.
implicit none
integer, intent(in) :: degree ! OLD degree, new will be +1
complex(kind=8), dimension(degree+2), intent(out) :: polyout
complex(kind=8), intent(in) :: p
complex(kind=8), dimension(degree+1), intent(in) :: polyin ! coeffs of the polynomial
! poly - is an array of polynomial cooefs, length = degree+1, poly(1) is constant
! 1 2 3
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + ...
integer :: i
polyout(1:degree+1)=polyin(1:degree+1) ! copy
polyout(degree+2)=polyout(degree+1)
do i=degree+1,2,-1
polyout(i)=polyout(i-1)-polyout(i)*p
enddo
polyout(1)=-polyout(1)*p
return
end
!-------------------------------------------------------------------!
! _14_ CREATE_POLY_FROM_ROOTS !
!-------------------------------------------------------------------!
subroutine create_poly_from_roots(poly, degree, a, roots)
! Routine will build polynomial from a set of points given in
! the array 'roots'. These points will be zeros of the resulting
! polynomial.
!
! poly - is an array of polynomial cooefs, length = degree+1, poly(1) is constant
! 1 2 3
! poly(1) x^0 + poly(2) x^1 + poly(3) x^2 + ...
! degree - is and integer denoting size of the 'roots' array
! a - gives the leading coefficient of the resutling polynomial
! roots - input array of points, size=degree
!
! This subroutine works, but it is not optimal - it will work
! up to a polynomial of degree~50, if you would like to have
! more robust routine, up to a degree ~ 2000, you should
! split your factors into a binary tree, and then multiply
! leafs level by level from down up with subroutine like:
! multiply_poly for arbitraty polynomial multiplications
! not multiply_poly_1.
!
implicit none
integer, intent(in) :: degree
complex(kind=8), dimension(degree+1), intent(out) :: poly
complex(kind=8), intent(in) :: a
complex(kind=8), dimension(degree), intent(in) :: roots
!
integer :: i
!
poly=cmplx(0d0,0d0,8)
poly(1)=a ! leading coeff of the polynomial
do i=1,degree
call multiply_poly_1(poly, roots(i), poly, i-1)
enddo
end
!-------------------------------------------------------------------!
| apache-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/LIN/ddrvgbx.f | 32 | 40550 | *> \brief \b DDRVGBX
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
* AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
* RWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER LA, LAFB, NN, NOUT, NRHS
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NVAL( * )
* DOUBLE PRECISION A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
* $ RWORK( * ), S( * ), WORK( * ), X( * ),
* $ XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DDRVGB tests the driver routines DGBSV, -SVX, and -SVXX.
*>
*> Note that this file is used only when the XBLAS are available,
*> otherwise ddrvgb.f defines this subroutine.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand side vectors to be generated for
*> each linear system.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LA)
*> \endverbatim
*>
*> \param[in] LA
*> \verbatim
*> LA is INTEGER
*> The length of the array A. LA >= (2*NMAX-1)*NMAX
*> where NMAX is the largest entry in NVAL.
*> \endverbatim
*>
*> \param[out] AFB
*> \verbatim
*> AFB is DOUBLE PRECISION array, dimension (LAFB)
*> \endverbatim
*>
*> \param[in] LAFB
*> \verbatim
*> LAFB is INTEGER
*> The length of the array AFB. LAFB >= (3*NMAX-2)*NMAX
*> where NMAX is the largest entry in NVAL.
*> \endverbatim
*>
*> \param[out] ASAV
*> \verbatim
*> ASAV is DOUBLE PRECISION array, dimension (LA)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] BSAV
*> \verbatim
*> BSAV is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (2*NMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension
*> (NMAX*max(3,NRHS,NMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension
*> (max(NMAX,2*NRHS))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (2*NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
$ AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
$ RWORK, IWORK, NOUT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER LA, LAFB, NN, NOUT, NRHS
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NVAL( * )
DOUBLE PRECISION A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
$ RWORK( * ), S( * ), WORK( * ), X( * ),
$ XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 8 )
INTEGER NTESTS
PARAMETER ( NTESTS = 7 )
INTEGER NTRAN
PARAMETER ( NTRAN = 3 )
* ..
* .. Local Scalars ..
LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
CHARACTER*3 PATH
INTEGER I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN,
$ INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU,
$ LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS,
$ NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT,
$ N_ERR_BNDS
DOUBLE PRECISION AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV,
$ CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO,
$ ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW,
$ RPVGRW_SVXX
* ..
* .. Local Arrays ..
CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS ), BERR( NRHS ),
$ ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DGET06, DLAMCH, DLANGB, DLANGE, DLANTB,
$ DLA_GBRPVGRW
EXTERNAL LSAME, DGET06, DLAMCH, DLANGB, DLANGE, DLANTB,
$ DLA_GBRPVGRW
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, DERRVX, DGBEQU, DGBSV,
$ DGBSVX, DGBT01, DGBT02, DGBT05, DGBTRF, DGBTRS,
$ DGET04, DLACPY, DLAQGB, DLARHS, DLASET, DLATB4,
$ DLATMS, XLAENV, DGBSVXX, DGBEQUB
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA TRANSS / 'N', 'T', 'C' /
DATA FACTS / 'F', 'N', 'E' /
DATA EQUEDS / 'N', 'R', 'C', 'B' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'GB'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL DERRVX( PATH, NOUT )
INFOT = 0
*
* Set the block size and minimum block size for testing.
*
NB = 1
NBMIN = 2
CALL XLAENV( 1, NB )
CALL XLAENV( 2, NBMIN )
*
* Do for each value of N in NVAL
*
DO 150 IN = 1, NN
N = NVAL( IN )
LDB = MAX( N, 1 )
XTYPE = 'N'
*
* Set limits on the number of loop iterations.
*
NKL = MAX( 1, MIN( N, 4 ) )
IF( N.EQ.0 )
$ NKL = 1
NKU = NKL
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
DO 140 IKL = 1, NKL
*
* Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes
* it easier to skip redundant values for small values of N.
*
IF( IKL.EQ.1 ) THEN
KL = 0
ELSE IF( IKL.EQ.2 ) THEN
KL = MAX( N-1, 0 )
ELSE IF( IKL.EQ.3 ) THEN
KL = ( 3*N-1 ) / 4
ELSE IF( IKL.EQ.4 ) THEN
KL = ( N+1 ) / 4
END IF
DO 130 IKU = 1, NKU
*
* Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order
* makes it easier to skip redundant values for small
* values of N.
*
IF( IKU.EQ.1 ) THEN
KU = 0
ELSE IF( IKU.EQ.2 ) THEN
KU = MAX( N-1, 0 )
ELSE IF( IKU.EQ.3 ) THEN
KU = ( 3*N-1 ) / 4
ELSE IF( IKU.EQ.4 ) THEN
KU = ( N+1 ) / 4
END IF
*
* Check that A and AFB are big enough to generate this
* matrix.
*
LDA = KL + KU + 1
LDAFB = 2*KL + KU + 1
IF( LDA*N.GT.LA .OR. LDAFB*N.GT.LAFB ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( LDA*N.GT.LA ) THEN
WRITE( NOUT, FMT = 9999 )LA, N, KL, KU,
$ N*( KL+KU+1 )
NERRS = NERRS + 1
END IF
IF( LDAFB*N.GT.LAFB ) THEN
WRITE( NOUT, FMT = 9998 )LAFB, N, KL, KU,
$ N*( 2*KL+KU+1 )
NERRS = NERRS + 1
END IF
GO TO 130
END IF
*
DO 120 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 120
*
* Skip types 2, 3, or 4 if the matrix is too small.
*
ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
IF( ZEROT .AND. N.LT.IMAT-1 )
$ GO TO 120
*
* Set up parameters with DLATB4 and generate a
* test matrix with DLATMS.
*
CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
$ MODE, CNDNUM, DIST )
RCONDC = ONE / CNDNUM
*
SRNAMT = 'DLATMS'
CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK,
$ INFO )
*
* Check the error code from DLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N,
$ KL, KU, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 120
END IF
*
* For types 2, 3, and 4, zero one or more columns of
* the matrix to test that INFO is returned correctly.
*
IZERO = 0
IF( ZEROT ) THEN
IF( IMAT.EQ.2 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.3 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
IOFF = ( IZERO-1 )*LDA
IF( IMAT.LT.4 ) THEN
I1 = MAX( 1, KU+2-IZERO )
I2 = MIN( KL+KU+1, KU+1+( N-IZERO ) )
DO 20 I = I1, I2
A( IOFF+I ) = ZERO
20 CONTINUE
ELSE
DO 40 J = IZERO, N
DO 30 I = MAX( 1, KU+2-J ),
$ MIN( KL+KU+1, KU+1+( N-J ) )
A( IOFF+I ) = ZERO
30 CONTINUE
IOFF = IOFF + LDA
40 CONTINUE
END IF
END IF
*
* Save a copy of the matrix A in ASAV.
*
CALL DLACPY( 'Full', KL+KU+1, N, A, LDA, ASAV, LDA )
*
DO 110 IEQUED = 1, 4
EQUED = EQUEDS( IEQUED )
IF( IEQUED.EQ.1 ) THEN
NFACT = 3
ELSE
NFACT = 1
END IF
*
DO 100 IFACT = 1, NFACT
FACT = FACTS( IFACT )
PREFAC = LSAME( FACT, 'F' )
NOFACT = LSAME( FACT, 'N' )
EQUIL = LSAME( FACT, 'E' )
*
IF( ZEROT ) THEN
IF( PREFAC )
$ GO TO 100
RCONDO = ZERO
RCONDI = ZERO
*
ELSE IF( .NOT.NOFACT ) THEN
*
* Compute the condition number for comparison
* with the value returned by DGESVX (FACT =
* 'N' reuses the condition number from the
* previous iteration with FACT = 'F').
*
CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
$ AFB( KL+1 ), LDAFB )
IF( EQUIL .OR. IEQUED.GT.1 ) THEN
*
* Compute row and column scale factors to
* equilibrate the matrix A.
*
CALL DGBEQU( N, N, KL, KU, AFB( KL+1 ),
$ LDAFB, S, S( N+1 ), ROWCND,
$ COLCND, AMAX, INFO )
IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
IF( LSAME( EQUED, 'R' ) ) THEN
ROWCND = ZERO
COLCND = ONE
ELSE IF( LSAME( EQUED, 'C' ) ) THEN
ROWCND = ONE
COLCND = ZERO
ELSE IF( LSAME( EQUED, 'B' ) ) THEN
ROWCND = ZERO
COLCND = ZERO
END IF
*
* Equilibrate the matrix.
*
CALL DLAQGB( N, N, KL, KU, AFB( KL+1 ),
$ LDAFB, S, S( N+1 ),
$ ROWCND, COLCND, AMAX,
$ EQUED )
END IF
END IF
*
* Save the condition number of the
* non-equilibrated system for use in DGET04.
*
IF( EQUIL ) THEN
ROLDO = RCONDO
ROLDI = RCONDI
END IF
*
* Compute the 1-norm and infinity-norm of A.
*
ANORMO = DLANGB( '1', N, KL, KU, AFB( KL+1 ),
$ LDAFB, RWORK )
ANORMI = DLANGB( 'I', N, KL, KU, AFB( KL+1 ),
$ LDAFB, RWORK )
*
* Factor the matrix A.
*
CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IWORK,
$ INFO )
*
* Form the inverse of A.
*
CALL DLASET( 'Full', N, N, ZERO, ONE, WORK,
$ LDB )
SRNAMT = 'DGBTRS'
CALL DGBTRS( 'No transpose', N, KL, KU, N,
$ AFB, LDAFB, IWORK, WORK, LDB,
$ INFO )
*
* Compute the 1-norm condition number of A.
*
AINVNM = DLANGE( '1', N, N, WORK, LDB,
$ RWORK )
IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDO = ONE
ELSE
RCONDO = ( ONE / ANORMO ) / AINVNM
END IF
*
* Compute the infinity-norm condition number
* of A.
*
AINVNM = DLANGE( 'I', N, N, WORK, LDB,
$ RWORK )
IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDI = ONE
ELSE
RCONDI = ( ONE / ANORMI ) / AINVNM
END IF
END IF
*
DO 90 ITRAN = 1, NTRAN
*
* Do for each value of TRANS.
*
TRANS = TRANSS( ITRAN )
IF( ITRAN.EQ.1 ) THEN
RCONDC = RCONDO
ELSE
RCONDC = RCONDI
END IF
*
* Restore the matrix A.
*
CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
$ A, LDA )
*
* Form an exact solution and set the right hand
* side.
*
SRNAMT = 'DLARHS'
CALL DLARHS( PATH, XTYPE, 'Full', TRANS, N,
$ N, KL, KU, NRHS, A, LDA, XACT,
$ LDB, B, LDB, ISEED, INFO )
XTYPE = 'C'
CALL DLACPY( 'Full', N, NRHS, B, LDB, BSAV,
$ LDB )
*
IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
*
* --- Test DGBSV ---
*
* Compute the LU factorization of the matrix
* and solve the system.
*
CALL DLACPY( 'Full', KL+KU+1, N, A, LDA,
$ AFB( KL+1 ), LDAFB )
CALL DLACPY( 'Full', N, NRHS, B, LDB, X,
$ LDB )
*
SRNAMT = 'DGBSV '
CALL DGBSV( N, KL, KU, NRHS, AFB, LDAFB,
$ IWORK, X, LDB, INFO )
*
* Check error code from DGBSV .
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'DGBSV ', INFO,
$ IZERO, ' ', N, N, KL, KU,
$ NRHS, IMAT, NFAIL, NERRS,
$ NOUT )
*
* Reconstruct matrix from factors and
* compute residual.
*
CALL DGBT01( N, N, KL, KU, A, LDA, AFB,
$ LDAFB, IWORK, WORK,
$ RESULT( 1 ) )
NT = 1
IF( IZERO.EQ.0 ) THEN
*
* Compute residual of the computed
* solution.
*
CALL DLACPY( 'Full', N, NRHS, B, LDB,
$ WORK, LDB )
CALL DGBT02( 'No transpose', N, N, KL,
$ KU, NRHS, A, LDA, X, LDB,
$ WORK, LDB, RESULT( 2 ) )
*
* Check solution from generated exact
* solution.
*
CALL DGET04( N, NRHS, X, LDB, XACT,
$ LDB, RCONDC, RESULT( 3 ) )
NT = 3
END IF
*
* Print information about the tests that did
* not pass the threshold.
*
DO 50 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 )'DGBSV ',
$ N, KL, KU, IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
50 CONTINUE
NRUN = NRUN + NT
END IF
*
* --- Test DGBSVX ---
*
IF( .NOT.PREFAC )
$ CALL DLASET( 'Full', 2*KL+KU+1, N, ZERO,
$ ZERO, AFB, LDAFB )
CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X,
$ LDB )
IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
*
* Equilibrate the matrix if FACT = 'F' and
* EQUED = 'R', 'C', or 'B'.
*
CALL DLAQGB( N, N, KL, KU, A, LDA, S,
$ S( N+1 ), ROWCND, COLCND,
$ AMAX, EQUED )
END IF
*
* Solve the system and compute the condition
* number and error bounds using DGBSVX.
*
SRNAMT = 'DGBSVX'
CALL DGBSVX( FACT, TRANS, N, KL, KU, NRHS, A,
$ LDA, AFB, LDAFB, IWORK, EQUED,
$ S, S( N+1 ), B, LDB, X, LDB,
$ RCOND, RWORK, RWORK( NRHS+1 ),
$ WORK, IWORK( N+1 ), INFO )
*
* Check the error code from DGBSVX.
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'DGBSVX', INFO, IZERO,
$ FACT // TRANS, N, N, KL, KU,
$ NRHS, IMAT, NFAIL, NERRS,
$ NOUT )
*
* Compare WORK(1) from DGBSVX with the computed
* reciprocal pivot growth factor RPVGRW
*
IF( INFO.NE.0 ) THEN
ANRMPV = ZERO
DO 70 J = 1, INFO
DO 60 I = MAX( KU+2-J, 1 ),
$ MIN( N+KU+1-J, KL+KU+1 )
ANRMPV = MAX( ANRMPV,
$ ABS( A( I+( J-1 )*LDA ) ) )
60 CONTINUE
70 CONTINUE
RPVGRW = DLANTB( 'M', 'U', 'N', INFO,
$ MIN( INFO-1, KL+KU ),
$ AFB( MAX( 1, KL+KU+2-INFO ) ),
$ LDAFB, WORK )
IF( RPVGRW.EQ.ZERO ) THEN
RPVGRW = ONE
ELSE
RPVGRW = ANRMPV / RPVGRW
END IF
ELSE
RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU,
$ AFB, LDAFB, WORK )
IF( RPVGRW.EQ.ZERO ) THEN
RPVGRW = ONE
ELSE
RPVGRW = DLANGB( 'M', N, KL, KU, A,
$ LDA, WORK ) / RPVGRW
END IF
END IF
RESULT( 7 ) = ABS( RPVGRW-WORK( 1 ) ) /
$ MAX( WORK( 1 ), RPVGRW ) /
$ DLAMCH( 'E' )
*
IF( .NOT.PREFAC ) THEN
*
* Reconstruct matrix from factors and
* compute residual.
*
CALL DGBT01( N, N, KL, KU, A, LDA, AFB,
$ LDAFB, IWORK, WORK,
$ RESULT( 1 ) )
K1 = 1
ELSE
K1 = 2
END IF
*
IF( INFO.EQ.0 ) THEN
TRFCON = .FALSE.
*
* Compute residual of the computed solution.
*
CALL DLACPY( 'Full', N, NRHS, BSAV, LDB,
$ WORK, LDB )
CALL DGBT02( TRANS, N, N, KL, KU, NRHS,
$ ASAV, LDA, X, LDB, WORK, LDB,
$ RESULT( 2 ) )
*
* Check solution from generated exact
* solution.
*
IF( NOFACT .OR. ( PREFAC .AND.
$ LSAME( EQUED, 'N' ) ) ) THEN
CALL DGET04( N, NRHS, X, LDB, XACT,
$ LDB, RCONDC, RESULT( 3 ) )
ELSE
IF( ITRAN.EQ.1 ) THEN
ROLDC = ROLDO
ELSE
ROLDC = ROLDI
END IF
CALL DGET04( N, NRHS, X, LDB, XACT,
$ LDB, ROLDC, RESULT( 3 ) )
END IF
*
* Check the error bounds from iterative
* refinement.
*
CALL DGBT05( TRANS, N, KL, KU, NRHS, ASAV,
$ LDA, B, LDB, X, LDB, XACT,
$ LDB, RWORK, RWORK( NRHS+1 ),
$ RESULT( 4 ) )
ELSE
TRFCON = .TRUE.
END IF
*
* Compare RCOND from DGBSVX with the computed
* value in RCONDC.
*
RESULT( 6 ) = DGET06( RCOND, RCONDC )
*
* Print information about the tests that did
* not pass the threshold.
*
IF( .NOT.TRFCON ) THEN
DO 80 K = K1, NTESTS
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )
$ 'DGBSVX', FACT, TRANS, N, KL,
$ KU, EQUED, IMAT, K,
$ RESULT( K )
ELSE
WRITE( NOUT, FMT = 9996 )
$ 'DGBSVX', FACT, TRANS, N, KL,
$ KU, IMAT, K, RESULT( K )
END IF
NFAIL = NFAIL + 1
END IF
80 CONTINUE
NRUN = NRUN + 7 - K1
ELSE
IF( RESULT( 1 ).GE.THRESH .AND. .NOT.
$ PREFAC ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'DGBSVX',
$ FACT, TRANS, N, KL, KU, EQUED,
$ IMAT, 1, RESULT( 1 )
ELSE
WRITE( NOUT, FMT = 9996 )'DGBSVX',
$ FACT, TRANS, N, KL, KU, IMAT, 1,
$ RESULT( 1 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 6 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'DGBSVX',
$ FACT, TRANS, N, KL, KU, EQUED,
$ IMAT, 6, RESULT( 6 )
ELSE
WRITE( NOUT, FMT = 9996 )'DGBSVX',
$ FACT, TRANS, N, KL, KU, IMAT, 6,
$ RESULT( 6 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 7 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'DGBSVX',
$ FACT, TRANS, N, KL, KU, EQUED,
$ IMAT, 7, RESULT( 7 )
ELSE
WRITE( NOUT, FMT = 9996 )'DGBSVX',
$ FACT, TRANS, N, KL, KU, IMAT, 7,
$ RESULT( 7 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
*
END IF
*
* --- Test DGBSVXX ---
*
* Restore the matrices A and B.
*
CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA, A,
$ LDA )
CALL DLACPY( 'Full', N, NRHS, BSAV, LDB, B, LDB )
IF( .NOT.PREFAC )
$ CALL DLASET( 'Full', 2*KL+KU+1, N, ZERO, ZERO,
$ AFB, LDAFB )
CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDB )
IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
*
* Equilibrate the matrix if FACT = 'F' and
* EQUED = 'R', 'C', or 'B'.
*
CALL DLAQGB( N, N, KL, KU, A, LDA, S, S( N+1 ),
$ ROWCND, COLCND, AMAX, EQUED )
END IF
*
* Solve the system and compute the condition number
* and error bounds using DGBSVXX.
*
SRNAMT = 'DGBSVXX'
N_ERR_BNDS = 3
CALL DGBSVXX( FACT, TRANS, N, KL, KU, NRHS, A, LDA,
$ AFB, LDAFB, IWORK, EQUED, S, S( N+1 ), B, LDB,
$ X, LDB, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS,
$ ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK,
$ IWORK( N+1 ), INFO )
*
* Check the error code from DGBSVXX.
*
IF( INFO.EQ.N+1 ) GOTO 90
IF( INFO.NE.IZERO ) THEN
CALL ALAERH( PATH, 'DGBSVXX', INFO, IZERO,
$ FACT // TRANS, N, N, -1, -1, NRHS,
$ IMAT, NFAIL, NERRS, NOUT )
GOTO 90
END IF
*
* Compare rpvgrw_svxx from DGBSVXX with the computed
* reciprocal pivot growth factor RPVGRW
*
IF ( INFO .GT. 0 .AND. INFO .LT. N+1 ) THEN
RPVGRW = DLA_GBRPVGRW(N, KL, KU, INFO, A, LDA,
$ AFB, LDAFB)
ELSE
RPVGRW = DLA_GBRPVGRW(N, KL, KU, N, A, LDA,
$ AFB, LDAFB)
ENDIF
RESULT( 7 ) = ABS( RPVGRW-rpvgrw_svxx ) /
$ MAX( rpvgrw_svxx, RPVGRW ) /
$ DLAMCH( 'E' )
*
IF( .NOT.PREFAC ) THEN
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL DGBT01( N, N, KL, KU, A, LDA, AFB, LDAFB,
$ IWORK, WORK, RESULT( 1 ) )
K1 = 1
ELSE
K1 = 2
END IF
*
IF( INFO.EQ.0 ) THEN
TRFCON = .FALSE.
*
* Compute residual of the computed solution.
*
CALL DLACPY( 'Full', N, NRHS, BSAV, LDB, WORK,
$ LDB )
CALL DGBT02( TRANS, N, N, KL, KU, NRHS, ASAV,
$ LDA, X, LDB, WORK, LDB,
$ RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
$ 'N' ) ) ) THEN
CALL DGET04( N, NRHS, X, LDB, XACT, LDB,
$ RCONDC, RESULT( 3 ) )
ELSE
IF( ITRAN.EQ.1 ) THEN
ROLDC = ROLDO
ELSE
ROLDC = ROLDI
END IF
CALL DGET04( N, NRHS, X, LDB, XACT, LDB,
$ ROLDC, RESULT( 3 ) )
END IF
ELSE
TRFCON = .TRUE.
END IF
*
* Compare RCOND from DGBSVXX with the computed value
* in RCONDC.
*
RESULT( 6 ) = DGET06( RCOND, RCONDC )
*
* Print information about the tests that did not pass
* the threshold.
*
IF( .NOT.TRFCON ) THEN
DO 45 K = K1, NTESTS
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'DGBSVXX',
$ FACT, TRANS, N, KL, KU, EQUED,
$ IMAT, K, RESULT( K )
ELSE
WRITE( NOUT, FMT = 9996 )'DGBSVXX',
$ FACT, TRANS, N, KL, KU, IMAT, K,
$ RESULT( K )
END IF
NFAIL = NFAIL + 1
END IF
45 CONTINUE
NRUN = NRUN + 7 - K1
ELSE
IF( RESULT( 1 ).GE.THRESH .AND. .NOT.PREFAC )
$ THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'DGBSVXX', FACT,
$ TRANS, N, KL, KU, EQUED, IMAT, 1,
$ RESULT( 1 )
ELSE
WRITE( NOUT, FMT = 9996 )'DGBSVXX', FACT,
$ TRANS, N, KL, KU, IMAT, 1,
$ RESULT( 1 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 6 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'DGBSVXX', FACT,
$ TRANS, N, KL, KU, EQUED, IMAT, 6,
$ RESULT( 6 )
ELSE
WRITE( NOUT, FMT = 9996 )'DGBSVXX', FACT,
$ TRANS, N, KL, KU, IMAT, 6,
$ RESULT( 6 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 7 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'DGBSVXX', FACT,
$ TRANS, N, KL, KU, EQUED, IMAT, 7,
$ RESULT( 7 )
ELSE
WRITE( NOUT, FMT = 9996 )'DGBSVXX', FACT,
$ TRANS, N, KL, KU, IMAT, 7,
$ RESULT( 7 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
*
END IF
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
* Test Error Bounds from DGBSVXX
CALL DEBCHVXX(THRESH, PATH)
9999 FORMAT( ' *** In DDRVGB, LA=', I5, ' is too small for N=', I5,
$ ', KU=', I5, ', KL=', I5, / ' ==> Increase LA to at least ',
$ I5 )
9998 FORMAT( ' *** In DDRVGB, LAFB=', I5, ' is too small for N=', I5,
$ ', KU=', I5, ', KL=', I5, /
$ ' ==> Increase LAFB to at least ', I5 )
9997 FORMAT( 1X, A, ', N=', I5, ', KL=', I5, ', KU=', I5, ', type ',
$ I1, ', test(', I1, ')=', G12.5 )
9996 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
$ I5, ',...), type ', I1, ', test(', I1, ')=', G12.5 )
9995 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
$ I5, ',...), EQUED=''', A1, ''', type ', I1, ', test(', I1,
$ ')=', G12.5 )
*
RETURN
*
* End of DDRVGB
*
END
| gpl-2.0 |
QEF/q-e | PHonon/PH/addusdynmat.f90 | 2 | 7563 | !
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
subroutine addusdynmat (dynwrk)
!-----------------------------------------------------------------------
!! This routine computes the additional terms which are contained in
!! \(\langle\psi\|V''\|\psi\rangle\) part of the dynamical matrix and
!! which are due to the change of the self consistent D term in the
!! pseudopotential.
!! There are four additional terms which we compute here.
!
USE kinds, only : DP
USE ions_base, ONLY : nat, ityp
USE noncollin_module, ONLY : noncolin, npol
USE uspp, ONLY: okvan, becsum
USE uspp_param, only: upf, nh
USE lsda_mod, ONLY : nspin
USE noncollin_module, ONLY : nspin_lsda, lspinorb
USE phus, ONLY : int1, int1_nc, int2, int2_so, int4, int4_nc, &
int5, int5_so, alphasum, alphasum_nc, becsum_nc
USE modes, ONLY : nmodes
implicit none
complex(DP) :: dynwrk (3 * nat, 3 * nat)
!! inp/out: the dynamical matrix
integer :: ipol, jpol, np, na, nb, nu_i, nu_j, ih, jh, ijh, dim, &
is, is1, is2, ijs
! counter on polarizations
! counter on pseudopotentials
! counter on atoms
! counter on modes
! counter on solid beta functions
! composed dimension of the beta
! counter on spin
complex(DP) :: term (3, 3), dyn1 (3 * nat, 3 * nat)
! auxiliary space
! auxiliary dynamical matrix
if (.not.okvan) return
call start_clock ('addusdynmat')
IF (noncolin) CALL set_int12_nc(1)
dyn1 (:,:) = (0.d0, 0.d0)
!
! We compute the four terms required
!
do na = 1, nat
np = ityp (na)
if (upf(np)%tvanp ) then
dim = (nh (np) * (nh (np) + 1) ) / 2
do ipol = 1, 3
nu_i = 3 * (na - 1) + ipol
do jpol = 1, 3
nu_j = 3 * (na - 1) + jpol
IF (noncolin) THEN
ijh=1
DO ih=1,nh(np)
DO jh=ih,nh(np)
ijs=0
DO is1=1,npol
DO is2=1,npol
ijs=ijs+1
dynwrk(nu_i, nu_j)=dynwrk(nu_i, nu_j) + &
int4_nc(ih,jh,ipol,jpol,na,ijs) * &
becsum_nc(ijh,na,is1,is2)
IF (ih.NE.jh) THEN
dynwrk(nu_i, nu_j)=dynwrk(nu_i, nu_j) + &
int4_nc(jh,ih,ipol,jpol,na,ijs) * &
CONJG(becsum_nc(ijh,na,is2,is1))
END IF
END DO
END DO
ijh=ijh+1
END DO
END DO
ELSE
do is = 1, nspin
do ijh = 1, dim
dynwrk(nu_i, nu_j)=dynwrk(nu_i, nu_j)+ &
int4(ijh,ipol,jpol,na,is) * becsum(ijh,na,is)
enddo
enddo
END IF
enddo
enddo
!
! The second term requires an exchange of the components.
!
term (:,:) = (0.d0, 0.d0)
do ipol = 1, 3
do jpol = 1, 3
ijh = 0
do ih = 1, nh (np)
do jh = ih, nh (np)
ijh = ijh + 1
IF (noncolin) THEN
ijs=0
do is1 = 1, npol
do is2 = 1, npol
ijs=ijs+1
term(ipol,jpol) = term(ipol,jpol) + &
int1_nc(ih,jh,ipol,na,ijs)* &
alphasum_nc(ijh,jpol,na,is1,is2)
IF (ih.ne.jh) THEN
term(ipol,jpol) = term(ipol,jpol) + &
int1_nc(jh,ih,ipol,na,ijs)* &
CONJG(alphasum_nc(ijh,jpol,na,is2,is1))
ENDIF
enddo
enddo
ELSE
do is = 1, nspin
term(ipol,jpol) = term(ipol,jpol) + &
CONJG(int1(ih,jh,ipol,na,is))*alphasum(ijh,jpol,na,is)
enddo
END IF
enddo
enddo
enddo
enddo
!
! And then we add the appropriate terms to the dynamical matrix
!
do ipol = 1, 3
nu_i = 3 * (na - 1) + ipol
do jpol = 1, 3
nu_j = 3 * (na - 1) + jpol
dynwrk (nu_i, nu_j) = dynwrk (nu_i, nu_j) + &
term (ipol, jpol) + term (jpol, ipol)
enddo
enddo
!
! the other two terms do not contain a delta ss'
!
do nb = 1, nat
do ipol = 1, 3
nu_i = 3 * (nb - 1) + ipol
do jpol = 1, 3
nu_j = 3 * (na - 1) + jpol
ijh = 0
do ih = 1, nh (np)
do jh = ih, nh (np)
ijh = ijh + 1
IF (lspinorb) THEN
ijs=0
do is1 = 1, npol
do is2 = 1, npol
ijs=ijs+1
dyn1(nu_i,nu_j)=dyn1(nu_i,nu_j) + &
int2_so(ih,jh,ipol,nb,na,ijs) * &
alphasum_nc(ijh,jpol,na,is1,is2) + &
int5_so(ih,jh,ipol,jpol,nb,na,ijs) * &
becsum_nc(ijh,na,is1,is2)
IF (ih.ne.jh) THEN
dyn1(nu_i,nu_j)=dyn1(nu_i,nu_j) + &
int2_so(jh,ih,ipol,nb,na,ijs) * &
CONJG(alphasum_nc(ijh,jpol,na,is2,is1))+&
int5_so(jh,ih,ipol,jpol,nb,na,ijs) * &
CONJG(becsum_nc(ijh,na,is2,is1))
END IF
enddo
enddo
ELSE
do is = 1, nspin_lsda
dyn1(nu_i,nu_j)=dyn1(nu_i,nu_j) + &
CONJG(int2(ih,jh,ipol,nb,na)) * &
alphasum(ijh,jpol,na,is) + &
int5(ijh,ipol,jpol,nb,na) * &
becsum(ijh,na,is)
enddo
END IF
enddo
enddo
enddo
enddo
enddo
endif
enddo
do nu_i = 1, nmodes
do nu_j = 1, nmodes
dynwrk (nu_i, nu_j) = dynwrk (nu_i, nu_j) + &
dyn1 (nu_i, nu_j) + CONJG(dyn1 (nu_j, nu_i) )
enddo
enddo
deallocate (int4)
deallocate (int5)
IF (noncolin) THEN
call set_int12_nc(0)
deallocate(int4_nc)
if (lspinorb) deallocate(int5_so)
END IF
call stop_clock ('addusdynmat')
return
end subroutine addusdynmat
| gpl-2.0 |
omni-compiler/omni-compiler | tests/XMP/global-view/intrinsic/F/intrinsic_pack_unpack.f90 | 1 | 1915 | program main
!$xmp nodes p(2,2)
!$xmp template tp(10,10)
!$xmp distribute tp(block,block) onto p
!$xmp nodes q(4)
!$xmp template tq(100)
!$xmp distribute tq(block) onto q
integer(8):: a(10,10),adash(10,10)
logical:: mask(10,10)
integer(8):: v(100),vdash(100)
!$xmp align a(i,j) with tp(i,j)
!$xmp align mask(i,j) with tp(i,j)
!$xmp align v(i) with tq(i)
integer:: i,j,answer=0
do i=1,10
do j=1,10
vdash((i-1)*10+j)=(j-1)*10+(i-1)*2
enddo
enddo
do i=51,100
vdash(i)=0
end do
do i=1,10
do j=1,10
adash(i,j)=0
enddo
enddo
do i=1,10
do j=1,10
if(mod(j-1,2).eq.0)then
adash(i,j)=(i-1)*10+j-1
end if
end do
end do
!$xmp loop on tp(i,j)
do i=1,10
do j=1,10
a(i,j)=(i-1)*10+(j-1)
end do
end do
!$xmp loop on tq(i)
do i=1,100
v(i)=0
end do
!$xmp loop on tp(i,j)
do i=1,10
do j=1,10
if(mod(j-1,2).eq.0) then
mask(i,j)=.true.
else
mask(i,j)=.false.
endif
end do
end do
call xmp_pack(xmp_desc_of(v),xmp_desc_of(a),xmp_desc_of(mask))
!$xmp loop on tq(i)
do i=1,100
if(v(i).ne.vdash(i)) then
answer = -1
endif
end do
!$xmp reduction(+:answer)
!$xmp task on p(1,1)
if ( answer /= 0 ) then
write(*,*) "ERROR"
call exit(1)
endif
write(*,*) "PASS"
!$xmp end task
!$xmp loop on tp(i,j)
do j=1,10
do i=1,10
a(i,j)=0
end do
end do
call xmp_unpack(xmp_desc_of(a),xmp_desc_of(v),xmp_desc_of(mask))
!$xmp loop on tp(i,j)
do i=1,10
do j=1,10
if(a(i,j).ne.adash(i,j)) then
answer = -1
endif
end do
end do
!$xmp reduction(+:answer)
!$xmp task on p(1,1)
if ( answer /= 0 ) then
write(*,*) "ERROR"
call exit(1)
endif
write(*,*) "PASS"
!$xmp end task
end program main
| lgpl-3.0 |
QEF/q-e | PHonon/PH/psyme2.f90 | 2 | 1500 | !
! Copyright (C) 2001-2008 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine psyme2 (dvtosym)
!-----------------------------------------------------------------------
!! p-symmetrize the second derivative of charge density.
!
use kinds, only : DP
USE mp_bands, ONLY: me_bgrp
USE fft_base, ONLY: dfftp
USE scatter_mod, ONLY: cgather_sym
implicit none
!
complex(DP) :: dvtosym (dfftp%nnr, 6)
!! the potential to symmetrize
!
! ... local variable
!
#if defined(__MPI)
integer :: i, iper, ir3, ioff, ioff_tg, nxyp
complex(DP), allocatable :: ddvtosym (:,:)
! the potential to symmetrize
allocate (ddvtosym (dfftp%nr1x*dfftp%nr2x*dfftp%nr3x, 6))
do iper = 1, 6
call cgather_sym (dfftp, dvtosym (:, iper), ddvtosym (:, iper) )
enddo
call syme2 (ddvtosym)
nxyp = dfftp%nr1x * dfftp%my_nr2p
DO iper = 1, 6
DO ir3 = 1, dfftp%my_nr3p
ioff = dfftp%nr1x * dfftp%my_nr2p * (ir3-1)
ioff_tg = dfftp%nr1x * dfftp%nr2x * (dfftp%my_i0r3p+ir3-1) + dfftp%nr1x * dfftp%my_i0r2p
CALL zcopy (nxyp, ddvtosym (ioff_tg+1, iper), 1, dvtosym (ioff+1, iper), 1)
END DO
ENDDO
deallocate (ddvtosym)
#else
call syme2 (dvtosym)
#endif
return
end subroutine psyme2
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/MATGEN/clarnd.f | 33 | 3907 | *> \brief \b CLARND
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* COMPLEX FUNCTION CLARND( IDIST, ISEED )
*
* .. Scalar Arguments ..
* INTEGER IDIST
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLARND returns a random complex number from a uniform or normal
*> distribution.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IDIST
*> \verbatim
*> IDIST is INTEGER
*> Specifies the distribution of the random numbers:
*> = 1: real and imaginary parts each uniform (0,1)
*> = 2: real and imaginary parts each uniform (-1,1)
*> = 3: real and imaginary parts each normal (0,1)
*> = 4: uniformly distributed on the disc abs(z) <= 1
*> = 5: uniformly distributed on the circle abs(z) = 1
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator; the array
*> elements must be between 0 and 4095, and ISEED(4) must be
*> odd.
*> On exit, the seed is updated.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_matgen
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> This routine calls the auxiliary routine SLARAN to generate a random
*> real number from a uniform (0,1) distribution. The Box-Muller method
*> is used to transform numbers from a uniform to a normal distribution.
*> \endverbatim
*>
* =====================================================================
COMPLEX FUNCTION CLARND( IDIST, ISEED )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER IDIST
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
REAL TWOPI
PARAMETER ( TWOPI = 6.2831853071795864769252867663E+0 )
* ..
* .. Local Scalars ..
REAL T1, T2
* ..
* .. External Functions ..
REAL SLARAN
EXTERNAL SLARAN
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, EXP, LOG, SQRT
* ..
* .. Executable Statements ..
*
* Generate a pair of real random numbers from a uniform (0,1)
* distribution
*
T1 = SLARAN( ISEED )
T2 = SLARAN( ISEED )
*
IF( IDIST.EQ.1 ) THEN
*
* real and imaginary parts each uniform (0,1)
*
CLARND = CMPLX( T1, T2 )
ELSE IF( IDIST.EQ.2 ) THEN
*
* real and imaginary parts each uniform (-1,1)
*
CLARND = CMPLX( TWO*T1-ONE, TWO*T2-ONE )
ELSE IF( IDIST.EQ.3 ) THEN
*
* real and imaginary parts each normal (0,1)
*
CLARND = SQRT( -TWO*LOG( T1 ) )*EXP( CMPLX( ZERO, TWOPI*T2 ) )
ELSE IF( IDIST.EQ.4 ) THEN
*
* uniform distribution on the unit disc abs(z) <= 1
*
CLARND = SQRT( T1 )*EXP( CMPLX( ZERO, TWOPI*T2 ) )
ELSE IF( IDIST.EQ.5 ) THEN
*
* uniform distribution on the unit circle abs(z) = 1
*
CLARND = EXP( CMPLX( ZERO, TWOPI*T2 ) )
END IF
RETURN
*
* End of CLARND
*
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/LIN/ddrvge.f | 28 | 25364 | *> \brief \b DDRVGE
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
* A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
* RWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NMAX, NN, NOUT, NRHS
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NVAL( * )
* DOUBLE PRECISION A( * ), AFAC( * ), ASAV( * ), B( * ),
* $ BSAV( * ), RWORK( * ), S( * ), WORK( * ),
* $ X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DDRVGE tests the driver routines DGESV and -SVX.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand side vectors to be generated for
*> each linear system.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for N, used in dimensioning the
*> work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] ASAV
*> \verbatim
*> ASAV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] BSAV
*> \verbatim
*> BSAV is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (2*NMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension
*> (NMAX*max(3,NRHS))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (2*NRHS+NMAX)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (2*NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
$ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
$ RWORK, IWORK, NOUT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NMAX, NN, NOUT, NRHS
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NVAL( * )
DOUBLE PRECISION A( * ), AFAC( * ), ASAV( * ), B( * ),
$ BSAV( * ), RWORK( * ), S( * ), WORK( * ),
$ X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 11 )
INTEGER NTESTS
PARAMETER ( NTESTS = 7 )
INTEGER NTRAN
PARAMETER ( NTRAN = 3 )
* ..
* .. Local Scalars ..
LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
CHARACTER*3 PATH
INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, ITRAN,
$ IZERO, K, K1, KL, KU, LDA, LWORK, MODE, N, NB,
$ NBMIN, NERRS, NFACT, NFAIL, NIMAT, NRUN, NT
DOUBLE PRECISION AINVNM, AMAX, ANORM, ANORMI, ANORMO, CNDNUM,
$ COLCND, RCOND, RCONDC, RCONDI, RCONDO, ROLDC,
$ ROLDI, ROLDO, ROWCND, RPVGRW
* ..
* .. Local Arrays ..
CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DGET06, DLAMCH, DLANGE, DLANTR
EXTERNAL LSAME, DGET06, DLAMCH, DLANGE, DLANTR
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, DERRVX, DGEEQU, DGESV,
$ DGESVX, DGET01, DGET02, DGET04, DGET07, DGETRF,
$ DGETRI, DLACPY, DLAQGE, DLARHS, DLASET, DLATB4,
$ DLATMS, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA TRANSS / 'N', 'T', 'C' /
DATA FACTS / 'F', 'N', 'E' /
DATA EQUEDS / 'N', 'R', 'C', 'B' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'GE'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL DERRVX( PATH, NOUT )
INFOT = 0
*
* Set the block size and minimum block size for testing.
*
NB = 1
NBMIN = 2
CALL XLAENV( 1, NB )
CALL XLAENV( 2, NBMIN )
*
* Do for each value of N in NVAL
*
DO 90 IN = 1, NN
N = NVAL( IN )
LDA = MAX( N, 1 )
XTYPE = 'N'
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
DO 80 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 80
*
* Skip types 5, 6, or 7 if the matrix size is too small.
*
ZEROT = IMAT.GE.5 .AND. IMAT.LE.7
IF( ZEROT .AND. N.LT.IMAT-4 )
$ GO TO 80
*
* Set up parameters with DLATB4 and generate a test matrix
* with DLATMS.
*
CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
RCONDC = ONE / CNDNUM
*
SRNAMT = 'DLATMS'
CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, CNDNUM,
$ ANORM, KL, KU, 'No packing', A, LDA, WORK,
$ INFO )
*
* Check error code from DLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N, -1, -1,
$ -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 80
END IF
*
* For types 5-7, zero one or more columns of the matrix to
* test that INFO is returned correctly.
*
IF( ZEROT ) THEN
IF( IMAT.EQ.5 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.6 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
IOFF = ( IZERO-1 )*LDA
IF( IMAT.LT.7 ) THEN
DO 20 I = 1, N
A( IOFF+I ) = ZERO
20 CONTINUE
ELSE
CALL DLASET( 'Full', N, N-IZERO+1, ZERO, ZERO,
$ A( IOFF+1 ), LDA )
END IF
ELSE
IZERO = 0
END IF
*
* Save a copy of the matrix A in ASAV.
*
CALL DLACPY( 'Full', N, N, A, LDA, ASAV, LDA )
*
DO 70 IEQUED = 1, 4
EQUED = EQUEDS( IEQUED )
IF( IEQUED.EQ.1 ) THEN
NFACT = 3
ELSE
NFACT = 1
END IF
*
DO 60 IFACT = 1, NFACT
FACT = FACTS( IFACT )
PREFAC = LSAME( FACT, 'F' )
NOFACT = LSAME( FACT, 'N' )
EQUIL = LSAME( FACT, 'E' )
*
IF( ZEROT ) THEN
IF( PREFAC )
$ GO TO 60
RCONDO = ZERO
RCONDI = ZERO
*
ELSE IF( .NOT.NOFACT ) THEN
*
* Compute the condition number for comparison with
* the value returned by DGESVX (FACT = 'N' reuses
* the condition number from the previous iteration
* with FACT = 'F').
*
CALL DLACPY( 'Full', N, N, ASAV, LDA, AFAC, LDA )
IF( EQUIL .OR. IEQUED.GT.1 ) THEN
*
* Compute row and column scale factors to
* equilibrate the matrix A.
*
CALL DGEEQU( N, N, AFAC, LDA, S, S( N+1 ),
$ ROWCND, COLCND, AMAX, INFO )
IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
IF( LSAME( EQUED, 'R' ) ) THEN
ROWCND = ZERO
COLCND = ONE
ELSE IF( LSAME( EQUED, 'C' ) ) THEN
ROWCND = ONE
COLCND = ZERO
ELSE IF( LSAME( EQUED, 'B' ) ) THEN
ROWCND = ZERO
COLCND = ZERO
END IF
*
* Equilibrate the matrix.
*
CALL DLAQGE( N, N, AFAC, LDA, S, S( N+1 ),
$ ROWCND, COLCND, AMAX, EQUED )
END IF
END IF
*
* Save the condition number of the non-equilibrated
* system for use in DGET04.
*
IF( EQUIL ) THEN
ROLDO = RCONDO
ROLDI = RCONDI
END IF
*
* Compute the 1-norm and infinity-norm of A.
*
ANORMO = DLANGE( '1', N, N, AFAC, LDA, RWORK )
ANORMI = DLANGE( 'I', N, N, AFAC, LDA, RWORK )
*
* Factor the matrix A.
*
SRNAMT = 'DGETRF'
CALL DGETRF( N, N, AFAC, LDA, IWORK, INFO )
*
* Form the inverse of A.
*
CALL DLACPY( 'Full', N, N, AFAC, LDA, A, LDA )
LWORK = NMAX*MAX( 3, NRHS )
SRNAMT = 'DGETRI'
CALL DGETRI( N, A, LDA, IWORK, WORK, LWORK, INFO )
*
* Compute the 1-norm condition number of A.
*
AINVNM = DLANGE( '1', N, N, A, LDA, RWORK )
IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDO = ONE
ELSE
RCONDO = ( ONE / ANORMO ) / AINVNM
END IF
*
* Compute the infinity-norm condition number of A.
*
AINVNM = DLANGE( 'I', N, N, A, LDA, RWORK )
IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDI = ONE
ELSE
RCONDI = ( ONE / ANORMI ) / AINVNM
END IF
END IF
*
DO 50 ITRAN = 1, NTRAN
*
* Do for each value of TRANS.
*
TRANS = TRANSS( ITRAN )
IF( ITRAN.EQ.1 ) THEN
RCONDC = RCONDO
ELSE
RCONDC = RCONDI
END IF
*
* Restore the matrix A.
*
CALL DLACPY( 'Full', N, N, ASAV, LDA, A, LDA )
*
* Form an exact solution and set the right hand side.
*
SRNAMT = 'DLARHS'
CALL DLARHS( PATH, XTYPE, 'Full', TRANS, N, N, KL,
$ KU, NRHS, A, LDA, XACT, LDA, B, LDA,
$ ISEED, INFO )
XTYPE = 'C'
CALL DLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
*
IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
*
* --- Test DGESV ---
*
* Compute the LU factorization of the matrix and
* solve the system.
*
CALL DLACPY( 'Full', N, N, A, LDA, AFAC, LDA )
CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
*
SRNAMT = 'DGESV '
CALL DGESV( N, NRHS, AFAC, LDA, IWORK, X, LDA,
$ INFO )
*
* Check error code from DGESV .
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'DGESV ', INFO, IZERO,
$ ' ', N, N, -1, -1, NRHS, IMAT,
$ NFAIL, NERRS, NOUT )
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL DGET01( N, N, A, LDA, AFAC, LDA, IWORK,
$ RWORK, RESULT( 1 ) )
NT = 1
IF( IZERO.EQ.0 ) THEN
*
* Compute residual of the computed solution.
*
CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK,
$ LDA )
CALL DGET02( 'No transpose', N, N, NRHS, A,
$ LDA, X, LDA, WORK, LDA, RWORK,
$ RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
CALL DGET04( N, NRHS, X, LDA, XACT, LDA,
$ RCONDC, RESULT( 3 ) )
NT = 3
END IF
*
* Print information about the tests that did not
* pass the threshold.
*
DO 30 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )'DGESV ', N,
$ IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
30 CONTINUE
NRUN = NRUN + NT
END IF
*
* --- Test DGESVX ---
*
IF( .NOT.PREFAC )
$ CALL DLASET( 'Full', N, N, ZERO, ZERO, AFAC,
$ LDA )
CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
*
* Equilibrate the matrix if FACT = 'F' and
* EQUED = 'R', 'C', or 'B'.
*
CALL DLAQGE( N, N, A, LDA, S, S( N+1 ), ROWCND,
$ COLCND, AMAX, EQUED )
END IF
*
* Solve the system and compute the condition number
* and error bounds using DGESVX.
*
SRNAMT = 'DGESVX'
CALL DGESVX( FACT, TRANS, N, NRHS, A, LDA, AFAC,
$ LDA, IWORK, EQUED, S, S( N+1 ), B,
$ LDA, X, LDA, RCOND, RWORK,
$ RWORK( NRHS+1 ), WORK, IWORK( N+1 ),
$ INFO )
*
* Check the error code from DGESVX.
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'DGESVX', INFO, IZERO,
$ FACT // TRANS, N, N, -1, -1, NRHS,
$ IMAT, NFAIL, NERRS, NOUT )
*
* Compare WORK(1) from DGESVX with the computed
* reciprocal pivot growth factor RPVGRW
*
IF( INFO.NE.0 .AND. INFO.LE.N) THEN
RPVGRW = DLANTR( 'M', 'U', 'N', INFO, INFO,
$ AFAC, LDA, WORK )
IF( RPVGRW.EQ.ZERO ) THEN
RPVGRW = ONE
ELSE
RPVGRW = DLANGE( 'M', N, INFO, A, LDA,
$ WORK ) / RPVGRW
END IF
ELSE
RPVGRW = DLANTR( 'M', 'U', 'N', N, N, AFAC, LDA,
$ WORK )
IF( RPVGRW.EQ.ZERO ) THEN
RPVGRW = ONE
ELSE
RPVGRW = DLANGE( 'M', N, N, A, LDA, WORK ) /
$ RPVGRW
END IF
END IF
RESULT( 7 ) = ABS( RPVGRW-WORK( 1 ) ) /
$ MAX( WORK( 1 ), RPVGRW ) /
$ DLAMCH( 'E' )
*
IF( .NOT.PREFAC ) THEN
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL DGET01( N, N, A, LDA, AFAC, LDA, IWORK,
$ RWORK( 2*NRHS+1 ), RESULT( 1 ) )
K1 = 1
ELSE
K1 = 2
END IF
*
IF( INFO.EQ.0 ) THEN
TRFCON = .FALSE.
*
* Compute residual of the computed solution.
*
CALL DLACPY( 'Full', N, NRHS, BSAV, LDA, WORK,
$ LDA )
CALL DGET02( TRANS, N, N, NRHS, ASAV, LDA, X,
$ LDA, WORK, LDA, RWORK( 2*NRHS+1 ),
$ RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
$ 'N' ) ) ) THEN
CALL DGET04( N, NRHS, X, LDA, XACT, LDA,
$ RCONDC, RESULT( 3 ) )
ELSE
IF( ITRAN.EQ.1 ) THEN
ROLDC = ROLDO
ELSE
ROLDC = ROLDI
END IF
CALL DGET04( N, NRHS, X, LDA, XACT, LDA,
$ ROLDC, RESULT( 3 ) )
END IF
*
* Check the error bounds from iterative
* refinement.
*
CALL DGET07( TRANS, N, NRHS, ASAV, LDA, B, LDA,
$ X, LDA, XACT, LDA, RWORK, .TRUE.,
$ RWORK( NRHS+1 ), RESULT( 4 ) )
ELSE
TRFCON = .TRUE.
END IF
*
* Compare RCOND from DGESVX with the computed value
* in RCONDC.
*
RESULT( 6 ) = DGET06( RCOND, RCONDC )
*
* Print information about the tests that did not pass
* the threshold.
*
IF( .NOT.TRFCON ) THEN
DO 40 K = K1, NTESTS
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9997 )'DGESVX',
$ FACT, TRANS, N, EQUED, IMAT, K,
$ RESULT( K )
ELSE
WRITE( NOUT, FMT = 9998 )'DGESVX',
$ FACT, TRANS, N, IMAT, K, RESULT( K )
END IF
NFAIL = NFAIL + 1
END IF
40 CONTINUE
NRUN = NRUN + 7 - K1
ELSE
IF( RESULT( 1 ).GE.THRESH .AND. .NOT.PREFAC )
$ THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9997 )'DGESVX', FACT,
$ TRANS, N, EQUED, IMAT, 1, RESULT( 1 )
ELSE
WRITE( NOUT, FMT = 9998 )'DGESVX', FACT,
$ TRANS, N, IMAT, 1, RESULT( 1 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 6 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9997 )'DGESVX', FACT,
$ TRANS, N, EQUED, IMAT, 6, RESULT( 6 )
ELSE
WRITE( NOUT, FMT = 9998 )'DGESVX', FACT,
$ TRANS, N, IMAT, 6, RESULT( 6 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 7 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9997 )'DGESVX', FACT,
$ TRANS, N, EQUED, IMAT, 7, RESULT( 7 )
ELSE
WRITE( NOUT, FMT = 9998 )'DGESVX', FACT,
$ TRANS, N, IMAT, 7, RESULT( 7 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
*
END IF
*
50 CONTINUE
60 CONTINUE
70 CONTINUE
80 CONTINUE
90 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test(', I2, ') =',
$ G12.5 )
9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N=', I5,
$ ', type ', I2, ', test(', I1, ')=', G12.5 )
9997 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N=', I5,
$ ', EQUED=''', A1, ''', type ', I2, ', test(', I1, ')=',
$ G12.5 )
RETURN
*
* End of DDRVGE
*
END
| gpl-2.0 |
QEF/q-e | test-suite/not_epw_comp/phq_readin2.f90 | 2 | 36587 | !
! Copyright (C) 2001-2020 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!----------------------------------------------------------------------------
SUBROUTINE phq_readin2()
!----------------------------------------------------------------------------
!! This routine reads the control variables for the program \(\texttt{phononq}\).
!! A second routine, \(\texttt{read_file}\), reads the variables saved to file
!! by the self-consistent program.
!
!
USE kinds, ONLY : DP
USE ions_base, ONLY : nat, ntyp => nsp
USE mp, ONLY : mp_bcast
USE mp_world, ONLY : world_comm
USE ions_base, ONLY : amass, atm
USE check_stop, ONLY : max_seconds
USE start_k, ONLY : reset_grid
USE klist, ONLY : xk, nks, nkstot, lgauss, two_fermi_energies, ltetra
USE control_flags, ONLY : gamma_only, tqr, restart, io_level, &
ts_vdw, ldftd3, lxdm, isolve
USE xc_lib, ONLY : xclib_dft_is
USE uspp, ONLY : okvan
USE fixed_occ, ONLY : tfixed_occ
USE lsda_mod, ONLY : lsda, nspin
USE fft_base, ONLY : dffts
USE cellmd, ONLY : lmovecell
USE run_info, ONLY : title
USE control_ph, ONLY : maxter, alpha_mix, lgamma_gamma, epsil, &
zue, zeu, xmldyn, newgrid, &
trans, reduce_io, tr2_ph, niter_ph, &
nmix_ph, ldisp, recover, lnoloc, start_irr, &
last_irr, start_q, last_q, current_iq, tmp_dir_ph, &
ext_recover, ext_restart, u_from_file, ldiag, &
search_sym, lqdir, electron_phonon, tmp_dir_phq, &
rec_code_read, qplot, only_init, only_wfc, &
low_directory_check, nk1, nk2, nk3, k1, k2, k3
USE save_ph, ONLY : tmp_dir_save, save_ph_input_variables
USE gamma_gamma, ONLY : asr
USE partial, ONLY : atomo, nat_todo, nat_todo_input
USE output, ONLY : fildyn, fildvscf, fildrho
USE disp, ONLY : nq1, nq2, nq3, x_q, wq, nqs, lgamma_iq
USE io_files, ONLY : tmp_dir, prefix, postfix, create_directory, &
check_tempdir, xmlpun_schema
USE noncollin_module, ONLY : domag, i_cons, noncolin, lspinorb
USE control_flags, ONLY : iverbosity, modenum
USE io_global, ONLY : meta_ionode, meta_ionode_id, ionode, ionode_id, &
qestdin, stdout
USE mp_images, ONLY : nimage, my_image_id, intra_image_comm, &
me_image, nproc_image
USE mp_pools, ONLY : npool
USE paw_variables, ONLY : okpaw
USE ramanm, ONLY : eth_rps, eth_ns, lraman, elop, dek
USE freq_ph, ONLY : fpol, fiu, nfs
USE cryst_ph, ONLY : magnetic_sym
USE ph_restart, ONLY : ph_readfile
USE el_phon, ONLY : elph,elph_mat,elph_simple,elph_epa,elph_nbnd_min, elph_nbnd_max, &
el_ph_sigma, el_ph_nsigma, el_ph_ngauss,auxdvscf
USE dfile_star, ONLY : drho_star, dvscf_star
USE qpoint, ONLY : nksq, xq
USE control_lr, ONLY : lgamma, lrpa
! YAMBO >
USE YAMBO, ONLY : elph_yambo,dvscf_yambo
! YAMBO <
USE elph_tetra_mod,ONLY : elph_tetra, lshift_q, in_alpha2f
USE ktetra, ONLY : tetra_type
USE ldaU, ONLY : lda_plus_u, Hubbard_projectors, lda_plus_u_kind
USE ldaU_ph, ONLY : read_dns_bare, d2ns_type
USE dvscf_interpolate, ONLY : ldvscf_interpolate, do_long_range, &
do_charge_neutral, wpot_dir
USE ahc, ONLY : elph_ahc, ahc_dir, ahc_nbnd, ahc_nbndskip, &
skip_upperfan
USE read_namelists_module, ONLY : check_namelist_read
USE open_close_input_file, ONLY : open_input_file, close_input_file
USE el_phon2, ONLY : kx, ky, kz, elph_epw
!
IMPLICIT NONE
!
CHARACTER(LEN=256), EXTERNAL :: trimcheck
!
INTEGER :: ios, ipol, iter, na, it, ierr, ierr1
! integer variable for I/O control
! counter on polarizations
! counter on iterations
! counter on atoms
! counter on types
REAL(DP), ALLOCATABLE :: amass_input(:)
! save masses read from input here
CHARACTER (LEN=256) :: outdir, filename
CHARACTER (LEN=8) :: verbosity
CHARACTER(LEN=80) :: card
CHARACTER(LEN=6) :: int_to_char
INTEGER :: i
LOGICAL :: nogg
LOGICAL :: q2d, q_in_band_form
INTEGER, EXTERNAL :: atomic_number
REAL(DP), EXTERNAL :: atom_weight
LOGICAL, EXTERNAL :: imatches
LOGICAL, EXTERNAL :: has_xml
LOGICAL :: exst, parallelfs
REAL(DP), ALLOCATABLE :: xqaux(:,:)
INTEGER, ALLOCATABLE :: wqaux(:)
INTEGER :: nqaux, iq
CHARACTER(len=80) :: diagonalization='david'
!
NAMELIST / INPUTPH / tr2_ph, amass, alpha_mix, niter_ph, nmix_ph, &
nat_todo, verbosity, iverbosity, outdir, epsil, &
trans, zue, zeu, max_seconds, reduce_io, &
modenum, prefix, fildyn, fildvscf, fildrho, &
ldisp, nq1, nq2, nq3, &
eth_rps, eth_ns, lraman, elop, dek, recover, &
fpol, asr, lrpa, lnoloc, start_irr, last_irr, &
start_q, last_q, nogg, ldiag, search_sym, lqdir, &
nk1, nk2, nk3, k1, k2, k3, &
drho_star, dvscf_star, only_init, only_wfc, &
elph_nbnd_min, elph_nbnd_max, el_ph_ngauss, &
el_ph_nsigma, el_ph_sigma, electron_phonon, &
q_in_band_form, q2d, qplot, low_directory_check, &
lshift_q, read_dns_bare, d2ns_type, diagonalization, &
ldvscf_interpolate, do_long_range, do_charge_neutral, &
wpot_dir, ahc_dir, ahc_nbnd, ahc_nbndskip, &
skip_upperfan, &
kx, ky, kz
! tr2_ph : convergence threshold
! amass : atomic masses
! alpha_mix : the mixing parameter
! niter_ph : maximum number of iterations
! nmix_ph : number of previous iterations used in mixing
! nat_todo : number of atom to be displaced
! verbosity : verbosity control (iverbosity is obsolete)
! outdir : directory where input, output, temporary files reside
! epsil : if true calculate dielectric constant
! trans : if true calculate phonon
! electron-phonon : select the kind of electron-phonon calculation
! elph : if true calculate electron-phonon coefficients
! elph_mat : if true eph coefficients for wannier
! zue : if .true. calculate effective charges ( d force / dE )
! zeu : if .true. calculate effective charges ( d P / du )
! lraman : if true calculate raman tensor
! elop : if true calculate electro-optic tensor
! max_seconds : maximum cputime for this run
! reduce_io : reduce I/O to the strict minimum
! modenum : single mode calculation
! prefix : the prefix of files produced by pwscf
! fildyn : output file for the dynamical matrix
! fildvscf : output file containing deltavsc
! fildrho : output file containing deltarho
! fildrho_dir : directory where fildrho files will be stored (default: outdir or ESPRESSO_FILDRHO_DIR variable)
! eth_rps : threshold for calculation of Pc R |psi> (Raman)
! eth_ns : threshold for non-scf wavefunction calculation (Raman)
! dek : delta_xk used for wavefunctions derivation (Raman)
! recover : recover=.true. to restart from an interrupted run
! asr : in the gamma_gamma case apply acoustic sum rule
! start_q : in q list does the q points from start_q to last_q
! last_q :
! start_irr : does the irred. representation from start_irr to last_irr
! last_irr :
! nogg : if .true. lgamma_gamma tricks are not used
! ldiag : if .true. force diagonalization of the dyn mat
! lqdir : if .true. each q writes in its own directory
! search_sym : if .true. analyze symmetry if possible
! nk1,nk2,nk3, k1,k2,k3 :
! when specified in input, the phonon run uses a different
! k-point mesh from that used for the charge density.
!
! dvscf_star%open : if .true. write in dvscf_star%dir the dvscf_q
! 'for all q' in the star of q with suffix dvscf_star%ext.
! The dvscf_q' is written in the basis dvscf_star%basis;
! if dvscf_star%pat is .true. also save a pattern file.
! dvscf_star%dir, dvscf_star%ext, dvscf_star%basis : see dvscf_star%open
! drho_star%open : like dvscf_star%open but for drho_q
! drho_star%dir, drho_star%ext, drho_star%basis : see drho_star%open
!
! elph_nbnd_min,
! elph_nbnd_max: if (elph_mat=.true.) it dumps the eph matrix element from elph_nbnd_min
! to elph_nbnd_max
! el_ph_ngauss,
! el_ph_nsigma,
! el_ph_sigma : if (elph_mat=.true.) it defines the kind and the val-ue of the
! smearing to be used in the eph coupling calculation.
! qplot, : if true a list of q points is given in input
! q_in_band_form: if true the input list of q points defines paths
! q2d, : if .true. the q list define a mesh in a square.
! low_directory_check : if .true. only the requested representations
! are searched on file
!
! read_dns_bare : If .true. the code tries to read three files in DFPT+U calculations:
! dnsorth, dnsbare, d2nsbare
! d2ns_type : DFPT+U - the 2nd bare derivative of occupation matrices ns
! (d2ns_bare matrix). Experimental! This is why it is not documented in Doc.
! d2ns_type='full': matrix calculated with no approximation.
! d2ns_type='fmmp': assume a m <=> m' symmetry.
! d2ns_type='diag': if okvan=.true. the matrix is calculated retaining only
! for <\beta_J|\phi_I> products where for J==I.
! d2ns_type='dmmp': same as 'diag', but also assuming a m <=> m'.
! diagonalization : diagonalization method used in the nscf calc
! ldvscf_interpolate: if .true., use Fourier interpolation of phonon potential
! do_long_range: if .true., add the long-range part of the potential to dvscf
! do_charge_neutral: if .true., impose the neutrality condition on Born effective charges
! wpot_dir: folder where w_pot binary files are located
! ahc_dir: Directory where the output binary files for AHC e-ph coupling are written
! ahc_nbnd: Number of bands where the electron self-energy is to be computed.
! ahc_nbndskip: Number of bands to exclude when computing the self-energy.
! skip_upperfan: If .true., skip the calculation of upper Fan self-energy.
!
! Note: meta_ionode is a single processor that reads the input
! (ionode is also a single processor but per image)
! Data read from input is subsequently broadcast to all processors
! from ionode_id (using the default communicator world_comm)
!
IF (meta_ionode) THEN
!
! ... Input from file (ios=0) or standard input (ios=-1) on unit "qestdin"
!
ios = open_input_file ( )
!
! ... Read the first line of the input file
!
IF ( ios <= 0 ) READ( qestdin, '(A)', IOSTAT = ios ) title
!
ENDIF
!
CALL mp_bcast(ios, meta_ionode_id, world_comm )
CALL errore( 'phq_readin', 'reading input file ', ABS( ios ) )
CALL mp_bcast(title, meta_ionode_id, world_comm )
!
! Rewind the input if the title is actually the beginning of inputph namelist
!
IF( imatches("&inputph", title) ) THEN
WRITE(stdout,'(6x,a)') "Title line not specified: using 'default'."
title='default'
IF (meta_ionode) REWIND(qestdin, iostat=ios)
CALL mp_bcast(ios, meta_ionode_id, world_comm )
CALL errore('phq_readin', 'Title line missing from input.', abs(ios))
ENDIF
!
! ... set default values for variables in namelist
!
tr2_ph = 1.D-12
eth_rps = 1.D-9
eth_ns = 1.D-12
amass(:) = 0.D0
alpha_mix(:) = 0.D0
alpha_mix(1) = 0.7D0
niter_ph = maxter
nmix_ph = 4
nat_todo = 0
modenum = 0
iverbosity = 1234567
verbosity = 'default'
trans = .TRUE.
lrpa = .FALSE.
lnoloc = .FALSE.
epsil = .FALSE.
zeu = .TRUE.
zue = .FALSE.
fpol = .FALSE.
electron_phonon=' '
elph_nbnd_min = 1
elph_nbnd_max = 0
el_ph_sigma = 0.02
el_ph_nsigma = 10
el_ph_ngauss = 1
lraman = .FALSE.
elop = .FALSE.
max_seconds = 1.E+7_DP
reduce_io = .FALSE.
CALL get_environment_variable( 'ESPRESSO_TMPDIR', outdir )
IF ( TRIM( outdir ) == ' ' ) outdir = './'
prefix = 'pwscf'
fildyn = 'matdyn'
fildrho = ' '
fildvscf = ' '
ldisp = .FALSE.
nq1 = 0
nq2 = 0
nq3 = 0
dek = 1.0d-3
nogg = .FALSE.
recover = .FALSE.
asr = .FALSE.
start_irr = 0
last_irr = -1000
start_q = 1
last_q =-1000
ldiag =.FALSE.
lqdir =.FALSE.
qplot =.FALSE.
q_in_band_form=.FALSE.
q2d = .FALSE.
only_init = .FALSE.
only_wfc = .FALSE.
low_directory_check=.FALSE.
search_sym =.TRUE.
nk1 = 0
nk2 = 0
nk3 = 0
k1 = 0
k2 = 0
k3 = 0
!
kx = 0.D0
ky = 0.D0
kz = 0.D0
!
! dvscf_interpolate
ldvscf_interpolate = .FALSE.
do_charge_neutral = .FALSE.
do_long_range = .FALSE.
wpot_dir = ' '
!
! electron_phonon == 'ahc'
ahc_dir = ' '
ahc_nbnd = 0
ahc_nbndskip = 0
skip_upperfan = .FALSE.
elph_ahc = .FALSE.
!
drho_star%open = .FALSE.
drho_star%basis = 'modes'
drho_star%pat = .TRUE.
drho_star%ext = 'drho'
CALL get_environment_variable( 'ESPRESSO_FILDRHO_DIR', drho_star%dir)
IF ( TRIM( drho_star%dir ) == ' ' ) &
drho_star%dir = TRIM(outdir)//"/Rotated_DRHO/"
!
dvscf_star%open = .FALSE.
dvscf_star%basis = 'modes'
dvscf_star%pat = .FALSE.
dvscf_star%ext = 'dvscf'
CALL get_environment_variable( 'ESPRESSO_FILDVSCF_DIR', dvscf_star%dir)
IF ( TRIM( dvscf_star%dir ) == ' ' ) &
dvscf_star%dir = TRIM(outdir)//"/Rotated_DVSCF/"
!
lshift_q = .false.
read_dns_bare =.false.
d2ns_type = 'full'
!
! ... reading the namelist inputph
!
IF (meta_ionode) THEN
READ( qestdin, INPUTPH, IOSTAT = ios )
!
! ... iverbosity/verbosity hack
!
IF ( iverbosity == 1234567 ) THEN
SELECT CASE( trim( verbosity ) )
CASE( 'debug', 'high', 'medium' )
iverbosity = 1
CASE( 'low', 'default', 'minimal' )
iverbosity = 0
CASE DEFAULT
iverbosity = 0
END SELECT
ELSE
ios = 1234567
END IF
END IF
CALL check_namelist_read(ios, qestdin, "inputph")
30 CONTINUE
CALL mp_bcast(ios, meta_ionode_id, world_comm )
IF ( ios == 1234567 ) THEN
CALL infomsg( 'phq_readin' , &
'iverbosity is obsolete, use "verbosity" instead' )
ELSE IF ( ABS(ios) /= 0 ) THEN
CALL errore( 'phq_readin', 'reading inputph namelist', ABS( ios ) )
END IF
! diagonalization option
SELECT CASE(TRIM(diagonalization))
CASE ('david','davidson')
isolve = 0
CASE ('cg')
isolve = 1
CASE DEFAULT
CALL errore('phq_readin','diagonalization '//trim(diagonalization)//' not implemented',1)
END SELECT
!
! ... broadcast all input variables
!
tmp_dir = trimcheck (outdir)
CALL bcast_ph_input ( )
CALL mp_bcast(nogg, meta_ionode_id, world_comm )
CALL mp_bcast(q2d, meta_ionode_id, world_comm )
CALL mp_bcast(q_in_band_form, meta_ionode_id, world_comm )
!
CALL mp_bcast(kx, meta_ionode_id, world_comm )
CALL mp_bcast(ky, meta_ionode_id, world_comm )
CALL mp_bcast(kz, meta_ionode_id, world_comm )
!
drho_star%dir=trimcheck(drho_star%dir)
dvscf_star%dir=trimcheck(dvscf_star%dir)
! filename for the star must always be automatically generated:
IF(drho_star%ext(1:5)/='auto:') drho_star%ext = 'auto:'//drho_star%ext
IF(dvscf_star%ext(1:5)/='auto:') dvscf_star%ext = 'auto:'//dvscf_star%ext
!
! ... Check all namelist variables
!
IF (tr2_ph <= 0.D0) CALL errore (' phq_readin', ' Wrong tr2_ph ', 1)
IF (eth_rps<= 0.D0) CALL errore ( 'phq_readin', ' Wrong eth_rps', 1)
IF (eth_ns <= 0.D0) CALL errore ( 'phq_readin', ' Wrong eth_ns ', 1)
DO iter = 1, maxter
IF (alpha_mix (iter) .LT.0.D0.OR.alpha_mix (iter) .GT.1.D0) CALL &
errore ('phq_readin', ' Wrong alpha_mix ', iter)
ENDDO
IF (niter_ph.LT.1.OR.niter_ph.GT.maxter) CALL errore ('phq_readin', &
' Wrong niter_ph ', 1)
IF (iverbosity.NE.0.AND.iverbosity.NE.1) CALL errore ('phq_readin', &
&' Wrong iverbosity ', 1)
IF (fildyn.EQ.' ') CALL errore ('phq_readin', ' Wrong fildyn ', 1)
IF (max_seconds.LT.0.1D0) CALL errore ('phq_readin', ' Wrong max_seconds', 1)
IF (only_init.AND.only_wfc) CALL errore('phq_readin', &
'only_init or only_wfc can be .true.', 1)
IF (modenum < 0) CALL errore ('phq_readin', ' Wrong modenum ', 1)
IF (dek <= 0.d0) CALL errore ( 'phq_readin', ' Wrong dek ', 1)
!
!
elph_tetra = 0
elph_epw=.false.
SELECT CASE( trim( electron_phonon ) )
CASE( 'simple' )
elph=.true.
elph_mat=.false.
elph_simple=.true.
elph_epa=.false.
CASE( 'epa' )
elph=.true.
elph_mat=.false.
elph_simple=.false.
elph_epa=.true.
CASE( 'Wannier' )
elph=.true.
elph_mat=.true.
elph_simple=.false.
elph_epa=.false.
auxdvscf=trim(fildvscf)
CASE( 'interpolated' )
elph=.true.
elph_mat=.false.
elph_simple=.false.
elph_epa=.false.
! YAMBO >
CASE( 'yambo' )
elph=.true.
elph_mat=.false.
elph_simple=.false.
elph_epa=.false.
elph_yambo=.true.
nogg=.true.
auxdvscf=trim(fildvscf)
CASE( 'dvscf' )
elph=.false.
elph_mat=.false.
elph_simple=.false.
elph_epa=.false.
elph_yambo=.false.
dvscf_yambo=.true.
nogg=.true.
auxdvscf=trim(fildvscf)
! YAMBO <
CASE( 'lambda_tetra' )
elph=.true.
elph_mat=.false.
elph_simple=.false.
trans = .false.
elph_tetra = 1
CASE( 'gamma_tetra' )
elph=.true.
elph_mat=.false.
elph_simple=.false.
trans = .false.
elph_tetra = 2
CASE( 'scdft_input' )
elph=.true.
elph_mat=.false.
elph_simple=.false.
trans = .false.
elph_tetra = 3
CASE( 'ahc' )
elph = .true.
elph_ahc = .true.
elph_mat = .false.
elph_simple = .false.
elph_epa = .false.
trans = .false.
nogg = .true.
CASE( 'epw' )
elph=.true.
elph_mat=.false.
elph_simple=.false.
elph_epa=.false.
elph_epw=.true.
CASE DEFAULT
elph=.false.
elph_mat=.false.
elph_simple=.false.
elph_epa=.false.
END SELECT
! YAMBO >
IF (.not.elph_yambo.and..not.dvscf_yambo) then
! YAMBO <
IF (qplot.AND..NOT.ldisp) CALL errore('phq_readin','qplot requires ldisp=.true.',1)
!
ENDIF
IF (ldisp.AND.only_init.AND.(.NOT.lqdir)) &
CALL errore('phq_readin', &
'only_init=.TRUE. requires lqdir=.TRUE. or data are lost',1)
epsil = epsil .OR. lraman .OR. elop
IF (modenum /= 0) search_sym=.FALSE.
IF (elph_mat .OR. elph_ahc) THEN
trans = .FALSE.
ELSEIF (.NOT. elph) THEN
trans = trans .OR. ldisp
ENDIF
!
! Set default value for fildrho and fildvscf if they are required
IF ( (lraman.OR.elop.OR.drho_star%open) .AND. fildrho == ' ') fildrho = 'drho'
IF ( (elph_mat.OR.dvscf_star%open) .AND. fildvscf == ' ') fildvscf = 'dvscf'
!
! We can calculate dielectric, raman or elop tensors and no Born effective
! charges dF/dE, but we cannot calculate Born effective charges dF/dE
! without epsil.
!
IF (zeu) zeu = epsil
!
! reads the q point (just if ldisp = .false.)
!
IF (meta_ionode) THEN
ios = 0
IF (qplot) THEN
READ (qestdin, *, iostat = ios) nqaux
ELSE
IF (.NOT. ldisp) READ (qestdin, *, iostat = ios) (xq (ipol), ipol=1,3)
ENDIF
END IF
CALL mp_bcast(ios, meta_ionode_id, world_comm )
CALL errore ('phq_readin', 'reading xq', ABS (ios) )
IF (qplot) THEN
CALL mp_bcast(nqaux, meta_ionode_id, world_comm )
ALLOCATE(xqaux(3,nqaux))
ALLOCATE(wqaux(nqaux))
IF (meta_ionode) THEN
DO iq=1, nqaux
READ (qestdin, *, iostat = ios) (xqaux (ipol,iq), ipol=1,3), wqaux(iq)
ENDDO
ENDIF
CALL mp_bcast(ios, meta_ionode_id, world_comm )
CALL errore ('phq_readin', 'reading xq', ABS (ios) )
CALL mp_bcast(xqaux, meta_ionode_id, world_comm )
CALL mp_bcast(wqaux, meta_ionode_id, world_comm )
ELSE
CALL mp_bcast(xq, meta_ionode_id, world_comm )
ENDIF
IF (.NOT.ldisp) THEN
lgamma = xq (1) .EQ.0.D0.AND.xq (2) .EQ.0.D0.AND.xq (3) .EQ.0.D0
IF ( (epsil.OR.zue.or.lraman.or.elop) .AND..NOT.lgamma) &
CALL errore ('phq_readin', 'gamma is needed for elec.field', 1)
ENDIF
IF (zue.AND..NOT.trans) CALL errore ('phq_readin', 'trans must be &
&.t. for Zue calc.', 1)
IF (trans.AND.(lrpa.OR.lnoloc)) CALL errore('phq_readin', &
'only dielectric constant with lrpa or lnoloc',1)
IF (lrpa.or.lnoloc) THEN
zeu=.FALSE.
lraman=.FALSE.
elop = .FALSE.
ENDIF
!
! dvscf_interpolate
!
IF (ldvscf_interpolate) THEN
!
IF (wpot_dir == ' ') wpot_dir = TRIM(tmp_dir) // "w_pot/"
wpot_dir = trimcheck(wpot_dir)
!
IF (do_charge_neutral .AND. (.NOT. do_long_range)) THEN
WRITE(stdout, '(5x,a)') 'charge neutrality for dvscf_interpolate is &
& meaningful only if do_long_range is true.'
WRITE(stdout, '(5x,a)') 'Set do_charge_neutral = .false.'
do_charge_neutral = .FALSE.
ENDIF
!
ENDIF
!
IF (trans .AND. ldvscf_interpolate) CALL errore ('phq_readin', &
'ldvscf_interpolate should be used only when trans = .false.', 1)
IF (domag .AND. ldvscf_interpolate) CALL errore ('phq_readin', &
'ldvscf_interpolate and magnetism not implemented', 1)
IF (okpaw .AND. ldvscf_interpolate) CALL errore ('phq_readin', &
'PAW and ldvscf_interpolate not tested.', 1)
!
! AHC e-ph coupling
!
IF (elph_ahc) THEN
!
IF (ahc_nbnd <= 0) CALL errore('phq_readin', &
'ahc_nbnd must be specified as a positive integer', 1)
IF (ahc_nbndskip < 0) CALL errore('phq_readin', &
'ahc_nbndskip cannot be negative', 1)
!
IF (ahc_dir == ' ') ahc_dir = TRIM(tmp_dir) // "ahc_dir/"
ahc_dir = trimcheck(ahc_dir)
!
ENDIF ! elph_ahc
!
IF (elph_ahc .AND. trans) CALL errore ('phq_readin', &
'elph_ahc can be used only when trans = .false.', 1)
!
! reads the frequencies ( just if fpol = .true. )
!
IF ( fpol ) THEN
IF ( .NOT. epsil) CALL errore ('phq_readin', &
'fpol=.TRUE. needs epsil=.TRUE.', 1 )
nfs=0
IF (meta_ionode) THEN
READ (qestdin, *, iostat = ios) card
IF ( TRIM(card)=='FREQUENCIES'.OR. &
TRIM(card)=='frequencies'.OR. &
TRIM(card)=='Frequencies') THEN
READ (qestdin, *, iostat = ios) nfs
ENDIF
ENDIF
CALL mp_bcast(ios, meta_ionode_id, world_comm )
CALL errore ('phq_readin', 'reading number of FREQUENCIES', ABS(ios) )
CALL mp_bcast(nfs, meta_ionode_id, world_comm )
if (nfs < 1) call errore('phq_readin','Too few frequencies',1)
ALLOCATE(fiu(nfs))
IF (meta_ionode) THEN
IF ( TRIM(card) == 'FREQUENCIES' .OR. &
TRIM(card) == 'frequencies' .OR. &
TRIM(card) == 'Frequencies' ) THEN
DO i = 1, nfs
READ (qestdin, *, iostat = ios) fiu(i)
END DO
END IF
END IF
CALL mp_bcast(ios, meta_ionode_id, world_comm )
CALL errore ('phq_readin', 'reading FREQUENCIES card', ABS(ios) )
CALL mp_bcast(fiu, meta_ionode_id, world_comm )
ELSE
nfs=1
ALLOCATE(fiu(1))
fiu=0.0_DP
END IF
!
!
! Here we finished the reading of the input file.
! Now allocate space for pwscf variables, read and check them.
!
! amass will be read again from file:
! save its content in auxiliary variables
!
ALLOCATE ( amass_input( SIZE(amass) ) )
amass_input(:)= amass(:)
!
tmp_dir_save=tmp_dir
tmp_dir_ph= trimcheck( TRIM (tmp_dir) // '_ph' // int_to_char(my_image_id) )
CALL check_tempdir ( tmp_dir_ph, exst, parallelfs )
tmp_dir_phq=tmp_dir_ph
ext_restart=.FALSE.
ext_recover=.FALSE.
rec_code_read=-1000
IF (recover) THEN
!
! With a recover run we read here the mesh of q points, the current iq,
! and the current frequency
!
CALL ph_readfile('init', 0, 0, ierr)
CALL ph_readfile('status_ph', 0, 0, ierr1)
!
! If some error occured here, we cannot recover the run
!
IF (ierr /= 0 .OR. ierr1 /= 0 ) THEN
write(stdout,'(5x,"Run is not recoverable starting from scratch")')
recover=.FALSE.
goto 1001
ENDIF
!
! We check if the bands and the information on the pw run are in the directory
! written by the phonon code for the current q point. If the file exists
! we read from there, otherwise use the information in tmp_dir.
!
IF (lqdir) THEN
tmp_dir_phq= trimcheck ( TRIM(tmp_dir_ph) // TRIM(prefix) // &
& '.q_' // int_to_char(current_iq) )
CALL check_restart_recover(ext_recover, ext_restart)
IF (.NOT.ext_recover.AND..NOT.ext_restart) tmp_dir_phq=tmp_dir_ph
ENDIF
!
filename=TRIM(tmp_dir_phq)//TRIM(prefix)//postfix//xmlpun_schema
IF (ionode) inquire (file =TRIM(filename), exist = exst)
!
CALL mp_bcast( exst, ionode_id, intra_image_comm )
!
! If this file exist we use it to recover the pw.x informations
!
IF (exst) tmp_dir=tmp_dir_phq
u_from_file=.true.
ENDIF
1001 CONTINUE
IF (qplot.AND..NOT.recover) THEN
IF (q2d) THEN
nqs=wqaux(2)*wqaux(3)
ALLOCATE(x_q(3,nqs))
ALLOCATE(wq(nqs))
CALL generate_k_in_plane(nqaux, xqaux, wqaux, x_q, wq, nqs)
ELSEIF (q_in_band_form) THEN
nqs=SUM(wqaux(1:nqaux-1))+1
DO i=1,nqaux-1
IF (wqaux(i)==0) nqs=nqs+1
ENDDO
ALLOCATE(x_q(3,nqs))
ALLOCATE(wq(nqs))
CALL generate_k_along_lines(nqaux, xqaux, wqaux, x_q, wq, nqs)
ELSE
nqs=nqaux
ALLOCATE(x_q(3,nqs))
ALLOCATE(wq(nqs))
wq(:)=wqaux(:)
x_q(:,1:nqs)=xqaux(:,1:nqs)
ENDIF
DEALLOCATE(xqaux)
DEALLOCATE(wqaux)
ALLOCATE(lgamma_iq(nqs))
DO iq=1, nqs
lgamma_iq(iq)= ( ABS(x_q(1,iq)) .LT. 1.0e-10_dp ) .AND. &
( ABS(x_q(2,iq)) .LT. 1.0e-10_dp ) .AND. &
( ABS(x_q(3,iq)) .LT. 1.0e-10_dp )
ENDDO
WRITE(stdout, '(//5x,"Dynamical matrices for q-points given in input")')
WRITE(stdout, '(5x,"(",i4,"q-points):")') nqs
WRITE(stdout, '(5x," N xq(1) xq(2) xq(3) " )')
DO iq = 1, nqs
WRITE(stdout, '(5x,i3, 3f14.9)') iq, x_q(1,iq), x_q(2,iq), x_q(3,iq)
END DO
ENDIF
!
IF (reduce_io) io_level=0
!
! DFPT+U: the occupation matrix ns is read via read_file
!
CALL read_file ( )
!
magnetic_sym=noncolin .AND. domag
!
! init_start_grid returns .true. if a new k-point grid is set from values
! read from input (this happens if nk1*nk2*nk3 > 0; otherwise reset_grid
! returns .false., leaves the current values, read in read_file, unchanged)
!
newgrid = reset_grid (nk1, nk2, nk3, k1, k2, k3)
if(newgrid.and.elph_mat)then
WRITE(stdout, '(//5x,"WARNING: Wannier elph do not use explicit new grid: nk1 nk2 nk3 ignored")')
newgrid=.false.
end if
!
tmp_dir=tmp_dir_save
!
IF (modenum > 3*nat) CALL errore ('phq_readin', ' Wrong modenum ', 2)
IF (gamma_only) CALL errore('phq_readin',&
'cannot start from pw.x data file using Gamma-point tricks',1)
IF (lda_plus_u) THEN
!
WRITE(stdout,'(/5x,a)') "Phonon calculation with DFPT+U; please cite"
WRITE(stdout,'(5x,a)') "A. Floris et al., Phys. Rev. B 84, 161102(R) (2011)"
WRITE(stdout,'(5x,a)') "A. Floris et al., Phys. Rev. B 101, 064305 (2020)"
WRITE(stdout,'(5x,a)') "in publications or presentations arising from this work."
!
IF (Hubbard_projectors.NE."atomic") CALL errore("phq_readin", &
" The phonon code for this Hubbard projectors type is not implemented",1)
IF (lda_plus_u_kind.NE.0) CALL errore("phq_readin", &
" The phonon code for this lda_plus_u_kind is not implemented",1)
IF (elph) CALL errore("phq_readin", &
" Electron-phonon with Hubbard U is not supported",1)
IF (lraman) CALL errore("phq_readin", &
" The phonon code with Raman and Hubbard U is not implemented",1)
!
ENDIF
! checks
IF (elph_ahc .AND. domag) CALL errore ('phq_readin', &
'elph_ahc and magnetism not implemented', 1)
IF (elph_ahc .AND. okpaw) CALL errore ('phq_readin', &
'elph_ahc and PAW not tested.', 1)
IF (elph_ahc .AND. okvan) CALL errore ('phq_readin', &
'elph_ahc and PAW not tested.', 1)
IF (elph_ahc .AND. lda_plus_u) CALL errore ('phq_readin', &
'elph_ahc and lda_plus_u not tested.', 1)
IF (ts_vdw) CALL errore('phq_readin',&
'The phonon code with TS-VdW is not yet available',1)
IF (ldftd3) CALL errore('phq_readin',&
'The phonon code with Grimme''s DFT-D3 is not yet available',1)
IF ( xclib_dft_is('meta') ) CALL errore('phq_readin',&
'The phonon code with meta-GGA functionals is not yet available',1)
IF ( xclib_dft_is('hybrid') ) CALL errore('phq_readin',&
'The phonon code with hybrid functionals is not yet available',1)
IF (okpaw.and.(lraman.or.elop)) CALL errore('phq_readin',&
'The phonon code with paw and raman or elop is not yet available',1)
IF (magnetic_sym) THEN
WRITE(stdout,'(/5x,a)') "Phonon calculation in the non-collinear magnetic case;"
WRITE(stdout,'(5x,a)') "please cite A. Urru and A. Dal Corso, Phys. Rev. B 100,"
WRITE(stdout,'(5x,a)') "045115 (2019) for the theoretical background."
IF (okpaw) CALL errore('phq_readin',&
'The phonon code with paw and domag is not available yet',1)
ENDIF
IF (okvan.and.(lraman.or.elop)) CALL errore('phq_readin',&
'The phonon code with US-PP and raman or elop not yet available',1)
IF (noncolin.and.(lraman.or.elop)) CALL errore('phq_readin', &
'lraman, elop, and noncolin not programmed',1)
IF ( (noncolin.or.lspinorb) .and. elph ) CALL errore('phq_readin', &
'el-ph coefficient calculation disabled in noncolinear/spinorbit case',1)
IF (lmovecell) CALL errore('phq_readin', &
'The phonon code is not working after vc-relax',1)
if(elph_mat.and.fildvscf.eq.' ') call errore('phq_readin',&
'el-ph with wannier requires fildvscf',1)
IF(elph_mat.and.npool.ne.1) call errore('phq_readin',&
'el-ph with wannier : pools not implemented',1)
IF(elph.and.nimage>1) call errore('phq_readin',&
'el-ph with images not implemented',1)
IF (elph.OR.fildvscf /= ' ') lqdir=.TRUE.
IF(dvscf_star%open.and.nimage>1) CALL errore('phq_readin',&
'dvscf_star with image parallelization is not yet available',1)
IF(drho_star%open.and.nimage>1) CALL errore('phq_readin',&
'drho_star with image parallelization is not yet available',1)
IF (lda_plus_u .AND. read_dns_bare .AND. ldisp) lqdir=.TRUE.
IF (.NOT.ldisp) lqdir=.FALSE.
IF (i_cons /= 0) &
CALL errore('phq_readin',&
'The phonon code with constrained magnetization is not yet available',1)
IF (two_fermi_energies .AND. (ltetra .OR. lgauss)) &
CALL errore('phq_readin',&
'The phonon code with two fermi energies is not available for metals',1)
IF (tqr) CALL errore('phq_readin',&
'The phonon code with Q in real space not available',1)
IF (start_irr < 0 ) CALL errore('phq_readin', 'wrong start_irr',1)
!
IF (start_q <= 0 ) CALL errore('phq_readin', 'wrong start_q',1)
!
! the dynamical matrix is written in xml format if fildyn ends in
! .xml or in the noncollinear case.
!
xmldyn=has_xml(fildyn)
!IF (noncolin) xmldyn=.TRUE.
!
! If a band structure calculation needs to be done do not open a file
! for k point
!
restart = recover
!
! set masses to values read from input, if available;
! leave values read from file otherwise
!
DO it = 1, ntyp
IF (amass_input(it) < 0.0_DP) amass_input(it)= &
atom_weight(atomic_number(TRIM(atm(it))))
IF (amass_input(it) > 0.D0) amass(it) = amass_input(it)
IF (amass(it) <= 0.D0) CALL errore ('phq_readin', 'Wrong masses', it)
ENDDO
DEALLOCATE (amass_input)
lgamma_gamma=.FALSE.
IF (.NOT.ldisp) THEN
IF (nkstot==1.OR.(nkstot==2.AND.nspin==2)) THEN
lgamma_gamma=(lgamma.AND.(ABS(xk(1,1))<1.D-12) &
.AND.(ABS(xk(2,1))<1.D-12) &
.AND.(ABS(xk(3,1))<1.D-12) )
ENDIF
IF (nogg) lgamma_gamma=.FALSE.
IF ((nat_todo /= 0) .and. lgamma_gamma) CALL errore( &
'phq_readin', 'gamma_gamma tricks with nat_todo &
& not available. Use nogg=.true.', 1)
IF (lda_plus_u .AND. lgamma_gamma) THEN
WRITE(stdout,'(5x,a)') "DFPT+U does not support k=gamma and q=gamma tricks: disabling them..."
lgamma_gamma=.FALSE.
ENDIF
!
IF (nimage > 1 .AND. lgamma_gamma) CALL errore( &
'phq_readin','gamma_gamma tricks with images not implemented',1)
IF (lgamma) THEN
nksq = nks
ELSE
nksq = nks / 2
ENDIF
ENDIF
IF (lgamma_gamma.AND.ldiag) CALL errore('phq_readin','incompatible flags',1)
IF (lgamma_gamma.AND.elph ) CALL errore('phq_readin','lgamma_gamma and electron-phonon are incompatible',1)
!
IF (tfixed_occ) &
CALL errore('phq_readin','phonon with arbitrary occupations not tested',1)
!
!YAMBO >
IF (elph .AND. .NOT.(lgauss .OR. ltetra) &
.AND. .NOT. (elph_yambo .OR. elph_ahc .OR. elph_epw).and..not.elph_mat) &
CALL errore ('phq_readin', 'Electron-phonon only for metals', 1)
!YAMBO <
IF (elph .AND. fildvscf.EQ.' ' .AND. .NOT. ldvscf_interpolate) &
CALL errore ('phq_readin', 'El-ph needs a DeltaVscf file', 1)
! There might be other variables in the input file which describe
! partial computation of the dynamical matrix. Read them here
!
CALL allocate_part ( nat )
!
IF ( nat_todo < 0 .OR. nat_todo > nat ) &
CALL errore ('phq_readin', 'nat_todo is wrong', 1)
IF (nat_todo.NE.0) THEN
IF (meta_ionode) READ (qestdin, *, iostat = ios) (atomo (na), na=1,nat_todo)
CALL mp_bcast(ios, meta_ionode_id, world_comm )
CALL errore ('phq_readin', 'reading atoms', ABS (ios) )
CALL mp_bcast(atomo, meta_ionode_id, world_comm )
ENDIF
nat_todo_input=nat_todo
!
! end of reading, close unit qestdin, remove temporary input file if existing
! FIXME: closing input file here breaks alpha2F.x that reads what follows
!!! IF (meta_ionode) ios = close_input_file ()
IF (epsil.AND.(lgauss .OR. ltetra)) &
CALL errore ('phq_readin', 'no elec. field with metals', 1)
IF (modenum > 0) THEN
IF ( ldisp ) &
CALL errore('phq_readin','Dispersion calculation and &
& single mode calculation not possibile !',1)
nat_todo = 0
ENDIF
!
! Tetrahedron method for DFPT and El-Ph
!
IF(ltetra .AND. tetra_type == 0) &
& CALL errore ('phq_readin', 'DFPT with the Blochl correction is not implemented', 1)
!
IF(.NOT. ltetra .AND. elph_tetra /= 0) &
& CALL errore ('phq_readin', '"electron_phonon" and "occupation" are inconsistent.', 1)
!
IF (modenum > 0 .OR. lraman ) lgamma_gamma=.FALSE.
IF (.NOT.lgamma_gamma) asr=.FALSE.
!
IF ((ldisp.AND..NOT.qplot) .AND. &
(nq1 .LE. 0 .OR. nq2 .LE. 0 .OR. nq3 .LE. 0)) &
CALL errore('phq_readin','nq1, nq2, and nq3 must be greater than 0',1)
CALL save_ph_input_variables()
!
RETURN
!
END SUBROUTINE phq_readin2
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/slatps.f | 24 | 24381 | *> \brief \b SLATPS solves a triangular system of equations with the matrix held in packed storage.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLATPS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slatps.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slatps.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slatps.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
* CNORM, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, NORMIN, TRANS, UPLO
* INTEGER INFO, N
* REAL SCALE
* ..
* .. Array Arguments ..
* REAL AP( * ), CNORM( * ), X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLATPS solves one of the triangular systems
*>
*> A *x = s*b or A**T*x = s*b
*>
*> with scaling to prevent overflow, where A is an upper or lower
*> triangular matrix stored in packed form. Here A**T denotes the
*> transpose of A, x and b are n-element vectors, and s is a scaling
*> factor, usually less than or equal to 1, chosen so that the
*> components of x will be less than the overflow threshold. If the
*> unscaled problem will not cause overflow, the Level 2 BLAS routine
*> STPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
*> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A is upper or lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the operation applied to A.
*> = 'N': Solve A * x = s*b (No transpose)
*> = 'T': Solve A**T* x = s*b (Transpose)
*> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in] NORMIN
*> \verbatim
*> NORMIN is CHARACTER*1
*> Specifies whether CNORM has been set or not.
*> = 'Y': CNORM contains the column norms on entry
*> = 'N': CNORM is not set on entry. On exit, the norms will
*> be computed and stored in CNORM.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is REAL array, dimension (N*(N+1)/2)
*> The upper or lower triangular matrix A, packed columnwise in
*> a linear array. The j-th column of A is stored in the array
*> AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is REAL array, dimension (N)
*> On entry, the right hand side b of the triangular system.
*> On exit, X is overwritten by the solution vector x.
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is REAL
*> The scaling factor s for the triangular system
*> A * x = s*b or A**T* x = s*b.
*> If SCALE = 0, the matrix A is singular or badly scaled, and
*> the vector x is an exact or approximate solution to A*x = 0.
*> \endverbatim
*>
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is REAL array, dimension (N)
*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup realOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> A rough bound on x is computed; if that is less than overflow, STPSV
*> is called, otherwise, specific code is used which checks for possible
*> overflow or divide-by-zero at every operation.
*>
*> A columnwise scheme is used for solving A*x = b. The basic algorithm
*> if A is lower triangular is
*>
*> x[1:n] := b[1:n]
*> for j = 1, ..., n
*> x(j) := x(j) / A(j,j)
*> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
*> end
*>
*> Define bounds on the components of x after j iterations of the loop:
*> M(j) = bound on x[1:j]
*> G(j) = bound on x[j+1:n]
*> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*>
*> Then for iteration j+1 we have
*> M(j+1) <= G(j) / | A(j+1,j+1) |
*> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
*> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*>
*> where CNORM(j+1) is greater than or equal to the infinity-norm of
*> column j+1 of A, not counting the diagonal. Hence
*>
*> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
*> 1<=i<=j
*> and
*>
*> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
*> 1<=i< j
*>
*> Since |x(j)| <= M(j), we use the Level 2 BLAS routine STPSV if the
*> reciprocal of the largest M(j), j=1,..,n, is larger than
*> max(underflow, 1/overflow).
*>
*> The bound on x(j) is also used to determine when a step in the
*> columnwise method can be performed without fear of overflow. If
*> the computed bound is greater than a large constant, x is scaled to
*> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
*> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*>
*> Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
*> algorithm for A upper triangular is
*>
*> for j = 1, ..., n
*> x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
*> end
*>
*> We simultaneously compute two bounds
*> G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
*> M(j) = bound on x(i), 1<=i<=j
*>
*> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
*> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
*> Then the bound on x(j) is
*>
*> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*>
*> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
*> 1<=i<=j
*>
*> and we can safely call STPSV if 1/M(n) and 1/G(n) are both greater
*> than max(underflow, 1/overflow).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
$ CNORM, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER DIAG, NORMIN, TRANS, UPLO
INTEGER INFO, N
REAL SCALE
* ..
* .. Array Arguments ..
REAL AP( * ), CNORM( * ), X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, NOUNIT, UPPER
INTEGER I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
REAL BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
$ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
REAL SASUM, SDOT, SLAMCH
EXTERNAL LSAME, ISAMAX, SASUM, SDOT, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SSCAL, STPSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
*
* Test the input parameters.
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
$ LSAME( NORMIN, 'N' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLATPS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Determine machine dependent parameters to control overflow.
*
SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
SCALE = ONE
*
IF( LSAME( NORMIN, 'N' ) ) THEN
*
* Compute the 1-norm of each column, not including the diagonal.
*
IF( UPPER ) THEN
*
* A is upper triangular.
*
IP = 1
DO 10 J = 1, N
CNORM( J ) = SASUM( J-1, AP( IP ), 1 )
IP = IP + J
10 CONTINUE
ELSE
*
* A is lower triangular.
*
IP = 1
DO 20 J = 1, N - 1
CNORM( J ) = SASUM( N-J, AP( IP+1 ), 1 )
IP = IP + N - J + 1
20 CONTINUE
CNORM( N ) = ZERO
END IF
END IF
*
* Scale the column norms by TSCAL if the maximum element in CNORM is
* greater than BIGNUM.
*
IMAX = ISAMAX( N, CNORM, 1 )
TMAX = CNORM( IMAX )
IF( TMAX.LE.BIGNUM ) THEN
TSCAL = ONE
ELSE
TSCAL = ONE / ( SMLNUM*TMAX )
CALL SSCAL( N, TSCAL, CNORM, 1 )
END IF
*
* Compute a bound on the computed solution vector to see if the
* Level 2 BLAS routine STPSV can be used.
*
J = ISAMAX( N, X, 1 )
XMAX = ABS( X( J ) )
XBND = XMAX
IF( NOTRAN ) THEN
*
* Compute the growth in A * x = b.
*
IF( UPPER ) THEN
JFIRST = N
JLAST = 1
JINC = -1
ELSE
JFIRST = 1
JLAST = N
JINC = 1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 50
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, G(0) = max{x(i), i=1,...,n}.
*
GROW = ONE / MAX( XBND, SMLNUM )
XBND = GROW
IP = JFIRST*( JFIRST+1 ) / 2
JLEN = N
DO 30 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 50
*
* M(j) = G(j-1) / abs(A(j,j))
*
TJJ = ABS( AP( IP ) )
XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
ELSE
*
* G(j) could overflow, set GROW to 0.
*
GROW = ZERO
END IF
IP = IP + JINC*JLEN
JLEN = JLEN - 1
30 CONTINUE
GROW = XBND
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
DO 40 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 50
*
* G(j) = G(j-1)*( 1 + CNORM(j) )
*
GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
40 CONTINUE
END IF
50 CONTINUE
*
ELSE
*
* Compute the growth in A**T * x = b.
*
IF( UPPER ) THEN
JFIRST = 1
JLAST = N
JINC = 1
ELSE
JFIRST = N
JLAST = 1
JINC = -1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 80
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, M(0) = max{x(i), i=1,...,n}.
*
GROW = ONE / MAX( XBND, SMLNUM )
XBND = GROW
IP = JFIRST*( JFIRST+1 ) / 2
JLEN = 1
DO 60 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 80
*
* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
*
XJ = ONE + CNORM( J )
GROW = MIN( GROW, XBND / XJ )
*
* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
*
TJJ = ABS( AP( IP ) )
IF( XJ.GT.TJJ )
$ XBND = XBND*( TJJ / XJ )
JLEN = JLEN + 1
IP = IP + JINC*JLEN
60 CONTINUE
GROW = MIN( GROW, XBND )
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
DO 70 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 80
*
* G(j) = ( 1 + CNORM(j) )*G(j-1)
*
XJ = ONE + CNORM( J )
GROW = GROW / XJ
70 CONTINUE
END IF
80 CONTINUE
END IF
*
IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
*
* Use the Level 2 BLAS solve if the reciprocal of the bound on
* elements of X is not too small.
*
CALL STPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
ELSE
*
* Use a Level 1 BLAS solve, scaling intermediate results.
*
IF( XMAX.GT.BIGNUM ) THEN
*
* Scale X so that its components are less than or equal to
* BIGNUM in absolute value.
*
SCALE = BIGNUM / XMAX
CALL SSCAL( N, SCALE, X, 1 )
XMAX = BIGNUM
END IF
*
IF( NOTRAN ) THEN
*
* Solve A * x = b
*
IP = JFIRST*( JFIRST+1 ) / 2
DO 100 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) / A(j,j), scaling x if necessary.
*
XJ = ABS( X( J ) )
IF( NOUNIT ) THEN
TJJS = AP( IP )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 95
END IF
TJJ = ABS( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by 1/b(j).
*
REC = ONE / XJ
CALL SSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = X( J ) / TJJS
XJ = ABS( X( J ) )
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
* to avoid overflow when dividing by A(j,j).
*
REC = ( TJJ*BIGNUM ) / XJ
IF( CNORM( J ).GT.ONE ) THEN
*
* Scale by 1/CNORM(j) to avoid overflow when
* multiplying x(j) times column j.
*
REC = REC / CNORM( J )
END IF
CALL SSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = X( J ) / TJJS
XJ = ABS( X( J ) )
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0, and compute a solution to A*x = 0.
*
DO 90 I = 1, N
X( I ) = ZERO
90 CONTINUE
X( J ) = ONE
XJ = ONE
SCALE = ZERO
XMAX = ZERO
END IF
95 CONTINUE
*
* Scale x if necessary to avoid overflow when adding a
* multiple of column j of A.
*
IF( XJ.GT.ONE ) THEN
REC = ONE / XJ
IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
*
* Scale x by 1/(2*abs(x(j))).
*
REC = REC*HALF
CALL SSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
END IF
ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
*
* Scale x by 1/2.
*
CALL SSCAL( N, HALF, X, 1 )
SCALE = SCALE*HALF
END IF
*
IF( UPPER ) THEN
IF( J.GT.1 ) THEN
*
* Compute the update
* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
*
CALL SAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
$ 1 )
I = ISAMAX( J-1, X, 1 )
XMAX = ABS( X( I ) )
END IF
IP = IP - J
ELSE
IF( J.LT.N ) THEN
*
* Compute the update
* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
*
CALL SAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
$ X( J+1 ), 1 )
I = J + ISAMAX( N-J, X( J+1 ), 1 )
XMAX = ABS( X( I ) )
END IF
IP = IP + N - J + 1
END IF
100 CONTINUE
*
ELSE
*
* Solve A**T * x = b
*
IP = JFIRST*( JFIRST+1 ) / 2
JLEN = 1
DO 140 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) - sum A(k,j)*x(k).
* k<>j
*
XJ = ABS( X( J ) )
USCAL = TSCAL
REC = ONE / MAX( XMAX, ONE )
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
* If x(j) could overflow, scale x by 1/(2*XMAX).
*
REC = REC*HALF
IF( NOUNIT ) THEN
TJJS = AP( IP )*TSCAL
ELSE
TJJS = TSCAL
END IF
TJJ = ABS( TJJS )
IF( TJJ.GT.ONE ) THEN
*
* Divide by A(j,j) when scaling x if A(j,j) > 1.
*
REC = MIN( ONE, REC*TJJ )
USCAL = USCAL / TJJS
END IF
IF( REC.LT.ONE ) THEN
CALL SSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
*
SUMJ = ZERO
IF( USCAL.EQ.ONE ) THEN
*
* If the scaling needed for A in the dot product is 1,
* call SDOT to perform the dot product.
*
IF( UPPER ) THEN
SUMJ = SDOT( J-1, AP( IP-J+1 ), 1, X, 1 )
ELSE IF( J.LT.N ) THEN
SUMJ = SDOT( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
END IF
ELSE
*
* Otherwise, use in-line code for the dot product.
*
IF( UPPER ) THEN
DO 110 I = 1, J - 1
SUMJ = SUMJ + ( AP( IP-J+I )*USCAL )*X( I )
110 CONTINUE
ELSE IF( J.LT.N ) THEN
DO 120 I = 1, N - J
SUMJ = SUMJ + ( AP( IP+I )*USCAL )*X( J+I )
120 CONTINUE
END IF
END IF
*
IF( USCAL.EQ.TSCAL ) THEN
*
* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
* was not used to scale the dotproduct.
*
X( J ) = X( J ) - SUMJ
XJ = ABS( X( J ) )
IF( NOUNIT ) THEN
*
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
TJJS = AP( IP )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 135
END IF
TJJ = ABS( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale X by 1/abs(x(j)).
*
REC = ONE / XJ
CALL SSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = X( J ) / TJJS
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
REC = ( TJJ*BIGNUM ) / XJ
CALL SSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = X( J ) / TJJS
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0, and compute a solution to A**T*x = 0.
*
DO 130 I = 1, N
X( I ) = ZERO
130 CONTINUE
X( J ) = ONE
SCALE = ZERO
XMAX = ZERO
END IF
135 CONTINUE
ELSE
*
* Compute x(j) := x(j) / A(j,j) - sumj if the dot
* product has already been divided by 1/A(j,j).
*
X( J ) = X( J ) / TJJS - SUMJ
END IF
XMAX = MAX( XMAX, ABS( X( J ) ) )
JLEN = JLEN + 1
IP = IP + JINC*JLEN
140 CONTINUE
END IF
SCALE = SCALE / TSCAL
END IF
*
* Scale the column norms by 1/TSCAL for return.
*
IF( TSCAL.NE.ONE ) THEN
CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
END IF
*
RETURN
*
* End of SLATPS
*
END
| gpl-2.0 |
QEF/q-e | PW/src/multable.f90 | 2 | 1579 | !
! Copyright (C) 2001-2010 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
SUBROUTINE multable( nsym, s, table )
!-----------------------------------------------------------------------
!! Checks that {S} is a group and calculates multiplication table
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: nsym
!! the number of symmetry operations
INTEGER, INTENT(IN) :: s(3,3,nsym)
!! rotation matrix (in crystal axis, represented by integers)
INTEGER, INTENT(OUT) :: table(48,48)
! multiplication table: S(n)*S(m) = S( table(n,m) )
!
! ... local variables
!
INTEGER :: isym, jsym, ksym, ss(3,3)
LOGICAL :: found, smn
!
!
DO isym = 1, nsym
DO jsym = 1, nsym
!
ss = MATMUL( s(:,:,jsym), s(:,:,isym) )
!
! ... here we check that the input matrices really form a group
! and we set the multiplication table
!
found = .FALSE.
DO ksym = 1, nsym
smn = ALL( s(:,:,ksym) == ss(:,:) )
IF (smn) THEN
IF (found) CALL errore( 'multable', 'Not a group', 1 )
found = .TRUE.
table (jsym,isym) = ksym
ENDIF
ENDDO
IF ( .NOT. found) CALL errore( 'multable', ' Not a group', 2 )
!
ENDDO
ENDDO
!
!
RETURN
!
END SUBROUTINE multable
| gpl-2.0 |
omni-compiler/omni-compiler | tests/XMP/global-view/loop/F/292.f90 | 1 | 1629 | program main
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p
integer a(10), sa, ia
!$xmp align a(i) with t(i)
!$xmp task on p(1)
a(1) = 2
a(2) = 1
a(3) = 4
a(4) = 6
a(5) = 3
!$xmp end task
!$xmp task on p(2)
a(6) = 2
a(7) = 6
a(8) = 3
a(9) = 3
a(10) = 1
!$xmp end task
! FIRST MAX
sa = 0
!$xmp loop on t(i) reduction(firstmax:sa/ia/)
do i=1, 10
if(sa .lt. a(i)) then
ia = i
sa = a(i)
endif
enddo
!$xmp task on p(1)
if(ia == 4 .and. sa == 6) then
write(*,*) "PASS"
else
write(*,*) "ERROR"
call exit(1)
endif
!$xmp end task
! LAST MAX
sa = 0
!$xmp loop on t(i) reduction(lastmax:sa/ia/)
do i=1, 10
if(sa .lt. a(i)) then
ia = i
sa = a(i)
endif
enddo
!$xmp task on p(1)
if(ia == 7 .and. sa == 6) then
write(*,*) "PASS"
else
write(*,*) "ERROR"
call exit(1)
endif
!$xmp end task
! FIRST MIN
sa = 10
!$xmp loop on t(i) reduction(firstmin:sa/ia/)
do i=1, 10
if(sa .gt. a(i)) then
ia = i
sa = a(i)
endif
enddo
!$xmp task on p(1)
if(ia == 2 .and. sa == 1) then
write(*,*) "PASS"
else
write(*,*) "ERROR"
call exit(1)
endif
!$xmp end task
! LAST MIN
sa = 10
!$xmp loop on t(i) reduction(lastmin:sa/ia/)
do i=1, 10
if(sa .gt. a(i)) then
ia = i
sa = a(i)
endif
enddo
!$xmp task on p(1)
if(ia == 10 .and. sa == 1) then
write(*,*) "PASS"
else
write(*,*) "ERROR"
call exit(1)
endif
!$xmp end task
end program main
| lgpl-3.0 |
QEF/q-e | PP/src/projwfc_box.f90 | 2 | 14764 | !
! Copyright (C) 2001-2013 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
! real-space local DOS code courtesy of Guido Fratesi
!
MODULE projections_ldos
USE kinds, ONLY : DP
REAL (DP), ALLOCATABLE :: proj (:,:,:)
END MODULE projections_ldos
!
!-----------------------------------------------------------------------
SUBROUTINE projwave_boxes( filpdos, filproj, n_proj_boxes, irmin, irmax, plotboxes )
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE io_global, ONLY : stdout, ionode
USE run_info, ONLY: title
USE atom
USE ions_base, ONLY : zv, tau, nat, ntyp => nsp, ityp, atm
USE basis, ONLY : natomwfc
USE cell_base
USE constants, ONLY: rytoev
USE gvect
USE gvecs, ONLY: dual
USE gvecw, ONLY: ecutwfc
USE klist, ONLY: xk, nks, nkstot, ngk, igk_k
USE lsda_mod, ONLY: nspin, isk, current_spin, lsda
USE wvfct, ONLY: npwx, nbnd, et, wg
USE control_flags, ONLY: gamma_only
USE uspp, ONLY: okvan
USE noncollin_module, ONLY: noncolin, npol
USE wavefunctions, ONLY: evc, psic, psic_nc
USE io_files, ONLY : restart_dir
USE scf, ONLY : rho
USE projections_ldos, ONLY : proj
USE fft_base, ONLY : dfftp
USE scatter_mod, ONLY : scatter_grid
USE fft_interfaces, ONLY : invfft
USE mp_pools, ONLY : intra_pool_comm
USE mp, ONLY : mp_sum
USE pw_restart_new, ONLY : read_collected_wfc
!
!
IMPLICIT NONE
!
INTEGER, PARAMETER :: N_MAX_BOXES = 999
CHARACTER (len=256) :: filpdos
CHARACTER (len=*) :: filproj
INTEGER :: n_proj_boxes, irmin(3,*), irmax(3,*), nri(3)
LOGICAL :: plotboxes
!
INTEGER :: ik, ibnd, i, ir, ig, ipol, npw
INTEGER :: ibox, ir1, ir2, ir3, c_tab, is, iunproj
CHARACTER (len=33) :: filextension
CHARACTER (len=256):: fileout
COMPLEX(DP), ALLOCATABLE :: caux(:)
REAL(DP), ALLOCATABLE :: thetabox(:), raux(:), thetathisproc(:,:), union(:), intersection(:)
LOGICAL, ALLOCATABLE :: isInside(:,:)
REAL(DP), EXTERNAL :: DDOT
REAL(DP), ALLOCATABLE :: boxvolume(:), boxcharge(:)
!
WRITE( stdout, '(/5x,"Calling projwave_boxes .... ")')
IF ( gamma_only ) THEN
WRITE( stdout, '(5x,"gamma-point specific algorithms are used")')
ENDIF
!
IF (noncolin) THEN
WRITE( stdout, '(/5x,"Non spin-resolved DOS will be computed")')
ENDIF
!
IF (okvan) THEN
CALL errore( 'projwave_boxes', 'Augmentation contributions are currently not included to the DOS in boxes',-1)
ENDIF
!
IF ( ( n_proj_boxes > N_MAX_BOXES ) .or. ( n_proj_boxes < 1 ) ) &
CALL errore ('projwave_boxes', 'n_proj_boxes not correct', abs (n_proj_boxes) )
!
! ... Define functions with values 1.0
! ... on the specified boxes and 0.0 elsewhere.
!
ALLOCATE( thetabox (dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) )
!
ALLOCATE( thetathisproc(dfftp%nnr,1:n_proj_boxes) )
!
ALLOCATE ( isInside ( max(dfftp%nr1,dfftp%nr2,dfftp%nr3), 3 ) )
!
DO ibox = 1, n_proj_boxes
!
! A. Do the three directions independently:
nri(1)=dfftp%nr1
nri(2)=dfftp%nr2
nri(3)=dfftp%nr3
DO i = 1, 3
! boxes include the points in [irmin,irmax] if irmin<=irmax
! and the points in [1,irmax] and [irmin,nr] if irmin > irmax
irmin(i,ibox)=mod(irmin(i,ibox),nri(i))
IF (irmin(i,ibox)<=0) irmin(i,ibox)=irmin(i,ibox)+nri(i)
irmax(i,ibox)=mod(irmax(i,ibox),nri(i))
IF (irmax(i,ibox)<=0) irmax(i,ibox)=irmax(i,ibox)+nri(i)
DO ir = 1, nri(i)
IF (irmin(i,ibox)<=irmax(i,ibox)) THEN
isInside(ir,i)=(ir>=irmin(i,ibox)).and.(ir<=irmax(i,ibox))
ELSE
isInside(ir,i)=(ir>=irmin(i,ibox)).or. (ir<=irmax(i,ibox))
ENDIF
ENDDO
ENDDO
!
! B. Combine the conditions for the three directions to form a box
ir=0
DO ir3 = 1, dfftp%nr3
DO ir2 = 1, dfftp%nr2
DO ir1 = 1, dfftp%nr1
ir=ir+1
IF ( isInside(ir1,1) .and. &
isInside(ir2,2) .and. &
isInside(ir3,3) ) THEN
thetabox(ir)=1._DP
ELSE
thetabox(ir)=0._DP
ENDIF
ENDDO
ENDDO
!
ENDDO
!
! C. Output the functions thetabox in the XCrySDen format,
! so that the projection boxes can be visualised.
IF ( ionode .and. plotboxes ) THEN
filextension='.box#'
! 123456
c_tab = 6
IF (ibox < 10) THEN
WRITE (filextension( c_tab : c_tab ),'(i1)') ibox
c_tab = c_tab + 1
ELSEIF (ibox < 100) THEN
WRITE (filextension( c_tab : c_tab+1 ),'(i2)') ibox
c_tab = c_tab + 2
ELSEIF (ibox < 1000) THEN
WRITE (filextension( c_tab : c_tab+2 ),'(i3)') ibox
c_tab = c_tab + 3
ELSE
CALL errore('projwave_boxes',&
'file extension not supporting so many boxes', n_proj_boxes)
ENDIF
!
fileout = trim(filpdos)//trim(filextension)//'.xsf'
OPEN (4,file=fileout,form='formatted', status='unknown')
CALL xsf_struct (alat, at, nat, tau, atm, ityp, 4)
CALL xsf_fast_datagrid_3d(thetabox(1:dfftp%nr1x*dfftp%nr2x*dfftp%nr3x),&
dfftp%nr1, dfftp%nr2, dfftp%nr3, &
dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, at, alat, 4)
CLOSE (4)
!
ENDIF
!
#if defined(__MPI)
CALL scatter_grid ( dfftp, thetabox(:), thetathisproc(:,ibox) )
#else
thetathisproc(:,ibox) = thetabox(1:dfftp%nnr)
#endif
!
ENDDO
!
DEALLOCATE ( isInside )
DEALLOCATE ( thetabox )
!
!
! ... For each box output the volume and the electronic charge contained
!
ALLOCATE ( boxvolume (1:n_proj_boxes) )
ALLOCATE ( boxcharge (1:n_proj_boxes) )
ALLOCATE ( raux (dfftp%nnr) )
!
! A. Integrate the volume
DO ibox = 1, n_proj_boxes
boxvolume(ibox) = sum(thetathisproc(1:dfftp%nnr,ibox))
CALL mp_sum ( boxvolume(ibox) , intra_pool_comm )
ENDDO
!
! B1. Copy the total charge density to raux
IF (noncolin) THEN
CALL DCOPY (dfftp%nnr, rho%of_r, 1, raux, 1)
ELSE
CALL DCOPY (dfftp%nnr, rho%of_r (1, 1), 1, raux, 1)
ENDIF
!
! B2. Integrate the charge
! the correct integral has dv = omega/(nr1*nr2*nr3)
! not omega/(nr1x*nr2x*nr3x) . PG 24 Oct 2010
DO ibox = 1, n_proj_boxes
boxcharge(ibox) = DDOT(dfftp%nnr,raux(:),1,thetathisproc(:,ibox),1) &
& * omega / (dfftp%nr1*dfftp%nr2*dfftp%nr3)
CALL mp_sum ( boxcharge(ibox) , intra_pool_comm )
ENDDO
!
! C. Write the result
IF (ionode) THEN
WRITE (stdout,*)
DO ibox = 1, n_proj_boxes
WRITE (stdout, &
'(5x,"Box #",i3," : vol ",f10.6," % = ",f14.6," (a.u.)^3; ",e13.6," elec")') &
ibox, 100* boxvolume(ibox) /(dfftp%nr1*dfftp%nr2*dfftp%nr3), &
omega* boxvolume(ibox)/(dfftp%nr1*dfftp%nr2*dfftp%nr3), boxcharge(ibox)
ENDDO
ENDIF
!
DEALLOCATE ( boxvolume , boxcharge )
!
! ... Here we sum for each k point the contribution
! ... of the wavefunctions to the charge in the specified box
!
ALLOCATE( proj(1:n_proj_boxes,nbnd,nkstot) )
proj(:,:,:)=0._DP
!
ALLOCATE( caux(dfftp%nnr) )
!
k_loop: DO ik = 1, nks
!
IF ( lsda ) current_spin = isk(ik)
npw = ngk(ik)
CALL read_collected_wfc ( restart_dir(), ik, evc )
!
bnd_loop: DO ibnd = 1, nbnd
!
IF (noncolin) THEN
!
psic_nc = (0.d0,0.d0)
DO ig = 1, npw
psic_nc(dfftp%nl(igk_k(ig,ik)),1)=evc(ig ,ibnd)
psic_nc(dfftp%nl(igk_k(ig,ik)),2)=evc(ig+npwx,ibnd)
ENDDO
raux=0._DP
DO ipol=1,npol
CALL invfft ('Rho', psic_nc(:,ipol), dfftp)
raux(:) = raux(:)+dble( psic_nc(:,ipol) )**2 &
+ aimag( psic_nc(:,ipol) )**2
ENDDO
!
ELSE
!
caux(1:dfftp%nnr) = (0._DP,0._DP)
DO ig = 1, npw
caux (dfftp%nl (igk_k (ig,ik) ) ) = evc (ig, ibnd)
ENDDO
IF (gamma_only) THEN
DO ig = 1, npw
caux (dfftp%nlm(igk_k (ig,ik) ) ) = conjg(evc (ig, ibnd))
ENDDO
ENDIF
CALL invfft ('Rho', caux, dfftp)
!
raux(:) = dble( caux(:) )**2 + aimag( caux(:) )**2
!
ENDIF
!
! The contribution of this wavefunction to the LDOS
! integrated in the volume is the projection of the
! squared wfc on a function =1 in the volume itself:
!
DO ibox = 1, n_proj_boxes
proj(ibox,ibnd,ik) = DDOT(dfftp%nnr,raux(:),1,thetathisproc(:,ibox),1) &
& / (dfftp%nr1*dfftp%nr2*dfftp%nr3)
ENDDO
!
ENDDO bnd_loop
!
CALL mp_sum ( proj(:,:,ik) , intra_pool_comm )
!
ENDDO k_loop
!
DEALLOCATE ( caux )
DEALLOCATE ( raux )
DEALLOCATE ( thetathisproc )
!
! vector proj is distributed across the pools
! collect data for all k-points to the first pool
!
CALL poolrecover (proj, n_proj_boxes*nbnd, nkstot, nks)
!
! Output the projections
IF ( ionode ) THEN
IF (filproj/=' ') THEN
iunproj=33
CALL write_io_header(filproj, iunproj, title, dfftp%nr1x, dfftp%nr2x, &
dfftp%nr3x, dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp, ibrav, &
celldm, at, gcutm, dual, ecutwfc, nkstot,nbnd,natomwfc)
DO ibox = 1, n_proj_boxes
WRITE (iunproj,'(3i6)') ibox, n_proj_boxes
WRITE (iunproj,'(i6,i6,f9.4,e13.6)') &
((ik,ibnd,et(ibnd,ik)*rytoev,proj(ibox,ibnd,ik),ibnd=1,nbnd),ik=1,nkstot)
ENDDO
CLOSE (iunproj)
ENDIF
ENDIF
!
RETURN
!
END SUBROUTINE projwave_boxes
!
!-----------------------------------------------------------------------
SUBROUTINE partialdos_boxes(Emin, Emax, DeltaE, kresolveddos, filpdos, n_proj_boxes)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE io_global, ONLY : stdout
USE klist, ONLY: wk, nkstot, degauss, ngauss, lgauss
USE lsda_mod, ONLY: nspin, isk, current_spin
USE wvfct, ONLY: et, nbnd
USE constants, ONLY: rytoev
USE projections_ldos, ONLY: proj
!
IMPLICIT NONE
CHARACTER (len=256) :: filpdos
REAL(DP) :: Emin, Emax, DeltaE
LOGICAL :: kresolveddos
INTEGER :: n_proj_boxes
!
CHARACTER (len=33) :: filextension
CHARACTER (len=256):: fileout
!
INTEGER :: ik, ibnd, ne, ie_mid, ie_delta, ie, is, nkseff, ikeff, ibox, nspin0
REAL(DP) :: etev, delta, Elw, Eup, wkeff
REAL(DP), ALLOCATABLE :: dostot(:,:,:), dosbox(:,:,:,:), dosboxtot(:,:,:)
REAL(DP), EXTERNAL :: w0gauss
!
! find band extrema
!
Elw = et (1, 1)
Eup = et (nbnd, 1)
DO ik = 2, nkstot
Elw = min (Elw, et (1, ik) )
Eup = max (Eup, et (nbnd, ik) )
ENDDO
IF (degauss/=0.d0) THEN
Eup = Eup + 3d0 * degauss
Elw = Elw - 3d0 * degauss
ENDIF
Emin = max (Emin/rytoev, Elw)
Emax = min (Emax/rytoev, Eup)
DeltaE = DeltaE/rytoev
ne = nint ( (Emax - Emin) / DeltaE+0.500001d0)
!
IF (nspin==2) THEN
nspin0 = 2
ELSE
nspin0 = 1
ENDIF
!
IF (kresolveddos) THEN
IF ( nspin==2 ) THEN
nkseff=nkstot/2
ELSE
nkseff=nkstot
ENDIF
ELSE
nkseff=1
ENDIF
!
ALLOCATE (dosbox(0:ne,1:n_proj_boxes,nspin0,nkseff))
ALLOCATE (dostot(0:ne,nspin0,nkseff), dosboxtot(0:ne,nspin0,nkseff) )
dosbox(:,:,:,:) = 0.d0
dostot(:,:,:) = 0.d0
dosboxtot(:,:,:)= 0.d0
current_spin = 1
ie_delta = 5 * degauss / DeltaE + 1
!
DO ik = 1,nkstot
!
IF (kresolveddos) THEN
! set equal weight to all k-points
wkeff=1.D0
!
IF (( nspin==2 ).AND.( isk(ik)==2 )) THEN
ikeff=ik-nkstot/2
ELSE
ikeff=ik
ENDIF
ELSE
! use true weights
wkeff=wk(ik)
! contributions from all k-points are summed in pdos(:,:,:,ikeff)
ikeff=1
ENDIF
!
IF ( nspin == 2 ) current_spin = isk ( ik )
DO ibnd = 1, nbnd
etev = et(ibnd,ik)
ie_mid = nint( (etev-Emin)/DeltaE )
DO ie = max(ie_mid-ie_delta, 0), min(ie_mid+ie_delta, ne)
delta = w0gauss((Emin+DeltaE*ie-etev)/degauss,ngauss) &
/ degauss / rytoev
!
DO ibox = 1, n_proj_boxes
dosbox(ie,ibox,current_spin,ikeff) = &
dosbox(ie,ibox,current_spin,ikeff) + &
wkeff * delta * proj (ibox, ibnd, ik)
ENDDO
!
! dostot(:,ns,ik) = total DOS (states/eV) for spin "ns"
! for k-point "ik" (or summed over all kp)
!
dostot(ie,current_spin,ikeff) = dostot(ie,current_spin,ikeff) + &
wkeff * delta
ENDDO
ENDDO
ENDDO
!
! dosboxtot(:,ns,ik) = sum of all projected DOS
!
DO ik=1,nkseff
DO is=1,nspin0
DO ie=0,ne
dosboxtot(ie,is,ik) = sum(dosbox(ie,1:n_proj_boxes,is,ik))
ENDDO
ENDDO
ENDDO
!
fileout = trim(filpdos)//'.ldos_boxes'
!
OPEN (4,file=fileout,form='formatted', &
status='unknown')
IF (kresolveddos) THEN
WRITE (4,'("# ik ")', advance="NO")
ELSE
WRITE (4,'("#")', advance="NO")
ENDIF
IF (nspin0 == 2) THEN
WRITE (4,'(" E (eV) tot_up(E) tot_dw(E) totldos_up totldos_dw ")', advance="NO")
ELSE
WRITE (4,'(" E (eV) tot(E) totldos ")', advance="NO")
ENDIF
DO ibox=1, n_proj_boxes
IF (nspin0 == 2) THEN
WRITE(4,'("#",i3," up(E) ")', advance="NO") ibox
WRITE(4,'("#",i3," dw(E) ")', advance="NO") ibox
ELSE
WRITE(4,'("#",i3," (E) ")', advance="NO") ibox
ENDIF
ENDDO
WRITE (4,*)
DO ik=1,nkseff
DO ie= 0, ne
IF (kresolveddos) THEN
WRITE (4,'(i5," ")', advance="NO") ik
ENDIF
etev = Emin + ie * DeltaE
WRITE (4,'(f8.3,4(2e11.3),999(2e11.3))') etev*rytoev, &
dostot(ie,1:nspin0,ik), dosboxtot(ie,1:nspin0,ik), &
( dosbox(ie,ibox,1:nspin0,ik), ibox = 1, n_proj_boxes )
ENDDO
IF (kresolveddos) WRITE (4,*)
ENDDO
CLOSE (4)
DEALLOCATE (dostot, dosboxtot)
DEALLOCATE (dosbox)
!
DEALLOCATE (proj)
!
RETURN
END SUBROUTINE partialdos_boxes
| gpl-2.0 |
QEF/q-e | CPV/src/plugin_energy.f90 | 1 | 1087 | !
! Copyright (C) 2015 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
SUBROUTINE plugin_energy(rhoin,plugin_etot)
!----------------------------------------------------------------------------
!! This routine is used to calculate plugin energy related quantities
!! that needs to be solved inside the scf cycle.
!
USE io_global, ONLY : stdout, ionode
USE kinds, ONLY : DP
USE io_files, ONLY : tmp_dir
!
USE fft_base, ONLY : dfftp
USE electrons_base, ONLY : nspin
!
USE plugin_flags
!
! ***Environ MODULES BEGIN***
! ***Environ MODULES END***
!
IMPLICIT NONE
!
real(DP), intent(in) :: rhoin(dfftp%nnr,nspin)
real(DP), intent(inout) :: plugin_etot
!
! ***Environ VARIABLES BEGIN***
! ***Environ VARIABLES END***
!
! ***Environ CALLS BEGIN***
! ***Environ CALLS END***
!
END SUBROUTINE plugin_energy
| gpl-2.0 |
pts-eduardoacuna/pachy-learning | vendor/gonum.org/v1/gonum/mathext/internal/amos/amoslib/zrati.f | 15 | 4019 | SUBROUTINE ZRATI(ZR, ZI, FNU, N, CYR, CYI, TOL)
C***BEGIN PROLOGUE ZRATI
C***REFER TO ZBESI,ZBESK,ZBESH
C
C ZRATI COMPUTES RATIOS OF I BESSEL FUNCTIONS BY BACKWARD
C RECURRENCE. THE STARTING INDEX IS DETERMINED BY FORWARD
C RECURRENCE AS DESCRIBED IN J. RES. OF NAT. BUR. OF STANDARDS-B,
C MATHEMATICAL SCIENCES, VOL 77B, P111-114, SEPTEMBER, 1973,
C BESSEL FUNCTIONS I AND J OF COMPLEX ARGUMENT AND INTEGER ORDER,
C BY D. J. SOOKNE.
C
C***ROUTINES CALLED ZABS,ZDIV
C***END PROLOGUE ZRATI
C COMPLEX Z,CY(1),CONE,CZERO,P1,P2,T1,RZ,PT,CDFNU
DOUBLE PRECISION AK, AMAGZ, AP1, AP2, ARG, AZ, CDFNUI, CDFNUR,
* CONEI, CONER, CYI, CYR, CZEROI, CZEROR, DFNU, FDNU, FLAM, FNU,
* FNUP, PTI, PTR, P1I, P1R, P2I, P2R, RAK, RAP1, RHO, RT2, RZI,
* RZR, TEST, TEST1, TOL, TTI, TTR, T1I, T1R, ZI, ZR, ZABS
INTEGER I, ID, IDNU, INU, ITIME, K, KK, MAGZ, N
DIMENSION CYR(N), CYI(N)
DATA CZEROR,CZEROI,CONER,CONEI,RT2/
1 0.0D0, 0.0D0, 1.0D0, 0.0D0, 1.41421356237309505D0 /
AZ = ZABS(CMPLX(ZR,ZI,kind=KIND(1.0D0)))
INU = INT(SNGL(FNU))
IDNU = INU + N - 1
MAGZ = INT(SNGL(AZ))
AMAGZ = DBLE(FLOAT(MAGZ+1))
FDNU = DBLE(FLOAT(IDNU))
FNUP = DMAX1(AMAGZ,FDNU)
ID = IDNU - MAGZ - 1
ITIME = 1
K = 1
PTR = 1.0D0/AZ
RZR = PTR*(ZR+ZR)*PTR
RZI = -PTR*(ZI+ZI)*PTR
T1R = RZR*FNUP
T1I = RZI*FNUP
P2R = -T1R
P2I = -T1I
P1R = CONER
P1I = CONEI
T1R = T1R + RZR
T1I = T1I + RZI
IF (ID.GT.0) ID = 0
AP2 = ZABS(CMPLX(P2R,P2I,kind=KIND(1.0D0)))
AP1 = ZABS(CMPLX(P1R,P1I,kind=KIND(1.0D0)))
C-----------------------------------------------------------------------
C THE OVERFLOW TEST ON K(FNU+I-1,Z) BEFORE THE CALL TO CBKNU
C GUARANTEES THAT P2 IS ON SCALE. SCALE TEST1 AND ALL SUBSEQUENT
C P2 VALUES BY AP1 TO ENSURE THAT AN OVERFLOW DOES NOT OCCUR
C PREMATURELY.
C-----------------------------------------------------------------------
ARG = (AP2+AP2)/(AP1*TOL)
TEST1 = DSQRT(ARG)
TEST = TEST1
RAP1 = 1.0D0/AP1
P1R = P1R*RAP1
P1I = P1I*RAP1
P2R = P2R*RAP1
P2I = P2I*RAP1
AP2 = AP2*RAP1
10 CONTINUE
K = K + 1
AP1 = AP2
PTR = P2R
PTI = P2I
P2R = P1R - (T1R*PTR-T1I*PTI)
P2I = P1I - (T1R*PTI+T1I*PTR)
P1R = PTR
P1I = PTI
T1R = T1R + RZR
T1I = T1I + RZI
AP2 = ZABS(CMPLX(P2R,P2I,kind=KIND(1.0D0)))
IF (AP1.LE.TEST) GO TO 10
IF (ITIME.EQ.2) GO TO 20
AK = ZABS(CMPLX(T1R,T1I,kind=KIND(1.0D0))*0.5D0)
FLAM = AK + DSQRT(AK*AK-1.0D0)
RHO = DMIN1(AP2/AP1,FLAM)
TEST = TEST1*DSQRT(RHO/(RHO*RHO-1.0D0))
ITIME = 2
GO TO 10
20 CONTINUE
KK = K + 1 - ID
AK = DBLE(FLOAT(KK))
T1R = AK
T1I = CZEROI
DFNU = FNU + DBLE(FLOAT(N-1))
P1R = 1.0D0/AP2
P1I = CZEROI
P2R = CZEROR
P2I = CZEROI
DO 30 I=1,KK
PTR = P1R
PTI = P1I
RAP1 = DFNU + T1R
TTR = RZR*RAP1
TTI = RZI*RAP1
P1R = (PTR*TTR-PTI*TTI) + P2R
P1I = (PTR*TTI+PTI*TTR) + P2I
P2R = PTR
P2I = PTI
T1R = T1R - CONER
30 CONTINUE
IF (P1R.NE.CZEROR .OR. P1I.NE.CZEROI) GO TO 40
P1R = TOL
P1I = TOL
40 CONTINUE
CALL ZDIV(P2R, P2I, P1R, P1I, CYR(N), CYI(N))
IF (N.EQ.1) RETURN
K = N - 1
AK = DBLE(FLOAT(K))
T1R = AK
T1I = CZEROI
CDFNUR = FNU*RZR
CDFNUI = FNU*RZI
DO 60 I=2,N
PTR = CDFNUR + (T1R*RZR-T1I*RZI) + CYR(K+1)
PTI = CDFNUI + (T1R*RZI+T1I*RZR) + CYI(K+1)
AK = ZABS(CMPLX(PTR,PTI,kind=KIND(1.0D0)))
IF (AK.NE.CZEROR) GO TO 50
PTR = TOL
PTI = TOL
AK = TOL*RT2
50 CONTINUE
RAK = CONER/AK
CYR(K) = RAK*PTR*RAK
CYI(K) = -RAK*PTI*RAK
T1R = T1R - CONER
K = K - 1
60 CONTINUE
RETURN
END
| gpl-3.0 |
QEF/q-e | PHonon/Gamma/macro.f90 | 2 | 1248 | !
! Copyright (C) 2003 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!----------------------------------------------------------------------
SUBROUTINE macro
!----------------------------------------------------------------------
!
USE klist, ONLY : nks
USE cgcom, ONLY : iubar, dvpsi
USE io_files, ONLY : seqopn
!
IMPLICIT NONE
INTEGER:: ik, ipol
CHARACTER(len=7) :: filbar
LOGICAL :: here
!
DO ik=1,nks
! NB: this version works only for nks = 1 !
DO ipol=1,3
WRITE(filbar,'("filbar",i1)') ipol
iubar=ipol
CALL seqopn (iubar,filbar,'unformatted',here)
!|| if (.not.here) then
! calculate x * psi (if not already done)
dvpsi(:,:) = (0.d0, 0.d0)
!|| else
! otherwise restart from x * psi that is present on from file
!|| read(iubar) dvpsi
!|| end if
CALL dvpsi_e(ik,ipol)
! write x * psi
REWIND(iubar)
WRITE(iubar) dvpsi
CLOSE(unit=iubar,status='keep')
ENDDO
ENDDO
!
RETURN
END SUBROUTINE macro
| gpl-2.0 |
markusappel/McCode | support/common/pgplot/sys_win/w9driv.f | 6 | 22069 | C* W9DRIV -- PGPLOT device driver for Windows95 (or WindowsNT)
C+
SUBROUTINE W9DRIV (IFUNC, RBUF, NBUF, CHR, LCHR, MODE)
USE DFLIB
IMPLICIT NONE
INTEGER IFUNC, NBUF, LCHR, MODE
REAL RBUF(*)
CHARACTER CHR*(*)
C
C PGPLOT driver for IBM PC's and clones running DIGITAL Visual Fortran
C (5.0 or higher). This driver will create a graphics window.
C PGEND will return control to the default (text) window, but the graphics
C window is not erased until <RETURN> is pressed.
C
C This routine must be compiled and linked with the Digital DFLIB graphics
C library. Application must be compiled as a "QuickWin Graphics" project type,
C compiler command line option /MW.
C
C 1989-Nov-03 - (MSDRIV) Started work [AFT]
C 1989-Apr-06 - Improved version [AFT]
C 1991-Mar-13 - Added cursor routine [JHT]
C 12/1993 C. T. Dum: Version for MS Fortran Power Station
C 1996-Apr-26 - W9DRIV (Windows95/PowerStation 4.0 version):
C resolution modes; interrupt driven mouse (cursor band modes);
C rectangle fill; pixel lines [Phil Seeger, PASeeger@aol.com]
C 1996-Apr-30 - multiple devices; return color representation [PAS]
C 1996-May-03 - each window has its own resolution and palette [PAS]
C 1997-Dec-15 - change USE statement from Microsoft to Digital [PAS]
C 1998-May-04 - had only 7 windows instead of 8 [PAS]
C 1998-Jun-22 - moved window initialization to be after open [ACLarson]
C-----------------------------------------------------------------------
C
C Supported device: IBM PC's and compatibles with Windows95/NT;
C requires VGA or higher graphics adapter
C
C Device type code: /W95 (also /WV, /WS, /WX, or /WZ)
C
C Modes: 1, VGA, 640 x 480
C 2, SVGA, 800 x 600
C 3, XGA, 1024 x 768
C 4, ZGA, 1280 x 1024
C 0, from PGPLOT_VIDEO environment parameter, or SVGA
C The Default mode is 800 x 640 pixels (SVGA). Other resolution
C modes are accessed by entering SET PGPLOT_VIDEO=VGA (640x480),
C XGA (1024x768), or ZGA (1280x1024) in the AUTOEXEC.BAT file, or
C by using alternate device type designations. The maximum allowed
C mode is determined by the graphics card and the Windows95 driver.
C
C Color capability: Color indices 0-15 are set to the default values
C of PGPLOT, and indices 16-235 default to a gray scale. Palettes
C of up to 235 colors are saved for each of 8 possible device
C windows. (20 colors are reserved for the system.)
C NOTE: There are some peculiar graphics adapters out there, and
C even more peculiar drivers. The default colors have been
C tweeked to appear unique in either the upper 6 or the lower
C 6 bits of each byte. If you don't like what you see, you
C may modify the DATA statement for RGB16. It may also be
C necessary to change PARAMETER CNORM from 255 to 63.
C
C Default device name: None (the device name, if specified, is ignored).
C
C View surface dimensions: Depends on monitor, typical 7.5x10 inches
C
C Resolution: Depends on graphics card and Windows95 driver.
C
C Input capability: Mouse position, must be followed by a keyboard key.
C
C File format: None.
C
C Obtaining hardcopy: via Windows95, "File/Print" menu choice.
C-----------------------------------------------------------------------
C Notes:
C Up to MAXDEV "devices" may be open at once. ACTIVE is the number
C of the currently selected device (1 if no devices are open).
C STATE(i) is 0 if device i is not open, 1 if it is open but with
C no current picture, or 2 if it is open with a current picture.
C-----------------------------------------------------------------------
EXTERNAL GRW900, GRW901
INTEGER MAXDEV
REAL*4 CNORM
PARAMETER (MAXDEV=8, CNORM=255.)
TYPE (xycoord) XY
C
CHARACTER CMSG*10, WINTITLE*80
INTEGER MX(0:4), MY(0:4), MXX(MAXDEV), MXY(MAXDEV), MXC(MAXDEV),&
& I, ACTIVE,IUNIT(MAXDEV), STATE(0:MAXDEV), NPIC(MAXDEV)
INTEGER*4 IRGB, RGB(0:235,MAXDEV), RGB16(0:15), RGB236(0:235)
INTEGER*2 I2STAT, I2X0, I2Y0, I2X1, I2Y1, DASHLINE(5), ICOLOR, &
& CBITS(MAXDEV), IX(1), IY(1), IC(1)
INTEGER*4 I4STAT, I4X, I4Y, IXREF, IYREF, BAND, EVENT, IBUF
LOGICAL FIRST, QFIRST(MAXDEV), LPOS
SAVE FIRST, QFIRST, ACTIVE, STATE, XY, MXX, MXY, MXC, IUNIT, RGB, &
& ICOLOR, NPIC, MX, MY, DASHLINE, CBITS, RGB16
DATA FIRST, QFIRST, ACTIVE, STATE(0:MAXDEV)/ &
& .TRUE., MAXDEV*.TRUE., 1, -1, MAXDEV*0/
DATA MX, MY/ 0, 640, 800, 1024, 1280, &
& 0, 480, 640, 768, 1024/
DATA DASHLINE/#FFFF, #FF80, #FC30, #CCCC, #FCCC/
C
C Following data statement provides unique colors on all tested adapters
DATA RGB16(0:15)/0, #FFFFFF, #0000FF, #00FF00, #FF0000, #FFFF00, &
& #FF00FF, #00FFFF, #005FFF, #00FFAA, #AAFF00, #FF9300, #FF0093, &
& #5F00FF, #555555, #AAAAAA/
C
C---
C Initialize first 16 RGB values and gray scale for all windows
IF (FIRST) THEN
FIRST = .FALSE.
DO ICOLOR=0,15
DO I=1,MAXDEV
RGB(ICOLOR,I) = RGB16(ICOLOR)
END DO
END DO
IRGB = #020202
DO ICOLOR=16,235
IRGB = IRGB + #010101
DO I=1,MAXDEV
RGB(ICOLOR,I) = IRGB
END DO
END DO
ICOLOR = 1
DO I=1,MAXDEV
CBITS(I) = #0F
END DO
END IF
C
SELECT CASE (IFUNC)
C
CASE (1)
C--- IFUNC = 1, Return device name.-------------------------------------
SELECT CASE (MODE)
CASE (1)
CHR = 'WV (Windows95/NT, 640x480)'
CASE (2)
CHR = 'WS (Windows95/NT, 800x600)'
CASE (3)
CHR = 'WX (Windows95/NT, 1024x768)'
CASE (4)
CHR = 'WZ (Windows95/NT, 1280x1024)'
CASE DEFAULT
CHR = 'W9 (Windows95/NT, mode from environment)'
END SELECT
LCHR = LEN_TRIM(CHR)
C
CASE (2)
C--- IFUNC = 2, Return physical min and max for plot device, and range
C of color indices.---------------------------------------
IF (QFIRST(ACTIVE)) THEN
MXX(ACTIVE) = MX(MODE)
MXY(ACTIVE) = MY(MODE)
MXC(ACTIVE) = 236
CALL GRW900(ACTIVE, MXX, MXY, MXC, QFIRST)
END IF
RBUF(1) = 0.
RBUF(2) = MXX(ACTIVE)
RBUF(3) = 0.
RBUF(4) = MXY(ACTIVE)
RBUF(5) = 0.
RBUF(6) = MXC(ACTIVE)
NBUF = 6
C
CASE (3)
C--- IFUNC = 3, Return device resolution. ------------------------------
C Divide the number of pixels on screen by a typical screen size in
C inches.
IF (QFIRST(ACTIVE)) THEN
MXX(ACTIVE) = MX(MODE)
MXY(ACTIVE) = MY(MODE)
MXC(ACTIVE) = 236
CALL GRW900(ACTIVE, MXX, MXY, MXC, QFIRST)
END IF
RBUF(1) = FLOAT(MXX(ACTIVE)+1)/10.
RBUF(2) = FLOAT(MXY(ACTIVE)+1)/7.5
RBUF(3) = 1.0
NBUF = 3
C
CASE (4)
C--- IFUNC = 4, Return misc device info. -------------------------------
C (This device is Interactive, Cursor, No dashed lines, No area fill,
C No thick lines, Rectangle fill, Pixel primative, No ?, querY color
C representation, No markers)
CHR = 'ICNNNRPNYN'
LCHR = 10
C
CASE (5)
C--- IFUNC = 5, Return default file name. ------------------------------
CHR = 'PGPlot Graphics'
LCHR = LEN_TRIM(CHR)
C
CASE (6)
C--- IFUNC = 6, Return default physical size of plot. ------------------
IF (QFIRST(ACTIVE)) THEN
MXX(ACTIVE) = MX(MODE)
MXY(ACTIVE) = MY(MODE)
MXC(ACTIVE) = 236
CALL GRW900(ACTIVE, MXX, MXY, MXC, QFIRST)
END IF
RBUF(1) = 0.
RBUF(2) = MXX(ACTIVE)
RBUF(3) = 0.
RBUF(4) = MXY(ACTIVE)
NBUF = 4
C
CASE (7)
C--- IFUNC = 7, Return misc defaults. ----------------------------------
RBUF(1) = 1.
NBUF = 1
C
CASE (8)
C--- IFUNC = 8, Select plot. -------------------------------------------
I = NINT(RBUF(2))
IF (I.GE.1 .AND. I.LE.MAXDEV .AND. STATE(I).GT.0) THEN
IF (I .NE. ACTIVE) THEN
ACTIVE = I
I4STAT = SETACTIVEQQ(IUNIT(ACTIVE))
I4STAT = FOCUSQQ(IUNIT(ACTIVE))
DO I=0,235
RGB236(I) = RGB(I,ACTIVE)
END DO
I4STAT = REMAPALLPALETTE(RGB236)
I2STAT = SETCOLOR(ICOLOR)
END IF
ELSE
CALL GRWARN('invalid or unopened graphics window in W9DRIV')
END IF
C
CASE (9)
C--- IFUNC = 9, Open workstation. --------------------------------------
I = 0
DO WHILE (I.LE.MAXDEV .AND. STATE(I).NE.0)
I = I + 1
END DO
IF (I .GT. MAXDEV) THEN
CALL GRWARN('maximum number of graphics windows exceeded')
RBUF(1) = 0.
RBUF(2) = 0.
ELSE
ACTIVE = I
RBUF(1) = ACTIVE
RBUF(2) = 1.
C Initialize this window in requested mode, and open it
MXX(ACTIVE) = MX(MODE)
MXY(ACTIVE) = MY(MODE)
MXC(ACTIVE) = 236
CALL GRGLUN(IUNIT(ACTIVE))
WRITE (WINTITLE, '(A,I2)') CHR(:LCHR)//', #', ACTIVE
OPEN (IUNIT(ACTIVE), FILE='USER', TITLE=WINTITLE(:LCHR+5))
CALL GRW900(ACTIVE, MXX, MXY, MXC, QFIRST)
DO I=0,235
RGB236(I) = RGB(I,ACTIVE)
END DO
I4STAT = REMAPALLPALETTE(RGB236)
I2STAT = SETCOLOR(ICOLOR)
STATE(ACTIVE) = 1
NPIC(ACTIVE) = 0
END IF
NBUF = 2
C
CASE (10)
C--- IFUNC=10, Close workstation. --------------------------------------
IF (STATE(ACTIVE) .GT. 0) THEN
print ('(A,I2)'), ' Type <RETURN> to close graphics '// &
& 'window #',active
read *
CLOSE (IUNIT(ACTIVE))
STATE(ACTIVE) = 0
QFIRST(ACTIVE) = .TRUE.
END IF
C
CASE (11)
C--- IFUNC=11, Begin picture. ------------------------------------------
IF(NPIC(ACTIVE) .EQ. 0) THEN
CALL CLEARSCREEN($GCLEARSCREEN)
END IF
STATE(ACTIVE) = 2
NPIC(ACTIVE) = NPIC(ACTIVE) + 1
I4STAT = SETACTIVEQQ(IUNIT(ACTIVE))
I4STAT = FOCUSQQ(IUNIT(ACTIVE))
C
CASE (12)
C--- IFUNC=12, Draw line. ----------------------------------------------
I2X0 = NINT(RBUF(1))
I2Y0 = MXY(ACTIVE) - NINT(RBUF(2))
CALL MOVETO(I2X0, I2Y0, XY)
I2X1 = NINT(RBUF(3))
I2Y1 = MXY(ACTIVE) - NINT(RBUF(4))
I2STAT = LINETO(I2X1, I2Y1)
C
CASE (13)
C--- IFUNC=13, Draw dot. -----------------------------------------------
I2X0 = NINT(RBUF(1))
I2Y0 = MXY(ACTIVE) - NINT(RBUF(2))
I4STAT = SETPIXEL(I2X0, I2Y0)
C
CASE (14)
C--- IFUNC=14, End picture. --------------------------------------------
IF (STATE(ACTIVE) .GT. 0) STATE(ACTIVE) = 1
NPIC(ACTIVE) = 0
C
CASE (15)
C--- IFUNC=15, Select color index. -------------------------------------
ICOLOR = MIN(MXC(ACTIVE), MAX(0, NINT(RBUF(1))))
I2STAT = SETCOLOR(ICOLOR)
C
CASE (16)
C--- IFUNC=16, Flush buffer. -------------------------------------------
C
CASE (17)
C--- IFUNC=17, Read cursor (mouse) AND keystroke -----------------------
I4X = NINT(RBUF(1))
I4Y = MXY(ACTIVE) - NINT(RBUF(2))
IF (NBUF .GE. 6) THEN
C Support for multiple forms of cursor
IXREF = NINT(RBUF(3))
IYREF = MXY(ACTIVE) - NINT(RBUF(4))
BAND = NINT(RBUF(5))
LPOS = RBUF(6) .GT. 0.
ELSE
C Simple crosshair cursor
IXREF = I4X
IYREF = I4Y
BAND = 0
LPOS = .TRUE.
END IF
C
C Set color index, for exclusive-ORing
ICOLOR = SETCOLOR(CBITS(ACTIVE))
I4STAT = SETWRITEMODE($GXOR)
C Initialize mouse routine by calling with fake arguments
CALL GRW901(-BAND, MXX(ACTIVE), MXY(ACTIVE), IXREF, IYREF)
C Initialize position of cursor by simulating mouse button click
IF (LPOS) CALL GRW901(IUNIT(ACTIVE), MOUSE$MOVE, 0, I4X, I4Y)
C Activate mouse callback routine
EVENT = MOUSE$MOVE
I4STAT = REGISTERMOUSEEVENT(IUNIT(ACTIVE), EVENT, GRW901)
C Wait for a keystroke
CHR(1:1) = GETCHARQQ()
C
C A key has been struck; turn off mouse, get position, restore color
I4STAT = UNREGISTERMOUSEEVENT(IUNIT(ACTIVE), EVENT)
CALL GRW901(0, 0, 0, I4X, I4Y)
I4STAT = SETWRITEMODE($GPSET)
I2STAT = SETCOLOR(ICOLOR)
C Return results
LCHR = 1
RBUF(1) = I4X
RBUF(2) = MXY(ACTIVE) - I4Y
NBUF = 2
C
CASE (18)
C--- IFUNC=18, Erase alpha screen. -------------------------------------
C
CASE (19)
C--- IFUNC=19, Set line style. -----------------------------------------
C Note: not likely to be called because IFUNC=4 returns "No dashed lines"
I = MIN(5, MAX(0, NINT(RBUF(1))))
CALL SETLINESTYLE(DASHLINE(I))
C
C--- IFUNC=20, Polygon fill. -------------------------------------------
C
CASE (21)
C--- IFUNC=21, Set color representation. -------------------------------
I = NINT(RBUF(1))
IF (I.GE.0 .AND. I.LE.MXC(ACTIVE)) THEN
ICOLOR = I
IRGB = NINT(RBUF(2)*CNORM) .OR. &
& ISHFT(NINT(RBUF(3)*CNORM), 8) .OR. &
& ISHFT(NINT(RBUF(4)*CNORM),16)
RGB(I,ACTIVE) = IRGB
CBITS(ACTIVE) = CBITS(ACTIVE) .OR. ICOLOR
I4STAT = REMAPPALETTERGB(I, IRGB)
END IF
C
C--- IFUNC=22, Set line width. -----------------------------------------
C
C--- IFUNC=23, Escape. -------------------------------------------------
C
CASE (24)
C--- IFUNC=24, Rectangle fill. -----------------------------------------
I2X0 = NINT(RBUF(1))
I2Y0 = MXY(ACTIVE) - NINT(RBUF(2))
I2X1 = NINT(RBUF(3))
I2Y1 = MXY(ACTIVE) - NINT(RBUF(4))
I2STAT = RECTANGLE($GFILLINTERIOR, I2X0, I2Y0, I2X1, I2Y1)
C
C--- IFUNC=25, Set fill pattern. ---------------------------------------
C
CASE (26)
C--- IFUNC=26, Line of pixels. -----------------------------------------
IY(1) = MXY(ACTIVE) - NINT(RBUF(2))
IF (IY(1).GE.0 .AND. IY(1).LE.MXY(ACTIVE)) THEN
IX(1) = NINT(RBUF(1))
IBUF = 3
IF (IX(1) .LT. 0) THEN
IBUF = 3 - IX(1)
IX(1) = 0
END IF
DO WHILE (IBUF.LE.NBUF .AND. I2X0.LE.MXX(ACTIVE))
IC(1) = MIN(MXC(ACTIVE), MAX(0, NINT(RBUF(IBUF))))
CALL SETPIXELS(1, IX, IY, IC)
IBUF = IBUF + 1
IX(1) = IX(1) + 1
END DO
END IF
C
C--- IFUNC=27, Scaling info --------------------------------------------
C
C--- IFUNC=28, Draw marker ---------------------------------------------
C
CASE (29)
C--- IFUNC=29, Query color representation.------------------------------
I = NINT(RBUF(1))
IRGB = RGB(I,ACTIVE)
RBUF(2) = FLOAT(IAND(IRGB, #FF))/CNORM
RBUF(3) = FLOAT(IAND(ISHFT(IRGB,-8), #FF))/CNORM
RBUF(4) = FLOAT(IAND(ISHFT(IRGB,-16), #FF))/CNORM
NBUF = 4
C
CASE DEFAULT
C--- Unimplemented Function
WRITE (CMSG, '(I10)') IFUNC
CALL GRWARN('Unimplemented function in Win95 device driver:'// &
& CMSG)
NBUF = -1
END SELECT
RETURN
END
C*********
SUBROUTINE GRW900(I, MXX, MXY, MXC, QFIRST)
USE DFLIB
C 1998-May-04 - change from MSFLIB to DFLIB
C 1998-Jun-22 - don't set WC.title to 'PGPLOT'
IMPLICIT NONE
INTEGER I, MXX(*), MXY(*), MXC(*)
LOGICAL QFIRST(*)
C---
TYPE (WINDOWCONFIG) WC
INTEGER TR$L
LOGICAL STATUS
CHARACTER TR$VID*128
C---
C Set default window configuration
C Try to set to input values of MXX, MXY, default 800x600
IF (MXX(I).LE.1 .OR. MXY(I).LE.1) THEN
MXX(I) = 800
MXY(I) = 600
MXC(I) = 256
CALL GRGENV('VIDEO', TR$VID, TR$L)
IF (TR$L .GT. 0) THEN
C There is a "PGPLOT_VIDEO" parameter in the Environment
IF( TR$VID(1:1) .EQ. 'V') THEN
C Set to VGA resolution
MXX(I) = 640
MXY(I) = 480
ELSE IF (TR$VID(1:1) .EQ. 'X') THEN
MXX(I) = 1024
MXY(I) = 768
ELSE IF (TR$VID(1:1) .EQ. 'Z') THEN
MXX(I) = 1280
MXY(I) = 1024
END IF
END IF
END IF
C
WC.numxpixels = MXX(I)
WC.numypixels = MXY(I)
WC.numcolors = MXC(I)
WC.numtextcols = -1
WC.numtextrows = -1
WC.fontsize = -1
STATUS = SETWINDOWCONFIG(WC)
IF(.NOT.STATUS) STATUS = SETWINDOWCONFIG(WC)
C
MXX(I) = WC.numxpixels - 1
MXY(I) = WC.numypixels - 1
MXC(I) = WC.numcolors - 1
QFIRST(I) = .FALSE.
RETURN
END
C*********
RECURSIVE SUBROUTINE GRW901(IUNIT,EVENT,KEYSTATE,XMOUSE,YMOUSE)
USE DFLIB
IMPLICIT NONE
INTEGER IUNIT, EVENT, KEYSTATE, XMOUSE, YMOUSE
C
C Callback routine for mouse events, specific to Windows95
C Note: cursor band modes implemented in software
C
C 1996-Apr-26 - P.A.Seeger
C 1998-May-04 - change from MSFLIB to DFLIB
C--
RECORD /xycoord/ XY
INTEGER*2 BAND, LENGTH, IX0, IY0, IX1, IY1, IX2, IY2, IXR, IYR
INTEGER*4 DUMMY
LOGICAL INITIUS, FINIS
DATA INITIUS /.TRUE./
SAVE INITIUS,BAND,LENGTH,IX0,IY0,IX1,IY1,IX2,IY2,IXR,IYR
C
C Disable mouse movement interrupts while in callback routine
IF (IUNIT .GT. 0) DUMMY = UNREGISTERMOUSEEVENT(IUNIT, MOUSE$MOVE)
C
FINIS = IUNIT.EQ.0 .AND. EVENT.EQ.0 .AND. KEYSTATE.EQ.0
IF (IUNIT.LE.0 .AND. .NOT.FINIS) THEN
INITIUS = .TRUE.
C Get initialization parameters from callback calling sequence
BAND = -IUNIT
IXR = XMOUSE
IYR = YMOUSE
IX0 = IXR
IY0 = IYR
C Extract parameters for length of cursor lines
IF (BAND .EQ. 0) THEN
C Simple crosshair cursor
LENGTH = MAX(EVENT, KEYSTATE)/80 + 3
ELSE
LENGTH = 0
IX1 = 0
IX2 = 0
IY1 = 0
IY2 = 0
C Modes with full width horizontal line(s)
IF (BAND.EQ.3 .OR. BAND.EQ.5 .OR. BAND.EQ.7) IX2 = EVENT
C Modes with full height vertical line(s)
IF (BAND.EQ.4 .OR. BAND.EQ.6 .OR. BAND.EQ.7) IY2 = KEYSTATE
IF (BAND .EQ. 3) THEN
C Draw fixed horizontal line at anchor
CALL MOVETO(IX1, IYR, XY)
DUMMY = LINETO(IX2, IYR )
ELSE IF (BAND .EQ. 4) THEN
C Draw fixed vertical line at anchor
CALL MOVETO(IXR, IY1, XY)
DUMMY = LINETO(IXR, IY2 )
END IF
END IF
GO TO 700
END IF
C
IF (.NOT. INITIUS) THEN
C This is NOT an initial call, so need to erase previous cursor
C by rewriting it in complementary color mode
IF (BAND .EQ. 1) THEN
CALL MOVETO(IXR, IYR, XY)
DUMMY = LINETO(IX0, IY0 )
ELSE IF (BAND .EQ. 2) THEN
DUMMY = RECTANGLE($GBORDER, IXR, IYR, IX0, IY0)
ELSE
IF (IY2 .NE. IY1) THEN
CALL MOVETO(IX0, IY1, XY)
DUMMY = LINETO(IX0, IY2 )
END IF
IF (IX2 .NE. IX1) THEN
CALL MOVETO(IX1, IY0, XY)
DUMMY = LINETO(IX2, IY0 )
END IF
END IF
END IF
C
IF (FINIS) THEN
C Termination call, return latest mouse location
XMOUSE = IX0
YMOUSE = IY0
IF (BAND .EQ. 3) THEN
C Erase fixed horizontal line at anchor
CALL MOVETO(IX1, IYR, XY)
DUMMY = LINETO(IX2, IYR )
ELSE IF (BAND .EQ. 4) THEN
C Erase fixed vertical line at anchor
CALL MOVETO(IXR, IY1, XY)
DUMMY = LINETO(IXR, IY2 )
END IF
INITIUS = .TRUE.
GO TO 700
END IF
C
C Save new cursor location
IX0 = XMOUSE
IY0 = YMOUSE
IF (BAND .EQ. 0) THEN
C Find ends of cursor line segments
IX1 = IX0 - LENGTH
IX2 = IX0 + LENGTH
IY1 = IY0 - LENGTH
IY2 = IY0 + LENGTH
END IF
C
C Now draw line, box, or cursor in complementary color
INITIUS = .FALSE.
IF (BAND .EQ. 1) THEN
C Line from anchor to cursor location
CALL MOVETO(IXR, IYR, XY)
DUMMY = LINETO(IX0, IY0 )
ELSE IF (BAND .EQ. 2) THEN
C Box with vertices at anchor and cursor location
DUMMY = RECTANGLE($GBORDER, IXR, IYR, IX0, IY0)
ELSE
IF (IY2 .NE. IY1) THEN
C Draw a horizontal line (or segment)
CALL MOVETO(IX0, IY1, XY)
DUMMY = LINETO(IX0, IY2)
END IF
IF (IX2 .NE. IX1) THEN
C Draw a vertical line (or segment)
CALL MOVETO(IX1, IY0, XY)
DUMMY = LINETO(IX2, IY0)
END IF
END IF
C
700 CONTINUE
IF (IUNIT.GT.0 .AND. .NOT.INITIUS) &
& DUMMY = REGISTERMOUSEEVENT(IUNIT, MOUSE$MOVE, GRW901)
RETURN
END
| gpl-2.0 |
e-q/scipy | scipy/interpolate/fitpack/fpbfout.f | 148 | 5322 | subroutine fpbfou(t,n,par,ress,resc)
c subroutine fpbfou calculates the integrals
c /t(n-3)
c ress(j) = ! nj,4(x)*sin(par*x) dx and
c t(4)/
c /t(n-3)
c resc(j) = ! nj,4(x)*cos(par*x) dx , j=1,2,...n-4
c t(4)/
c where nj,4(x) denotes the cubic b-spline defined on the knots
c t(j),t(j+1),...,t(j+4).
c
c calling sequence:
c call fpbfou(t,n,par,ress,resc)
c
c input parameters:
c t : real array,length n, containing the knots.
c n : integer, containing the number of knots.
c par : real, containing the value of the parameter par.
c
c output parameters:
c ress : real array,length n, containing the integrals ress(j).
c resc : real array,length n, containing the integrals resc(j).
c
c restrictions:
c n >= 10, t(4) < t(5) < ... < t(n-4) < t(n-3).
c ..
c ..scalar arguments..
integer n
real*8 par
c ..array arguments..
real*8 t(n),ress(n),resc(n)
c ..local scalars..
integer i,ic,ipj,is,j,jj,jp1,jp4,k,li,lj,ll,nmj,nm3,nm7
real*8 ak,beta,con1,con2,c1,c2,delta,eps,fac,f1,f2,f3,one,quart,
* sign,six,s1,s2,term
c ..local arrays..
real*8 co(5),si(5),hs(5),hc(5),rs(3),rc(3)
c ..function references..
real*8 cos,sin,abs
c ..
c initialization.
one = 0.1e+01
six = 0.6e+01
eps = 0.1e-07
quart = 0.25e0
con1 = 0.5e-01
con2 = 0.12e+03
nm3 = n-3
nm7 = n-7
if(par.ne.0.) term = six/par
beta = par*t(4)
co(1) = cos(beta)
si(1) = sin(beta)
c calculate the integrals ress(j) and resc(j), j=1,2,3 by setting up
c a divided difference table.
do 30 j=1,3
jp1 = j+1
jp4 = j+4
beta = par*t(jp4)
co(jp1) = cos(beta)
si(jp1) = sin(beta)
call fpcsin(t(4),t(jp4),par,si(1),co(1),si(jp1),co(jp1),
* rs(j),rc(j))
i = 5-j
hs(i) = 0.
hc(i) = 0.
do 10 jj=1,j
ipj = i+jj
hs(ipj) = rs(jj)
hc(ipj) = rc(jj)
10 continue
do 20 jj=1,3
if(i.lt.jj) i = jj
k = 5
li = jp4
do 20 ll=i,4
lj = li-jj
fac = t(li)-t(lj)
hs(k) = (hs(k)-hs(k-1))/fac
hc(k) = (hc(k)-hc(k-1))/fac
k = k-1
li = li-1
20 continue
ress(j) = hs(5)-hs(4)
resc(j) = hc(5)-hc(4)
30 continue
if(nm7.lt.4) go to 160
c calculate the integrals ress(j) and resc(j),j=4,5,...,n-7.
do 150 j=4,nm7
jp4 = j+4
beta = par*t(jp4)
co(5) = cos(beta)
si(5) = sin(beta)
delta = t(jp4)-t(j)
c the way of computing ress(j) and resc(j) depends on the value of
c beta = par*(t(j+4)-t(j)).
beta = delta*par
if(abs(beta).le.one) go to 60
c if !beta! > 1 the integrals are calculated by setting up a divided
c difference table.
do 40 k=1,5
hs(k) = si(k)
hc(k) = co(k)
40 continue
do 50 jj=1,3
k = 5
li = jp4
do 50 ll=jj,4
lj = li-jj
fac = par*(t(li)-t(lj))
hs(k) = (hs(k)-hs(k-1))/fac
hc(k) = (hc(k)-hc(k-1))/fac
k = k-1
li = li-1
50 continue
s2 = (hs(5)-hs(4))*term
c2 = (hc(5)-hc(4))*term
go to 130
c if !beta! <= 1 the integrals are calculated by evaluating a series
c expansion.
60 f3 = 0.
do 70 i=1,4
ipj = i+j
hs(i) = par*(t(ipj)-t(j))
hc(i) = hs(i)
f3 = f3+hs(i)
70 continue
f3 = f3*con1
c1 = quart
s1 = f3
if(abs(f3).le.eps) go to 120
sign = one
fac = con2
k = 5
is = 0
do 110 ic=1,20
k = k+1
ak = k
fac = fac*ak
f1 = 0.
f3 = 0.
do 80 i=1,4
f1 = f1+hc(i)
f2 = f1*hs(i)
hc(i) = f2
f3 = f3+f2
80 continue
f3 = f3*six/fac
if(is.eq.0) go to 90
is = 0
s1 = s1+f3*sign
go to 100
90 sign = -sign
is = 1
c1 = c1+f3*sign
100 if(abs(f3).le.eps) go to 120
110 continue
120 s2 = delta*(co(1)*s1+si(1)*c1)
c2 = delta*(co(1)*c1-si(1)*s1)
130 ress(j) = s2
resc(j) = c2
do 140 i=1,4
co(i) = co(i+1)
si(i) = si(i+1)
140 continue
150 continue
c calculate the integrals ress(j) and resc(j),j=n-6,n-5,n-4 by setting
c up a divided difference table.
160 do 190 j=1,3
nmj = nm3-j
i = 5-j
call fpcsin(t(nm3),t(nmj),par,si(4),co(4),si(i-1),co(i-1),
* rs(j),rc(j))
hs(i) = 0.
hc(i) = 0.
do 170 jj=1,j
ipj = i+jj
hc(ipj) = rc(jj)
hs(ipj) = rs(jj)
170 continue
do 180 jj=1,3
if(i.lt.jj) i = jj
k = 5
li = nmj
do 180 ll=i,4
lj = li+jj
fac = t(lj)-t(li)
hs(k) = (hs(k-1)-hs(k))/fac
hc(k) = (hc(k-1)-hc(k))/fac
k = k-1
li = li+1
180 continue
ress(nmj) = hs(4)-hs(5)
resc(nmj) = hc(4)-hc(5)
190 continue
return
end
| bsd-3-clause |
wilmarcardonac/hypermcmc | lapack-3.5.0/TESTING/LIN/alaerh.f | 24 | 38022 | *> \brief \b ALAERH
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ALAERH( PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU,
* N5, IMAT, NFAIL, NERRS, NOUT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* CHARACTER*( * ) SUBNAM
* CHARACTER*( * ) OPTS
* INTEGER IMAT, INFO, INFOE, KL, KU, M, N, N5, NERRS,
* $ NFAIL, NOUT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ALAERH is an error handler for the LAPACK routines. It prints the
*> header if this is the first error message and prints the error code
*> and form of recovery, if any. The character evaluations in this
*> routine may make it slow, but it should not be called once the LAPACK
*> routines are fully debugged.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name of subroutine SUBNAM.
*> \endverbatim
*>
*> \param[in] SUBNAM
*> \verbatim
*> SUBNAM is CHARACTER*(*)
*> The name of the subroutine that returned an error code.
*> \endverbatim
*>
*> \param[in] INFO
*> \verbatim
*> INFO is INTEGER
*> The error code returned from routine SUBNAM.
*> \endverbatim
*>
*> \param[in] INFOE
*> \verbatim
*> INFOE is INTEGER
*> The expected error code from routine SUBNAM, if SUBNAM were
*> error-free. If INFOE = 0, an error message is printed, but
*> if INFOE.NE.0, we assume only the return code INFO is wrong.
*> \endverbatim
*>
*> \param[in] OPTS
*> \verbatim
*> OPTS is CHARACTER*(*)
*> The character options to the subroutine SUBNAM, concatenated
*> into a single character string. For example, UPLO = 'U',
*> TRANS = 'T', and DIAG = 'N' for a triangular routine would
*> be specified as OPTS = 'UTN'.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The matrix row dimension.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The matrix column dimension. Accessed only if PATH = xGE or
*> xGB.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> The number of sub-diagonals of the matrix. Accessed only if
*> PATH = xGB, xPB, or xTB. Also used for NRHS for PATH = xLS.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> The number of super-diagonals of the matrix. Accessed only
*> if PATH = xGB.
*> \endverbatim
*>
*> \param[in] N5
*> \verbatim
*> N5 is INTEGER
*> A fifth integer parameter, may be the blocksize NB or the
*> number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] IMAT
*> \verbatim
*> IMAT is INTEGER
*> The matrix type.
*> \endverbatim
*>
*> \param[in] NFAIL
*> \verbatim
*> NFAIL is INTEGER
*> The number of prior tests that did not pass the threshold;
*> used to determine if the header should be printed.
*> \endverbatim
*>
*> \param[in,out] NERRS
*> \verbatim
*> NERRS is INTEGER
*> On entry, the number of errors already detected; used to
*> determine if the header should be printed.
*> On exit, NERRS is increased by 1.
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number on which results are to be printed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2013
*
*> \ingroup aux_lin
*
* =====================================================================
SUBROUTINE ALAERH( PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU,
$ N5, IMAT, NFAIL, NERRS, NOUT )
*
* -- LAPACK test routine (version 3.5.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2013
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
CHARACTER*( * ) SUBNAM
CHARACTER*( * ) OPTS
INTEGER IMAT, INFO, INFOE, KL, KU, M, N, N5, NERRS,
$ NFAIL, NOUT
* ..
*
* =====================================================================
*
* .. Local Scalars ..
CHARACTER UPLO
CHARACTER*2 P2
CHARACTER*3 C3
* ..
* .. External Functions ..
LOGICAL LSAME, LSAMEN
EXTERNAL LSAME, LSAMEN
* ..
* .. Intrinsic Functions ..
INTRINSIC LEN_TRIM
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAHD
* ..
* .. Executable Statements ..
*
IF( INFO.EQ.0 )
$ RETURN
P2 = PATH( 2: 3 )
C3 = SUBNAM( 4: 6 )
*
* Print the header if this is the first error message.
*
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) THEN
IF( LSAMEN( 3, C3, 'SV ' ) .OR. LSAMEN( 3, C3, 'SVX' ) ) THEN
CALL ALADHD( NOUT, PATH )
ELSE
CALL ALAHD( NOUT, PATH )
END IF
END IF
NERRS = NERRS + 1
*
* Print the message detailing the error and form of recovery,
* if any.
*
IF( LSAMEN( 2, P2, 'GE' ) ) THEN
*
* xGE: General matrices
*
IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9988 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, M, N, N5,
$ IMAT
ELSE
WRITE( NOUT, FMT = 9975 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, N5, IMAT
END IF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9949 )
*
ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9984 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, N, N5,
$ IMAT
ELSE
WRITE( NOUT, FMT = 9970 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9992 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE,
$ OPTS( 1: 1 ), OPTS( 2: 2 ), N, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9997 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN
*
WRITE( NOUT, FMT = 9971 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, N, N5, IMAT
*
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) ) THEN
*
WRITE( NOUT, FMT = 9978 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, IMAT
*
ELSE IF( LSAMEN( 3, C3, 'CON' ) ) THEN
*
WRITE( NOUT, FMT = 9969 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), M,
$ IMAT
*
ELSE IF( LSAMEN( 3, C3, 'LS ' ) ) THEN
*
WRITE( NOUT, FMT = 9965 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), M, N,
$ KL, N5, IMAT
*
ELSE IF( LSAMEN( 3, C3, 'LSX' ) .OR. LSAMEN( 3, C3, 'LSS' ) )
$ THEN
*
WRITE( NOUT, FMT = 9974 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, KL, N5, IMAT
*
ELSE
*
WRITE( NOUT, FMT = 9963 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), M, N5,
$ IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'GB' ) ) THEN
*
* xGB: General band matrices
*
IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9989 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, M, N, KL,
$ KU, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9976 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, KL, KU, N5,
$ IMAT
END IF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9949 )
*
ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9986 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, N, KL, KU,
$ N5, IMAT
ELSE
WRITE( NOUT, FMT = 9972 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, N, KL, KU, N5,
$ IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9993 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE,
$ OPTS( 1: 1 ), OPTS( 2: 2 ), N, KL, KU, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9998 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), N, KL, KU, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) ) THEN
*
WRITE( NOUT, FMT = 9977 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, KL, KU, IMAT
*
ELSE IF( LSAMEN( 3, C3, 'CON' ) ) THEN
*
WRITE( NOUT, FMT = 9968 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), M, KL,
$ KU, IMAT
*
ELSE
*
WRITE( NOUT, FMT = 9964 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), M, KL,
$ KU, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'GT' ) ) THEN
*
* xGT: General tridiagonal matrices
*
IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9987 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, N, IMAT
ELSE
WRITE( NOUT, FMT = 9973 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, N, IMAT
END IF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9949 )
*
ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9984 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, N, N5,
$ IMAT
ELSE
WRITE( NOUT, FMT = 9970 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9992 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE,
$ OPTS( 1: 1 ), OPTS( 2: 2 ), N, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9997 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'CON' ) ) THEN
*
WRITE( NOUT, FMT = 9969 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), M,
$ IMAT
*
ELSE
*
WRITE( NOUT, FMT = 9963 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), M, N5,
$ IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'PO' ) ) THEN
*
* xPO: Symmetric or Hermitian positive definite matrices
*
UPLO = OPTS( 1: 1 )
IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9980 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, UPLO, M,
$ N5, IMAT
ELSE
WRITE( NOUT, FMT = 9956 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, N5, IMAT
END IF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9949 )
*
ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9979 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, UPLO, N,
$ N5, IMAT
ELSE
WRITE( NOUT, FMT = 9955 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9990 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE,
$ OPTS( 1: 1 ), OPTS( 2: 2 ), N, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9995 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN
*
WRITE( NOUT, FMT = 9956 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, N5, IMAT
*
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) .OR.
$ LSAMEN( 3, C3, 'CON' ) ) THEN
*
WRITE( NOUT, FMT = 9960 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, IMAT
*
ELSE
*
WRITE( NOUT, FMT = 9955 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'PS' ) ) THEN
*
* xPS: Symmetric or Hermitian positive semi-definite matrices
*
UPLO = OPTS( 1: 1 )
IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9980 )SUBNAM, INFO, INFOE, UPLO, M,
$ N5, IMAT
ELSE
WRITE( NOUT, FMT = 9956 )SUBNAM, INFO, UPLO, M, N5, IMAT
END IF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9949 )
*
ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9979 )SUBNAM, INFO, INFOE, UPLO, N,
$ N5, IMAT
ELSE
WRITE( NOUT, FMT = 9955 )SUBNAM, INFO, UPLO, N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9990 )SUBNAM, INFO, INFOE,
$ OPTS( 1: 1 ), OPTS( 2: 2 ), N, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9995 )SUBNAM, INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN
*
WRITE( NOUT, FMT = 9956 )SUBNAM, INFO, UPLO, M, N5, IMAT
*
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMT' ) .OR.
$ LSAMEN( 3, C3, 'CON' ) ) THEN
*
WRITE( NOUT, FMT = 9960 )SUBNAM, INFO, UPLO, M, IMAT
*
ELSE
*
WRITE( NOUT, FMT = 9955 )SUBNAM, INFO, UPLO, M, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'SY' )
$ .OR. LSAMEN( 2, P2, 'SR' )
$ .OR. LSAMEN( 2, P2, 'HE' )
$ .OR. LSAMEN( 2, P2, 'HR' ) ) THEN
*
* xSY: symmetric indefinite matrices
* with partial (Bunch-Kaufman) pivoting;
* xSR: symmetric indefinite matrices
* with rook (bounded Bunch-Kaufman) pivoting;
* xHE: Hermitian indefinite matrices
* with partial (Bunch-Kaufman) pivoting.
* xHR: Hermitian indefinite matrices
* with rook (bounded Bunch-Kaufman) pivoting;
*
UPLO = OPTS( 1: 1 )
IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9980 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, UPLO, M,
$ N5, IMAT
ELSE
WRITE( NOUT, FMT = 9956 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, N5, IMAT
END IF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9949 )
*
ELSE IF( LSAMEN( 2, C3, 'SV' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9979 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, UPLO, N,
$ N5, IMAT
ELSE
WRITE( NOUT, FMT = 9955 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9990 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE,
$ OPTS( 1: 1 ), OPTS( 2: 2 ), N, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9995 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) .OR.
$ LSAMEN( 3, C3, 'TRI' ) .OR. LSAMEN( 3, C3, 'CON' ) )
$ THEN
*
WRITE( NOUT, FMT = 9960 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, IMAT
*
ELSE
*
WRITE( NOUT, FMT = 9955 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'PP' ) .OR. LSAMEN( 2, P2, 'SP' ) .OR.
$ LSAMEN( 2, P2, 'HP' ) ) THEN
*
* xPP, xHP, or xSP: Symmetric or Hermitian packed matrices
*
UPLO = OPTS( 1: 1 )
IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9983 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, UPLO, M,
$ IMAT
ELSE
WRITE( NOUT, FMT = 9960 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, IMAT
END IF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9949 )
*
ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9979 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, UPLO, N,
$ N5, IMAT
ELSE
WRITE( NOUT, FMT = 9955 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9990 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE,
$ OPTS( 1: 1 ), OPTS( 2: 2 ), N, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9995 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) .OR.
$ LSAMEN( 3, C3, 'TRI' ) .OR. LSAMEN( 3, C3, 'CON' ) )
$ THEN
*
WRITE( NOUT, FMT = 9960 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, IMAT
*
ELSE
*
WRITE( NOUT, FMT = 9955 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'PB' ) ) THEN
*
* xPB: Symmetric (Hermitian) positive definite band matrix
*
UPLO = OPTS( 1: 1 )
IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9982 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, UPLO, M,
$ KL, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9958 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, KL, N5,
$ IMAT
END IF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9949 )
*
ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9981 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, UPLO, N,
$ KL, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9957 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, N, KL, N5,
$ IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9991 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE,
$ OPTS( 1: 1 ), OPTS( 2: 2 ), N, KL, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9996 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), N, KL, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) .OR.
$ LSAMEN( 3, C3, 'CON' ) ) THEN
*
WRITE( NOUT, FMT = 9959 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, KL, IMAT
*
ELSE
*
WRITE( NOUT, FMT = 9957 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, UPLO, M, KL, N5,
$ IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'PT' ) ) THEN
*
* xPT: Positive definite tridiagonal matrices
*
IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9987 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, N, IMAT
ELSE
WRITE( NOUT, FMT = 9973 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, N, IMAT
END IF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9949 )
*
ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9984 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, N, N5,
$ IMAT
ELSE
WRITE( NOUT, FMT = 9970 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9994 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE,
$ OPTS( 1: 1 ), N, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9999 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), N,
$ N5, IMAT
END IF
*
ELSE IF( LSAMEN( 3, C3, 'CON' ) ) THEN
*
IF( LSAME( SUBNAM( 1: 1 ), 'S' ) .OR.
$ LSAME( SUBNAM( 1: 1 ), 'D' ) ) THEN
WRITE( NOUT, FMT = 9973 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, IMAT
ELSE
WRITE( NOUT, FMT = 9969 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), M,
$ IMAT
END IF
*
ELSE
*
WRITE( NOUT, FMT = 9963 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ), M, N5,
$ IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'TR' ) ) THEN
*
* xTR: Triangular matrix
*
IF( LSAMEN( 3, C3, 'TRI' ) ) THEN
WRITE( NOUT, FMT = 9961 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), M, N5, IMAT
ELSE IF( LSAMEN( 3, C3, 'CON' ) ) THEN
WRITE( NOUT, FMT = 9967 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), OPTS( 3: 3 ), M, IMAT
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATRS' ) ) THEN
WRITE( NOUT, FMT = 9952 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), OPTS( 3: 3 ), OPTS( 4: 4 ), M, IMAT
ELSE
WRITE( NOUT, FMT = 9953 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), OPTS( 3: 3 ), M, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'TP' ) ) THEN
*
* xTP: Triangular packed matrix
*
IF( LSAMEN( 3, C3, 'TRI' ) ) THEN
WRITE( NOUT, FMT = 9962 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), M, IMAT
ELSE IF( LSAMEN( 3, C3, 'CON' ) ) THEN
WRITE( NOUT, FMT = 9967 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), OPTS( 3: 3 ), M, IMAT
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATPS' ) ) THEN
WRITE( NOUT, FMT = 9952 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), OPTS( 3: 3 ), OPTS( 4: 4 ), M, IMAT
ELSE
WRITE( NOUT, FMT = 9953 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), OPTS( 3: 3 ), M, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'TB' ) ) THEN
*
* xTB: Triangular band matrix
*
IF( LSAMEN( 3, C3, 'CON' ) ) THEN
WRITE( NOUT, FMT = 9966 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), OPTS( 3: 3 ), M, KL, IMAT
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATBS' ) ) THEN
WRITE( NOUT, FMT = 9951 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), OPTS( 3: 3 ), OPTS( 4: 4 ), M, KL, IMAT
ELSE
WRITE( NOUT, FMT = 9954 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, OPTS( 1: 1 ),
$ OPTS( 2: 2 ), OPTS( 3: 3 ), M, KL, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'QR' ) ) THEN
*
* xQR: QR factorization
*
IF( LSAMEN( 3, C3, 'QRS' ) ) THEN
WRITE( NOUT, FMT = 9974 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, KL, N5, IMAT
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) ) THEN
WRITE( NOUT, FMT = 9978 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'LQ' ) ) THEN
*
* xLQ: LQ factorization
*
IF( LSAMEN( 3, C3, 'LQS' ) ) THEN
WRITE( NOUT, FMT = 9974 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, KL, N5, IMAT
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) ) THEN
WRITE( NOUT, FMT = 9978 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'QL' ) ) THEN
*
* xQL: QL factorization
*
IF( LSAMEN( 3, C3, 'QLS' ) ) THEN
WRITE( NOUT, FMT = 9974 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, KL, N5, IMAT
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) ) THEN
WRITE( NOUT, FMT = 9978 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'RQ' ) ) THEN
*
* xRQ: RQ factorization
*
IF( LSAMEN( 3, C3, 'RQS' ) ) THEN
WRITE( NOUT, FMT = 9974 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, KL, N5, IMAT
ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'LATMS' ) ) THEN
WRITE( NOUT, FMT = 9978 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'LU' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9988 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, M, N, N5,
$ IMAT
ELSE
WRITE( NOUT, FMT = 9975 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N, N5, IMAT
END IF
*
ELSE IF( LSAMEN( 2, P2, 'CH' ) ) THEN
*
IF( INFO.NE.INFOE .AND. INFOE.NE.0 ) THEN
WRITE( NOUT, FMT = 9985 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, INFOE, M, N5, IMAT
ELSE
WRITE( NOUT, FMT = 9971 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO, M, N5, IMAT
END IF
*
ELSE
*
* Print a generic message if the path is unknown.
*
WRITE( NOUT, FMT = 9950 )
$ SUBNAM(1:LEN_TRIM( SUBNAM )), INFO
END IF
*
* Description of error message (alphabetical, left to right)
*
* SUBNAM, INFO, FACT, N, NRHS, IMAT
*
9999 FORMAT( ' *** Error code from ', A, '=', I5, ', FACT=''', A1,
$ ''', N=', I5, ', NRHS=', I4, ', type ', I2 )
*
* SUBNAM, INFO, FACT, TRANS, N, KL, KU, NRHS, IMAT
*
9998 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> FACT=''',
$ A1, ''', TRANS=''', A1, ''', N=', I5, ', KL=', I5, ', KU=',
$ I5, ', NRHS=', I4, ', type ', I1 )
*
* SUBNAM, INFO, FACT, TRANS, N, NRHS, IMAT
*
9997 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> FACT=''',
$ A1, ''', TRANS=''', A1, ''', N =', I5, ', NRHS =', I4,
$ ', type ', I2 )
*
* SUBNAM, INFO, FACT, UPLO, N, KD, NRHS, IMAT
*
9996 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> FACT=''',
$ A1, ''', UPLO=''', A1, ''', N=', I5, ', KD=', I5, ', NRHS=',
$ I4, ', type ', I2 )
*
* SUBNAM, INFO, FACT, UPLO, N, NRHS, IMAT
*
9995 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> FACT=''',
$ A1, ''', UPLO=''', A1, ''', N =', I5, ', NRHS =', I4,
$ ', type ', I2 )
*
* SUBNAM, INFO, INFOE, FACT, N, NRHS, IMAT
*
9994 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> FACT=''', A1, ''', N =', I5, ', NRHS =', I4,
$ ', type ', I2 )
*
* SUBNAM, INFO, INFOE, FACT, TRANS, N, KL, KU, NRHS, IMAT
*
9993 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> FACT=''', A1, ''', TRANS=''', A1, ''', N=', I5,
$ ', KL=', I5, ', KU=', I5, ', NRHS=', I4, ', type ', I1 )
*
* SUBNAM, INFO, INFOE, FACT, TRANS, N, NRHS, IMAT
*
9992 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> FACT=''', A1, ''', TRANS=''', A1, ''', N =', I5,
$ ', NRHS =', I4, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, FACT, UPLO, N, KD, NRHS, IMAT
*
9991 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> FACT=''', A1, ''', UPLO=''', A1, ''', N=', I5,
$ ', KD=', I5, ', NRHS=', I4, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, FACT, UPLO, N, NRHS, IMAT
*
9990 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
$ ', NRHS =', I4, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, M, N, KL, KU, NB, IMAT
*
9989 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> M = ', I5, ', N =', I5, ', KL =', I5, ', KU =',
$ I5, ', NB =', I4, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, M, N, NB, IMAT
*
9988 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> M =', I5, ', N =', I5, ', NB =', I4, ', type ',
$ I2 )
*
* SUBNAM, INFO, INFOE, N, IMAT
*
9987 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, ' for N=', I5, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, N, KL, KU, NRHS, IMAT
*
9986 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> N =', I5, ', KL =', I5, ', KU =', I5,
$ ', NRHS =', I4, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, N, NB, IMAT
*
9985 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> N =', I5, ', NB =', I4, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, N, NRHS, IMAT
*
9984 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> N =', I5, ', NRHS =', I4, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, UPLO, N, IMAT
*
9983 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> UPLO = ''', A1, ''', N =', I5, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, UPLO, N, KD, NB, IMAT
*
9982 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> UPLO = ''', A1, ''', N =', I5, ', KD =', I5,
$ ', NB =', I4, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, UPLO, N, KD, NRHS, IMAT
*
9981 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> UPLO=''', A1, ''', N =', I5, ', KD =', I5,
$ ', NRHS =', I4, ', type ', I2 )
*
* SUBNAM, INFO, INFOE, UPLO, N, NB, IMAT
*
9980 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> UPLO = ''', A1, ''', N =', I5, ', NB =', I4,
$ ', type ', I2 )
*
* SUBNAM, INFO, INFOE, UPLO, N, NRHS, IMAT
*
9979 FORMAT( ' *** ', A, ' returned with INFO =', I5, ' instead of ',
$ I2, / ' ==> UPLO = ''', A1, ''', N =', I5, ', NRHS =', I4,
$ ', type ', I2 )
*
* SUBNAM, INFO, M, N, IMAT
*
9978 FORMAT( ' *** Error code from ', A, ' =', I5, ' for M =', I5,
$ ', N =', I5, ', type ', I2 )
*
* SUBNAM, INFO, M, N, KL, KU, IMAT
*
9977 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> M = ', I5,
$ ', N =', I5, ', KL =', I5, ', KU =', I5, ', type ', I2 )
*
* SUBNAM, INFO, M, N, KL, KU, NB, IMAT
*
9976 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> M = ', I5,
$ ', N =', I5, ', KL =', I5, ', KU =', I5, ', NB =', I4,
$ ', type ', I2 )
*
* SUBNAM, INFO, M, N, NB, IMAT
*
9975 FORMAT( ' *** Error code from ', A, '=', I5, ' for M=', I5,
$ ', N=', I5, ', NB=', I4, ', type ', I2 )
*
* SUBNAM, INFO, M, N, NRHS, NB, IMAT
*
9974 FORMAT( ' *** Error code from ', A, '=', I5, / ' ==> M =', I5,
$ ', N =', I5, ', NRHS =', I4, ', NB =', I4, ', type ', I2 )
*
* SUBNAM, INFO, N, IMAT
*
9973 FORMAT( ' *** Error code from ', A, ' =', I5, ' for N =', I5,
$ ', type ', I2 )
*
* SUBNAM, INFO, N, KL, KU, NRHS, IMAT
*
9972 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> N =', I5,
$ ', KL =', I5, ', KU =', I5, ', NRHS =', I4, ', type ', I2 )
*
* SUBNAM, INFO, N, NB, IMAT
*
9971 FORMAT( ' *** Error code from ', A, '=', I5, ' for N=', I5,
$ ', NB=', I4, ', type ', I2 )
*
* SUBNAM, INFO, N, NRHS, IMAT
*
9970 FORMAT( ' *** Error code from ', A, ' =', I5, ' for N =', I5,
$ ', NRHS =', I4, ', type ', I2 )
*
* SUBNAM, INFO, NORM, N, IMAT
*
9969 FORMAT( ' *** Error code from ', A, ' =', I5, ' for NORM = ''',
$ A1, ''', N =', I5, ', type ', I2 )
*
* SUBNAM, INFO, NORM, N, KL, KU, IMAT
*
9968 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> NORM =''',
$ A1, ''', N =', I5, ', KL =', I5, ', KU =', I5, ', type ',
$ I2 )
*
* SUBNAM, INFO, NORM, UPLO, DIAG, N, IMAT
*
9967 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> NORM=''',
$ A1, ''', UPLO =''', A1, ''', DIAG=''', A1, ''', N =', I5,
$ ', type ', I2 )
*
* SUBNAM, INFO, NORM, UPLO, DIAG, N, KD, IMAT
*
9966 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> NORM=''',
$ A1, ''', UPLO =''', A1, ''', DIAG=''', A1, ''', N=', I5,
$ ', KD=', I5, ', type ', I2 )
*
* SUBNAM, INFO, TRANS, M, N, NRHS, NB, IMAT
*
9965 FORMAT( ' *** Error code from ', A, ' =', I5,
$ / ' ==> TRANS = ''', A1, ''', M =', I5, ', N =', I5,
$ ', NRHS =', I4, ', NB =', I4, ', type ', I2 )
*
* SUBNAM, INFO, TRANS, N, KL, KU, NRHS, IMAT
*
9964 FORMAT( ' *** Error code from ', A, '=', I5, / ' ==> TRANS=''',
$ A1, ''', N =', I5, ', KL =', I5, ', KU =', I5, ', NRHS =',
$ I4, ', type ', I2 )
*
* SUBNAM, INFO, TRANS, N, NRHS, IMAT
*
9963 FORMAT( ' *** Error code from ', A, ' =', I5,
$ / ' ==> TRANS = ''', A1, ''', N =', I5, ', NRHS =', I4,
$ ', type ', I2 )
*
* SUBNAM, INFO, UPLO, DIAG, N, IMAT
*
9962 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO=''',
$ A1, ''', DIAG =''', A1, ''', N =', I5, ', type ', I2 )
*
* SUBNAM, INFO, UPLO, DIAG, N, NB, IMAT
*
9961 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO=''',
$ A1, ''', DIAG =''', A1, ''', N =', I5, ', NB =', I4,
$ ', type ', I2 )
*
* SUBNAM, INFO, UPLO, N, IMAT
*
9960 FORMAT( ' *** Error code from ', A, ' =', I5, ' for UPLO = ''',
$ A1, ''', N =', I5, ', type ', I2 )
*
* SUBNAM, INFO, UPLO, N, KD, IMAT
*
9959 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO = ''',
$ A1, ''', N =', I5, ', KD =', I5, ', type ', I2 )
*
* SUBNAM, INFO, UPLO, N, KD, NB, IMAT
*
9958 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO = ''',
$ A1, ''', N =', I5, ', KD =', I5, ', NB =', I4, ', type ',
$ I2 )
*
* SUBNAM, INFO, UPLO, N, KD, NRHS, IMAT
*
9957 FORMAT( ' *** Error code from ', A, '=', I5, / ' ==> UPLO = ''',
$ A1, ''', N =', I5, ', KD =', I5, ', NRHS =', I4, ', type ',
$ I2 )
*
* SUBNAM, INFO, UPLO, N, NB, IMAT
*
9956 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO = ''',
$ A1, ''', N =', I5, ', NB =', I4, ', type ', I2 )
*
* SUBNAM, INFO, UPLO, N, NRHS, IMAT
*
9955 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO = ''',
$ A1, ''', N =', I5, ', NRHS =', I4, ', type ', I2 )
*
* SUBNAM, INFO, UPLO, TRANS, DIAG, N, KD, NRHS, IMAT
*
9954 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO=''',
$ A1, ''', TRANS=''', A1, ''', DIAG=''', A1, ''', N=', I5,
$ ', KD=', I5, ', NRHS=', I4, ', type ', I2 )
*
* SUBNAM, INFO, UPLO, TRANS, DIAG, N, NRHS, IMAT
*
9953 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO=''',
$ A1, ''', TRANS=''', A1, ''', DIAG=''', A1, ''', N =', I5,
$ ', NRHS =', I4, ', type ', I2 )
*
* SUBNAM, INFO, UPLO, TRANS, DIAG, NORMIN, N, IMAT
*
9952 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO=''',
$ A1, ''', TRANS=''', A1, ''', DIAG=''', A1, ''', NORMIN=''',
$ A1, ''', N =', I5, ', type ', I2 )
*
* SUBNAM, INFO, UPLO, TRANS, DIAG, NORMIN, N, KD, IMAT
*
9951 FORMAT( ' *** Error code from ', A, ' =', I5, / ' ==> UPLO=''',
$ A1, ''', TRANS=''', A1, ''', DIAG=''', A1, ''', NORMIN=''',
$ A1, ''', N=', I5, ', KD=', I5, ', type ', I2 )
*
* Unknown type
*
9950 FORMAT( ' *** Error code from ', A, ' =', I5 )
*
* What we do next
*
9949 FORMAT( ' ==> Doing only the condition estimate for this case' )
*
RETURN
*
* End of ALAERH
*
END
| gpl-2.0 |
QEF/q-e | PP/src/bands.f90 | 2 | 21019 | !
! Copyright (C) 2001-2016 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
PROGRAM do_bands
!-----------------------------------------------------------------------
!
! See files INPUT_BANDS.* in Doc/ directory for usage
!
!
USE io_files, ONLY : prefix, tmp_dir
USE mp_global, ONLY : mp_startup
USE mp_pools, ONLY : npool
USE control_flags, ONLY : gamma_only
USE environment, ONLY : environment_start, environment_end
USE wvfct, ONLY : nbnd
USE klist, ONLY : nkstot, two_fermi_energies
USE noncollin_module, ONLY : noncolin, i_cons
USE lsda_mod, ONLY : nspin
USE io_global, ONLY : ionode, ionode_id, stdout
USE mp, ONLY : mp_bcast
USE mp_images, ONLY : intra_image_comm
USE parameters,ONLY : npk
!
IMPLICIT NONE
!
CHARACTER(LEN=256), EXTERNAL :: trimcheck
!
CHARACTER (len=256) :: filband, filp, outdir
LOGICAL :: lsigma(4), lsym, lp, no_overlap, plot_2d
INTEGER :: spin_component, firstk, lastk
INTEGER :: ios
!
NAMELIST / bands / outdir, prefix, filband, filp, spin_component, lsigma,&
lsym, lp, filp, firstk, lastk, no_overlap, plot_2d
!
! initialise environment
!
#if defined(__MPI)
CALL mp_startup ( )
#endif
CALL environment_start ( 'BANDS' )
!
! set default values for variables in namelist
!
prefix = 'pwscf'
CALL get_environment_variable( 'ESPRESSO_TMPDIR', outdir )
IF ( trim( outdir ) == ' ' ) outdir = './'
filband = 'bands.out'
lsym=.true.
no_overlap=.true.
plot_2d=.false.
lsigma=.false.
lp=.false.
filp='p_avg.dat'
firstk=0
lastk=npk
spin_component = 1
!
ios = 0
!
IF ( ionode ) THEN
!
CALL input_from_file ( )
!
READ (5, bands, iostat = ios)
!
lsigma(4)=.false.
tmp_dir = trimcheck (outdir)
!
ENDIF
!
!
CALL mp_bcast( ios, ionode_id, intra_image_comm )
IF (ios /= 0) CALL errore ('bands', 'reading bands namelist', abs(ios) )
!
! ... Broadcast variables
!
CALL mp_bcast( tmp_dir, ionode_id, intra_image_comm )
CALL mp_bcast( prefix, ionode_id, intra_image_comm )
CALL mp_bcast( filband, ionode_id, intra_image_comm )
CALL mp_bcast( filp, ionode_id, intra_image_comm )
CALL mp_bcast( spin_component, ionode_id, intra_image_comm )
CALL mp_bcast( firstk, ionode_id, intra_image_comm )
CALL mp_bcast( lastk, ionode_id, intra_image_comm )
CALL mp_bcast( lp, ionode_id, intra_image_comm )
CALL mp_bcast( lsym, ionode_id, intra_image_comm )
CALL mp_bcast( lsigma, ionode_id, intra_image_comm )
CALL mp_bcast( no_overlap, ionode_id, intra_image_comm )
CALL mp_bcast( plot_2d, ionode_id, intra_image_comm )
IF (plot_2d) THEN
lsym=.false.
lp=.false.
no_overlap=.true.
ENDIF
IF (lsym) no_overlap=.true.
IF ( npool > 1 .and..not.(lsym.or.no_overlap)) CALL errore('bands', &
'pools not implemented',npool)
IF ( spin_component < 1 .OR. spin_component > 2 ) &
CALL errore('bands','incorrect spin_component',1)
!
! Now allocate space for pwscf variables, read and check them.
!
CALL read_file()
!
IF (gamma_only) CALL errore('bands','gamma_only case not implemented',1)
IF (two_fermi_energies.or.i_cons /= 0) &
CALL errore('bands',&
'The bands code with constrained magnetization has not been tested',1)
IF ( ANY(lsigma) .AND. .NOT.noncolin ) &
CALL errore ('punch_band', 'lsigma requires noncollinear run', 1 )
IF ( spin_component/=1 .and. nspin/=2 ) &
CALL errore('punch_bands','incorrect spin_component',1)
!
CALL openfil_pp()
!
IF (plot_2d) THEN
CALL punch_band_2d(filband,spin_component)
ELSE
CALL punch_band(filband,spin_component,lsigma,no_overlap)
IF (lsym) CALL sym_band(filband,spin_component,firstk,lastk)
IF (lp) CALL write_p_avg(filp,spin_component,firstk,lastk)
END IF
!
CALL environment_end ( 'BANDS' )
!
CALL stop_pp
STOP
END PROGRAM do_bands
!
!-----------------------------------------------------------------------
SUBROUTINE punch_band (filband, spin_component, lsigma, no_overlap)
!-----------------------------------------------------------------------
!
! This routine writes the band energies on a file. The routine orders
! the eigenvalues using the overlap of the eigenvectors to give
! an estimate crossing and anticrossing of the bands. This simplified
! method works in many, but not in all the cases.
!
!
USE kinds, ONLY : dp
USE ions_base, ONLY : nat, ityp, ntyp => nsp
USE cell_base, ONLY : at
USE constants, ONLY : rytoev
USE gvect, ONLY : g, ngm
USE klist, ONLY : xk, nks, nkstot, ngk, igk_k
USE io_files, ONLY : iunpun, nwordwfc, iunwfc
USE wvfct, ONLY : nbnd, et, npwx
USE uspp, ONLY : nkb, vkb
USE uspp_param, ONLY : upf, nh, nhm
USE noncollin_module, ONLY : noncolin, npol
USE wavefunctions, ONLY : evc
USE io_global, ONLY : ionode, ionode_id, stdout
USE mp, ONLY : mp_bcast
USE mp_images, ONLY : intra_image_comm
USE becmod, ONLY : calbec, bec_type, allocate_bec_type, &
deallocate_bec_type, becp
USE uspp_init, ONLY : init_us_2
IMPLICIT NONE
CHARACTER (len=*) :: filband
INTEGER, INTENT(IN) :: spin_component
LOGICAL, INTENT(IN) :: lsigma(4), no_overlap
! becp : <psi|beta> at current k-point
INTEGER :: ibnd, jbnd, iter, i, ik, ig, ig1, ig2, ipol, npw, ngmax, jmax
INTEGER :: nks1tot, nks2tot, nks1, nks2
INTEGER :: iunpun_sigma(4), ios(0:4), maxpos(2)
CHARACTER(len=256) :: nomefile
REAL(dp):: pscur, psmax, psr(nbnd,nbnd)
LOGICAL :: mask(nbnd,nbnd)
COMPLEX(dp), ALLOCATABLE :: psi(:,:), spsi(:,:), ps(:,:)
INTEGER, ALLOCATABLE :: work(:), igg(:)
INTEGER, ALLOCATABLE :: closest_band(:,:)! index for band ordering
REAL(DP), ALLOCATABLE:: sigma_avg(:,:,:) ! expectation value of sigma
REAL(DP), ALLOCATABLE:: et_(:,:) ! reordered eigenvalues in eV
IF (filband == ' ') RETURN
iunpun = 19
ios(:) = 0
!
IF ( ionode ) THEN
!
OPEN (unit = iunpun, file = filband, status = 'unknown', form = &
'formatted', iostat = ios(0))
REWIND (iunpun)
DO ipol=1,4
IF (lsigma(ipol)) THEN
iunpun_sigma(ipol)=iunpun+ipol
WRITE(nomefile,'(".",i1)') ipol
OPEN (unit = iunpun_sigma(ipol), &
file = trim(filband)//trim(nomefile), &
status = 'unknown', form='formatted', iostat = ios(ipol))
REWIND (iunpun_sigma(ipol))
ENDIF
ENDDO
!
ENDIF
!
CALL mp_bcast( ios, ionode_id, intra_image_comm )
IF ( ios(0) /= 0 ) &
CALL errore ('punch_band', 'Opening filband file', abs(ios(0)) )
DO ipol=1,4
IF ( ios(ipol) /= 0 ) &
CALL errore ('punch_band', 'Opening filband.N file ', ipol)
ENDDO
!
CALL find_nks1nks2(1,nkstot,nks1tot,nks1,nks2tot,nks2,spin_component)
!
! index of largest G in plane-wave basis set across k-points
!
ALLOCATE ( closest_band(nbnd,nkstot) )
DO ik=1,nkstot
!
! default ordering: leave bands as they are
!
DO ibnd=1,nbnd
closest_band(ibnd,ik) = ibnd
END DO
END DO
!
IF ( noncolin ) ALLOCATE ( sigma_avg(4,nbnd,nkstot) )
ALLOCATE ( psi(npwx*npol,nbnd), spsi(npwx*npol,nbnd), ps(nbnd,nbnd) )
CALL allocate_bec_type(nkb, nbnd, becp)
!
DO ik = nks1, nks2
!
! read eigenfunctions
!
CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1)
!
! calculate becp = <psi|beta>, needed to compute spsi = S|psi>
!
npw = ngk(ik)
CALL init_us_2 (npw, igk_k(1,ik), xk(1,ik), vkb)
CALL calbec ( npw, vkb, evc, becp )
!
! calculate average magnetization for noncolinear case
!
IF (noncolin) &
CALL compute_sigma_avg(sigma_avg(1,1,ik),becp%nc,ik,lsigma)
!
IF ( ik > nks1 .AND. .NOT. no_overlap ) THEN
!
! compute correspondence between k+G_i indices at current and previous k
!
ngmax = MAXVAL ( igk_k(:,ik-1:ik) )
ALLOCATE ( work(ngmax), igg(ngmax) )
work(:) = 0
DO ig1 = 1, ngk(ik-1)
work( igk_k(ig1,ik-1)) = ig1
END DO
igg(:) = 0
DO ig2 = 1, npw
ig1 = work( igk_k(ig2,ik))
IF (ig1 > 0) igg(ig2) = ig1
END DO
!
! compute overlap <\psi_k|S\psi_{k-1}> (without the Bloch factor)
! psi(G) = \psi(k+G) (order of G-vectors same as for previous k)
!
psi(:,:) = (0.0_dp,0.0_dp)
DO ig2 = 1, npw
IF ( igg(ig2) > 0 ) psi(igg(ig2),:) = evc(ig2,:)
END DO
IF ( noncolin) THEN
DO ig2 = 1, npw
IF ( igg(ig2) > 0 ) psi(npwx+igg(ig2),:) = evc(npwx+ig2,:)
END DO
END IF
DEALLOCATE (igg, work)
CALL calbec (ngk(ik-1), spsi, psi, ps )
!
! ps(ibnd,jbnd) = <S\psi_{k-1,ibnd} | \psi_{k,jbnd}>
!
! assign bands on the basis of the relative overlap square modulus
!
closest_band(:,ik) = -1
psr(:,:) = DBLE(ps*DCONJG(ps)) ! square modulus of overlap
! Set-up a mask that is .true. only for bands that are less than 0.5 eV apart
DO ibnd = 1,nbnd
DO jbnd = 1,nbnd
mask(ibnd,jbnd) = ABS(et(jbnd,ik)-et(ibnd,ik-1))<0.5/rytoev
ENDDO
ENDDO
!
DO iter=1,nbnd
maxpos = MAXLOC(psr, MASK=mask) ! find the maximum of all overlaps
ibnd = maxpos(1)
jbnd = maxpos(2)
!WRITE(*, '(3i3,f12.6)') iter, ibnd, jbnd, psr(ibnd,jbnd)
IF(ibnd==0 .or. jbnd==0) CALL errore("overlap", "mask has killed me", 2)
closest_band(jbnd,ik) = ibnd ! wfvc closer to jbnd at ik was iband at ik-1
IF(ABS(et(jbnd,ik)-et(ibnd,ik-1))>0.1/rytoev) THEN
WRITE(*,'(7x, "Overlap warning: bands", i3, " and", i3, '&
//'" are very far away! (ik, e1, e2)", i4, 2f12.6)') &
jbnd, ibnd, ik, et(jbnd,ik)*rytoev,et(ibnd,ik-1)*rytoev
ENDIF
! Set the entire line and entire row of overlap matrix to -1:
! The line, because I have found where bands jbnd,(ik-1) has gone
! The row, because I have found where band ibnd,ik comes from
psr(:,jbnd) = -1._dp
psr(ibnd,:) = -1._dp
END DO
!
IF(ANY(psr/=-1._dp)) CALL errore("overlap", "Something went wrong", 1)
ENDIF
!
IF ( ik < nks2 .AND. .NOT. no_overlap ) THEN
!
! compute S\psi_k to be used at next k-point
!
CALL s_psi( npwx, npw, nbnd, evc, spsi )
!
END IF
!
ENDDO
!
IF (noncolin) CALL poolrecover(sigma_avg,4*nbnd,nkstot,nks)
!
CALL deallocate_bec_type(becp)
DEALLOCATE ( psi, spsi, ps )
!
IF ( ionode ) THEN
!
! Re-order eigenvalues according to overlap
! (ibnd=band index, jbnd=re-ordered index)
!
ALLOCATE (et_(nbnd,nkstot))
DO ibnd=1,nbnd
jbnd = ibnd
DO ik=nks1tot,nks2tot
et_(ibnd,ik) = et(jbnd,ik)* rytoev
jbnd = closest_band(jbnd,ik)
END DO
END DO
!
CALL punch_plottable_bands ( filband, nks1tot, nks2tot, nkstot, nbnd, &
xk, et_ )
!
WRITE (iunpun, '(" &plot nbnd=",i4,", nks=",i6," /")') &
nbnd, nks2tot-nks1tot+1
DO ipol=1,4
IF (lsigma(ipol)) WRITE(iunpun_sigma(ipol), &
'(" &plot nbnd=",i4,", nks=",i6," /")') &
nbnd, nks2tot-nks1tot+1
ENDDO
DO ik=nks1tot,nks2tot
WRITE (iunpun, '(10x,3f10.6)') xk(1,ik),xk(2,ik),xk(3,ik)
WRITE (iunpun, '(10f9.3)') (et_(ibnd, ik), ibnd = 1, nbnd)
DO ipol=1,4
IF (lsigma(ipol)) THEN
WRITE (iunpun_sigma(ipol), '(10x,3f10.6)') &
xk(1,ik),xk(2,ik),xk(3,ik)
WRITE (iunpun_sigma(ipol), '(10f9.3)') &
(sigma_avg(ipol, ibnd, ik), ibnd = 1, nbnd)
ENDIF
ENDDO
ENDDO
!
DEALLOCATE ( et_ )
!
ENDIF
!
IF (noncolin) DEALLOCATE (sigma_avg)
!
IF ( ionode ) THEN
CLOSE (iunpun)
WRITE ( stdout, &
'(5x,"Bands written to file ",A)') TRIM(filband)
DO ipol=1,4
IF (lsigma(ipol)) CLOSE(iunpun_sigma(ipol))
ENDDO
ENDIF
!
RETURN
!
END SUBROUTINE punch_band
SUBROUTINE punch_band_2d(filband,spin_component)
!
! This routine opens a file for each band and writes on output
! kx, ky, energy,
! kx, ky, energy
! .., .., ..
! where kx and ky are proportional to the length
! of the vectors k_1 and k_2 specified in the input of the 2d plot.
!
! The k points are supposed to be in the form
! xk(i,j) = xk_0 + dkx *(i-1) + dky * (j-1) 1<i<n1, 1<j<n2
!
! kx(i,j) = (i-1) |dkx|
! ky(i,j) = (j-1) |dky|
!
USE kinds, ONLY : DP
USE constants, ONLY : eps8, rytoev
USE lsda_mod, ONLY : nspin
USE klist, ONLY : xk, nkstot, nks
USE wvfct, ONLY : et, nbnd
USE io_files, ONLY : iuntmp
USE io_global, ONLY : ionode, ionode_id
USE mp, ONLY : mp_bcast
USE mp_images, ONLY : intra_image_comm
IMPLICIT NONE
CHARACTER(LEN=256),INTENT(IN) :: filband
INTEGER, INTENT(IN) :: spin_component
REAL(DP) :: xk0(3), xk1(3), xk2(3), dkx(3), dky(3), xkdum(3), mdkx, mdky
INTEGER :: n1, n2
INTEGER :: ik, i, i1, i2, ibnd, ijk, start_k, last_k, nks_eff, j, ios
CHARACTER(LEN=256) :: filename
CHARACTER(LEN=6), EXTERNAL :: int_to_char
REAL(DP), ALLOCATABLE :: xk_collect(:,:), et_collect(:,:)
ALLOCATE(xk_collect(3,nkstot))
ALLOCATE(et_collect(nbnd,nkstot))
CALL poolcollect( 3, nks, xk, nkstot, xk_collect)
CALL poolcollect( nbnd, nks, et, nkstot, et_collect)
start_k=1
last_k=nkstot
nks_eff=nkstot
IF (nspin==2) THEN
nks_eff=nkstot/2
IF (spin_component==1) THEN
start_k=1
last_k=nks_eff
ELSE
start_k=nks_eff+1
last_k=nkstot
ENDIF
ENDIF
!
! Determine xk0
!
xk0(:)=xk_collect(:,start_k)
!
! Determine dkx
!
dky(:)=xk_collect(:,start_k+1)-xk0(:)
!
! Determine n2 and dky
!
loop_k: DO j=start_k+2, nkstot
xkdum(:)=xk0(:)+(j-1)*dky(:)
IF (ABS(xk_collect(1,j)-xkdum(1))>eps8.OR. &
ABS(xk_collect(2,j)-xkdum(2))>eps8.OR. &
ABS(xk_collect(3,j)-xkdum(3))>eps8) THEN
n2=j-1
dkx(:)=xk_collect(:,j)-xk0(:)
EXIT loop_k
ENDIF
ENDDO loop_k
n1=nks_eff/n2
IF (n1*n2 /= nks_eff) CALL errore('punch_band_2d',&
'Problems with k points',1)
mdkx = sqrt( dkx(1)**2 + dkx(2)**2 + dkx(3)**2 )
mdky = sqrt( dky(1)**2 + dky(2)**2 + dky(3)**2 )
!
! write the output, a band per file
!
DO ibnd=1,nbnd
filename=TRIM(filband) // '.' // TRIM(int_to_char(ibnd))
IF (ionode) &
open(unit=iuntmp,file=filename,status='unknown', err=100, iostat=ios)
CALL mp_bcast(ios,ionode_id, intra_image_comm)
100 CALL errore('punch_band_2d','Problem opening outputfile',ios)
ijk=0
DO i1=1,n1
DO i2=1,n2
ijk=ijk+1
IF (ionode) &
WRITE(iuntmp,'(3f16.6)') mdkx*(i1-1), mdky*(i2-1), &
et_collect(ibnd,ijk)*rytoev
ENDDO
ENDDO
IF (ionode) CLOSE(unit=iuntmp,status='KEEP')
ENDDO
DEALLOCATE(xk_collect)
DEALLOCATE(et_collect)
RETURN
END
!
!----------------------------------------------------------------------------
SUBROUTINE punch_plottable_bands ( filband, nks1tot, nks2tot, nkstot, nbnd, &
xk, et )
!---------------------------------------------------------------------------
!
USE kinds, ONLY : dp
IMPLICIT NONE
CHARACTER(LEN=*), INTENT(IN) :: filband
INTEGER, INTENT(IN) :: nks1tot, nks2tot, nkstot, nbnd
REAL(dp), INTENT(IN) :: xk(3,nkstot), et(nbnd,nkstot)
!
INTEGER, PARAMETER :: max_lines = 100, stdout=6, iunpun0=18
INTEGER:: ios, i, n, nlines, npoints(max_lines), point(max_lines)
LOGICAL :: high_symmetry(nkstot), opnd
REAL(dp):: k1(3), k2(3), kx(nkstot), ps, dxmod, dxmod_save
!
!
IF ( nks1tot < 1 .OR. nks2tot > nkstot .OR. nkstot < 1 .OR. nbnd < 1 ) THEN
CALL infomsg('punch_plottable_bands','incorrect input data, exiting')
RETURN
END IF
ios = 0
OPEN (unit = iunpun0, file = TRIM(filband)//'.gnu', status = 'unknown',&
form = 'formatted', iostat = ios)
IF ( ios /= 0 ) THEN
WRITE ( stdout, &
'(/,5x,"Error opening plottable file ",A)') TRIM(filband)//'.gnu'
RETURN
END IF
!
! Find high-symmetry points (poor man's algorithm)
!
DO n=nks1tot,nks2tot
IF (n==nks1tot .OR. n==nks2tot) THEN
high_symmetry(n) = .true.
ELSE
k1(:) = xk(:,n) - xk(:,n-1)
k2(:) = xk(:,n+1) - xk(:,n)
IF ( k1(1)*k1(1) + k1(2)*k1(2) + k1(3)*k1(3) < 1.0d-8 .OR. &
k2(1)*k2(1) + k2(2)*k2(2) + k2(3)*k2(3) < 1.0d-8 ) THEN
CALL infomsg('punch_plottable_bands','two consecutive same k, exiting')
RETURN
END IF
ps = ( k1(1)*k2(1) + k1(2)*k2(2) + k1(3)*k2(3) ) / &
sqrt( k1(1)*k1(1) + k1(2)*k1(2) + k1(3)*k1(3) ) / &
sqrt( k2(1)*k2(1) + k2(2)*k2(2) + k2(3)*k2(3) )
high_symmetry(n) = (ABS(ps-1.d0) >1.0d-4)
!
! The gamma point is a high symmetry point
!
IF (xk(1,n)**2+xk(2,n)**2+xk(3,n)**2 < 1.0d-8) high_symmetry(n)=.true.
!
! save the typical length of dk
!
IF (n==nks1tot+1) dxmod_save = sqrt( k1(1)**2 + k1(2)**2 + k1(3)**2)
ENDIF
ENDDO
kx(nks1tot) = 0.0_dp
DO n=nks1tot+1,nks2tot
dxmod=sqrt ( (xk(1,n)-xk(1,n-1))**2 + &
(xk(2,n)-xk(2,n-1))**2 + &
(xk(3,n)-xk(3,n-1))**2 )
IF (dxmod > 5*dxmod_save) THEN
!
! A big jump in dxmod is a sign that the point xk(:,n) and xk(:,n-1)
! are quite distant and belong to two different lines. We put them on
! the same point in the graph
!
kx(n)=kx(n-1)
ELSEIF (dxmod > 1.d-4) THEN
!
! This is the usual case. The two points xk(:,n) and xk(:,n-1) are in
! the same path.
!
kx(n) = kx(n-1) + dxmod
dxmod_save = dxmod
ELSE
!
! This is the case in which dxmod is almost zero. The two points
! coincide in the graph, but we do not save dxmod.
!
kx(n) = kx(n-1) + dxmod
!
ENDIF
ENDDO
!
! Now we compute how many paths there are: nlines
! The first point of this path: point(iline)
! How many points are in each path: npoints(iline)
!
DO n=nks1tot,nks2tot
IF (high_symmetry(n)) THEN
IF (n==nks1tot) THEN
!
! first point. Initialize the number of lines, and the number of point
! and say that this line start at the first point
!
nlines=1
npoints(1)=1
point(1)=1
ELSEIF (n==nks2tot) THEN
!
! Last point. Here we save the last point of this line, but
! do not increase the number of lines
!
npoints(nlines) = npoints(nlines)+1
point(nlines+1)=n
ELSE
!
! Middle line. The current line has one more points, and there is
! a new line that has to be initialized. It has one point and its
! first point is the current k.
!
npoints(nlines) = npoints(nlines)+1
nlines=nlines+1
IF (nlines>max_lines) THEN
CALL infomsg('punch_plottable_bands','too many lines, exiting')
RETURN
END IF
npoints(nlines) = 1
point(nlines)=n
ENDIF
!
WRITE( stdout,'(5x,"high-symmetry point: ",3f7.4,&
&" x coordinate",f9.4)') (xk(i,n),i=1,3), kx(n)
ELSE
!
! This k is not an high symmetry line so we just increase the number
! of points of this line.
!
npoints(nlines) = npoints(nlines)+1
ENDIF
ENDDO
!
DO i=1,nbnd
WRITE (iunpun0,'(2f10.4)') (kx(n), et(i,n),n=nks1tot,nks2tot)
WRITE (iunpun0,*)
ENDDO
!
WRITE ( stdout, &
'(/,5x,"Plottable bands (eV) written to file ",A)') TRIM(filband)//'.gnu'
CLOSE(unit=iunpun0, STATUS='KEEP')
RETURN
!
END SUBROUTINE punch_plottable_bands
| gpl-2.0 |
QEF/q-e | PHonon/PH/generate_dynamical_matrix_c.f90 | 2 | 3555 | !
! Copyright (C) 2003-2010 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine generate_dynamical_matrix &
(nat, nsym, s, invs, irt, at, bg, n_diff_sites, equiv_atoms, &
has_equivalent, dyn)
!-----------------------------------------------------------------------
!! Generate the complete dynamical matrix from independent modes only.
!! Input: dyn = irreducible dyn.mat.
!! Output: dyn = complete dyn.mat.
!
USE kinds, only : DP
implicit none
integer :: nat, nsym, n_diff_sites, irt(48,nat), invs(48), &
equiv_atoms(nat,nat), s(3,3,48), has_equivalent(nat)
real(DP) :: at(3,3), bg(3,3)
complex(DP) :: dyn(3*nat,3*nat)
!
integer :: isym, na, nb, ni, nj, sni, snj, smu_i, smu_j, &
i, j, k, l, mu_k, mu_l
complex(DP), allocatable :: irreducible_dyn(:,:)
complex(DP) :: work(3,3)
logical :: no_equivalent_atoms
integer, allocatable ::done(:,:)
!
no_equivalent_atoms=.true.
do na = 1,nat
no_equivalent_atoms = no_equivalent_atoms .and. has_equivalent(na).eq.0
end do
if (no_equivalent_atoms) return
!
allocate ( irreducible_dyn( 3*nat, 3*nat))
call zcopy(3*nat*3*nat,dyn,1,irreducible_dyn,1)
!
do na = 1,nat
if (has_equivalent(na).eq.0 ) then
do nb = 1,nat
do i = 1,3
do j = 1,3
work(i,j) = irreducible_dyn(3*(na-1)+i,3*(nb-1)+j)
end do
end do
!
! transform to crystal axis
!
call trntnsc(work,at,bg,-1)
do i = 1,3
do j = 1,3
irreducible_dyn(3*(na-1)+i,3*(nb-1)+j) = work(i,j)
end do
end do
end do
end if
end do
!
allocate (done( 3*nat, 3*nat))
do smu_i = 1,3*nat
do smu_j = 1,3*nat
dyn(smu_i,smu_j) = (0.d0,0.d0)
done(smu_i,smu_j)= 0
end do
end do
!
do isym = 1,nsym
do na = 1,n_diff_sites
ni = equiv_atoms(na,1)
sni = irt(isym,ni)
do i = 1,3
smu_i = 3*(sni-1)+i
do nj = 1,nat
snj = irt(isym,nj)
do j = 1,3
smu_j = 3*(snj-1)+j
if (done(smu_i,smu_j).eq.0) then
do k = 1,3
mu_k = 3*(ni-1)+k
do l = 1,3
mu_l = 3*(nj-1)+l
dyn(smu_i,smu_j) = dyn(smu_i,smu_j) + &
s(i,k,invs(isym)) * s(j,l,invs(isym)) * &
irreducible_dyn(mu_k,mu_l)
! rotation matrices are S^-1
end do
end do
done(smu_i,smu_j)=1
end if
end do
end do
end do
end do
end do
!
deallocate(done)
deallocate(irreducible_dyn)
!
do na = 1,nat
do nb = 1,nat
do i = 1,3
do j = 1,3
work(i,j) = dyn(3*(na-1)+i,3*(nb-1)+j)
end do
end do
! back to cartesian axes
call trntnsc(work,at,bg, 1)
do i = 1,3
do j = 1,3
dyn(3*(na-1)+i,3*(nb-1)+j) = work(i,j)
end do
end do
end do
end do
!
return
end subroutine generate_dynamical_matrix
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/ctrttf.f | 24 | 15895 | *> \brief \b CTRTTF copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CTRTTF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrttf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrttf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrttf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANSR, UPLO
* INTEGER INFO, N, LDA
* ..
* .. Array Arguments ..
* COMPLEX A( 0: LDA-1, 0: * ), ARF( 0: * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CTRTTF copies a triangular matrix A from standard full format (TR)
*> to rectangular full packed format (TF) .
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANSR
*> \verbatim
*> TRANSR is CHARACTER*1
*> = 'N': ARF in Normal mode is wanted;
*> = 'C': ARF in Conjugate Transpose mode is wanted;
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': A is upper triangular;
*> = 'L': A is lower triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> On entry, the triangular matrix A. If UPLO = 'U', the
*> leading N-by-N upper triangular part of the array A contains
*> the upper triangular matrix, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading N-by-N lower triangular part of the array A contains
*> the lower triangular matrix, and the strictly upper
*> triangular part of A is not referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the matrix A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] ARF
*> \verbatim
*> ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ),
*> On exit, the upper or lower triangular matrix A stored in
*> RFP format. For a further discussion see Notes below.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complexOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> We first consider Standard Packed Format when N is even.
*> We give an example where N = 6.
*>
*> AP is Upper AP is Lower
*>
*> 00 01 02 03 04 05 00
*> 11 12 13 14 15 10 11
*> 22 23 24 25 20 21 22
*> 33 34 35 30 31 32 33
*> 44 45 40 41 42 43 44
*> 55 50 51 52 53 54 55
*>
*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
*> conjugate-transpose of the first three columns of AP upper.
*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
*> conjugate-transpose of the last three columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N even and TRANSR = 'N'.
*>
*> RFP A RFP A
*>
*> -- -- --
*> 03 04 05 33 43 53
*> -- --
*> 13 14 15 00 44 54
*> --
*> 23 24 25 10 11 55
*>
*> 33 34 35 20 21 22
*> --
*> 00 44 45 30 31 32
*> -- --
*> 01 11 55 40 41 42
*> -- -- --
*> 02 12 22 50 51 52
*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
*>
*>
*> RFP A RFP A
*>
*> -- -- -- -- -- -- -- -- -- --
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- -- --
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
*> -- -- -- -- -- -- -- -- -- --
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
*>
*>
*> We next consider Standard Packed Format when N is odd.
*> We give an example where N = 5.
*>
*> AP is Upper AP is Lower
*>
*> 00 01 02 03 04 00
*> 11 12 13 14 10 11
*> 22 23 24 20 21 22
*> 33 34 30 31 32 33
*> 44 40 41 42 43 44
*>
*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
*> conjugate-transpose of the first two columns of AP upper.
*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
*> conjugate-transpose of the last two columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N odd and TRANSR = 'N'.
*>
*> RFP A RFP A
*>
*> -- --
*> 02 03 04 00 33 43
*> --
*> 12 13 14 10 11 44
*>
*> 22 23 24 20 21 22
*> --
*> 00 33 34 30 31 32
*> -- --
*> 01 11 44 40 41 42
*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
*>
*>
*> RFP A RFP A
*>
*> -- -- -- -- -- -- -- -- --
*> 02 12 22 00 01 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- --
*> 03 13 23 33 11 33 11 21 31 41 51
*> -- -- -- -- -- -- -- -- --
*> 04 14 24 34 44 43 44 22 32 42 52
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER TRANSR, UPLO
INTEGER INFO, N, LDA
* ..
* .. Array Arguments ..
COMPLEX A( 0: LDA-1, 0: * ), ARF( 0: * )
* ..
*
* =====================================================================
*
* .. Parameters ..
* ..
* .. Local Scalars ..
LOGICAL LOWER, NISODD, NORMALTRANSR
INTEGER I, IJ, J, K, L, N1, N2, NT, NX2, NP1X2
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, MAX, MOD
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NORMALTRANSR = LSAME( TRANSR, 'N' )
LOWER = LSAME( UPLO, 'L' )
IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
INFO = -1
ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CTRTTF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.LE.1 ) THEN
IF( N.EQ.1 ) THEN
IF( NORMALTRANSR ) THEN
ARF( 0 ) = A( 0, 0 )
ELSE
ARF( 0 ) = CONJG( A( 0, 0 ) )
END IF
END IF
RETURN
END IF
*
* Size of array ARF(1:2,0:nt-1)
*
NT = N*( N+1 ) / 2
*
* set N1 and N2 depending on LOWER: for N even N1=N2=K
*
IF( LOWER ) THEN
N2 = N / 2
N1 = N - N2
ELSE
N1 = N / 2
N2 = N - N1
END IF
*
* If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
* If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
* N--by--(N+1)/2.
*
IF( MOD( N, 2 ).EQ.0 ) THEN
K = N / 2
NISODD = .FALSE.
IF( .NOT.LOWER )
$ NP1X2 = N + N + 2
ELSE
NISODD = .TRUE.
IF( .NOT.LOWER )
$ NX2 = N + N
END IF
*
IF( NISODD ) THEN
*
* N is odd
*
IF( NORMALTRANSR ) THEN
*
* N is odd and TRANSR = 'N'
*
IF( LOWER ) THEN
*
* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
* T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n
*
IJ = 0
DO J = 0, N2
DO I = N1, N2 + J
ARF( IJ ) = CONJG( A( N2+J, I ) )
IJ = IJ + 1
END DO
DO I = J, N - 1
ARF( IJ ) = A( I, J )
IJ = IJ + 1
END DO
END DO
*
ELSE
*
* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
* T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n
*
IJ = NT - N
DO J = N - 1, N1, -1
DO I = 0, J
ARF( IJ ) = A( I, J )
IJ = IJ + 1
END DO
DO L = J - N1, N1 - 1
ARF( IJ ) = CONJG( A( J-N1, L ) )
IJ = IJ + 1
END DO
IJ = IJ - NX2
END DO
*
END IF
*
ELSE
*
* N is odd and TRANSR = 'C'
*
IF( LOWER ) THEN
*
* SRPA for LOWER, TRANSPOSE and N is odd
* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
* T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1
*
IJ = 0
DO J = 0, N2 - 1
DO I = 0, J
ARF( IJ ) = CONJG( A( J, I ) )
IJ = IJ + 1
END DO
DO I = N1 + J, N - 1
ARF( IJ ) = A( I, N1+J )
IJ = IJ + 1
END DO
END DO
DO J = N2, N - 1
DO I = 0, N1 - 1
ARF( IJ ) = CONJG( A( J, I ) )
IJ = IJ + 1
END DO
END DO
*
ELSE
*
* SRPA for UPPER, TRANSPOSE and N is odd
* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
* T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda=n2
*
IJ = 0
DO J = 0, N1
DO I = N1, N - 1
ARF( IJ ) = CONJG( A( J, I ) )
IJ = IJ + 1
END DO
END DO
DO J = 0, N1 - 1
DO I = 0, J
ARF( IJ ) = A( I, J )
IJ = IJ + 1
END DO
DO L = N2 + J, N - 1
ARF( IJ ) = CONJG( A( N2+J, L ) )
IJ = IJ + 1
END DO
END DO
*
END IF
*
END IF
*
ELSE
*
* N is even
*
IF( NORMALTRANSR ) THEN
*
* N is even and TRANSR = 'N'
*
IF( LOWER ) THEN
*
* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
* T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1
*
IJ = 0
DO J = 0, K - 1
DO I = K, K + J
ARF( IJ ) = CONJG( A( K+J, I ) )
IJ = IJ + 1
END DO
DO I = J, N - 1
ARF( IJ ) = A( I, J )
IJ = IJ + 1
END DO
END DO
*
ELSE
*
* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
* T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1
*
IJ = NT - N - 1
DO J = N - 1, K, -1
DO I = 0, J
ARF( IJ ) = A( I, J )
IJ = IJ + 1
END DO
DO L = J - K, K - 1
ARF( IJ ) = CONJG( A( J-K, L ) )
IJ = IJ + 1
END DO
IJ = IJ - NP1X2
END DO
*
END IF
*
ELSE
*
* N is even and TRANSR = 'C'
*
IF( LOWER ) THEN
*
* SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B)
* T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) :
* T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k
*
IJ = 0
J = K
DO I = K, N - 1
ARF( IJ ) = A( I, J )
IJ = IJ + 1
END DO
DO J = 0, K - 2
DO I = 0, J
ARF( IJ ) = CONJG( A( J, I ) )
IJ = IJ + 1
END DO
DO I = K + 1 + J, N - 1
ARF( IJ ) = A( I, K+1+J )
IJ = IJ + 1
END DO
END DO
DO J = K - 1, N - 1
DO I = 0, K - 1
ARF( IJ ) = CONJG( A( J, I ) )
IJ = IJ + 1
END DO
END DO
*
ELSE
*
* SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B)
* T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0)
* T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k
*
IJ = 0
DO J = 0, K
DO I = K, N - 1
ARF( IJ ) = CONJG( A( J, I ) )
IJ = IJ + 1
END DO
END DO
DO J = 0, K - 2
DO I = 0, J
ARF( IJ ) = A( I, J )
IJ = IJ + 1
END DO
DO L = K + 1 + J, N - 1
ARF( IJ ) = CONJG( A( K+1+J, L ) )
IJ = IJ + 1
END DO
END DO
*
* Note that here J = K-1
*
DO I = 0, J
ARF( IJ ) = A( I, J )
IJ = IJ + 1
END DO
*
END IF
*
END IF
*
END IF
*
RETURN
*
* End of CTRTTF
*
END
| gpl-2.0 |
QEF/q-e | Modules/rism1d_facade.f90 | 2 | 17124 | !
! Copyright (C) 2015-2016 Satomichi Nishihara
!
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------------
MODULE rism1d_facade
!--------------------------------------------------------------------------
!
! ... Facade (or Interface) of 1D-RISM's library.
! ... External codes, which utilize 1D-RISM, can access data and subroutines
! ... throught this module.
!
USE err_rism, ONLY : stop_by_err_rism, IERR_RISM_NULL, IERR_RISM_NOT_CONVERGED
USE io_global, ONLY : stdout, ionode
USE io_rism_xml, ONLY : write_1drism, read_1drism
USE kinds, ONLY : DP
USE mp, ONLY : mp_rank, mp_size, mp_sum, mp_barrier, mp_comm_split
USE mp_images, ONLY : intra_image_comm
USE rism, ONLY : rism_type, clean_rism_data, allocate_1drism, deallocate_rism
USE solvmol, ONLY : get_nsite_in_solVs
!
IMPLICIT NONE
SAVE
PRIVATE
!
! ... define constants
INTEGER, PARAMETER :: LEN_STR = 30
!
! ... define variables
LOGICAL :: lrism1d = .FALSE. ! to calculate 1D-RISM, or not
INTEGER :: nproc_sub = 0 ! total size of MPI's subspace
INTEGER :: nproc_switch = 0 ! size of MPI's subspace to switch algorithm
LOGICAL :: has_any_corr = .FALSE. ! has nonzero correlations
CHARACTER(LEN=LEN_STR) :: starting_corr = '' ! initial correlations: 'zero', 'file', 'fix'
INTEGER :: niter = 0 ! maximum number of iteration
REAL(DP) :: epsv = 0.0_DP ! convergence threshold
REAL(DP) :: bond_width = 0.0_DP ! gaussian width of bonds (in bohr)
INTEGER :: mdiis_size = 0 ! size of MDIIS
REAL(DP) :: mdiis_step = 0.0_DP ! step of MDIIS
REAL(DP) :: dielectric = 0.0_DP ! dielectric constant (for DRISM)
REAL(DP) :: molesize = 0.0_DP ! size of molecule (in bohr, for DRISM)
!
! ... define 1D-RISM's main data
TYPE(rism_type), POINTER :: rism1t => NULL()
TYPE(rism_type), TARGET :: rism1t_right
TYPE(rism_type), TARGET :: rism1t_left
LOGICAL :: init_rism1t_right = .FALSE.
LOGICAL :: init_rism1t_left = .FALSE.
!
! ... public components
PUBLIC :: lrism1d
PUBLIC :: nproc_sub
PUBLIC :: nproc_switch
PUBLIC :: starting_corr
PUBLIC :: niter
PUBLIC :: epsv
PUBLIC :: bond_width
PUBLIC :: mdiis_size
PUBLIC :: mdiis_step
PUBLIC :: dielectric
PUBLIC :: molesize
!
PUBLIC :: rism1t
PUBLIC :: rism1d_iosys
PUBLIC :: rism1d_summary
PUBLIC :: rism1d_initialize
PUBLIC :: rism1d_finalize
PUBLIC :: rism1d_is_avail
PUBLIC :: rism1d_activate_right
PUBLIC :: rism1d_activate_left
PUBLIC :: rism1d_prepare
PUBLIC :: rism1d_run
PUBLIC :: rism1d_write_to_show
PUBLIC :: rism1d_write_to_restart
PUBLIC :: rism1d_read_to_restart
PUBLIC :: rism1d_print_clock
!
CONTAINS
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_iosys(trism, laue)
!----------------------------------------------------------------------------
!
! ... set variables and initialize this module
!
IMPLICIT NONE
!
LOGICAL, INTENT(IN) :: trism
LOGICAL, OPTIONAL, INTENT(IN) :: laue
!
LOGICAL :: laue_
!
lrism1d = trism
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
IF (PRESENT(laue)) THEN
laue_ = laue
ELSE
laue_ = .FALSE.
END IF
!
CALL iosys_1drism(laue_)
!
END SUBROUTINE rism1d_iosys
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_summary()
!----------------------------------------------------------------------------
!
! ... print conditions
!
IMPLICIT NONE
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
CALL summary_1drism()
!
END SUBROUTINE rism1d_summary
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_initialize(ngrid, rmax, lboth)
!----------------------------------------------------------------------------
!
! ... initialize this module
! ...
! ... Variables:
! ... ngrid: number of grids
! ... rmax: maximum radius of R-space (in bohr)
! ... lboth: initialize the both rism1t_right and rism1t_left, or not
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: ngrid
REAL(DP), INTENT(IN) :: rmax
LOGICAL, INTENT(IN) :: lboth
!
INTEGER :: nv
INTEGER :: rism1d_comm
INTEGER :: rism1d_root
LOGICAL :: rism1d_primal
LOGICAL :: mpi_radfft
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
nv = get_nsite_in_solVs()
!
! ... initialize MPI's information
CALL rism1d_mpi_init(rism1d_comm, rism1d_root, rism1d_primal, mpi_radfft)
!
! ... initialize rism1t_right
init_rism1t_right = .TRUE.
CALL allocate_1drism(rism1t_right, nv, ngrid, rmax, mpi_radfft, &
& intra_image_comm, rism1d_root, rism1d_primal, rism1d_comm)
!
IF (lboth) THEN
! ... initialize rism1t_left
init_rism1t_left = .TRUE.
CALL allocate_1drism(rism1t_left, nv, ngrid, rmax, mpi_radfft, &
& intra_image_comm, rism1d_root, rism1d_primal, rism1d_comm)
END IF
!
! ... activate rism1t_right
CALL rism1d_activate_right()
!
END SUBROUTINE rism1d_initialize
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_mpi_init(rism1d_comm, rism1d_root, rism1d_primal, mpi_radfft)
!----------------------------------------------------------------------------
!
IMPLICIT NONE
!
INTEGER, INTENT(OUT) :: rism1d_comm
INTEGER, INTENT(OUT) :: rism1d_root
LOGICAL, INTENT(OUT) :: rism1d_primal
LOGICAL, INTENT(OUT) :: mpi_radfft
!
INTEGER :: color
INTEGER :: irank
INTEGER :: nproc
!
irank = mp_rank(intra_image_comm)
nproc = mp_size(intra_image_comm)
!
IF (nproc <= nproc_sub) THEN
rism1d_comm = intra_image_comm
rism1d_root = 0
rism1d_primal = .TRUE.
!
ELSE
color = irank / nproc_sub
rism1d_root = 0
IF (ionode) THEN
color = 0
rism1d_root = irank
END IF
CALL mp_barrier(intra_image_comm)
CALL mp_comm_split(intra_image_comm, color, irank, rism1d_comm)
CALL mp_sum(rism1d_root, intra_image_comm)
rism1d_primal = (color == 0)
END IF
!
IF (MIN(nproc, nproc_sub) > nproc_switch) THEN
mpi_radfft = .TRUE.
ELSE
mpi_radfft = .FALSE.
END IF
!
END SUBROUTINE rism1d_mpi_init
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_finalize()
!----------------------------------------------------------------------------
!
! ... finalize this module
!
IMPLICIT NONE
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
! ... finalize rism1t
IF (ASSOCIATED(rism1t)) THEN
NULLIFY(rism1t)
END IF
!
! ... finalize rism1t_right
IF (init_rism1t_right) THEN
init_rism1t_right = .FALSE.
CALL deallocate_rism(rism1t_right, .TRUE.)
END IF
!
! ... finalize rism1t_left
IF (init_rism1t_left) THEN
init_rism1t_left = .FALSE.
CALL deallocate_rism(rism1t_left, .TRUE.)
END IF
!
END SUBROUTINE rism1d_finalize
!
!----------------------------------------------------------------------------
FUNCTION rism1d_is_avail() RESULT(avail)
!----------------------------------------------------------------------------
!
! ... result of 1D-RISM is available, or not
!
IMPLICIT NONE
LOGICAL :: avail
!
IF (.NOT. lrism1d) THEN
avail = .FALSE.
RETURN
END IF
!
IF (.NOT. (init_rism1t_right .OR. init_rism1t_left)) THEN
avail = .FALSE.
RETURN
END IF
!
avail = .TRUE.
!
IF (init_rism1t_right) THEN
avail = avail .AND. rism1t_right%avail
END IF
!
IF (init_rism1t_left) THEN
avail = avail .AND. rism1t_left%avail
END IF
!
END FUNCTION rism1d_is_avail
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_activate_right()
!----------------------------------------------------------------------------
!
! ... activate rism1t_right
!
IMPLICIT NONE
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
!IF (.NOT. init_rism1t_right) THEN
! CALL stop_by_err_rism('rism1d_activate_right', IERR_RISM_1DRISM_IS_NOT_AVAIL)
!END IF
!
rism1t => rism1t_right
!
END SUBROUTINE rism1d_activate_right
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_activate_left()
!----------------------------------------------------------------------------
!
! ... activate rism1t_left
!
IMPLICIT NONE
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
!IF (.NOT. init_rism1t_left) THEN
! CALL stop_by_err_rism('rism1d_activate_left', IERR_RISM_1DRISM_IS_NOT_AVAIL)
!END IF
!
rism1t => rism1t_left
!
END SUBROUTINE rism1d_activate_left
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_prepare()
!----------------------------------------------------------------------------
!
! ... prepare 1D-RISM's iterative calculation
!
IMPLICIT NONE
!
INTEGER :: ierr
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
CALL start_clock('1DRISM_pre')
!
! ... initial calculation (potential, intra-molecular correlation, dielectric bridge)
IF (init_rism1t_right) THEN
CALL init_1drism(rism1t_right, bond_width, dielectric, molesize, .TRUE., ierr)
!
IF (ierr /= IERR_RISM_NULL) THEN
CALL stop_by_err_rism('rism1d_prepare', ierr)
END IF
END IF
!
IF (init_rism1t_left) THEN
CALL init_1drism(rism1t_left, bond_width, dielectric, molesize, .FALSE., ierr)
!
IF (ierr /= IERR_RISM_NULL) THEN
CALL stop_by_err_rism('rism1d_prepare', ierr)
END IF
END IF
!
! ... create initial correlation
IF (TRIM(starting_corr) == 'file' .OR. TRIM(starting_corr) == 'fix') THEN
WRITE(stdout, '()')
WRITE(stdout, '(5X,"Correlation function is read from file")')
WRITE(stdout, '()')
!
IF (init_rism1t_right) THEN
CALL clean_rism_data(rism1t_right)
END IF
IF (init_rism1t_left) THEN
CALL clean_rism_data(rism1t_left)
END IF
!
CALL rism1d_read_to_restart()
has_any_corr = .TRUE.
!
IF (TRIM(starting_corr) == 'fix') THEN
rism1t%avail = .TRUE.
END IF
!
ELSE !IF (TRIM(starting_corr) == 'zero') THEN
IF (init_rism1t_right) THEN
CALL clean_rism_data(rism1t_right)
END IF
IF (init_rism1t_left) THEN
CALL clean_rism_data(rism1t_left)
END IF
!
has_any_corr = .FALSE.
END IF
!
CALL stop_clock('1DRISM_pre')
!
END SUBROUTINE rism1d_prepare
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_run(lconv)
!----------------------------------------------------------------------------
!
! ... perform 1D-RISM's iterative calculation
!
IMPLICIT NONE
!
LOGICAL, INTENT(OUT) :: lconv
!
INTEGER :: ierr
INTEGER :: ihand
CHARACTER(LEN=64) :: title
!
IF (.NOT. lrism1d) THEN
lconv = .FALSE.
RETURN
END IF
!
! ... does not calculate, if 'fix'
IF (TRIM(starting_corr) == 'fix') THEN
lconv = .FALSE.
WRITE(stdout, '()')
WRITE(stdout, '(5X,"Correlation function is fixed")')
WRITE(stdout, '()')
RETURN
END IF
!
lconv = .TRUE.
!
DO ihand = 1, 2
IF (ihand == 1) THEN
IF (.NOT. init_rism1t_right) CYCLE
ELSE
IF (.NOT. init_rism1t_left) CYCLE
END IF
!
CALL start_clock('1DRISM_run')
!
! ... calculate 1D-RISM
IF (ihand == 1) THEN
title = ''
IF (init_rism1t_right .AND. init_rism1t_left) THEN
title = 'the right-hand side'
END IF
CALL do_1drism(rism1t_right, niter, epsv, mdiis_size, mdiis_step, bond_width, &
& .TRUE., .NOT. has_any_corr, TRIM(ADJUSTL(title)), ierr)
!
ELSE
title = ''
IF (init_rism1t_right .AND. init_rism1t_left) THEN
title = 'the left-hand side'
END IF
CALL do_1drism(rism1t_left, niter, epsv, mdiis_size, mdiis_step, bond_width, &
& .FALSE., .NOT. has_any_corr, TRIM(ADJUSTL(title)), ierr)
END IF
!
! ... 1D-RISM has been converged ?
IF (ierr == IERR_RISM_NOT_CONVERGED) THEN
lconv = lconv .AND. .FALSE.
!
ELSE IF (ierr == IERR_RISM_NULL) THEN
lconv = lconv .AND. .TRUE.
!
ELSE ! an error has been occurred
lconv = lconv .AND. .FALSE.
CALL stop_by_err_rism('rism1d_run', ierr)
END IF
!
CALL stop_clock('1DRISM_run')
!
END DO
!
! ... here, correlation is nonzero.
has_any_corr = .TRUE.
!
END SUBROUTINE rism1d_run
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_write_to_show()
!----------------------------------------------------------------------------
!
! ... write 1D-RISM's data (human readable)
!
IMPLICIT NONE
!
INTEGER :: ierr
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
IF (init_rism1t_right .AND. init_rism1t_left) THEN
CALL print_corr_vv(rism1t_right, '#right', ierr)
CALL print_corr_vv(rism1t_left, '#left', ierr)
!
ELSE IF (init_rism1t_right) THEN
CALL print_corr_vv(rism1t_right, '', ierr)
!
ELSE IF (init_rism1t_right) THEN
CALL print_corr_vv(rism1t_left, '', ierr)
!
END IF
!
IF (ierr /= IERR_RISM_NULL) THEN
CALL stop_by_err_rism('rism1d_write_to_show', ierr)
END IF
!
CALL mp_barrier(rism1t%super_comm)
!
END SUBROUTINE rism1d_write_to_show
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_write_to_restart(ext)
!----------------------------------------------------------------------------
!
! ... write 1D-RISM's data (for restart calculation)
!
IMPLICIT NONE
!
CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: ext
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
IF (init_rism1t_right) THEN
IF (PRESENT(ext)) THEN
CALL write_1drism(rism1t_right, '1.' // TRIM(ADJUSTL(ext)))
ELSE
CALL write_1drism(rism1t_right, '1')
END IF
END IF
!
IF (init_rism1t_left) THEN
IF (PRESENT(ext)) THEN
CALL write_1drism(rism1t_left, '2.' // TRIM(ADJUSTL(ext)))
ELSE
CALL write_1drism(rism1t_left, '2')
END IF
END IF
!
CALL mp_barrier(rism1t%super_comm)
!
END SUBROUTINE rism1d_write_to_restart
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_read_to_restart(ext)
!----------------------------------------------------------------------------
!
! ... read 1D-RISM's data (for restart calculation)
!
IMPLICIT NONE
!
CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: ext
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
IF (init_rism1t_right) THEN
IF (PRESENT(ext)) THEN
CALL read_1drism(rism1t_right, '1.' // TRIM(ADJUSTL(ext)))
ELSE
CALL read_1drism(rism1t_right, '1')
END IF
END IF
!
IF (init_rism1t_left) THEN
IF (PRESENT(ext)) THEN
CALL read_1drism(rism1t_left, '2.' // TRIM(ADJUSTL(ext)))
ELSE
CALL read_1drism(rism1t_left, '2')
END IF
END IF
!
END SUBROUTINE rism1d_read_to_restart
!
!----------------------------------------------------------------------------
SUBROUTINE rism1d_print_clock()
!----------------------------------------------------------------------------
!
! ... print clock for 1D-RISM
!
IMPLICIT NONE
!
IF (.NOT. lrism1d) THEN
RETURN
END IF
!
CALL print_clock('1DRISM_pre')
CALL print_clock('1DRISM_run')
#if defined (__DEBUG_RISM)
CALL print_clock('1DRISM_eqn')
CALL print_clock('1DRISM_clos')
CALL print_clock('1DRISM_fft')
CALL print_clock('1DRISM_mdiis')
#endif
!
END SUBROUTINE rism1d_print_clock
!
END MODULE rism1d_facade
| gpl-2.0 |
e-q/scipy | scipy/special/cdflib/algdiv.f | 151 | 1850 | DOUBLE PRECISION FUNCTION algdiv(a,b)
C-----------------------------------------------------------------------
C
C COMPUTATION OF LN(GAMMA(B)/GAMMA(A+B)) WHEN B .GE. 8
C
C --------
C
C IN THIS ALGORITHM, DEL(X) IS THE FUNCTION DEFINED BY
C LN(GAMMA(X)) = (X - 0.5)*LN(X) - X + 0.5*LN(2*PI) + DEL(X).
C
C-----------------------------------------------------------------------
C .. Scalar Arguments ..
DOUBLE PRECISION a,b
C ..
C .. Local Scalars ..
DOUBLE PRECISION c,c0,c1,c2,c3,c4,c5,d,h,s11,s3,s5,s7,s9,t,u,v,w,
+ x,x2
C ..
C .. External Functions ..
DOUBLE PRECISION alnrel
EXTERNAL alnrel
C ..
C .. Intrinsic Functions ..
INTRINSIC dlog
C ..
C .. Data statements ..
DATA c0/.833333333333333D-01/,c1/-.277777777760991D-02/,
+ c2/.793650666825390D-03/,c3/-.595202931351870D-03/,
+ c4/.837308034031215D-03/,c5/-.165322962780713D-02/
C ..
C .. Executable Statements ..
C------------------------
IF (a.LE.b) GO TO 10
h = b/a
c = 1.0D0/ (1.0D0+h)
x = h/ (1.0D0+h)
d = a + (b-0.5D0)
GO TO 20
10 h = a/b
c = h/ (1.0D0+h)
x = 1.0D0/ (1.0D0+h)
d = b + (a-0.5D0)
C
C SET SN = (1 - X**N)/(1 - X)
C
20 x2 = x*x
s3 = 1.0D0 + (x+x2)
s5 = 1.0D0 + (x+x2*s3)
s7 = 1.0D0 + (x+x2*s5)
s9 = 1.0D0 + (x+x2*s7)
s11 = 1.0D0 + (x+x2*s9)
C
C SET W = DEL(B) - DEL(A + B)
C
t = (1.0D0/b)**2
w = ((((c5*s11*t+c4*s9)*t+c3*s7)*t+c2*s5)*t+c1*s3)*t + c0
w = w* (c/b)
C
C COMBINE THE RESULTS
C
u = d*alnrel(a/b)
v = a* (dlog(b)-1.0D0)
IF (u.LE.v) GO TO 30
algdiv = (w-v) - u
RETURN
30 algdiv = (w-u) - v
RETURN
END
| bsd-3-clause |
florianziemen/bin | topfill.f | 1 | 2767 | program difftop
c
parameter(ie=2160,je=1080)
c
dimension top(ie,je),ao(ie,je),an(ie,je),ihead(4)
c
read(70)ihead
read(70)top
write (6,*)ihead
c
do j=1,je
do i=1,ie
if(top(i,j).lt.-4000.)then
ao(i,j)=9.
elseif(top(i,j).lt.0.)then
ao(i,j)=1.
else
ao(i,j)=0.
endif
an(i,j)=ao(i,j)
enddo
enddo
c write(71)0,1,1,ie*je
c write(71)an
iter=0
10 iter=iter+1
zaehl=0
do j=1,je
jo=j-1
if(j.eq.1)jo=1
ju=j+1
if(j.eq.je)ju=je
do i=1,ie
il=i-1
if(il.lt.1)il=ie
ir=i+1
if(ir.gt.ie)ir=1
zzz=an(i,j)
if(an(i,j).eq.1.)an(i,j)=max(an(il,j),an(ir,j),an(i,jo)
x ,an(i,ju),an(il,ju),an(ir,ju),an(il,jo),an(ir,jo))
if(an(i,j).ne.zzz)zaehl=zaehl+1
enddo
enddo
write(6,*)zaehl
cc write(71)iter,1,1,ie*je
cc write(71)an
do j=je,1,-1
jo=j-1
if(j.eq.1)jo=1
ju=j+1
if(j.eq.je)ju=je
do i=ie,1,-1
il=i-1
if(il.lt.1)il=ie
ir=i+1
if(ir.gt.ie)ir=1
zzz=an(i,j)
if(an(i,j).eq.1.)an(i,j)=max(an(il,j),an(ir,j),an(i,jo)
x ,an(i,ju),an(il,ju),an(ir,ju),an(il,jo),an(ir,jo))
if(an(i,j).ne.zzz)zaehl=zaehl+1
enddo
enddo
write(6,*)zaehl
cc write(71)iter,1,1,ie*je
cc write(71)an
do j=je,1,-1
jo=j-1
if(j.eq.1)jo=1
ju=j+1
if(j.eq.je)ju=je
do i=1,ie
il=i-1
if(il.lt.1)il=ie
ir=i+1
if(ir.gt.ie)ir=1
zzz=an(i,j)
if(an(i,j).eq.1.)an(i,j)=max(an(il,j),an(ir,j),an(i,jo)
x ,an(i,ju),an(il,ju),an(ir,ju),an(il,jo),an(ir,jo))
if(an(i,j).ne.zzz)zaehl=zaehl+1
enddo
enddo
write(6,*)zaehl
cc write(71)iter,1,1,ie*je
cc write(71)an
do j=1,je
jo=j-1
if(j.eq.1)jo=1
ju=j+1
if(j.eq.je)ju=je
do i=ie,1,-1
il=i-1
if(il.lt.1)il=ie
ir=i+1
if(ir.gt.ie)ir=1
zzz=an(i,j)
if(an(i,j).eq.1.)an(i,j)=max(an(il,j),an(ir,j),an(i,jo)
x ,an(i,ju),an(il,ju),an(ir,ju),an(il,jo),an(ir,jo))
if(an(i,j).ne.zzz)zaehl=zaehl+1
enddo
enddo
write(6,*)zaehl
c write(71)iter,1,1,ie*je
c write(71)an
if(zaehl.gt.0.5)goto 10
write(71)iter,1,1,ie*je
write(71)an
c
stop
end
| gpl-3.0 |
QEF/q-e | Modules/autopilot.f90 | 2 | 31342 | ! autopilot.f90
!********************************************************************************
! autopilot.f90 Copyright (c) 2005 Targacept, Inc.
!********************************************************************************
! The Autopilot Feature suite is a user level enhancement that enables the
! following features:
! automatic restart of a job;
! preconfiguration of job parameters;
! on-the-fly changes to job parameters;
! and pausing of a running job.
!
! For more information, see README.AUTOPILOT in document directory.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later version.
! This program is distributed in the hope that it will be useful, but WITHOUT ANY
! WARRANTY; without even the implied warranty of MERCHANTABILITY FOR A PARTICULAR
! PURPOSE. See the GNU General Public License at www.gnu.or/copyleft/gpl.txt for
! more details.
!
! THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
! EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
! PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
! INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
! FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND THE
! PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
! YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
!
! IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING,
! WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
! THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
! GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
! INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
! BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
! FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
! OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the
! Free Software Foundation, Inc.,
! 51 Franklin Street,
! Fifth Floor,
! Boston, MA 02110-1301, USA.
!
! Targacept's address is
! 200 East First Street, Suite 300
! Winston-Salem, North Carolina USA 27101-4165
! Attn: Molecular Design.
! Email: atp@targacept.com
!
! This work was supported by the Advanced Technology Program of the
! National Institute of Standards and Technology (NIST), Award No. 70NANB3H3065
!
!********************************************************************************
MODULE autopilot
!---------------------------------------------------------------------------
!! This module handles the Autopilot Feature Suite.
!
!! Written by Lee Atkinson, with help from the ATP team at Targacept, Inc.
!! Created June 2005.
!! Modified by Yonas Abraham, Sept 2006.
!
! The address for Targacept, Inc. is:
! 200 East First Street, Suite
! 300, Winston-Salem, North Carolina 27101;
! Attn: Molecular Design.
!
!! See README.AUTOPILOT in the Doc directory for more information.
!---------------------------------------------------------------------------
USE kinds
USE parser, ONLY : read_line
IMPLICIT NONE
SAVE
INTEGER, parameter :: MAX_INT = huge(1)
INTEGER, parameter :: max_event_step = 32 !right now there can be upto 32 Autopilot Events
INTEGER, parameter :: n_auto_vars = 10 !right now there are only 10 Autopilot Variables
INTEGER :: n_events
INTEGER :: event_index = 0
INTEGER :: max_rules = 320 !(max_event_step * n_auto_vars)
INTEGER :: n_rules
INTEGER :: event_step(max_event_step)
INTEGER :: current_nfi
LOGICAL :: pilot_p = .FALSE. ! pilot property
LOGICAL :: restart_p = .FALSE. ! restart property
LOGICAL :: pause_p = .FALSE. ! pause property
INTEGER :: pilot_unit = 42 ! perhaps move this to io_files
CHARACTER(LEN=256) :: pilot_type
! AUTOPILOT VARIABLES
! These are the variable tables which change the actual variable
! dynamically during the course of a simulation. There are many
! parameters which govern a simulation, yet only these are allowed
! to be changed using the event rule mechanism.
! Each of these tables are typed according to their variable
! and begin with event_
! &CONTROL
INTEGER :: rule_isave(max_event_step)
INTEGER :: rule_iprint(max_event_step)
LOGICAL :: rule_tprint(max_event_step)
REAL(DP) :: rule_dt(max_event_step)
! &SYSTEM
! &ELECTRONS
REAL(DP) :: rule_emass(max_event_step)
CHARACTER(LEN=80) :: rule_electron_dynamics(max_event_step)
REAL(DP) :: rule_electron_damping(max_event_step)
CHARACTER(LEN=80) :: rule_electron_orthogonalization(max_event_step)
! &IONS
CHARACTER(LEN=80) :: rule_ion_dynamics(max_event_step)
REAL(DP) :: rule_ion_damping(max_event_step)
CHARACTER(LEN=80) :: rule_ion_temperature(max_event_step)
REAL(DP) :: rule_tempw(max_event_step)
INTEGER :: rule_nhpcl(max_event_step)
REAL(DP) :: rule_fnosep(max_event_step)
! &CELL
! &PHONON
! Each rule also needs to be correlated (flagged) against the event time table
! This is used to flag the a given variable is to be changed on an
! event. Initially all set to false, a rule against an event makes it true
! Each of these flags are LOGICALs and begin with event_
! &CONTROL
LOGICAL :: event_isave(max_event_step)
LOGICAL :: event_iprint(max_event_step)
LOGICAL :: event_tprint(max_event_step)
LOGICAL :: event_dt(max_event_step)
! &SYSTEM
! &ELECTRONS
LOGICAL :: event_emass(max_event_step)
LOGICAL :: event_electron_dynamics(max_event_step)
LOGICAL :: event_electron_damping(max_event_step)
LOGICAL :: event_electron_orthogonalization(max_event_step)
! &IONS
LOGICAL :: event_ion_dynamics(max_event_step)
LOGICAL :: event_ion_damping(max_event_step)
LOGICAL :: event_ion_temperature(max_event_step)
LOGICAL :: event_tempw(max_event_step)
LOGICAL :: event_nhpcl(max_event_step)
LOGICAL :: event_fnosep(max_event_step)
! &CELL
! &PHONON
PRIVATE
PUBLIC :: auto_check, init_autopilot, card_autopilot, add_rule, &
& assign_rule, restart_p, max_event_step, event_index, event_step, rule_isave, &
& rule_iprint, &
& rule_tprint, &
& rule_dt, rule_emass, rule_electron_dynamics, rule_electron_damping, &
& rule_ion_dynamics, rule_ion_damping, rule_ion_temperature, rule_tempw, &
& rule_electron_orthogonalization, &
& event_isave, event_iprint, &
& event_tprint, &
& event_dt, event_emass, &
& event_electron_dynamics, event_electron_damping, event_ion_dynamics, &
& current_nfi, pilot_p, pilot_unit, pause_p,auto_error, parse_mailbox, &
& event_ion_damping, event_ion_temperature, event_tempw, &
& event_electron_orthogonalization, &
& event_nhpcl, event_fnosep, rule_nhpcl, rule_fnosep
CONTAINS
!----------------------------------------------------------------------------
SUBROUTINE auto_error( calling_routine, message)
!----------------------------------------------------------------------------
!! This routine calls errore based upon the pilot property flag.
!! If the flag is TRUE, the simulation will not stop,
!! but the pause property flag is set to TRUE,
!! causing pilot to force a state of sleep,
!! until the user can mail proper commands.
!! Otherwise, its assumed that dynamics have not started
!! and this call is an indirect result of read_cards.
!! Thus the simulation will stop.
!! Either way errore will always issues a warning message.
!
IMPLICIT NONE
!
CHARACTER(LEN=*), INTENT(IN) :: calling_routine
!! the name of the calling calling_routine
CHARACTER(LEN=*), INTENT(IN) :: message
!! the output message
!
INTEGER :: ierr
! the error flag
IF (pilot_p) THEN
! if ierr < 0 errore writes the message but does not stop
ierr = -1
pause_p = .TRUE.
!call mp_bcast(pause_p, ionode_id, world_comm)
ELSE
! if ierr > 0 it stops
ierr = 1
ENDIF
CALL errore( calling_routine, message, ierr )
END SUBROUTINE auto_error
!-----------------------------------------------------------------------
! AUTO (restart) MODE
!
! Checks if restart files are present, just like what readfile_cp does,
! which calls cp_readfile which create a path to restart.xml.
! This could be checked with inquire, as in check_restartfile.
! If restart_mode=auto, and restart.xml is present,
! then restart_mode="restart", else its "from_scratch".
! Set other associated vars, appropriately.
!
! Put this in setcontrol_flags on the select statement
!-----------------------------------------------------------------------
LOGICAL FUNCTION auto_check (ndr, outdir)
!---------------------------------------------------------------------
!! Checks if restart files are present.
!
USE io_global, ONLY: ionode, ionode_id
USE mp, ONLY : mp_bcast
USE mp_world, ONLY : world_comm
IMPLICIT NONE
INTEGER, INTENT(IN) :: ndr
!! I/O unit number
CHARACTER(LEN=*), INTENT(IN) :: outdir
!! output directory
!
! ... local variables
!
CHARACTER(LEN=256) :: dirname, filename
CHARACTER (LEN=6), EXTERNAL :: int_to_char
LOGICAL :: restart_p = .FALSE.
INTEGER :: strlen
! right now cp_readfile is called with outdir = ' '
! so, in keeping with the current design,
! the responsibility of setting
! ndr and outdir is the calling program
IF (ionode) THEN
dirname = 'RESTART' // int_to_char( ndr )
IF ( LEN( outdir ) > 1 ) THEN
strlen = index(outdir,' ') - 1
dirname = outdir(1:strlen) // '/' // dirname
END IF
filename = TRIM( dirname ) // '/' // 'restart.xml'
INQUIRE( FILE = TRIM( filename ), EXIST = restart_p )
auto_check = restart_p
END IF
CALL mp_bcast(auto_check, ionode_id, world_comm)
return
END FUNCTION auto_check
!-----------------------------------------------------------------------
SUBROUTINE init_autopilot
!---------------------------------------------------------------------
!! INITIALIZE AUTOPILOT: must be done, even if not in use.
!! Add this as a call in read_cards.f90 sub: card_default_values.
!
IMPLICIT NONE
!
integer :: event
pause_p = .FALSE.
! Initialize all events to an iteration that should never occur
DO event=1,max_event_step
event_step(event) = MAX_INT
ENDDO
n_events = 0
n_rules = 0
event_index = 1
! Initialize here
! &CONTROL
event_isave(:) = .false.
event_iprint(:) = .false.
event_tprint(:) = .false.
event_dt(:) = .false.
! &SYSTEM
! &ELECTRONS
event_emass(:) = .false.
event_electron_dynamics(:) = .false.
event_electron_damping(:) = .false.
event_electron_orthogonalization(:) = .false.
! &IONS
event_ion_dynamics(:) = .false.
event_ion_damping(:) = .false.
event_ion_temperature(:) = .false.
event_tempw(:) = .false.
! &CELL
! &PHONON
rule_isave(:) = 0
rule_iprint(:) = 0
rule_tprint(:) = .FALSE.
rule_dt(:) = 0.0_DP
rule_emass(:) = 0.0_DP
rule_electron_dynamics(:) = 'NONE'
rule_electron_damping(:) = 0.0_DP
rule_ion_dynamics(:) = 'NONE'
rule_ion_damping(:) = 0.0_DP
rule_ion_temperature(:) = 'NOT_CONTROLLED'
rule_tempw(:) = 0.01_DP
END SUBROUTINE init_autopilot
!-----------------------------------------------------------------------
SUBROUTINE card_autopilot( input_line )
!--------------------------------------------------------------------
!! Called in READ_CARDS and in PARSE_MAILBOX.
!
USE io_global, ONLY: ionode
!
IMPLICIT NONE
!
CHARACTER(LEN=256) :: input_line
!
! ... local variables
!
INTEGER :: i, j, linelen
LOGICAL :: process_this_line = .FALSE.
LOGICAL :: endrules = .FALSE.
LOGICAL :: tend = .FALSE.
LOGICAL, SAVE :: tread = .FALSE.
LOGICAL, EXTERNAL :: matches
CHARACTER(LEN=1), EXTERNAL :: capital
!ASU: copied this here since it seems not to be executed during each
! call of the routine. Needed for multiple rules in same block
process_this_line = .FALSE.
endrules = .FALSE.
tend = .FALSE.
tread = .FALSE.
! This is so we do not read a autopilot card twice from the input file
IF (( .NOT. pilot_p ) .and. tread ) THEN
CALL errore( ' card_autopilot ', ' two occurrences', 2 )
END IF
! If this routined has been called from parse_mailbox
! the pilot_type should be set
IF ( pilot_p ) THEN
! IF its MANUAL then process this line first!
! other skip this line and get the next
IF (TRIM(pilot_type) .eq. 'MANUAL') THEN
process_this_line = .TRUE.
ELSE IF (TRIM(pilot_type) .eq. 'PILOT') THEN
process_this_line = .FALSE.
ELSE IF (TRIM(pilot_type) .eq. 'AUTO') THEN
process_this_line = .FALSE.
ELSE
IF( ionode ) WRITE(*,*) 'AUTOPILOT: UNRECOGNIZED PILOT TYPE!', TRIM(pilot_type), '===='
GO TO 10
END IF
ELSE
! this routine is called from read_cards
pilot_type = 'AUTO'
process_this_line = .FALSE.
END IF
j=0
! must use a local (j) since n_rules may not get updated correctly
DO WHILE ((.NOT. endrules) .and. j<=max_rules)
j=j+1
IF (j > max_rules) THEN
CALL auto_error( ' AutoPilot ','Maximum Number of Dynamic Rules May Have Been Execced!')
go to 10
END IF
! Assume that pilot_p is an indicator and that
! this call to card_autopilot is from parse_mailbox
! and not from read_cards
IF(pilot_p) THEN
IF ( .NOT. process_this_line ) THEN
! get the next one
CALL read_line( input_line, end_of_file = tend)
END IF
ELSE
! from read_cards
CALL read_line( input_line, end_of_file = tend)
END IF
linelen = LEN_TRIM( input_line )
DO i = 1, linelen
input_line( i : i ) = capital( input_line( i : i ) )
END DO
! If ENDRULES isnt found, add_rule will fail
! and we run out of line anyway
IF ( tend .or. matches( 'ENDRULES', input_line ) ) GO TO 10
! Assume this is a rule
CALL ADD_RULE(input_line)
! now, do not process this line anymore
! make sure we get the next one
process_this_line = .FALSE.
END DO
IF( ionode ) WRITE(*,*) 'AUTOPILOT SET'
10 CONTINUE
END SUBROUTINE card_autopilot
!-----------------------------------------------------------------------
SUBROUTINE add_rule( input_line )
!---------------------------------------------------------------------
!! ADD RULE
!
USE io_global, ONLY: ionode
!
IMPLICIT NONE
!
CHARACTER(LEN=256) :: input_line
!
! ... local variables
!
integer :: i, linelen
integer :: eq1_pos, eq2_pos, plus_pos, colon_pos
CHARACTER(LEN=32) :: var_label
CHARACTER(LEN=32) :: value_str
INTEGER :: on_step, now_step, plus_step
integer :: ios
integer :: event
LOGICAL, EXTERNAL :: matches
LOGICAL :: new_event
! this is a temporary local variable
event = n_events
! important for parsing
i=0
eq1_pos = 0
eq2_pos = 0
plus_pos = 0
colon_pos = 0
linelen=LEN_TRIM( input_line )
! Attempt to get PLUS SYMBOL
i = 1
do while( (plus_pos .eq. 0) .and. (i <= linelen) )
i = i + 1
if(input_line( i : i ) .eq. '+') then
plus_pos = i
endif
end do
! Attempt to get a colon
i = 1
do while( (colon_pos .eq. 0) .and. (i <= linelen) )
i = i + 1
if(input_line( i : i ) .eq. ':') then
colon_pos = i
endif
end do
! Attempt to get first equals
i = 1
do while( (eq1_pos .eq. 0) .and. (i <= linelen) )
i = i + 1
if(input_line( i : i ) .eq. '=') then
eq1_pos = i
endif
end do
! Attempt to get second equals
if ((eq1_pos .ne. 0) .and. (eq1_pos < colon_pos)) then
i = colon_pos + 1
do while( (eq2_pos .eq. 0) .and. (i <= linelen) )
i = i + 1
if(input_line( i : i ) .eq. '=') then
eq2_pos = i
endif
end do
endif
! Complain if there is a bad parse
if (colon_pos .eq. 0) then
call auto_error( ' AutoPilot ','Missing colon separator')
go to 20
endif
if (eq1_pos .eq. 0) then
call auto_error( ' AutoPilot ','Missing equals sign')
go to 20
endif
if ((plus_pos > 0) .and. (eq1_pos < colon_pos)) then
call auto_error( ' AutoPilot ','equals and plus found prior to colon')
go to 20
endif
!================================================================================
! Detect events
IF ( (pilot_type .eq. 'MANUAL') .or. (pilot_type .eq. 'PILOT') ) THEN
!-------------------------------------------
!Do the equivalent of the following:
!READ(input_line, *) now_label, plus_label1, plus_step, colon_label, var_label, eq_label2, value_str
!Format:
! [NOW [+ plus_step] :] var_label = value_str
!-------------------------------------------
! if there is a NOW, get it and try to get plus and plus_step
IF ( matches( 'NOW', input_line ) ) THEN
! Attempt to get PLUS_STEP
plus_step = 0
! if all is non-trivial, read a PLUS_STEP
if ((plus_pos > 0) .and. (colon_pos > plus_pos)) then
! assume a number lies between
read(input_line(plus_pos+1:colon_pos-1),*,iostat=ios) plus_step
if(ios .ne. 0) then
CALL auto_error( ' AutoPilot ','Value Type Mismatch on NOW line!')
go to 20
end if
end if
! set NOW event
now_step = current_nfi + plus_step
ELSE
! set NOW event
now_step = current_nfi
END IF
!================================================================================
! set event
!
! Heres where it get interesting
! We may have a new event , or not! :)
IF ((event-1) .gt. 0) THEN
IF ( now_step .lt. event_step(event-1)) THEN
IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line
CALL auto_error( ' AutoPilot ','Dynamic Rule Event Out of Order!')
go to 20
ENDIF
ENDIF
IF (event .eq. 0) THEN
new_event = .true.
ELSEIF ( now_step .gt. event_step(event)) THEN
new_event = .true.
ELSE
new_event = .false.
ENDIF
IF ( new_event ) THEN
! new event
event = event + 1
IF (event > max_event_step) THEN
IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line
CALL auto_error( ' AutoPilot ','Maximum Number of Dynamic Rule Event Exceeded!')
go to 20
ENDIF
event_step(event) = now_step
n_events = event
ENDIF
ELSE IF ( matches( 'ON_STEP', input_line ) ) THEN
! Assuming pilot_type is AUTO
! if it isnt and ON_STEP these rules wont take anyway
!-------------------------------------------
!Do the equivalent of the following:
!READ(input_line, *) on_step_label, eq_label1, on_step, colon_label, var_label, eq_label2, value_str
!Format:
! ON_STEP = on_step : var_label = value_str
!-------------------------------------------
IF( ionode ) write(*,*) 'ADD_RULE: POWER STEERING'
! Attempt to get ON_STEP
on_step = MAX_INT
! if all is non-trivial, read a PLUS_STEP
if ((eq1_pos > 0) .and. (colon_pos > eq1_pos)) then
! assume a number lies between
read(input_line(eq1_pos+1:colon_pos-1),*,iostat=ios) on_step
if(ios .ne. 0) then
CALL auto_error( ' AutoPilot ','Value Type Mismatch on ON_STEP line!')
go to 20
end if
end if
!================================================================================
! set event
!
! Heres where it get interesting
! We may have a new event , or not! :)
IF ( ((event-1) .gt. 0)) THEN
IF ( on_step .lt. event_step(event-1)) THEN
IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line
CALL auto_error( ' AutoPilot ','Dynamic Rule Event Out of Order!')
go to 20
ENDIF
ENDIF
IF (event .eq. 0) THEN
new_event = .true.
ELSEIF (on_step .gt. event_step(event)) THEN
new_event = .true.
ELSE
new_event = .false.
ENDIF
IF (new_event) THEN
! new event
event = event + 1
IF (event > max_event_step) THEN
IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line
CALL auto_error( ' AutoPilot ','Maximum Number of Dynamic Rule Event Exceeded!')
go to 20
ENDIF
event_step(event) = on_step
n_events = event
ENDIF
END IF ! Event Detection Complete
!-------------------------------------
! Now look for a label and a value
!-------------------------------------
if (eq2_pos .eq. 0) then
var_label = input_line(colon_pos+1: eq1_pos-1)
read( input_line(eq1_pos+1:linelen), *, iostat=ios) value_str
if(ios .ne. 0) then
CALL auto_error( ' AutoPilot ','Value Type Mismatch on NOW_STEP line!')
go to 20
end if
else
var_label = input_line(colon_pos+1: eq2_pos-1)
read( input_line(eq2_pos+1:linelen), *, iostat=ios) value_str
if(ios .ne. 0) then
CALL auto_error( ' AutoPilot ','Value Type Mismatch on ON_STEP line!')
go to 20
end if
endif
! The Assignment must lie outside the new event scope since
! there can exists more than one rule per event
IF ( (n_rules+1) .gt. max_rules) THEN
IF( ionode ) write(*,*) ' AutoPilot: current n_rules', n_rules
CALL auto_error( ' AutoPilot ', ' invalid number of rules ')
go to 20
END IF
call assign_rule(event, var_label, value_str)
!IF( ionode ) write(*,*) ' Number of rules: ', n_rules
FLUSH(6)
20 CONTINUE
END SUBROUTINE add_rule
!-----------------------------------------------------------------------
SUBROUTINE assign_rule(event, var, value)
!---------------------------------------------------------------------
!! ASSIGN RULE
!
USE io_global, ONLY: ionode
!
IMPLICIT NONE
!
INTEGER :: event
CHARACTER(LEN=32) :: var
CHARACTER(LEN=32) :: value
!
! ... local variables
!
INTEGER :: i, varlen
INTEGER :: int_value
LOGICAL :: logical_value
REAL :: real_value
REAL(DP) :: realDP_value
LOGICAL :: assigned
LOGICAL, EXTERNAL :: matches
CHARACTER(LEN=1), EXTERNAL :: capital
var = TRIM(var)
varlen = LEN_TRIM(var)
DO i = 1, varlen
var( i : i ) = capital( var( i : i ) )
END DO
IF( ionode ) write(*,'(" Reading rule: ",A20,A20)' ) var, value
assigned = .TRUE.
IF ( matches( "ISAVE", var ) ) THEN
read(value, *) int_value
rule_isave(event) = int_value
event_isave(event) = .true.
ELSEIF ( matches( "IPRINT", var ) ) THEN
read(value, *) int_value
rule_iprint(event) = int_value
event_iprint(event) = .true.
ELSEIF ( matches( "TPRINT", var ) ) THEN
read(value, *) logical_value
rule_tprint(event) = logical_value
event_tprint(event) = .true.
ELSEIF ( matches( "DT", var ) ) THEN
read(value, *) real_value
rule_dt(event) = real_value
event_dt(event) = .true.
!IF( ionode ) write(*,*) 'RULE_DT', rule_dt(event), 'EVENT', event
ELSEIF ( matches( "EMASS", var ) ) THEN
read(value, *) realDP_value
rule_emass(event) = realDP_value
event_emass(event) = .true.
ELSEIF ( matches( "ELECTRON_DYNAMICS", var ) ) THEN
read(value, *) value
if ((value .ne. 'SD') .and. (value .ne. 'VERLET') .and. (value .ne. 'DAMP') &
.and. (value .ne. 'NONE') .and. (value .ne. 'CG') ) then
call auto_error(' autopilot ',' unknown electron_dynamics '//trim(value) )
assigned = .FALSE.
go to 40
endif
rule_electron_dynamics(event) = value
event_electron_dynamics(event) = .true.
ELSEIF ( matches( "ELECTRON_DAMPING", var ) ) THEN
read(value, *) realDP_value
rule_electron_damping(event) = realDP_value
event_electron_damping(event) = .true.
ELSEIF ( matches( "ION_DYNAMICS", var ) ) THEN
read(value, *) value
if ((value .ne. 'SD') .and. (value .ne. 'VERLET') .and. (value .ne. 'DAMP') .and. (value .ne. 'NONE')) then
call auto_error(' autopilot ',' unknown ion_dynamics '//trim(value) )
assigned = .FALSE.
go to 40
endif
rule_ion_dynamics(event) = value
event_ion_dynamics(event) = .true.
ELSEIF ( matches( "ORTHOGONALIZATION", var) ) THEN
read(value, *) value
if ( (value .ne. 'ORTHO') .and. (value .ne. 'GRAM-SCHMIDT') ) then
call auto_error(' autopilot ',' unknown orthogonalization '//trim(value) )
assigned = .false.
go to 40
endif
rule_electron_orthogonalization(event) = value
event_electron_orthogonalization(event) = .true.
ELSEIF ( matches( "ION_DAMPING", var ) ) THEN
read(value, *) realDP_value
rule_ion_damping(event) = realDP_value
event_ion_damping(event) = .true.
ELSEIF ( matches( "ION_TEMPERATURE", var ) ) THEN
read(value, *) value
if ((value .ne. 'NOSE') .and. (value .ne. 'NOT_CONTROLLED') .and. (value .ne. 'RESCALING')) then
call auto_error(' autopilot ',' unknown ion_temperature '//trim(value) )
assigned = .FALSE.
go to 40
endif
rule_ion_temperature(event) = value
event_ion_temperature(event) = .true.
ELSEIF ( matches( "TEMPW", var ) ) THEN
read(value, *) realDP_value
rule_tempw(event) = realDP_value
event_tempw(event) = .true.
ELSEIF ( matches( "NHPCL", var ) ) THEN
read(value, *) int_value
rule_nhpcl(event) = int_value
event_nhpcl(event) = .true.
ELSEIF ( matches( "FNOSEP", var ) ) THEN
read(value, *) realDP_value
rule_fnosep(event) = realDP_value
event_fnosep(event) = .true.
ELSE
CALL auto_error( 'autopilot', ' ASSIGN_RULE: FAILED '//trim(var)//' '//trim(value) )
END IF
40 if (assigned) then
n_rules = n_rules + 1
else
IF( ionode ) write(*,*) ' Autopilot: Rule Assignment Failure '
CALL auto_error( 'autopilot', ' ASSIGN_RULE: FAILED '//trim(var)//' '//trim(value) )
endif
END SUBROUTINE assign_rule
!-----------------------------------------------------------------------
SUBROUTINE parse_mailbox ()
!---------------------------------------------------------------------
!! Read the mailbox with a mailbox parser:
!
!! * if it starts with ON_STEP, then apply to event table etc;
!! * if not the try to establish that its a variable to set right now.
!
USE io_global, ONLY: ionode
!
IMPLICIT NONE
!
INTEGER :: i
CHARACTER(LEN=256) :: input_line
LOGICAL :: tend
CHARACTER(LEN=1), EXTERNAL :: capital
LOGICAL, EXTERNAL :: matches
! we can use this parser routine, since parse_unit=pilot_unit
CALL read_line( input_line, end_of_file=tend )
IF (tend) GO TO 50
DO i = 1, LEN_TRIM( input_line )
input_line( i : i ) = capital( input_line( i : i ) )
END DO
! This conditional implements the PAUSE feature calling init_auto_pilot,
! will reset this modules global PAUSE_P variable to FALSE
IF ( matches( "PAUSE", input_line ) .or. &
matches( "SLEEP", input_line ) .or. &
matches( "HOVER", input_line ) .or. &
matches( "WAIT", input_line ) .or. &
matches( "HOLD", input_line ) ) THEN
IF( ionode ) write(*,*) 'SLEEPING'
IF( ionode ) write(*,*) 'INPUT_LINE=', input_line
pause_p = .TRUE.
! now you can pass continue to resume
ELSE IF (matches( "CONTINUE", input_line ) .or. &
matches( "RESUME", input_line ) ) THEN
IF( ionode ) write(*,*) 'RUNNING'
IF( ionode ) write(*,*) 'INPUT_LINE=', input_line
pause_p = .FALSE.
! Now just quit this subroutine
ELSE
! Also, We didnt see a PAUSE cmd!
pause_p = .FALSE.
! now lets detect the mode for card_autopilot
! even though this line will be passed to it the first time
IF ( matches( "AUTOPILOT", TRIM(input_line) ) ) THEN
IF( ionode ) WRITE(*,*) ' New autopilot course detected'
pilot_type ='AUTO'
ELSE IF (matches( "PILOT", TRIM(input_line) ) ) THEN
IF( ionode ) WRITE(*,*) ' Relative pilot course correction detected'
pilot_type ='PILOT'
ELSE IF (matches( "NOW", TRIM(input_line) ) ) THEN
IF( ionode ) WRITE(*,*) ' Manual piloting detected'
pilot_type ='MANUAL'
ELSE
! Well lets just pause since this guys is throwing trash
IF( ionode ) WRITE(*,*) ' Mailbox contents not understood: pausing'
pause_p = .TRUE.
ENDIF
END IF
IF (pause_p) GO TO 50
! ok if one adds a rule during steering`
! event table must be cleared (from steer point) forward
!
! Every nodes gets this (and the call to card_autopilot
! which calls add_rule, which calls assign_rule, etc
! In this way we sync the event table
! Then we shouldn't have to sync employ_rules variable
! changes, or their subroutine side effects (like ions_nose_init)
CALL init_autopilot()
CALL card_autopilot( input_line )
50 CONTINUE
end subroutine parse_mailbox
END MODULE autopilot
| gpl-2.0 |
QEF/q-e | PW/src/efermig.f90 | 2 | 9960 | !
! Copyright (C) 2001-2003 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------
FUNCTION efermig( et, nbnd, nks, nelec, wk, Degauss, Ngauss, is, isk )
!--------------------------------------------------------------------
!! Finds the Fermi energy - Gaussian Broadening.
!! (see Methfessel and Paxton, PRB 40, 3616 (1989 )
!
USE io_global, ONLY : stdout
USE kinds, ONLY : DP
USE constants, ONLY : rytoev
USE mp, ONLY : mp_max, mp_min
USE mp_pools, ONLY : inter_pool_comm
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: nks
!! number of k points in this pool
INTEGER, INTENT(IN) :: nbnd
!! number of bands
INTEGER, INTENT(IN) :: Ngauss
!! type of smearing technique
INTEGER, INTENT(IN) :: is
!! spin label (0 or 1,2)
INTEGER, INTENT(IN) :: isk(nks)
!! for each k-point: 1=spin up, 2=spin down
REAL(DP), INTENT(IN) :: wk(nks)
!! weight of k points
REAL(DP), INTENT(IN) :: et(nbnd,nks)
!! eigenvalues of the hamiltonian
REAL(DP), INTENT(IN) :: Degauss
!! smearing parameter
REAL(DP), INTENT(IN) :: nelec
!! number of electrons
REAL(DP) :: efermig
!! the Fermi energy
!
! ... local variables
!
REAL(DP), PARAMETER :: eps = 1.0d-10, eps_cold_MP = 1.0d-2
!! tolerance for the number of electrons, important for bisection
!! smaller tolerance for the number of electrons, important for M-P and Cold smearings
INTEGER, PARAMETER :: maxiter = 300
!
REAL(DP) :: Ef, Eup, Elw, sumkup, sumklw, sumkmid
REAL(DP), EXTERNAL :: sumkg, sumkg1, sumkg2
!! Function to compute the number of electrons for a given energy
!! Function to compute the first derivative of the number of electrons
!! Function to compute the second derivative of the number of electrons
INTEGER :: i, kpoint, Ngauss_
INTEGER :: info, maxiter_aux
!
! ... find (very safe) bounds for the Fermi energy:
! Elw = lowest, Eup = highest energy among all k-points.
! Works with distributed k-points, also if nks=0 on some processor
!
Elw = 1.0E+8
Eup =-1.0E+8
DO kpoint = 1, nks
Elw = MIN( Elw, et(1,kpoint) )
Eup = MAX( Eup, et(nbnd,kpoint) )
ENDDO
Eup = Eup + 10 * Degauss
Elw = Elw - 10 * Degauss
!
! ... find min and max across pools
!
CALL mp_max( eup, inter_pool_comm )
CALL mp_min( elw, inter_pool_comm )
!
! For M-P and cold smearings, perform a preliminary determination with the Gaussian broadening
! to obtain an initial guess
if( Ngauss .NE. -99 ) then
Ngauss_ = 0
else ! If Fermi-Dirac smearing, the preliminary bisection can run with the F-D smearing itself
Ngauss_ = Ngauss
end if
maxiter_aux = maxiter
call bisection_find_efermi(num_electrons_minus_nelec, Elw, Eup, ef, eps, maxiter_aux, info)
! Error handling
select case( info )
case( 1 )
IF (is /= 0) WRITE(stdout, '(5x,"Spin Component #",i3)') is
WRITE( stdout, '(5x,"Warning: too many iterations in bisection" &
& 5x,"Ef (eV) = ",f15.6," Num. electrons = ",f10.6)' ) &
Ef * rytoev, num_electrons(Ef)
case( 2 )
call errore( 'efermig', 'internal error, cannot bracket Ef', 1 )
end select
! If this initial guess already corresponds to the correct number of electron for the actual occupation function, the Fermi energy is found.
Ngauss_ = Ngauss
! In case Ngauss = 0 or -99, the function returns here too.
if( abs_num_electrons_minus_nelec(ef) < eps .or. Ngauss == 0 .or. Ngauss == -99) then
efermig = ef
goto 98765
end if
! If the initial prospected Ef did not provide the correct number of electrons, use Newton's methods to improve it.
! Use the prospected Ef as initial guess.
maxiter_aux = maxiter
if( Ngauss_ > 0 .or. Ngauss_ == -1 ) then ! If methfessel-paxton method or Cold smearing method
call newton_minimization(dev1_sq_num_electrons, dev2_sq_num_electrons, ef, eps, maxiter_aux, info)
end if
! Error handling
select case( info )
case( 1 )
IF (is /= 0) WRITE(stdout, '(5x,"Spin Component #",i3)') is
WRITE( stdout, '(5x,"Warning: too many iterations in Newtons minimization"/ &
& 5x,"Ef (eV) = ",f15.6," Num. electrons = ",f10.6," Num. steps = ",i0)' ) &
Ef * rytoev, num_electrons(Ef), maxiter
end select
if( (Ngauss_ == -1 .or. Ngauss_ > 0) .and. ( abs_num_electrons_minus_nelec(ef) < eps_cold_MP ) ) then
efermig = ef
else
! If Newton's minimization did not help. Just use bisection with the actual smearing, which reproduce the original behavior of this function
Ngauss_ = Ngauss
maxiter_aux = maxiter
call bisection_find_efermi(num_electrons_minus_nelec, Elw, Eup, ef, eps, maxiter_aux, info)
efermig = ef
IF (is /= 0) WRITE(stdout, '(5x,"Spin Component #",i3)') is
WRITE( stdout, '(5x,"Minimization algorithm failed to find Fermi energy: reverting to bisection",&
& /,5x,"Possible cause: smearing is larger than the electronic band-gap.")' )
end if
98765 continue
return
contains
function num_electrons_minus_nelec(x)
real(DP), intent(in) :: x
real(DP) :: num_electrons_minus_nelec
num_electrons_minus_nelec = num_electrons(x) - nelec
end function num_electrons_minus_nelec
function num_electrons(ef)
real(DP), intent(in) :: ef
real(DP) :: num_electrons
num_electrons = sumkg( et, nbnd, nks, wk, Degauss, Ngauss_, ef, is, isk )
end function num_electrons
function abs_num_electrons_minus_nelec(ef)
real(DP), intent(in) :: ef
real(DP) :: abs_num_electrons_minus_nelec
abs_num_electrons_minus_nelec = abs(num_electrons_minus_nelec(ef))
end function abs_num_electrons_minus_nelec
function sq_num_electrons_minus_nelec(ef)
real(DP), intent(in) :: ef
real(DP) :: sq_num_electrons_minus_nelec
sq_num_electrons_minus_nelec = (num_electrons_minus_nelec(ef))**2
end function sq_num_electrons_minus_nelec
function dev1_num_electrons(ef)
real(DP), intent(in) :: ef
real(DP) :: dev1_num_electrons
dev1_num_electrons = sumkg1( et, nbnd, nks, wk, Degauss, Ngauss_, ef, is, isk )
end function dev1_num_electrons
function dev2_num_electrons(ef)
real(DP), intent(in) :: ef
real(DP) :: dev2_num_electrons
dev2_num_electrons = sumkg2( et, nbnd, nks, wk, Degauss, Ngauss_, ef, is, isk )
end function dev2_num_electrons
function dev1_sq_num_electrons(ef)
real(DP), intent(in) :: ef
real(DP) :: dev1_sq_num_electrons
dev1_sq_num_electrons = 2.d0 * num_electrons_minus_nelec(ef) * dev1_num_electrons(ef)
end function dev1_sq_num_electrons
function dev2_sq_num_electrons(ef)
real(DP), intent(in) :: ef
real(DP) :: dev2_sq_num_electrons
dev2_sq_num_electrons = 2.d0 * ( (dev1_num_electrons(ef))**2 + num_electrons_minus_nelec(ef) * dev2_num_electrons(ef) )
end function dev2_sq_num_electrons
subroutine newton_minimization(f1, f2, x, tol, Nmax, info)
real(DP), intent(inout) :: x
!! Initial guess in the entry. Solution in the exit
real(DP), intent(in) :: tol
integer, intent(inout) :: Nmax
integer, intent(out) :: info
!! 0 = solution found; 1 = max number of step (Nmax) reached; 2 = second derivative is zero
real(DP) :: abstol, x0, denominator, numerator, factor
integer :: i
real(DP) :: f1, f2
abstol = abs(tol)
x0 = x
factor = 1.0d0
do i = 1, Nmax
numerator = f1(x)
denominator = abs(f2(x))
! Checking if the denominator is zero
if( denominator > abstol ) then
x = x0 - factor*numerator/denominator
! Checking if a stationary point was achieved
if( abs(x0-x) < abstol .or. abs_num_electrons_minus_nelec(x) < abstol ) then
info = 0
Nmax = i
return
! If a stationary point was not achieved, continue
else
x0 = x
end if
! If denominator is zero, return an error
else
info = 2
return
end if
end do
! Checking if max number of steps was reached
if( i > Nmax ) then
info = 1
return
end if
end subroutine newton_minimization
subroutine bisection_find_efermi(f, energy_lower_bound, energy_upper_bound, x, tol, Nmax, info)
real(DP), intent(in) :: energy_lower_bound
real(DP), intent(in) :: energy_upper_bound
real(DP), intent(out) :: x
!! Found Fermi energy at exit
real(DP), intent(in) :: tol
integer, intent(inout) :: Nmax
!! In entry: Max number of steps. In exit: number of step taken.
integer, intent(out) :: info
!! 0 = solution found; 1 = max number of step (Nmax) reached; 2 = cannot bracket root
real(DP) :: abs_tol, fx, Elw_local, Eup_local
integer :: i
real(DP), EXTERNAL :: f
abs_tol = abs(tol)
Elw_local = energy_lower_bound
Eup_local = energy_upper_bound
if( f(Elw_local) > abs_tol .or. f(Eup_local) < -abs_tol ) then
info = 2
return
end if
do i = 1, Nmax
x = ( Eup_local + Elw_local ) * 0.5d0
fx = f(x)
! Was the root found?
if( abs(fx) < abs_tol ) then
info = 0
Nmax = i
return
else
! Choosing new boundaries
if( fx < -abs_tol ) then
Elw_local = x
else
Eup_local = x
end if
end if
end do
! Checking if max number of steps was reached
if( i > Nmax ) then
info = 1
return
end if
end subroutine bisection_find_efermi
END FUNCTION efermig
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/cupgtr.f | 28 | 6108 | *> \brief \b CUPGTR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CUPGTR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cupgtr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cupgtr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cupgtr.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CUPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDQ, N
* ..
* .. Array Arguments ..
* COMPLEX AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CUPGTR generates a complex unitary matrix Q which is defined as the
*> product of n-1 elementary reflectors H(i) of order n, as returned by
*> CHPTRD using packed storage:
*>
*> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
*>
*> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangular packed storage used in previous
*> call to CHPTRD;
*> = 'L': Lower triangular packed storage used in previous
*> call to CHPTRD.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix Q. N >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is COMPLEX array, dimension (N*(N+1)/2)
*> The vectors which define the elementary reflectors, as
*> returned by CHPTRD.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (N-1)
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i), as returned by CHPTRD.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX array, dimension (LDQ,N)
*> The N-by-N unitary matrix Q.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (N-1)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CUPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDQ, N
* ..
* .. Array Arguments ..
COMPLEX AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, IINFO, IJ, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CUNG2L, CUNG2R, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CUPGTR', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Q was determined by a call to CHPTRD with UPLO = 'U'
*
* Unpack the vectors which define the elementary reflectors and
* set the last row and column of Q equal to those of the unit
* matrix
*
IJ = 2
DO 20 J = 1, N - 1
DO 10 I = 1, J - 1
Q( I, J ) = AP( IJ )
IJ = IJ + 1
10 CONTINUE
IJ = IJ + 2
Q( N, J ) = CZERO
20 CONTINUE
DO 30 I = 1, N - 1
Q( I, N ) = CZERO
30 CONTINUE
Q( N, N ) = CONE
*
* Generate Q(1:n-1,1:n-1)
*
CALL CUNG2L( N-1, N-1, N-1, Q, LDQ, TAU, WORK, IINFO )
*
ELSE
*
* Q was determined by a call to CHPTRD with UPLO = 'L'.
*
* Unpack the vectors which define the elementary reflectors and
* set the first row and column of Q equal to those of the unit
* matrix
*
Q( 1, 1 ) = CONE
DO 40 I = 2, N
Q( I, 1 ) = CZERO
40 CONTINUE
IJ = 3
DO 60 J = 2, N
Q( 1, J ) = CZERO
DO 50 I = J + 1, N
Q( I, J ) = AP( IJ )
IJ = IJ + 1
50 CONTINUE
IJ = IJ + 2
60 CONTINUE
IF( N.GT.1 ) THEN
*
* Generate Q(2:n,2:n)
*
CALL CUNG2R( N-1, N-1, N-1, Q( 2, 2 ), LDQ, TAU, WORK,
$ IINFO )
END IF
END IF
RETURN
*
* End of CUPGTR
*
END
| gpl-2.0 |
mjhsieh/FF4MM | src/framework.f | 1 | 1714 | ! Copyright (c) 2010, Mengjuei Hsieh,
! All rights reserved. - please read information in "LICENCSE.txt"
! Written by Mengjuei Hsieh, University of California Irvine
#include "definitions.fpp"
! This will be the main module that should be providing
! 1. public storage of variables
! 2. interface for callers
!
! Rule 1: Use one dimension array so that it would be easier to
! do parallelisation.
module tienchun
! Acquired data
integer :: natom
_REAL_, allocatable :: x(:)
_REAL_, allocatable :: mass(:)
_REAL_, allocatable :: r_vdw(:)
! Acquired or Computed data
_REAL_, allocatable :: f(:)
_REAL_, allocatable :: v(:)
_REAL_, allocatable :: oldv(:)
! Computed system states
! RNDF_SOLUTE: net (real) number of degrees of freedom for solute
! RNDF_SOLVENT: net (real) number of degrees of freedom for solvent
! RNDF: total (real) number of degrees of freedom
! User Control: Geometry
logical :: usePBC !(periodic boundary condition)
logical :: usePIB !(particle in a box)
_REAL_ :: xmin, ymin, zmin
_REAL_ :: xmax, ymax, zmax
! User Control: Force
_REAL_ :: vdwcutoff
_REAL_ :: eelcutoff
! User Control: Types of computation
logical :: doMD !Molecular Dynamics
! logical :: doMIN !Minimization
! logical :: doMC !Monte Carlo
! User Control: MD and MC
_REAL_ :: dt !timestep, δt
_REAL_ :: dt2 !2*δt
_REAL_ :: dtsq !δt**2
end module tienchun
! The origin of module name, TienChun, is a town in central Taiwan.
| bsd-3-clause |
markusappel/McCode | support/MacOSX/pgplot/pgplot-src-mac/src/grsets.f | 6 | 1746 | C*GRSETS -- change size of view surface
C+
SUBROUTINE GRSETS (IDENT,XSIZE,YSIZE)
C
C GRPCKG : change size of plotting area. The requested dimensions
C will be reduced to the absolute maximum of the plot device if
C necessary.
C
C Arguments:
C
C IDENT (input, integer): plot identifier from GROPEN.
C XSIZE (input, real): new x dimension of plot area (absolute
C units); if less than zero, the default dimension
C will be used.
C YSIZE (input, real): new y dimension of plot area (absolute
C units); if less than zero, the default dimension
C will be used.
C--
C (1-Feb-1983)
C 5-Aug-1986 - add GREXEC support [AFT].
C 5-Jan-1993 - set GRADJU [TJP].
C------------------------------------------------------------------------
INCLUDE 'grpckg1.inc'
INTEGER I, IDENT, J, IX, IY, NBUF,LCHR
REAL RBUF(6)
CHARACTER CHR
REAL XSIZE,YSIZE
C
CALL GRSLCT(IDENT)
C write (*,*) 'GRSETS: old size', GRXMXA(IDENT), GRYMXA(IDENT)
CALL GRPAGE
IF ((XSIZE .LT. 0.0) .OR. (YSIZE .LT. 0.0)) THEN
CALL GREXEC(GRGTYP, 6,RBUF,NBUF,CHR,LCHR)
GRXMXA(IDENT) = RBUF(2)
GRYMXA(IDENT) = RBUF(4)
ELSE
I = NINT(XSIZE)
J = NINT(YSIZE)
CALL GREXEC(GRGTYP, 2,RBUF,NBUF,CHR,LCHR)
IX=RBUF(2)
IY=RBUF(4)
IF (IX.GT.0) I = MIN(I,IX)
IF (IY.GT.0) J = MIN(J,IY)
GRXMXA(IDENT) = I
GRYMXA(IDENT) = J
END IF
C write (*,*) 'GRSETS: new size', GRXMXA(IDENT), GRYMXA(IDENT)
GRXMIN(IDENT) = 0
GRXMAX(IDENT) = GRXMXA(IDENT)
GRYMIN(IDENT) = 0
GRYMAX(IDENT) = GRYMXA(IDENT)
GRADJU(IDENT) = .TRUE.
C
END
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/chesvxx.f | 25 | 27120 | *> \brief <b> CHESVXX computes the solution to system of linear equations A * X = B for HE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHESVXX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chesvxx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chesvxx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chesvxx.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CHESVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
* EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
* N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
* NPARAMS, PARAMS, WORK, RWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER EQUED, FACT, UPLO
* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
* $ N_ERR_BNDS
* REAL RCOND, RPVGRW
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
* $ WORK( * ), X( LDX, * )
* REAL S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
* $ ERR_BNDS_NORM( NRHS, * ),
* $ ERR_BNDS_COMP( NRHS, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHESVXX uses the diagonal pivoting factorization to compute the
*> solution to a complex system of linear equations A * X = B, where
*> A is an N-by-N symmetric matrix and X and B are N-by-NRHS
*> matrices.
*>
*> If requested, both normwise and maximum componentwise error bounds
*> are returned. CHESVXX will return a solution with a tiny
*> guaranteed error (O(eps) where eps is the working machine
*> precision) unless the matrix is very ill-conditioned, in which
*> case a warning is returned. Relevant condition numbers also are
*> calculated and returned.
*>
*> CHESVXX accepts user-provided factorizations and equilibration
*> factors; see the definitions of the FACT and EQUED options.
*> Solving with refinement and using a factorization from a previous
*> CHESVXX call will also produce a solution with either O(eps)
*> errors or warnings, but we cannot make that claim for general
*> user-provided factorizations and equilibration factors if they
*> differ from what CHESVXX would itself produce.
*> \endverbatim
*
*> \par Description:
* =================
*>
*> \verbatim
*>
*> The following steps are performed:
*>
*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
*> the system:
*>
*> diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B
*>
*> Whether or not the system will be equilibrated depends on the
*> scaling of the matrix A, but if equilibration is used, A is
*> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
*>
*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
*> the matrix A (after equilibration if FACT = 'E') as
*>
*> A = U * D * U**T, if UPLO = 'U', or
*> A = L * D * L**T, if UPLO = 'L',
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and D is symmetric and block diagonal with
*> 1-by-1 and 2-by-2 diagonal blocks.
*>
*> 3. If some D(i,i)=0, so that D is exactly singular, then the
*> routine returns with INFO = i. Otherwise, the factored form of A
*> is used to estimate the condition number of the matrix A (see
*> argument RCOND). If the reciprocal of the condition number is
*> less than machine precision, the routine still goes on to solve
*> for X and compute error bounds as described below.
*>
*> 4. The system of equations is solved for X using the factored form
*> of A.
*>
*> 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
*> the routine will use iterative refinement to try to get a small
*> error and error bounds. Refinement calculates the residual to at
*> least twice the working precision.
*>
*> 6. If equilibration was used, the matrix X is premultiplied by
*> diag(R) so that it solves the original system before
*> equilibration.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> Some optional parameters are bundled in the PARAMS array. These
*> settings determine how refinement is performed, but often the
*> defaults are acceptable. If the defaults are acceptable, users
*> can pass NPARAMS = 0 which prevents the source code from accessing
*> the PARAMS argument.
*> \endverbatim
*>
*> \param[in] FACT
*> \verbatim
*> FACT is CHARACTER*1
*> Specifies whether or not the factored form of the matrix A is
*> supplied on entry, and if not, whether the matrix A should be
*> equilibrated before it is factored.
*> = 'F': On entry, AF and IPIV contain the factored form of A.
*> If EQUED is not 'N', the matrix A has been
*> equilibrated with scaling factors given by S.
*> A, AF, and IPIV are not modified.
*> = 'N': The matrix A will be copied to AF and factored.
*> = 'E': The matrix A will be equilibrated if necessary, then
*> copied to AF and factored.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of linear equations, i.e., the order of the
*> matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
*> upper triangular part of A contains the upper triangular
*> part of the matrix A, and the strictly lower triangular
*> part of A is not referenced. If UPLO = 'L', the leading
*> N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] AF
*> \verbatim
*> AF is COMPLEX array, dimension (LDAF,N)
*> If FACT = 'F', then AF is an input argument and on entry
*> contains the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
*> U*D*U**T or A = L*D*L**T as computed by SSYTRF.
*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
*> U*D*U**T or A = L*D*L**T.
*> \endverbatim
*>
*> \param[in] LDAF
*> \verbatim
*> LDAF is INTEGER
*> The leading dimension of the array AF. LDAF >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> If FACT = 'F', then IPIV is an input argument and on entry
*> contains details of the interchanges and the block
*> structure of D, as determined by CHETRF. If IPIV(k) > 0,
*> then rows and columns k and IPIV(k) were interchanged and
*> D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and
*> IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
*> -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
*> diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
*> then rows and columns k+1 and -IPIV(k) were interchanged
*> and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block
*> structure of D, as determined by CHETRF.
*> \endverbatim
*>
*> \param[in,out] EQUED
*> \verbatim
*> EQUED is CHARACTER*1
*> Specifies the form of equilibration that was done.
*> = 'N': No equilibration (always true if FACT = 'N').
*> = 'Y': Both row and column equilibration, i.e., A has been
*> replaced by diag(S) * A * diag(S).
*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
*> output argument.
*> \endverbatim
*>
*> \param[in,out] S
*> \verbatim
*> S is REAL array, dimension (N)
*> The scale factors for A. If EQUED = 'Y', A is multiplied on
*> the left and right by diag(S). S is an input argument if FACT =
*> 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
*> = 'Y', each element of S must be positive. If S is output, each
*> element of S is a power of the radix. If S is input, each element
*> of S should be a power of the radix to ensure a reliable solution
*> and error estimates. Scaling by powers of the radix does not cause
*> rounding errors unless the result underflows or overflows.
*> Rounding errors during scaling lead to refining with a matrix that
*> is not equivalent to the input matrix, producing error estimates
*> that may not be reliable.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the N-by-NRHS right hand side matrix B.
*> On exit,
*> if EQUED = 'N', B is not modified;
*> if EQUED = 'Y', B is overwritten by diag(S)*B;
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX,NRHS)
*> If INFO = 0, the N-by-NRHS solution matrix X to the original
*> system of equations. Note that A and B are modified on exit if
*> EQUED .ne. 'N', and the solution to the equilibrated system is
*> inv(diag(S))*X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> Reciprocal scaled condition number. This is an estimate of the
*> reciprocal Skeel condition number of the matrix A after
*> equilibration (if done). If this is less than the machine
*> precision (in particular, if it is zero), the matrix is singular
*> to working precision. Note that the error may still be small even
*> if this number is very small and the matrix appears ill-
*> conditioned.
*> \endverbatim
*>
*> \param[out] RPVGRW
*> \verbatim
*> RPVGRW is REAL
*> Reciprocal pivot growth. On exit, this contains the reciprocal
*> pivot growth factor norm(A)/norm(U). The "max absolute element"
*> norm is used. If this is much less than 1, then the stability of
*> the LU factorization of the (equilibrated) matrix A could be poor.
*> This also means that the solution X, estimated condition numbers,
*> and error bounds could be unreliable. If factorization fails with
*> 0<INFO<=N, then this contains the reciprocal pivot growth factor
*> for the leading INFO columns of A.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is REAL array, dimension (NRHS)
*> Componentwise relative backward error. This is the
*> componentwise relative backward error of each solution vector X(j)
*> (i.e., the smallest relative change in any element of A or B that
*> makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[in] N_ERR_BNDS
*> \verbatim
*> N_ERR_BNDS is INTEGER
*> Number of error bounds to return for each right hand side
*> and each type (normwise or componentwise). See ERR_BNDS_NORM and
*> ERR_BNDS_COMP below.
*> \endverbatim
*>
*> \param[out] ERR_BNDS_NORM
*> \verbatim
*> ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
*> estimate is "guaranteed". These reciprocal condition
*> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
*>
*> \param[out] ERR_BNDS_COMP
*> \verbatim
*> ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
*> estimate is "guaranteed". These reciprocal condition
*> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*> appropriately scaled matrix Z.
*> Let Z = S*(A*diag(x)), where x is the solution for the
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
*>
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is REAL array, dimension NPARAMS
*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
*> = 0.0 : No refinement is performed, and no error bounds are
*> computed.
*> = 1.0 : Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
*> Aggressive: Set to 100 to permit convergence using approximate
*> factorizations or factorizations other than LU. If
*> the factorization uses a technique other than
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
*> is true, 0.0 is false.
*> Default: 1.0 (attempt componentwise convergence)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (5*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: Successful exit. The solution to every right-hand side is
*> guaranteed.
*> < 0: If INFO = -i, the i-th argument had an illegal value
*> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
*> has been completed, but the factor U is exactly singular, so
*> the solution and error bounds could not be computed. RCOND = 0
*> is returned.
*> = N+J: The solution corresponding to the Jth right-hand side is
*> not guaranteed. The solutions corresponding to other right-
*> hand sides K with K > J may not be guaranteed as well, but
*> only the first such right-hand side is reported. If a small
*> componentwise error is not requested (PARAMS(3) = 0.0) then
*> the Jth right-hand side is the first with a normwise error
*> bound that is not guaranteed (the smallest J such
*> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
*> the Jth right-hand side is the first with either a normwise or
*> componentwise error bound that is not guaranteed (the smallest
*> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
*> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
*> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
*> about all of the right-hand sides check ERR_BNDS_NORM or
*> ERR_BNDS_COMP.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complexHEsolve
*
* =====================================================================
SUBROUTINE CHESVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
$ EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
$ N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
$ NPARAMS, PARAMS, WORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 3.4.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* .. Scalar Arguments ..
CHARACTER EQUED, FACT, UPLO
INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
$ N_ERR_BNDS
REAL RCOND, RPVGRW
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
$ WORK( * ), X( LDX, * )
REAL S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
$ ERR_BNDS_NORM( NRHS, * ),
$ ERR_BNDS_COMP( NRHS, * )
* ..
*
* ==================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
INTEGER CMP_ERR_I, PIV_GROWTH_I
PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
$ BERR_I = 3 )
PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
$ PIV_GROWTH_I = 9 )
* ..
* .. Local Scalars ..
LOGICAL EQUIL, NOFACT, RCEQU
INTEGER INFEQU, J
REAL AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
* ..
* .. External Functions ..
EXTERNAL LSAME, SLAMCH, CLA_HERPVGRW
LOGICAL LSAME
REAL SLAMCH, CLA_HERPVGRW
* ..
* .. External Subroutines ..
EXTERNAL CHECON, CHEEQUB, CHETRF, CHETRS, CLACPY,
$ CLAQHE, XERBLA, CLASCL2, CHERFSX
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
NOFACT = LSAME( FACT, 'N' )
EQUIL = LSAME( FACT, 'E' )
SMLNUM = SLAMCH( 'Safe minimum' )
BIGNUM = ONE / SMLNUM
IF( NOFACT .OR. EQUIL ) THEN
EQUED = 'N'
RCEQU = .FALSE.
ELSE
RCEQU = LSAME( EQUED, 'Y' )
ENDIF
*
* Default is failure. If an input parameter is wrong or
* factorization fails, make everything look horrible. Only the
* pivot growth is set here, the rest is initialized in CHERFSX.
*
RPVGRW = ZERO
*
* Test the input parameters. PARAMS is not tested until CHERFSX.
*
IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
$ LSAME( FACT, 'F' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
$ .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
$ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
INFO = -9
ELSE
IF ( RCEQU ) THEN
SMIN = BIGNUM
SMAX = ZERO
DO 10 J = 1, N
SMIN = MIN( SMIN, S( J ) )
SMAX = MAX( SMAX, S( J ) )
10 CONTINUE
IF( SMIN.LE.ZERO ) THEN
INFO = -10
ELSE IF( N.GT.0 ) THEN
SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
ELSE
SCOND = ONE
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -14
END IF
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHESVXX', -INFO )
RETURN
END IF
*
IF( EQUIL ) THEN
*
* Compute row and column scalings to equilibrate the matrix A.
*
CALL CHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
IF( INFEQU.EQ.0 ) THEN
*
* Equilibrate the matrix.
*
CALL CLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
RCEQU = LSAME( EQUED, 'Y' )
END IF
END IF
*
* Scale the right-hand side.
*
IF( RCEQU ) CALL CLASCL2( N, NRHS, S, B, LDB )
*
IF( NOFACT .OR. EQUIL ) THEN
*
* Compute the LDL^T or UDU^T factorization of A.
*
CALL CLACPY( UPLO, N, N, A, LDA, AF, LDAF )
CALL CHETRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
*
* Return if INFO is non-zero.
*
IF( INFO.GT.0 ) THEN
*
* Pivot in column INFO is exactly 0
* Compute the reciprocal pivot growth factor of the
* leading rank-deficient INFO columns of A.
*
IF( N.GT.0 )
$ RPVGRW = CLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
$ IPIV, RWORK )
RETURN
END IF
END IF
*
* Compute the reciprocal pivot growth factor RPVGRW.
*
IF( N.GT.0 )
$ RPVGRW = CLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
$ RWORK )
*
* Compute the solution matrix X.
*
CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
CALL CHETRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
*
* Use iterative refinement to improve the computed solution and
* compute error bounds and backward error estimates for it.
*
CALL CHERFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
$ S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
$ ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO )
*
* Scale solutions.
*
IF ( RCEQU ) THEN
CALL CLASCL2 ( N, NRHS, S, X, LDX )
END IF
*
RETURN
*
* End of CHESVXX
*
END
| gpl-2.0 |
RBigData/pbdSLAP | src/ScaLAPACK/pdlascl.f | 4 | 17958 | SUBROUTINE PDLASCL( TYPE, CFROM, CTO, M, N, A, IA, JA, DESCA,
$ INFO )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER TYPE
INTEGER IA, INFO, JA, M, N
DOUBLE PRECISION CFROM, CTO
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION A( * )
* ..
*
* Purpose
* =======
*
* PDLASCL multiplies the M-by-N real distributed matrix sub( A )
* denoting A(IA:IA+M-1,JA:JA+N-1) by the real scalar CTO/CFROM. This
* is done without over/underflow as long as the final result
* CTO * A(I,J) / CFROM does not over/underflow. TYPE specifies that
* sub( A ) may be full, upper triangular, lower triangular or upper
* Hessenberg.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* TYPE (global input) CHARACTER
* TYPE indices the storage type of the input distributed
* matrix.
* = 'G': sub( A ) is a full matrix,
* = 'L': sub( A ) is a lower triangular matrix,
* = 'U': sub( A ) is an upper triangular matrix,
* = 'H': sub( A ) is an upper Hessenberg matrix.
*
* CFROM (global input) DOUBLE PRECISION
* CTO (global input) DOUBLE PRECISION
* The distributed matrix sub( A ) is multiplied by CTO/CFROM.
* A(I,J) is computed without over/underflow if the final
* result CTO * A(I,J) / CFROM can be represented without
* over/underflow. CFROM must be nonzero.
*
* M (global input) INTEGER
* The number of rows to be operated on i.e the number of rows
* of the distributed submatrix sub( A ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on i.e the number of
* columns of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) DOUBLE PRECISION pointer into the
* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
* This array contains the local pieces of the distributed
* matrix sub( A ). On exit, this array contains the local
* pieces of the distributed matrix multiplied by CTO/CFROM.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* INFO (local output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL DONE
INTEGER IACOL, IAROW, ICOFFA, ICTXT, ICURCOL, ICURROW,
$ IIA, II, INXTROW, IOFFA, IROFFA, ITYPE, J, JB,
$ JJA, JJ, JN, KK, LDA, LL, MYCOL, MYROW, MP,
$ NPCOL, NPROW, NQ
DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, INFOG2L, PXERBLA
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
INTEGER ICEIL, NUMROC
DOUBLE PRECISION PDLAMCH
EXTERNAL DISNAN, ICEIL, LSAME, NUMROC, PDLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN, MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters
*
IF( NPROW.EQ.-1 ) THEN
INFO = -907
ELSE
INFO = 0
CALL CHK1MAT( M, 4, N, 6, IA, JA, DESCA, 9, INFO )
IF( INFO.EQ.0 ) THEN
IF( LSAME( TYPE, 'G' ) ) THEN
ITYPE = 0
ELSE IF( LSAME( TYPE, 'L' ) ) THEN
ITYPE = 1
ELSE IF( LSAME( TYPE, 'U' ) ) THEN
ITYPE = 2
ELSE IF( LSAME( TYPE, 'H' ) ) THEN
ITYPE = 3
ELSE
ITYPE = -1
END IF
IF( ITYPE.EQ.-1 ) THEN
INFO = -1
ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN
INFO = -4
ELSE IF( DISNAN(CTO) ) THEN
INFO = -5
END IF
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PDLASCL', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
*
* Get machine parameters
*
SMLNUM = PDLAMCH( ICTXT, 'S' )
BIGNUM = ONE / SMLNUM
*
CFROMC = CFROM
CTOC = CTO
*
* Compute local indexes
*
LDA = DESCA( LLD_ )
IROFFA = MOD( IA-1, DESCA( MB_ ) )
ICOFFA = MOD( JA-1, DESCA( NB_ ) )
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
MP = NUMROC( M+IROFFA, DESCA( MB_ ), MYROW, IAROW, NPROW )
IF( MYROW.EQ.IAROW )
$ MP = MP - IROFFA
NQ = NUMROC( N+ICOFFA, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
IF( MYCOL.EQ.IACOL )
$ NQ = NQ - ICOFFA
*
10 CONTINUE
CFROM1 = CFROMC*SMLNUM
IF( CFROM1.EQ.CFROMC ) THEN
! CFROMC is an inf. Multiply by a correctly signed zero for
! finite CTOC, or a NaN if CTOC is infinite.
MUL = CTOC / CFROMC
DONE = .TRUE.
CTO1 = CTOC
ELSE
CTO1 = CTOC / BIGNUM
IF( CTO1.EQ.CTOC ) THEN
! CTOC is either 0 or an inf. In both cases, CTOC itself
! serves as the correct multiplication factor.
MUL = CTOC
DONE = .TRUE.
CFROMC = ONE
ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
MUL = SMLNUM
DONE = .FALSE.
CFROMC = CFROM1
ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
MUL = BIGNUM
DONE = .FALSE.
CTOC = CTO1
ELSE
MUL = CTOC / CFROMC
DONE = .TRUE.
END IF
END IF
*
IOFFA = ( JJA - 1 ) * LDA
ICURROW = IAROW
ICURCOL = IACOL
*
IF( ITYPE.EQ.0 ) THEN
*
* Full matrix
*
DO 30 JJ = JJA, JJA+NQ-1
DO 20 II = IIA, IIA+MP-1
A( IOFFA+II ) = A( IOFFA+II ) * MUL
20 CONTINUE
IOFFA = IOFFA + LDA
30 CONTINUE
*
ELSE IF( ITYPE.EQ.1 ) THEN
*
* Lower triangular matrix
*
II = IIA
JJ = JJA
JB = JN-JA+1
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 50 LL = JJ, JJ + JB -1
DO 40 KK = II+LL-JJ, IIA+MP-1
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
40 CONTINUE
IOFFA = IOFFA + LDA
50 CONTINUE
ELSE
DO 70 LL = JJ, JJ + JB -1
DO 60 KK = II, IIA+MP-1
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
60 CONTINUE
IOFFA = IOFFA + LDA
70 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 120 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 90 LL = JJ, JJ + JB -1
DO 80 KK = II+LL-JJ, IIA+MP-1
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
80 CONTINUE
IOFFA = IOFFA + LDA
90 CONTINUE
ELSE
DO 110 LL = JJ, JJ + JB -1
DO 100 KK = II, IIA+MP-1
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
100 CONTINUE
IOFFA = IOFFA + LDA
110 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
120 CONTINUE
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Upper triangular matrix
*
II = IIA
JJ = JJA
JB = JN-JA+1
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 140 LL = JJ, JJ + JB -1
DO 130 KK = IIA, MIN(II+LL-JJ,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
130 CONTINUE
IOFFA = IOFFA + LDA
140 CONTINUE
ELSE
DO 160 LL = JJ, JJ + JB -1
DO 150 KK = IIA, MIN(II-1,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
150 CONTINUE
IOFFA = IOFFA + LDA
160 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 210 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 180 LL = JJ, JJ + JB -1
DO 170 KK = IIA, MIN(II+LL-JJ,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK )*MUL
170 CONTINUE
IOFFA = IOFFA + LDA
180 CONTINUE
ELSE
DO 200 LL = JJ, JJ + JB -1
DO 190 KK = IIA, MIN(II-1,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
190 CONTINUE
IOFFA = IOFFA + LDA
200 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
210 CONTINUE
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* Upper Hessenberg matrix
*
II = IIA
JJ = JJA
JB = JN-JA+1
*
* Only one process row
*
IF( NPROW.EQ.1 ) THEN
*
* Handle first block of columns separately
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 230 LL = JJ, JJ+JB-1
DO 220 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
A( IOFFA+KK ) = A( IOFFA+KK )*MUL
220 CONTINUE
IOFFA = IOFFA + LDA
230 CONTINUE
JJ = JJ + JB
END IF
*
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 260 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 250 LL = JJ, JJ+JB-1
DO 240 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
A( IOFFA+KK ) = A( IOFFA+KK )*MUL
240 CONTINUE
IOFFA = IOFFA + LDA
250 CONTINUE
JJ = JJ + JB
END IF
*
II = II + JB
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
260 CONTINUE
*
ELSE
*
* Handle first block of columns separately
*
INXTROW = MOD( ICURROW+1, NPROW )
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 280 LL = JJ, JJ + JB -1
DO 270 KK = IIA, MIN(II+LL-JJ+1,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
270 CONTINUE
IOFFA = IOFFA + LDA
280 CONTINUE
ELSE
DO 300 LL = JJ, JJ + JB -1
DO 290 KK = IIA, MIN(II-1,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
290 CONTINUE
IOFFA = IOFFA + LDA
300 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+MP-1 )
$ A( II+(JJ+JB-2)*LDA ) = A( II+(JJ+JB-2)*LDA ) * MUL
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = INXTROW
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 350 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 320 LL = JJ, JJ + JB -1
DO 310 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
310 CONTINUE
IOFFA = IOFFA + LDA
320 CONTINUE
ELSE
DO 340 LL = JJ, JJ + JB -1
DO 330 KK = IIA, MIN( II-1, IIA+MP-1 )
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
330 CONTINUE
IOFFA = IOFFA + LDA
340 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+MP-1 )
$ A( II+(JJ+JB-2)*LDA ) = A( II+(JJ+JB-2)*LDA ) *
$ MUL
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = INXTROW
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
350 CONTINUE
*
END IF
*
END IF
*
IF( .NOT.DONE )
$ GO TO 10
*
RETURN
*
* End of PDLASCL
*
END
| mpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/slag2d.f | 24 | 3518 | *> \brief \b SLAG2D converts a single precision matrix to a double precision matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAG2D + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slag2d.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slag2d.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slag2d.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAG2D( M, N, SA, LDSA, A, LDA, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDSA, M, N
* ..
* .. Array Arguments ..
* REAL SA( LDSA, * )
* DOUBLE PRECISION A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLAG2D converts a SINGLE PRECISION matrix, SA, to a DOUBLE
*> PRECISION matrix, A.
*>
*> Note that while it is possible to overflow while converting
*> from double to single, it is not possible to overflow when
*> converting from single to double.
*>
*> This is an auxiliary routine so there is no argument checking.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of lines of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] SA
*> \verbatim
*> SA is REAL array, dimension (LDSA,N)
*> On entry, the M-by-N coefficient matrix SA.
*> \endverbatim
*>
*> \param[in] LDSA
*> \verbatim
*> LDSA is INTEGER
*> The leading dimension of the array SA. LDSA >= max(1,M).
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On exit, the M-by-N coefficient matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERauxiliary
*
* =====================================================================
SUBROUTINE SLAG2D( M, N, SA, LDSA, A, LDA, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDSA, M, N
* ..
* .. Array Arguments ..
REAL SA( LDSA, * )
DOUBLE PRECISION A( LDA, * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J
* ..
* .. Executable Statements ..
*
INFO = 0
DO 20 J = 1, N
DO 10 I = 1, M
A( I, J ) = SA( I, J )
10 CONTINUE
20 CONTINUE
RETURN
*
* End of SLAG2D
*
END
| gpl-2.0 |
QEF/q-e | XClib/xc_wrapper_d_gga.f90 | 2 | 14176 | !
! Copyright (C) 2020 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!---------------------------------------------------------------------
SUBROUTINE dgcxc( length, sp, r_in, g_in, dvxc_rr, dvxc_sr, dvxc_ss, gpu_args_ )
!---------------------------------------------------------------------
!! Wrapper routine. Calls dgcx-driver routines from internal libraries
!! or from the external libxc, depending on the input choice.
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the I/O arrays
INTEGER, INTENT(IN) :: sp
!! number of spin components
REAL(DP), INTENT(IN) :: r_in(length,sp)
!! charge density
REAL(DP), INTENT(IN) :: g_in(length,3,sp)
!! gradient
REAL(DP), INTENT(OUT) :: dvxc_rr(length,sp,sp), dvxc_sr(length,sp,sp), &
dvxc_ss(length,sp,sp)
LOGICAL, OPTIONAL, INTENT(IN) :: gpu_args_
!! whether you wish to run on gpu in case use_gpu is true
!
LOGICAL :: gpu_args
!
gpu_args = .FALSE.
IF ( PRESENT(gpu_args_) ) gpu_args = gpu_args_
!
IF ( gpu_args ) THEN
!
!$acc data present( r_in, g_in, dvxc_rr, dvxc_sr, dvxc_ss )
CALL dgcxc_( length, sp, r_in, g_in, dvxc_rr, dvxc_sr, dvxc_ss )
!$acc end data
!
ELSE
!
!$acc data copyin( r_in, g_in ), copyout( dvxc_rr, dvxc_sr, dvxc_ss )
CALL dgcxc_( length, sp, r_in, g_in, dvxc_rr, dvxc_sr, dvxc_ss )
!$acc end data
!
ENDIF
!
RETURN
!
END SUBROUTINE
!
!---------------------------------------------------------------------
SUBROUTINE dgcxc_( length, sp, r_in, g_in, dvxc_rr, dvxc_sr, dvxc_ss )
!---------------------------------------------------------------------
!! Wrapper routine. Calls dgcx-driver routines from internal libraries
!! or from the external libxc, depending on the input choice.
!
USE constants_l, ONLY: e2
USE kind_l, ONLY: DP
USE dft_setting_params, ONLY: igcx, igcc, is_libxc, rho_threshold_gga, &
grho_threshold_gga, rho_threshold_lda
USE qe_drivers_d_gga
#if defined(__LIBXC)
#include "xc_version.h"
USE xc_f03_lib_m
USE dft_setting_params, ONLY: xc_func, xc_info
#endif
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the I/O arrays
INTEGER, INTENT(IN) :: sp
!! number of spin components
REAL(DP), INTENT(IN) :: r_in(length,sp)
!! charge density
REAL(DP), INTENT(IN) :: g_in(length,3,sp)
!! gradient
REAL(DP), INTENT(OUT) :: dvxc_rr(length,sp,sp), dvxc_sr(length,sp,sp), &
dvxc_ss(length,sp,sp)
!
! ... local variables
!
REAL(DP), ALLOCATABLE :: vrrx(:,:), vsrx(:,:), vssx(:,:)
REAL(DP), ALLOCATABLE :: vrrc(:,:), vsrc(:,:), vssc(:), vrzc(:,:)
!
#if defined(__LIBXC)
INTEGER :: fkind=-10
REAL(DP), ALLOCATABLE :: rho_lxc(:)
REAL(DP), ALLOCATABLE :: v2rho2_x(:), v2rhosigma_x(:), v2sigma2_x(:)
REAL(DP), ALLOCATABLE :: v2rho2_c(:), v2rhosigma_c(:), v2sigma2_c(:)
#if (XC_MAJOR_VERSION > 4)
INTEGER(8) :: lengthxc
#else
INTEGER :: lengthxc
#endif
#endif
!
INTEGER :: k, length_dlxc
REAL(DP) :: rht, zeta
REAL(DP), ALLOCATABLE :: sigma(:)
REAL(DP), PARAMETER :: small = 1.E-10_DP, rho_trash = 0.5_DP
REAL(DP), PARAMETER :: epsr=1.0d-6, epsg=1.0d-6
!
!$acc data present( r_in, g_in, dvxc_rr, dvxc_sr, dvxc_ss )
!
IF ( ANY(.NOT.is_libxc(3:4)) ) THEN
rho_threshold_gga = small ; grho_threshold_gga = small
ENDIF
!
!$acc kernels
dvxc_rr(:,:,:) = 0._DP
dvxc_sr(:,:,:) = 0._DP
dvxc_ss(:,:,:) = 0._DP
!$acc end kernels
!
#if defined(__LIBXC)
!
IF ( ANY(is_libxc(3:4)) ) THEN
!
lengthxc = length
!
length_dlxc = length
IF (sp == 2) length_dlxc = length*3
!
ALLOCATE( rho_lxc(length*sp), sigma(length_dlxc) )
!$acc data copyout( rho_lxc, sigma )
!
! ... set libxc input
SELECT CASE( sp )
CASE( 1 )
!
!$acc parallel loop
DO k = 1, length
rho_lxc(k) = r_in(k,1)
sigma(k) = g_in(k,1,1)**2 + g_in(k,2,1)**2 + g_in(k,3,1)**2
ENDDO
!
CASE( 2 )
!
!$acc parallel loop
DO k = 1, length
rho_lxc(2*k-1) = r_in(k,1)
rho_lxc(2*k) = r_in(k,2)
!
sigma(3*k-2) = g_in(k,1,1)**2 + g_in(k,2,1)**2 + g_in(k,3,1)**2
sigma(3*k-1) = g_in(k,1,1) * g_in(k,1,2) + g_in(k,2,1) * g_in(k,2,2) + &
g_in(k,3,1) * g_in(k,3,2)
sigma(3*k) = g_in(k,1,2)**2 + g_in(k,2,2)**2 + g_in(k,3,2)**2
ENDDO
!
CASE( 4 )
!
CALL xclib_error( 'dgcxc', 'The Libxc derivative of the XC potential &
&is not available for noncollinear case', 1 )
!
CASE DEFAULT
!
CALL xclib_error( 'dgcxc', 'Wrong number of spin dimensions', 2 )
!
END SELECT
!
!$acc end data
!
ENDIF
!
! ... LIBXC DERIVATIVE FOR EXCHANGE
!
IF ( is_libxc(3) .AND. igcx/=0 ) THEN
ALLOCATE( v2rho2_x(length_dlxc), v2rhosigma_x(length_dlxc*sp), &
v2sigma2_x(length_dlxc*sp) )
v2rho2_x = 0._DP ; v2rhosigma_x = 0._DP ; v2sigma2_x = 0._DP
CALL xc_f03_func_set_dens_threshold( xc_func(3), epsr )
CALL xc_f03_gga_fxc( xc_func(3), lengthxc, rho_lxc(1), sigma(1), v2rho2_x(1), &
v2rhosigma_x(1), v2sigma2_x(1) )
!$acc data copyin( v2rho2_x, v2rhosigma_x, v2sigma2_x )
!
IF (sp==1) THEN
!$acc parallel loop
DO k = 1, length
IF ( rho_lxc(k)>small .AND. SQRT(ABS(sigma(k)))>small ) THEN
IF ( rho_lxc(k)>rho_threshold_lda ) THEN
dvxc_rr(k,1,1) = dvxc_rr(k,1,1) + e2 * v2rho2_x(k)
dvxc_sr(k,1,1) = dvxc_sr(k,1,1) + e2 * v2rhosigma_x(k)*2._DP
ENDIF
dvxc_ss(k,1,1) = dvxc_ss(k,1,1) + e2 * v2sigma2_x(k)*4._DP
ENDIF
ENDDO
ELSEIF (sp==2) THEN
!$acc parallel loop
DO k = 1, length
IF ( (r_in(k,1)>epsr .AND. SQRT(ABS(sigma(3*k-2)))>epsg) .AND. &
(r_in(k,2)>epsr .AND. SQRT(ABS(sigma(3*k))) >epsg) ) THEN
dvxc_rr(k,1,1) = dvxc_rr(k,1,1) + e2 * v2rho2_x(3*k-2)
dvxc_ss(k,1,1) = dvxc_ss(k,1,1) + e2 * v2sigma2_x(6*k-5)*4._DP
dvxc_rr(k,2,2) = dvxc_rr(k,2,2) + e2 * v2rho2_x(3*k)
dvxc_ss(k,2,2) = dvxc_ss(k,2,2) + e2 * v2sigma2_x(6*k)*4._DP
dvxc_rr(k,1,2) = dvxc_rr(k,1,2) + e2 * v2rho2_x(3*k-1)
dvxc_sr(k,1,1) = dvxc_sr(k,1,1) + e2 * v2rhosigma_x(6*k-5)*2._DP
dvxc_rr(k,2,1) = dvxc_rr(k,2,1) + e2 * v2rho2_x(3*k-1)
dvxc_sr(k,2,2) = dvxc_sr(k,2,2) + e2 * v2rhosigma_x(6*k)*2._DP
ENDIF
ENDDO
ENDIF
!$acc end data
DEALLOCATE( v2rho2_x, v2rhosigma_x, v2sigma2_x )
!
ENDIF
!
! ... LIBXC DERIVATIVE FOR CORRELATION
!
IF ( is_libxc(4) .AND. igcc/=0 ) THEN
ALLOCATE( v2rho2_c(length_dlxc), v2rhosigma_c(length_dlxc*sp), &
v2sigma2_c(length_dlxc*sp) )
! ... DERIVATIVE FOR CORRELATION
v2rho2_c = 0._DP ; v2rhosigma_c = 0._DP ; v2sigma2_c = 0._DP
fkind = xc_f03_func_info_get_kind( xc_info(4) )
CALL xc_f03_func_set_dens_threshold( xc_func(4), epsr )
CALL xc_f03_gga_fxc( xc_func(4), lengthxc, rho_lxc(1), sigma(1), v2rho2_c(1), &
v2rhosigma_c(1), v2sigma2_c(1) )
!$acc data copyin( v2rho2_c, v2rhosigma_c, v2sigma2_c )
!
IF (sp==1) THEN
!$acc parallel loop
DO k = 1, length
IF ( rho_lxc(k)>small .AND. SQRT(ABS(sigma(k)))>small ) THEN
IF ( rho_lxc(k)>rho_threshold_lda ) THEN
dvxc_rr(k,1,1) = dvxc_rr(k,1,1) + e2 * v2rho2_c(k)
dvxc_sr(k,1,1) = dvxc_sr(k,1,1) + e2 * v2rhosigma_c(k)*2._DP
ENDIF
dvxc_ss(k,1,1) = dvxc_ss(k,1,1) + e2 * v2sigma2_c(k)*4._DP
ENDIF
ENDDO
ELSEIF (sp==2) THEN
!$acc parallel loop
DO k = 1, length
IF ( (r_in(k,1)>epsr .AND. SQRT(ABS(sigma(3*k-2)))>epsg) .AND. &
(r_in(k,2)>epsr .AND. SQRT(ABS(sigma(3*k))) >epsg) ) THEN
dvxc_rr(k,1,1) = dvxc_rr(k,1,1) + e2 * v2rho2_c(3*k-2)
dvxc_rr(k,1,2) = dvxc_rr(k,1,2) + e2 * v2rho2_c(3*k-1)
dvxc_rr(k,2,1) = dvxc_rr(k,2,1) + e2 * v2rho2_c(3*k-1)
dvxc_rr(k,2,2) = dvxc_rr(k,2,2) + e2 * v2rho2_c(3*k)
dvxc_sr(k,1,1) = dvxc_sr(k,1,1) + e2 * v2rhosigma_c(6*k-5)*2.d0
dvxc_ss(k,1,1) = dvxc_ss(k,1,1) + e2 * v2sigma2_c(6*k)*4.d0
dvxc_sr(k,1,2) = dvxc_sr(k,1,2) + e2 * v2rhosigma_c(6*k-4)
dvxc_sr(k,2,1) = dvxc_sr(k,2,1) + e2 * v2rhosigma_c(6*k-1)
dvxc_ss(k,1,2) = dvxc_ss(k,1,2) + e2 * v2sigma2_c(6*k-2)
dvxc_ss(k,2,1) = dvxc_ss(k,2,1) + e2 * v2sigma2_c(6*k-2)
dvxc_sr(k,2,2) = dvxc_sr(k,2,2) + e2 * v2rhosigma_c(6*k)*2.d0
dvxc_ss(k,2,2) = dvxc_ss(k,2,2) + e2 * v2sigma2_c(6*k)*4.d0
ENDIF
ENDDO
ENDIF
!
!$acc end data
DEALLOCATE( v2rho2_c, v2rhosigma_c, v2sigma2_c )
!
ENDIF
!
! ... QE DERIVATIVE FOR EXCHANGE AND CORRELATION
!
IF ( ((.NOT.is_libxc(3).AND.igcx/=0) .OR. (.NOT.is_libxc(4).AND.igcc/=0)) &
.AND. fkind/=XC_EXCHANGE_CORRELATION ) THEN
!
ALLOCATE( vrrx(length,sp), vsrx(length,sp), vssx(length,sp) )
ALLOCATE( vrrc(length,sp), vsrc(length,sp), vssc(length) )
!$acc data create( vrrx, vsrx, vssx, vrrc, vsrc, vssc )
!
IF ( sp == 1 ) THEN
!
IF (.NOT. ALLOCATED(sigma)) THEN
ALLOCATE( sigma(length) )
sigma(:) = g_in(:,1,1)**2 + g_in(:,2,1)**2 + g_in(:,3,1)**2
ENDIF
!
!$acc data copyin( sigma )
CALL dgcxc_unpol( length, r_in(:,1), sigma, vrrx(:,1), vsrx(:,1), vssx(:,1), &
vrrc(:,1), vsrc(:,1), vssc )
!$acc end data
!
!$acc parallel loop
DO k = 1, length
dvxc_rr(k,1,1) = dvxc_rr(k,1,1) + e2 * (vrrx(k,1) + vrrc(k,1))
dvxc_sr(k,1,1) = dvxc_sr(k,1,1) + e2 * (vsrx(k,1) + vsrc(k,1))
dvxc_ss(k,1,1) = dvxc_ss(k,1,1) + e2 * (vssx(k,1) + vssc(k) )
ENDDO
!
ELSEIF ( sp == 2 ) THEN
!
ALLOCATE( vrzc(length,sp) )
!$acc data create( vrzc )
!
CALL dgcxc_spin( length, r_in, g_in, vrrx, vsrx, vssx, vrrc, vsrc, vssc, vrzc )
!
!$acc parallel loop
DO k = 1, length
rht = r_in(k,1) + r_in(k,2)
IF (rht > epsr) THEN
zeta = (r_in(k,1) - r_in(k,2))/rht
!
dvxc_rr(k,1,1) = dvxc_rr(k,1,1) + e2*(vrrx(k,1) + vrrc(k,1) + &
vrzc(k,1)*(1.d0 - zeta)/rht)
dvxc_rr(k,1,2) = dvxc_rr(k,1,2) + e2*(vrrc(k,1) - vrzc(k,1)*(1.d0 + zeta)/rht)
dvxc_rr(k,2,1) = dvxc_rr(k,2,1) + e2*(vrrc(k,2) + vrzc(k,2)*(1.d0 - zeta)/rht)
dvxc_rr(k,2,2) = dvxc_rr(k,2,2) + e2*(vrrx(k,2) + vrrc(k,2) - &
vrzc(k,2)*(1.d0 + zeta)/rht)
ENDIF
!
dvxc_sr(k,1,1) = dvxc_sr(k,1,1) + e2 * (vsrx(k,1) + vsrc(k,1))
dvxc_sr(k,1,2) = dvxc_sr(k,1,2) + e2 * vsrc(k,1)
dvxc_sr(k,2,1) = dvxc_sr(k,2,1) + e2 * vsrc(k,2)
dvxc_sr(k,2,2) = dvxc_sr(k,2,2) + e2 * (vsrx(k,2) + vsrc(k,2))
!
dvxc_ss(k,1,1) = dvxc_ss(k,1,1) + e2 * (vssx(k,1) + vssc(k))
dvxc_ss(k,1,2) = dvxc_ss(k,1,2) + e2 * vssc(k)
dvxc_ss(k,2,1) = dvxc_ss(k,2,1) + e2 * vssc(k)
dvxc_ss(k,2,2) = dvxc_ss(k,2,2) + e2 * (vssx(k,2) + vssc(k))
ENDDO
!
!$acc end data
DEALLOCATE( vrzc )
!
ENDIF
!
!$acc end data
DEALLOCATE( vrrx, vsrx, vssx )
DEALLOCATE( vrrc, vsrc, vssc )
!
ENDIF
!
IF ( ANY(is_libxc(3:4))) DEALLOCATE( rho_lxc )
IF ( ALLOCATED(sigma) ) DEALLOCATE( sigma )
!
#else
!
ALLOCATE( vrrx(length,sp), vsrx(length,sp), vssx(length,sp) )
ALLOCATE( vrrc(length,sp), vsrc(length,sp), vssc(length) )
!$acc data create( vrrx, vsrx, vssx, vrrc, vsrc, vssc )
!
SELECT CASE( sp )
CASE( 1 )
!
ALLOCATE( sigma(length) )
!$acc data create( sigma )
!
!$acc parallel loop
DO k = 1, length
sigma(k) = g_in(k,1,1)**2 + g_in(k,2,1)**2 + g_in(k,3,1)**2
ENDDO
!
CALL dgcxc_unpol( length, r_in(:,1), sigma, vrrx(:,1), vsrx(:,1), vssx(:,1), &
vrrc(:,1), vsrc(:,1), vssc )
!
!$acc end data
DEALLOCATE( sigma )
!
!$acc parallel loop
DO k = 1, length
dvxc_rr(k,1,1) = e2*(vrrx(k,1) + vrrc(k,1))
dvxc_sr(k,1,1) = e2*(vsrx(k,1) + vsrc(k,1))
dvxc_ss(k,1,1) = e2*(vssx(k,1) + vssc(k) )
ENDDO
!
CASE( 2 )
!
ALLOCATE( vrzc(length,sp) )
!$acc data create( vrzc )
!
CALL dgcxc_spin( length, r_in, g_in, vrrx, vsrx, vssx, vrrc, vsrc, vssc, vrzc )
!
!$acc parallel loop
DO k = 1, length
!
rht = r_in(k,1) + r_in(k,2)
IF (rht > epsr) THEN
zeta = (r_in(k,1) - r_in(k,2))/rht
!
dvxc_rr(k,1,1) = e2*(vrrx(k,1) + vrrc(k,1) + vrzc(k,1)*(1.d0 - zeta)/rht)
dvxc_rr(k,1,2) = e2*(vrrc(k,1) - vrzc(k,1)*(1.d0 + zeta)/rht)
dvxc_rr(k,2,1) = e2*(vrrc(k,2) + vrzc(k,2)*(1.d0 - zeta)/rht)
dvxc_rr(k,2,2) = e2*(vrrx(k,2) + vrrc(k,2) - vrzc(k,2)*(1.d0 + zeta)/rht)
ENDIF
!
dvxc_sr(k,1,1) = e2 * (vsrx(k,1) + vsrc(k,1))
dvxc_sr(k,1,2) = e2 * vsrc(k,1)
dvxc_sr(k,2,1) = e2 * vsrc(k,2)
dvxc_sr(k,2,2) = e2 * (vsrx(k,2) + vsrc(k,2))
!
dvxc_ss(k,1,1) = e2 * (vssx(k,1) + vssc(k))
dvxc_ss(k,1,2) = e2 * vssc(k)
dvxc_ss(k,2,1) = e2 * vssc(k)
dvxc_ss(k,2,2) = e2 * (vssx(k,2) + vssc(k))
ENDDO
!
!$acc end data
DEALLOCATE( vrzc )
!
CASE DEFAULT
!
CALL xclib_error( 'dgcxc', 'Wrong ns input', 4 )
!
END SELECT
!
!$acc end data
DEALLOCATE( vrrx, vsrx, vssx )
DEALLOCATE( vrrc, vsrc, vssc )
!
#endif
!
!$acc end data
!
RETURN
!
END SUBROUTINE dgcxc_
| gpl-2.0 |
e-q/scipy | scipy/sparse/linalg/eigen/arpack/ARPACK/SRC/cnapps.f | 38 | 17542 | c\BeginDoc
c
c\Name: cnapps
c
c\Description:
c Given the Arnoldi factorization
c
c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
c
c apply NP implicit shifts resulting in
c
c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
c
c where Q is an orthogonal matrix which is the product of rotations
c and reflections resulting from the NP bulge change sweeps.
c The updated Arnoldi factorization becomes:
c
c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
c
c\Usage:
c call cnapps
c ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ,
c WORKL, WORKD )
c
c\Arguments
c N Integer. (INPUT)
c Problem size, i.e. size of matrix A.
c
c KEV Integer. (INPUT/OUTPUT)
c KEV+NP is the size of the input matrix H.
c KEV is the size of the updated matrix HNEW.
c
c NP Integer. (INPUT)
c Number of implicit shifts to be applied.
c
c SHIFT Complex array of length NP. (INPUT)
c The shifts to be applied.
c
c V Complex N by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, V contains the current KEV+NP Arnoldi vectors.
c On OUTPUT, V contains the updated KEV Arnoldi vectors
c in the first KEV columns of V.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program.
c
c H Complex (KEV+NP) by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, H contains the current KEV+NP by KEV+NP upper
c Hessenberg matrix of the Arnoldi factorization.
c On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
c matrix in the KEV leading submatrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RESID Complex array of length N. (INPUT/OUTPUT)
c On INPUT, RESID contains the the residual vector r_{k+p}.
c On OUTPUT, RESID is the update residual vector rnew_{k}
c in the first KEV locations.
c
c Q Complex KEV+NP by KEV+NP work array. (WORKSPACE)
c Work array used to accumulate the rotations and reflections
c during the bulge chase sweep.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Complex work array of length (KEV+NP). (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end.
c
c WORKD Complex work array of length 2*N. (WORKSPACE)
c Distributed array used in the application of the accumulated
c orthogonal matrix Q.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx Complex
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c
c\Routines called:
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c cmout ARPACK utility routine that prints matrices
c cvout ARPACK utility routine that prints vectors.
c clacpy LAPACK matrix copy routine.
c clanhs LAPACK routine that computes various norms of a matrix.
c clartg LAPACK Givens rotation construction routine.
c claset LAPACK matrix initialization routine.
c slabad LAPACK routine for defining the underflow and overflow
c limits.
c slamch LAPACK routine that determines machine constants.
c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c cgemv Level 2 BLAS routine for matrix vector multiplication.
c caxpy Level 1 BLAS that computes a vector triad.
c ccopy Level 1 BLAS that copies one vector to another.
c cscal Level 1 BLAS that scales a vector.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: napps.F SID: 2.3 DATE OF SID: 3/28/97 RELEASE: 2
c
c\Remarks
c 1. In this version, each shift is applied to all the sublocks of
c the Hessenberg matrix H and not just to the submatrix that it
c comes from. Deflation as in LAPACK routine clahqr (QR algorithm
c for upper Hessenberg matrices ) is used.
c Upon output, the subdiagonals of H are enforced to be non-negative
c real numbers.
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine cnapps
& ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq,
& workl, workd )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer kev, ldh, ldq, ldv, n, np
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Complex
& h(ldh,kev+np), resid(n), shift(np),
& v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
c
c %------------%
c | Parameters |
c %------------%
c
Complex
& one, zero
Real
& rzero
parameter (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0),
& rzero = 0.0E+0)
c
c %------------------------%
c | Local Scalars & Arrays |
c %------------------------%
c
integer i, iend, istart, j, jj, kplusp, msglvl
logical first
Complex
& cdum, f, g, h11, h21, r, s, sigma, t
Real
& c, ovfl, smlnum, ulp, unfl, tst1
save first, ovfl, smlnum, ulp, unfl
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external caxpy, ccopy, cgemv, cscal, clacpy, clartg,
& cvout, claset, slabad, cmout, arscnd, ivout
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Real
& clanhs, slamch, slapy2
external clanhs, slamch, slapy2
c
c %----------------------%
c | Intrinsics Functions |
c %----------------------%
c
intrinsic abs, aimag, conjg, cmplx, max, min, real
c
c %---------------------%
c | Statement Functions |
c %---------------------%
c
Real
& cabs1
cabs1( cdum ) = abs( real( cdum ) ) + abs( aimag( cdum ) )
c
c %----------------%
c | Data statments |
c %----------------%
c
data first / .true. /
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
if (first) then
c
c %-----------------------------------------------%
c | Set machine-dependent constants for the |
c | stopping criterion. If norm(H) <= sqrt(OVFL), |
c | overflow should not occur. |
c | REFERENCE: LAPACK subroutine clahqr |
c %-----------------------------------------------%
c
unfl = slamch( 'safe minimum' )
ovfl = real(one / unfl)
call slabad( unfl, ovfl )
ulp = slamch( 'precision' )
smlnum = unfl*( n / ulp )
first = .false.
end if
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mcapps
c
kplusp = kev + np
c
c %--------------------------------------------%
c | Initialize Q to the identity to accumulate |
c | the rotations and reflections |
c %--------------------------------------------%
c
call claset ('All', kplusp, kplusp, zero, one, q, ldq)
c
c %----------------------------------------------%
c | Quick return if there are no shifts to apply |
c %----------------------------------------------%
c
if (np .eq. 0) go to 9000
c
c %----------------------------------------------%
c | Chase the bulge with the application of each |
c | implicit shift. Each shift is applied to the |
c | whole matrix including each block. |
c %----------------------------------------------%
c
do 110 jj = 1, np
sigma = shift(jj)
c
if (msglvl .gt. 2 ) then
call ivout (logfil, 1, jj, ndigit,
& '_napps: shift number.')
call cvout (logfil, 1, sigma, ndigit,
& '_napps: Value of the shift ')
end if
c
istart = 1
20 continue
c
do 30 i = istart, kplusp-1
c
c %----------------------------------------%
c | Check for splitting and deflation. Use |
c | a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine clahqr |
c %----------------------------------------%
c
tst1 = cabs1( h( i, i ) ) + cabs1( h( i+1, i+1 ) )
if( tst1.eq.rzero )
& tst1 = clanhs( '1', kplusp-jj+1, h, ldh, workl )
if ( abs(real(h(i+1,i)))
& .le. max(ulp*tst1, smlnum) ) then
if (msglvl .gt. 0) then
call ivout (logfil, 1, i, ndigit,
& '_napps: matrix splitting at row/column no.')
call ivout (logfil, 1, jj, ndigit,
& '_napps: matrix splitting with shift number.')
call cvout (logfil, 1, h(i+1,i), ndigit,
& '_napps: off diagonal element.')
end if
iend = i
h(i+1,i) = zero
go to 40
end if
30 continue
iend = kplusp
40 continue
c
if (msglvl .gt. 2) then
call ivout (logfil, 1, istart, ndigit,
& '_napps: Start of current block ')
call ivout (logfil, 1, iend, ndigit,
& '_napps: End of current block ')
end if
c
c %------------------------------------------------%
c | No reason to apply a shift to block of order 1 |
c | or if the current block starts after the point |
c | of compression since we'll discard this stuff |
c %------------------------------------------------%
c
if ( istart .eq. iend .or. istart .gt. kev) go to 100
c
h11 = h(istart,istart)
h21 = h(istart+1,istart)
f = h11 - sigma
g = h21
c
do 80 i = istart, iend-1
c
c %------------------------------------------------------%
c | Construct the plane rotation G to zero out the bulge |
c %------------------------------------------------------%
c
call clartg (f, g, c, s, r)
if (i .gt. istart) then
h(i,i-1) = r
h(i+1,i-1) = zero
end if
c
c %---------------------------------------------%
c | Apply rotation to the left of H; H <- G'*H |
c %---------------------------------------------%
c
do 50 j = i, kplusp
t = c*h(i,j) + s*h(i+1,j)
h(i+1,j) = -conjg(s)*h(i,j) + c*h(i+1,j)
h(i,j) = t
50 continue
c
c %---------------------------------------------%
c | Apply rotation to the right of H; H <- H*G |
c %---------------------------------------------%
c
do 60 j = 1, min(i+2,iend)
t = c*h(j,i) + conjg(s)*h(j,i+1)
h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
h(j,i) = t
60 continue
c
c %-----------------------------------------------------%
c | Accumulate the rotation in the matrix Q; Q <- Q*G' |
c %-----------------------------------------------------%
c
do 70 j = 1, min(i+jj, kplusp)
t = c*q(j,i) + conjg(s)*q(j,i+1)
q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
q(j,i) = t
70 continue
c
c %---------------------------%
c | Prepare for next rotation |
c %---------------------------%
c
if (i .lt. iend-1) then
f = h(i+1,i)
g = h(i+2,i)
end if
80 continue
c
c %-------------------------------%
c | Finished applying the shift. |
c %-------------------------------%
c
100 continue
c
c %---------------------------------------------------------%
c | Apply the same shift to the next block if there is any. |
c %---------------------------------------------------------%
c
istart = iend + 1
if (iend .lt. kplusp) go to 20
c
c %---------------------------------------------%
c | Loop back to the top to get the next shift. |
c %---------------------------------------------%
c
110 continue
c
c %---------------------------------------------------%
c | Perform a similarity transformation that makes |
c | sure that the compressed H will have non-negative |
c | real subdiagonal elements. |
c %---------------------------------------------------%
c
do 120 j=1,kev
if ( real( h(j+1,j) ) .lt. rzero .or.
& aimag( h(j+1,j) ) .ne. rzero ) then
t = h(j+1,j) / slapy2(real(h(j+1,j)),aimag(h(j+1,j)))
call cscal( kplusp-j+1, conjg(t), h(j+1,j), ldh )
call cscal( min(j+2, kplusp), t, h(1,j+1), 1 )
call cscal( min(j+np+1,kplusp), t, q(1,j+1), 1 )
h(j+1,j) = cmplx( real( h(j+1,j) ), rzero )
end if
120 continue
c
do 130 i = 1, kev
c
c %--------------------------------------------%
c | Final check for splitting and deflation. |
c | Use a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine clahqr. |
c | Note: Since the subdiagonals of the |
c | compressed H are nonnegative real numbers, |
c | we take advantage of this. |
c %--------------------------------------------%
c
tst1 = cabs1( h( i, i ) ) + cabs1( h( i+1, i+1 ) )
if( tst1 .eq. rzero )
& tst1 = clanhs( '1', kev, h, ldh, workl )
if( real( h( i+1,i ) ) .le. max( ulp*tst1, smlnum ) )
& h(i+1,i) = zero
130 continue
c
c %-------------------------------------------------%
c | Compute the (kev+1)-st column of (V*Q) and |
c | temporarily store the result in WORKD(N+1:2*N). |
c | This is needed in the residual update since we |
c | cannot GUARANTEE that the corresponding entry |
c | of H would be zero as in exact arithmetic. |
c %-------------------------------------------------%
c
if ( real( h(kev+1,kev) ) .gt. rzero )
& call cgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero,
& workd(n+1), 1)
c
c %----------------------------------------------------------%
c | Compute column 1 to kev of (V*Q) in backward order |
c | taking advantage of the upper Hessenberg structure of Q. |
c %----------------------------------------------------------%
c
do 140 i = 1, kev
call cgemv ('N', n, kplusp-i+1, one, v, ldv,
& q(1,kev-i+1), 1, zero, workd, 1)
call ccopy (n, workd, 1, v(1,kplusp-i+1), 1)
140 continue
c
c %-------------------------------------------------%
c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
c %-------------------------------------------------%
c
call clacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
c
c %--------------------------------------------------------------%
c | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
c %--------------------------------------------------------------%
c
if ( real( h(kev+1,kev) ) .gt. rzero )
& call ccopy (n, workd(n+1), 1, v(1,kev+1), 1)
c
c %-------------------------------------%
c | Update the residual vector: |
c | r <- sigmak*r + betak*v(:,kev+1) |
c | where |
c | sigmak = (e_{kev+p}'*Q)*e_{kev} |
c | betak = e_{kev+1}'*H*e_{kev} |
c %-------------------------------------%
c
call cscal (n, q(kplusp,kev), resid, 1)
if ( real( h(kev+1,kev) ) .gt. rzero )
& call caxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
c
if (msglvl .gt. 1) then
call cvout (logfil, 1, q(kplusp,kev), ndigit,
& '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
call cvout (logfil, 1, h(kev+1,kev), ndigit,
& '_napps: betak = e_{kev+1}^T*H*e_{kev}')
call ivout (logfil, 1, kev, ndigit,
& '_napps: Order of the final Hessenberg matrix ')
if (msglvl .gt. 2) then
call cmout (logfil, kev, kev, h, ldh, ndigit,
& '_napps: updated Hessenberg matrix H for next iteration')
end if
c
end if
c
9000 continue
call arscnd (t1)
tcapps = tcapps + (t1 - t0)
c
return
c
c %---------------%
c | End of cnapps |
c %---------------%
c
end
| bsd-3-clause |
wilmarcardonac/hypermcmc | lapack-3.5.0/INSTALL/dlamch.f | 139 | 5329 | *> \brief \b DLAMCH
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAMCH determines double precision machine parameters.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] CMACH
*> \verbatim
*> Specifies the value to be returned by DLAMCH:
*> = 'E' or 'e', DLAMCH := eps
*> = 'S' or 's , DLAMCH := sfmin
*> = 'B' or 'b', DLAMCH := base
*> = 'P' or 'p', DLAMCH := eps*base
*> = 'N' or 'n', DLAMCH := t
*> = 'R' or 'r', DLAMCH := rnd
*> = 'M' or 'm', DLAMCH := emin
*> = 'U' or 'u', DLAMCH := rmin
*> = 'L' or 'l', DLAMCH := emax
*> = 'O' or 'o', DLAMCH := rmax
*> where
*> eps = relative machine precision
*> sfmin = safe minimum, such that 1/sfmin does not overflow
*> base = base of the machine
*> prec = eps*base
*> t = number of (base) digits in the mantissa
*> rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
*> emin = minimum exponent before (gradual) underflow
*> rmin = underflow threshold - base**(emin-1)
*> emax = largest exponent before overflow
*> rmax = overflow threshold - (base**emax)*(1-eps)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
* =====================================================================
DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER CMACH
* ..
*
* .. Scalar Arguments ..
DOUBLE PRECISION A, B
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION RND, EPS, SFMIN, SMALL, RMACH
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC DIGITS, EPSILON, HUGE, MAXEXPONENT,
$ MINEXPONENT, RADIX, TINY
* ..
* .. Executable Statements ..
*
*
* Assume rounding, not chopping. Always.
*
RND = ONE
*
IF( ONE.EQ.RND ) THEN
EPS = EPSILON(ZERO) * 0.5
ELSE
EPS = EPSILON(ZERO)
END IF
*
IF( LSAME( CMACH, 'E' ) ) THEN
RMACH = EPS
ELSE IF( LSAME( CMACH, 'S' ) ) THEN
SFMIN = TINY(ZERO)
SMALL = ONE / HUGE(ZERO)
IF( SMALL.GE.SFMIN ) THEN
*
* Use SMALL plus a bit, to avoid the possibility of rounding
* causing overflow when computing 1/sfmin.
*
SFMIN = SMALL*( ONE+EPS )
END IF
RMACH = SFMIN
ELSE IF( LSAME( CMACH, 'B' ) ) THEN
RMACH = RADIX(ZERO)
ELSE IF( LSAME( CMACH, 'P' ) ) THEN
RMACH = EPS * RADIX(ZERO)
ELSE IF( LSAME( CMACH, 'N' ) ) THEN
RMACH = DIGITS(ZERO)
ELSE IF( LSAME( CMACH, 'R' ) ) THEN
RMACH = RND
ELSE IF( LSAME( CMACH, 'M' ) ) THEN
RMACH = MINEXPONENT(ZERO)
ELSE IF( LSAME( CMACH, 'U' ) ) THEN
RMACH = tiny(zero)
ELSE IF( LSAME( CMACH, 'L' ) ) THEN
RMACH = MAXEXPONENT(ZERO)
ELSE IF( LSAME( CMACH, 'O' ) ) THEN
RMACH = HUGE(ZERO)
ELSE
RMACH = ZERO
END IF
*
DLAMCH = RMACH
RETURN
*
* End of DLAMCH
*
END
************************************************************************
*> \brief \b DLAMC3
*> \details
*> \b Purpose:
*> \verbatim
*> DLAMC3 is intended to force A and B to be stored prior to doing
*> the addition of A and B , for use in situations where optimizers
*> might hold one of these in a register.
*> \endverbatim
*> \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
*> \date November 2011
*> \ingroup auxOTHERauxiliary
*>
*> \param[in] A
*> \verbatim
*> A is a DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is a DOUBLE PRECISION
*> The values A and B.
*> \endverbatim
*>
DOUBLE PRECISION FUNCTION DLAMC3( A, B )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2010
*
* .. Scalar Arguments ..
DOUBLE PRECISION A, B
* ..
* =====================================================================
*
* .. Executable Statements ..
*
DLAMC3 = A + B
*
RETURN
*
* End of DLAMC3
*
END
*
************************************************************************
| gpl-2.0 |
wilmarcardonac/hypermcmc | lapack-3.5.0/SRC/cla_syamv.f | 24 | 13178 | *> \brief \b CLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLA_SYAMV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_syamv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_syamv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_syamv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
* INCY )
*
* .. Scalar Arguments ..
* REAL ALPHA, BETA
* INTEGER INCX, INCY, LDA, N
* INTEGER UPLO
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), X( * )
* REAL Y( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLA_SYAMV performs the matrix-vector operation
*>
*> y := alpha*abs(A)*abs(x) + beta*abs(y),
*>
*> where alpha and beta are scalars, x and y are vectors and A is an
*> n by n symmetric matrix.
*>
*> This function is primarily used in calculating error bounds.
*> To protect against underflow during evaluation, components in
*> the resulting vector are perturbed away from zero by (N+1)
*> times the underflow threshold. To prevent unnecessarily large
*> errors for block-structure embedded in general matrices,
*> "symbolically" zero components are not perturbed. A zero
*> entry is considered "symbolic" if all multiplications involved
*> in computing that entry have at least one zero multiplicand.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is INTEGER
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
*>
*> UPLO = BLAS_UPPER Only the upper triangular part of A
*> is to be referenced.
*>
*> UPLO = BLAS_LOWER Only the lower triangular part of A
*> is to be referenced.
*>
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of columns of the matrix A.
*> N must be at least zero.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is REAL .
*> On entry, ALPHA specifies the scalar alpha.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array of DIMENSION ( LDA, n ).
*> Before entry, the leading m by n part of the array A must
*> contain the matrix of coefficients.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> max( 1, n ).
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension
*> ( 1 + ( n - 1 )*abs( INCX ) )
*> Before entry, the incremented array X must contain the
*> vector x.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is REAL .
*> On entry, BETA specifies the scalar beta. When BETA is
*> supplied as zero then Y need not be set on input.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is REAL array, dimension
*> ( 1 + ( n - 1 )*abs( INCY ) )
*> Before entry with BETA non-zero, the incremented array Y
*> must contain the vector y. On exit, Y is overwritten by the
*> updated vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complexSYcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> -- Modified for the absolute-value product, April 2006
*> Jason Riedy, UC Berkeley
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
REAL ALPHA, BETA
INTEGER INCX, INCY, LDA, N
INTEGER UPLO
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), X( * )
REAL Y( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL SYMB_ZERO
REAL TEMP, SAFE1
INTEGER I, INFO, IY, J, JX, KX, KY
COMPLEX ZDUM
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, SLAMCH
REAL SLAMCH
* ..
* .. External Functions ..
EXTERNAL ILAUPLO
INTEGER ILAUPLO
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, ABS, SIGN, REAL, AIMAG
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function Definitions ..
CABS1( ZDUM ) = ABS( REAL ( ZDUM ) ) + ABS( AIMAG ( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF ( UPLO.NE.ILAUPLO( 'U' ) .AND.
$ UPLO.NE.ILAUPLO( 'L' ) )THEN
INFO = 1
ELSE IF( N.LT.0 )THEN
INFO = 2
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
INFO = 5
ELSE IF( INCX.EQ.0 )THEN
INFO = 7
ELSE IF( INCY.EQ.0 )THEN
INFO = 10
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'SSYMV ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
*
* Set up the start points in X and Y.
*
IF( INCX.GT.0 )THEN
KX = 1
ELSE
KX = 1 - ( N - 1 )*INCX
END IF
IF( INCY.GT.0 )THEN
KY = 1
ELSE
KY = 1 - ( N - 1 )*INCY
END IF
*
* Set SAFE1 essentially to be the underflow threshold times the
* number of additions in each row.
*
SAFE1 = SLAMCH( 'Safe minimum' )
SAFE1 = (N+1)*SAFE1
*
* Form y := alpha*abs(A)*abs(x) + beta*abs(y).
*
* The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to
* the inexact flag. Still doesn't help change the iteration order
* to per-column.
*
IY = KY
IF ( INCX.EQ.1 ) THEN
IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
DO I = 1, N
IF ( BETA .EQ. ZERO ) THEN
SYMB_ZERO = .TRUE.
Y( IY ) = 0.0
ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
SYMB_ZERO = .TRUE.
ELSE
SYMB_ZERO = .FALSE.
Y( IY ) = BETA * ABS( Y( IY ) )
END IF
IF ( ALPHA .NE. ZERO ) THEN
DO J = 1, I
TEMP = CABS1( A( J, I ) )
SYMB_ZERO = SYMB_ZERO .AND.
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
END DO
DO J = I+1, N
TEMP = CABS1( A( I, J ) )
SYMB_ZERO = SYMB_ZERO .AND.
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
END DO
END IF
IF ( .NOT.SYMB_ZERO )
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
IY = IY + INCY
END DO
ELSE
DO I = 1, N
IF ( BETA .EQ. ZERO ) THEN
SYMB_ZERO = .TRUE.
Y( IY ) = 0.0
ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
SYMB_ZERO = .TRUE.
ELSE
SYMB_ZERO = .FALSE.
Y( IY ) = BETA * ABS( Y( IY ) )
END IF
IF ( ALPHA .NE. ZERO ) THEN
DO J = 1, I
TEMP = CABS1( A( I, J ) )
SYMB_ZERO = SYMB_ZERO .AND.
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
END DO
DO J = I+1, N
TEMP = CABS1( A( J, I ) )
SYMB_ZERO = SYMB_ZERO .AND.
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
END DO
END IF
IF ( .NOT.SYMB_ZERO )
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
IY = IY + INCY
END DO
END IF
ELSE
IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
DO I = 1, N
IF ( BETA .EQ. ZERO ) THEN
SYMB_ZERO = .TRUE.
Y( IY ) = 0.0
ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
SYMB_ZERO = .TRUE.
ELSE
SYMB_ZERO = .FALSE.
Y( IY ) = BETA * ABS( Y( IY ) )
END IF
JX = KX
IF ( ALPHA .NE. ZERO ) THEN
DO J = 1, I
TEMP = CABS1( A( J, I ) )
SYMB_ZERO = SYMB_ZERO .AND.
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
JX = JX + INCX
END DO
DO J = I+1, N
TEMP = CABS1( A( I, J ) )
SYMB_ZERO = SYMB_ZERO .AND.
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
JX = JX + INCX
END DO
END IF
IF ( .NOT.SYMB_ZERO )
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
IY = IY + INCY
END DO
ELSE
DO I = 1, N
IF ( BETA .EQ. ZERO ) THEN
SYMB_ZERO = .TRUE.
Y( IY ) = 0.0
ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
SYMB_ZERO = .TRUE.
ELSE
SYMB_ZERO = .FALSE.
Y( IY ) = BETA * ABS( Y( IY ) )
END IF
JX = KX
IF ( ALPHA .NE. ZERO ) THEN
DO J = 1, I
TEMP = CABS1( A( I, J ) )
SYMB_ZERO = SYMB_ZERO .AND.
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
JX = JX + INCX
END DO
DO J = I+1, N
TEMP = CABS1( A( J, I ) )
SYMB_ZERO = SYMB_ZERO .AND.
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
JX = JX + INCX
END DO
END IF
IF ( .NOT.SYMB_ZERO )
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
IY = IY + INCY
END DO
END IF
END IF
*
RETURN
*
* End of CLA_SYAMV
*
END
| gpl-2.0 |
linzhaoming/origin | vendor/gonum.org/v1/gonum/lapack/internal/testdata/dsterftest/dlamch.f | 139 | 5329 | *> \brief \b DLAMCH
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAMCH determines double precision machine parameters.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] CMACH
*> \verbatim
*> Specifies the value to be returned by DLAMCH:
*> = 'E' or 'e', DLAMCH := eps
*> = 'S' or 's , DLAMCH := sfmin
*> = 'B' or 'b', DLAMCH := base
*> = 'P' or 'p', DLAMCH := eps*base
*> = 'N' or 'n', DLAMCH := t
*> = 'R' or 'r', DLAMCH := rnd
*> = 'M' or 'm', DLAMCH := emin
*> = 'U' or 'u', DLAMCH := rmin
*> = 'L' or 'l', DLAMCH := emax
*> = 'O' or 'o', DLAMCH := rmax
*> where
*> eps = relative machine precision
*> sfmin = safe minimum, such that 1/sfmin does not overflow
*> base = base of the machine
*> prec = eps*base
*> t = number of (base) digits in the mantissa
*> rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
*> emin = minimum exponent before (gradual) underflow
*> rmin = underflow threshold - base**(emin-1)
*> emax = largest exponent before overflow
*> rmax = overflow threshold - (base**emax)*(1-eps)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
* =====================================================================
DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER CMACH
* ..
*
* .. Scalar Arguments ..
DOUBLE PRECISION A, B
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION RND, EPS, SFMIN, SMALL, RMACH
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC DIGITS, EPSILON, HUGE, MAXEXPONENT,
$ MINEXPONENT, RADIX, TINY
* ..
* .. Executable Statements ..
*
*
* Assume rounding, not chopping. Always.
*
RND = ONE
*
IF( ONE.EQ.RND ) THEN
EPS = EPSILON(ZERO) * 0.5
ELSE
EPS = EPSILON(ZERO)
END IF
*
IF( LSAME( CMACH, 'E' ) ) THEN
RMACH = EPS
ELSE IF( LSAME( CMACH, 'S' ) ) THEN
SFMIN = TINY(ZERO)
SMALL = ONE / HUGE(ZERO)
IF( SMALL.GE.SFMIN ) THEN
*
* Use SMALL plus a bit, to avoid the possibility of rounding
* causing overflow when computing 1/sfmin.
*
SFMIN = SMALL*( ONE+EPS )
END IF
RMACH = SFMIN
ELSE IF( LSAME( CMACH, 'B' ) ) THEN
RMACH = RADIX(ZERO)
ELSE IF( LSAME( CMACH, 'P' ) ) THEN
RMACH = EPS * RADIX(ZERO)
ELSE IF( LSAME( CMACH, 'N' ) ) THEN
RMACH = DIGITS(ZERO)
ELSE IF( LSAME( CMACH, 'R' ) ) THEN
RMACH = RND
ELSE IF( LSAME( CMACH, 'M' ) ) THEN
RMACH = MINEXPONENT(ZERO)
ELSE IF( LSAME( CMACH, 'U' ) ) THEN
RMACH = tiny(zero)
ELSE IF( LSAME( CMACH, 'L' ) ) THEN
RMACH = MAXEXPONENT(ZERO)
ELSE IF( LSAME( CMACH, 'O' ) ) THEN
RMACH = HUGE(ZERO)
ELSE
RMACH = ZERO
END IF
*
DLAMCH = RMACH
RETURN
*
* End of DLAMCH
*
END
************************************************************************
*> \brief \b DLAMC3
*> \details
*> \b Purpose:
*> \verbatim
*> DLAMC3 is intended to force A and B to be stored prior to doing
*> the addition of A and B , for use in situations where optimizers
*> might hold one of these in a register.
*> \endverbatim
*> \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
*> \date November 2011
*> \ingroup auxOTHERauxiliary
*>
*> \param[in] A
*> \verbatim
*> A is a DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is a DOUBLE PRECISION
*> The values A and B.
*> \endverbatim
*>
DOUBLE PRECISION FUNCTION DLAMC3( A, B )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2010
*
* .. Scalar Arguments ..
DOUBLE PRECISION A, B
* ..
* =====================================================================
*
* .. Executable Statements ..
*
DLAMC3 = A + B
*
RETURN
*
* End of DLAMC3
*
END
*
************************************************************************
| apache-2.0 |
QEF/q-e | CPV/src/eigs0.f90 | 1 | 10446 | !
! Copyright (C) 2002-2005 FPMD-CPV groups
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
subroutine eigs0( ei, nudx, tprint, nspin, nupdwn, iupdwn, lf, f, nx, lambda, nlam, idesc )
!-----------------------------------------------------------------------
!! Computes eigenvalues (wr) of the real symmetric matrix \(\text{lambda}\).
!! Note that \(\text{lambda}\) as calculated is multiplied by occupation numbers,
!! so empty states yield zero. Eigenvalues are printed out in eV.
!
use kinds, only : DP
use io_global, only : stdout
use constants, only : autoev
USE sic_module, only : self_interaction
USE mp, only : mp_sum, mp_bcast
USE mp_global, only : intra_bgrp_comm, root_bgrp, me_bgrp
implicit none
include 'laxlib.fh'
! input
logical, intent(in) :: tprint, lf
integer, intent(in) :: nspin, nx, nudx, nupdwn(nspin), iupdwn(nspin), nlam
integer, intent(in) :: idesc( LAX_DESC_SIZE, nspin )
real(DP), intent(in) :: lambda( nlam, nlam, nspin ), f( nx )
real(DP), intent(out) :: ei( nudx, nspin )
! local variables
real(DP), allocatable :: ap(:), wr(:)
real(DP) zr(1,1)
integer :: iss, j, i, ierr, k, n, ndim, nspin_eig, npaired
INTEGER :: ir, ic, nr, nc, nrl, nrlx, comm, np, me
logical :: tsic
CHARACTER(LEN=80) :: msg
!
tsic = ( ABS( self_interaction) /= 0 )
IF( tsic ) THEN
nspin_eig = 1
npaired = nupdwn(2)
ELSE
nspin_eig = nspin
npaired = 0
END IF
do iss = 1, nspin_eig
IF( nudx < nupdwn(iss) ) THEN
WRITE( msg, 100 ) nudx, SIZE( ei, 1 ), nupdwn(iss)
100 FORMAT( ' wrong dimension array ei = ', 3I10 )
CALL errore( ' eigs0 ', msg, 1 )
END IF
IF( tsic ) THEN
n = npaired
ELSE
n = nupdwn(iss)
END IF
allocate( wr( n ) )
IF( idesc( LAX_DESC_ACTIVE_NODE, iss ) > 0 ) THEN
np = idesc( LAX_DESC_NPC, iss ) * idesc( LAX_DESC_NPR, iss )
IF( np > 1 ) THEN
! matrix is distributed
CALL laxlib_pdsyevd( .false., n, idesc(:,iss), lambda(:,:,iss), nlam, wr )
ELSE
! matrix is not distributed
allocate( ap( n * ( n + 1 ) / 2 ) )
k = 0
do i = 1, n
do j = i, n
k = k + 1
ap( k ) = lambda( j, i, iss )
end do
end do
CALL dspev_drv( 'N', 'L', n, ap, wr, zr, 1 )
deallocate( ap )
END IF
END IF
call mp_bcast( wr, root_bgrp, intra_bgrp_comm )
if( lf ) then
do i = 1, n
if ( f(iupdwn(iss)-1+i).gt.1.e-6) then
wr(i)=wr(i)/f(iupdwn(iss)-1+i)
else
wr(i)=wr(i)/2.0d0 * nspin ! fake occupation factor to print empty states
end if
end do
end if
!
! store eigenvalues
!
ei( 1:n, iss ) = wr( 1:n )
IF( tsic ) THEN
!
! store unpaired state
!
ei( 1:n, 1 ) = ei( 1:n, 1 ) / 2.0d0
ei( nupdwn(1), 1 ) = 0.0d0
if( idesc( LAX_DESC_ACTIVE_NODE, iss ) > 0 ) then
IF( idesc( LAX_DESC_MYC, iss ) == idesc( LAX_DESC_MYR, iss ) ) THEN
ir = idesc( LAX_DESC_IR, iss )
nr = idesc( LAX_DESC_NR, iss )
IF( nupdwn(1) >= ir .AND. nupdwn(1) < ir + nr ) then
ei( nupdwn(1), 1 ) = lambda( nupdwn(1)-ir+1, nupdwn(1)-ir+1, 1 )
end if
END IF
endif
call mp_sum( ei( nupdwn(1), 1 ), intra_bgrp_comm )
!
END IF
! WRITE( stdout,*) '---- DEBUG ----' ! debug
! WRITE( stdout,14) ( wr( i ) * autoev / 2.0d0, i = 1, nupdwn(iss) ) ! debug
deallocate( wr )
end do
!
!
do iss = 1, nspin
IF( tsic .AND. iss == 2 ) THEN
ei( 1:npaired, 2 ) = ei( 1:npaired, 1 )
END IF
IF( tprint ) THEN
!
! print out eigenvalues
!
WRITE( stdout,12) 0.d0, 0.d0, 0.d0
WRITE( stdout,14) ( ei( i, iss ) * autoev, i = 1, nupdwn(iss) )
ENDIF
end do
IF( tprint ) WRITE( stdout,*)
12 format(//' eigenvalues at k-point: ',3f6.3)
14 format(10f8.2)
!
return
end subroutine eigs0
!-----------------------------------------------------------------------
SUBROUTINE rpackgam_x( gam, f, aux )
!-----------------------------------------------------------------------
USE kinds, ONLY: DP
USE mp_global, ONLY: me_bgrp, nproc_bgrp, intra_bgrp_comm
USE mp, ONLY: mp_sum
IMPLICIT NONE
REAL(DP), INTENT(INOUT) :: gam(:,:)
REAL(DP), INTENT(OUT), OPTIONAL :: aux(:)
REAL(DP), INTENT(IN) :: f(:)
INTEGER n, nrl, i, j, k, jl
nrl = SIZE(gam, 1)
n = SIZE(gam, 2)
IF( PRESENT( aux ) ) THEN
aux = 0.0d0
IF( me_bgrp < n ) THEN
DO i = 1, n
j = me_bgrp + 1
DO jl = 1, nrl
IF( j >= i ) THEN
! maps (j,i) index to low-tri packed (k) index
k = (i-1)*n + j - i*(i-1)/2
aux(k) = gam(jl,i) / f(j)
END IF
j = j + nproc_bgrp
END DO
END DO
END IF
CALL mp_sum(aux, intra_bgrp_comm)
ELSE
IF( me_bgrp < n ) THEN
DO i = 1, n
j = me_bgrp + 1
DO jl = 1, nrl
gam(jl,i) = gam(jl,i) / f(j)
j = j + nproc_bgrp
END DO
END DO
END IF
END IF
RETURN
END SUBROUTINE rpackgam_x
!-----------------------------------------------------------------------
SUBROUTINE fermi_energy_x(eig, occ, wke, ef, qtot, temp, sume)
!-----------------------------------------------------------------------
!! This routine computes Fermi energy and weights of occupied states
!! using an improved Gaussian-smearing method.
!! Refs: C.L.Fu and K.M.Ho, Phys.Rev. B28, 5480 (1983)
!! M.Methfessel and A.T.Paxton Phys.Rev. B40 (15 aug. 89).
!
!! Taken from APW code by J. Soler and A. Williams (jk+ss).
!! Added computation of occupation numbers without k-point weight
USE kinds, ONLY: DP
USE io_global, ONLY: stdout
USE electrons_base, ONLY: nspin, iupdwn
IMPLICIT NONE
! ... declare subroutine arguments
REAL(DP) :: occ(:)
REAL(DP) ef, qtot, temp, sume
REAL(DP) eig(:,:), wke(:,:)
REAL(DP), PARAMETER :: tol = 1.d-10
INTEGER, PARAMETER :: nitmax = 100
INTEGER ne, nk
! ... declare other variables
REAL(DP) sumq,emin,emax,fac,t,drange
INTEGER ik,ispin,ie,iter
! end of declarations
! ----------------------------------------------
nk = 1
ne = SIZE( occ, 1)
sumq=0.d0
sume=0.d0
emin=eig(1,1)
emax=eig(1,1)
fac=2.d0
IF (nspin.EQ.2) fac=1.d0
DO ik=1,nk
DO ispin=1,nspin
DO ie=1,ne
wke(ie,ispin) = fac
occ(ie+iupdwn(ispin)-1) = fac
sumq=sumq+wke(ie,ispin)
sume=sume+wke(ie,ispin)*eig(ie,ispin)
emin=MIN(emin,eig(ie,ispin))
emax=MAX(emax,eig(ie,ispin))
END DO
END DO
END DO
ef=emax
IF (abs(sumq-qtot).LT.tol) RETURN
IF (sumq.LT.qtot) THEN
WRITE( stdout,*) 'FERMIE: NOT ENOUGH STATES'
WRITE( stdout,*) 'FERMIE: QTOT,SUMQ=',qtot,sumq
STOP
END IF
t = MAX(temp,1.d-6)
drange = t * SQRT( - LOG( tol*.01d0) )
emin = emin - drange
emax = emax + drange
DO iter = 1, nitmax
ef = 0.5d0 * (emin+emax)
sumq = 0.d0
sume = 0.d0
DO ik = 1, nk
DO ispin = 1, nspin
DO ie = 1, ne
wke(ie,ispin) = fac / 2.d0 * stepf((eig(ie,ispin)-ef)/t)
occ(ie+iupdwn(ispin)-1) = fac / 2.d0 * stepf((eig(ie,ispin)-ef)/t)
sumq = sumq + wke(ie,ispin)
sume = sume + wke(ie,ispin) * eig(ie,ispin)
END DO
END DO
END DO
IF (ABS(sumq-qtot).LT.tol) RETURN
IF (sumq.LE.qtot) emin=ef
IF (sumq.GE.qtot) emax=ef
END DO
WRITE( stdout,*) 'FERMIE: ITERATION HAS NOT CONVERGED.'
WRITE( stdout,*) 'FERMIE: QTOT,SUMQ=',qtot,sumq
STOP
CONTAINS
DOUBLE PRECISION FUNCTION stepf(x)
USE kinds
IMPLICIT NONE
REAL(DP) :: x
REAL(DP), PARAMETER :: c=0.5641895835D0
! REAL(DP), EXTERNAL :: erfc
! stepf=erfc(x)
stepf=1.d0/(exp(min(x,100.d0))+1.d0)
END FUNCTION stepf
END SUBROUTINE fermi_energy_x
!
!
!
!-----------------------------------------------------------------------
SUBROUTINE cp_eigs_x( nfi, lambdap, lambda, idesc )
!-----------------------------------------------------------------------
USE kinds, ONLY: DP
use ensemble_dft, only: tens
use electrons_base, only: nbspx, f, nspin
use electrons_base, only: iupdwn, nupdwn, nudx
use electrons_module, only: ei
use io_global, only: stdout
IMPLICIT NONE
INTEGER :: nfi
REAL(DP) :: lambda( :, :, : ), lambdap( :, :, : )
INTEGER, INTENT(IN) :: idesc( :, : )
if( .not. tens ) then
call eigs0( ei, nudx, .false. , nspin, nupdwn, iupdwn, .true. , f, nbspx, lambda, SIZE(lambda,1), idesc )
else
call eigs0( ei, nudx, .false. , nspin, nupdwn, iupdwn, .false. , f, nbspx, lambdap, SIZE(lambdap,1), idesc )
endif
RETURN
END SUBROUTINE cp_eigs_x
| gpl-2.0 |
QEF/q-e | GWW/gww/polarization.f90 | 3 | 73199 | !
! Copyright (C) 2001-2013 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
MODULE polarization
!this module describes the structure for the polarization P
! and dressed iteraction W, imaginary time/frequency
USE kinds, ONLY : DP
TYPE polaw
!this structure describe a generic P or W function
!usually in the space of orthonormalized products of wanniers
INTEGER :: label!label to read/write to disk
LOGICAL :: ontime!if .true. is on imaginary time, otherwise frequency
REAL(kind=DP) :: time!imaginary time or frequency
INTEGER :: numpw!number of states (products of wanniers)
REAL(kind=DP), DIMENSION(:,:), POINTER :: pw!the P or W
COMPLEX(kind=DP) :: factor!complex factor to be multiplied to the real matrix pw
END TYPE polaw
CONTAINS
SUBROUTINE initialize_polaw(pw)
!this subroutine initializes polaw
implicit none
TYPE(polaw) :: pw
nullify(pw%pw)
return
END SUBROUTINE initialize_polaw
SUBROUTINE free_memory_polaw(pw)
!this subroutine deallocates the green descriptor
implicit none
TYPE(polaw) pw
if(associated(pw%pw)) deallocate(pw%pw)
nullify(pw%pw)
return
END SUBROUTINE
SUBROUTINE conjugate_polaw(pw)
! this subroutine calculculates the conjugate of the polaw matrix
implicit none
TYPE(polaw) pw
pw%label=-pw%label
return
END SUBROUTINE conjugate_polaw
SUBROUTINE write_polaw(pw,debug)
!this subroutine writes the green function on disk
!the file name is taken from the label
USE io_files, ONLY : prefix,tmp_dir
implicit none
INTEGER, EXTERNAL :: find_free_unit
TYPE(polaw) :: pw!the green function to be written
LOGICAL :: debug! if .true. produces formatted output
LOGICAL :: direct_file = .true.!if true uses direct- access file to write matrix on disk
INTEGER :: iw, jw, iung
CHARACTER(5) :: nfile
if(pw%label >= 0 ) then
write(nfile,'(5i1)') &
& pw%label/10000,mod(pw%label,10000)/1000,mod(pw%label,1000)/100,mod(pw%label,100)/10,mod(pw%label,10)
iung = find_free_unit()
if(.not.debug) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.'// nfile, status='unknown',form='unformatted')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.'// nfile, status='unknown',form='formatted')
endif
else
write(nfile,'(5i1)') &
& -pw%label/10000,mod(-pw%label,10000)/1000,mod(-pw%label,1000)/100,mod(-pw%label,100)/10,mod(-pw%label,10)
iung = find_free_unit()
if(.not.debug) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.-'// nfile, status='unknown',form='unformatted')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.-'// nfile, status='unknown',form='formatted')
endif
endif
if(.not.debug) then
write(iung) pw%label
write(iung) pw%ontime
write(iung) pw%time
write(iung) pw%numpw
write(iung) pw%factor
if(.not. direct_file) then
do iw=1,pw%numpw
write(iung) pw%pw(1:pw%numpw,iw)
enddo
endif
else
write(iung,*) pw%label
write(iung,*) pw%ontime
write(iung,*) pw%time
write(iung,*) pw%numpw
write(iung,*) pw%factor
if(.not. direct_file) then
do iw=1,pw%numpw
do jw=1,pw%numpw
write(iung,*) pw%pw(jw,iw)
enddo
enddo
endif
endif
close(iung)
if(direct_file) then
iung = find_free_unit()
if(pw%label >= 0 ) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.-'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
endif
do iw=1,pw%numpw
write(unit=iung, rec=iw) pw%pw(:,iw)
enddo
close(iung)
endif
return
END SUBROUTINE
SUBROUTINE read_polaw(label, pw,debug,l_verbose)
!this subroutine reads the green function from disk
!the file name is taken from the label
USE io_files, ONLY : prefix,tmp_dir
USE io_global, ONLY : stdout
implicit none
INTEGER, EXTERNAL :: find_free_unit
TYPE(polaw) :: pw!the green function to be read
INTEGER :: label! the label identifing the required green function
LOGICAL :: debug!if true formatted files
LOGICAL, INTENT(in) :: l_verbose
LOGICAL :: direct_file = .true.!if true uses direct- access file to read matrix from disk
INTEGER :: iw, jw, iung
CHARACTER(5) :: nfile
if(l_verbose) write(stdout,*) 'Read polaw'!ATTENZIONE
!first deallocate
call free_memory_polaw(pw)
if(l_verbose) write(stdout,*) 'Read polaw2'!ATTENZIONE
if(label >= 0 ) then
write(nfile,'(5i1)') label/10000,mod(label,10000)/1000,mod(label,1000)/100,mod(label,100)/10,mod(label,10)
iung = find_free_unit()
if(.not.debug) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.'// nfile, status='old',form='unformatted')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.'// nfile, status='old',form='formatted')
endif
else
write(nfile,'(5i1)') -label/10000,mod(-label,10000)/1000,mod(-label,1000)/100,mod(-label,100)/10,mod(-label,10)
iung = find_free_unit()
if(.not.debug) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.-'// nfile, status='old',form='unformatted')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.-'// nfile, status='old',form='formatted')
endif
endif
if(.not.debug) then
read(iung) pw%label
read(iung) pw%ontime
read(iung) pw%time
read(iung) pw%numpw
read(iung) pw%factor
else
read(iung,*) pw%label
read(iung,*) pw%ontime
read(iung,*) pw%time
read(iung,*) pw%numpw
read(iung,*) pw%factor
endif
write(stdout,*) 'Read polaw',pw%numpw!ATTENZIONE
!now allocate
allocate(pw%pw(pw%numpw,pw%numpw))
if(.not. direct_file) then
if(.not.debug) then
do iw=1,pw%numpw
read(iung) pw%pw(1:pw%numpw,iw)
enddo
else
do iw=1,pw%numpw
do jw=1,pw%numpw
read(iung,*) pw%pw(jw,iw)
enddo
enddo
endif
endif
close(iung)
if(l_verbose) write(stdout,*) 'Read polaw4'!ATTENZIONE
if(direct_file) then
iung = find_free_unit()
if(label >= 0 ) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.-'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
endif
if(l_verbose) write(stdout,*) 'Read polaw5'!ATTENZIONE
do iw=1,pw%numpw
read(unit=iung, rec=iw) pw%pw(:,iw)
enddo
close(iung)
endif
if(l_verbose) write(stdout,*) 'Read polaw6'!ATTENZIONE
return
END SUBROUTINE
SUBROUTINE read_polaw_global(label, pw)
!this subroutine reads the green function from disk
!the file name is taken from the label
!the ionode_id distribute to all the processors
USE io_files, ONLY : prefix,tmp_dir
USE io_global, ONLY : stdout, ionode, ionode_id
USE mp, ONLY : mp_barrier, mp_bcast
USE mp_world, ONLY : world_comm
implicit none
INTEGER, EXTERNAL :: find_free_unit
TYPE(polaw) :: pw!the green function to be read
INTEGER :: label! the label identifing the required green function
LOGICAL :: direct_file = .true.!if true uses direct- access file to read matrix from disk
INTEGER :: iw, jw, iung
CHARACTER(5) :: nfile
!first deallocate
call free_memory_polaw(pw)
if(ionode) then
if(label >= 0 ) then
write(nfile,'(5i1)') label/10000,mod(label,10000)/1000,mod(label,1000)/100,mod(label,100)/10,mod(label,10)
iung = find_free_unit()
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.'// nfile, status='old',form='unformatted')
else
write(nfile,'(5i1)') -label/10000,mod(-label,10000)/1000,mod(-label,1000)/100,mod(-label,100)/10,mod(-label,10)
iung = find_free_unit()
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.-'// nfile, status='old',form='unformatted')
endif
read(iung) pw%label
read(iung) pw%ontime
read(iung) pw%time
read(iung) pw%numpw
read(iung) pw%factor
endif
call mp_bcast(pw%label,ionode_id,world_comm)
call mp_bcast(pw%ontime,ionode_id,world_comm)
call mp_bcast(pw%time,ionode_id,world_comm)
call mp_bcast(pw%numpw,ionode_id,world_comm)
call mp_bcast(pw%factor,ionode_id,world_comm)
allocate(pw%pw(pw%numpw,pw%numpw))
if(ionode) then
if(.not. direct_file) then
do iw=1,pw%numpw
read(iung) pw%pw(1:pw%numpw,iw)
enddo
endif
close(iung)
if(direct_file) then
iung = find_free_unit()
if(label >= 0 ) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.-'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
endif
do iw=1,pw%numpw
read(unit=iung, rec=iw) pw%pw(:,iw)
enddo
close(iung)
endif
endif
do iw=1,pw%numpw
call mp_barrier( world_comm )
call mp_bcast(pw%pw(:,iw),ionode_id,world_comm)
enddo
return
END SUBROUTINE read_polaw_global
SUBROUTINE write_polaw_range( pw, debug, range_min, range_max, full_range )
!this subroutine writes the green function on disk
!the file name is taken from the label
!writes column from range_min to range_max
USE io_files, ONLY : prefix,tmp_dir
USE io_global, ONLY : stdout
implicit none
INTEGER, EXTERNAL :: find_free_unit
TYPE(polaw) :: pw!the green function to be written
LOGICAL :: debug! if .true. produces formatted output
INTEGER, INTENT(in) :: range_min, range_max!range of column
LOGICAL, INTENT(IN) :: full_range
LOGICAL :: direct_file = .true.!if true uses direct- access file to write matrix on disk
INTEGER :: iw, jw, iung, iww
CHARACTER(5) :: nfile
!check range
if(range_min<1 .or. range_max> pw%numpw) then
write(stdout,*) 'write_polaw_range: out of range = ', range_min, range_max
stop
endif
if(pw%label >= 0 ) then
write(nfile,'(5i1)') &
& pw%label/10000,mod(pw%label,10000)/1000,mod(pw%label,1000)/100,mod(pw%label,100)/10,mod(pw%label,10)
iung = find_free_unit()
if(.not.debug) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.'// nfile, status='unknown',form='unformatted')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.'// nfile, status='unknown',form='formatted')
endif
else
write(nfile,'(5i1)') &
& -pw%label/10000,mod(-pw%label,10000)/1000,mod(-pw%label,1000)/100,mod(-pw%label,100)/10,mod(-pw%label,10)
iung = find_free_unit()
if(.not.debug) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.-'// nfile, status='unknown',form='unformatted')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.-'// nfile, status='unknown',form='formatted')
endif
endif
if(.not.debug) then
write(iung) pw%label
write(iung) pw%ontime
write(iung) pw%time
write(iung) pw%numpw
write(iung) pw%factor
if(.not. direct_file) then
do iw=1,pw%numpw
write(iung) pw%pw(1:pw%numpw,iw)
enddo
endif
else
write(iung,*) pw%label
write(iung,*) pw%ontime
write(iung,*) pw%time
write(iung,*) pw%numpw
write(iung,*) pw%factor
if(.not. direct_file) then
do iw=1,pw%numpw
do jw=1,pw%numpw
write(iung,*) pw%pw(jw,iw)
enddo
enddo
endif
endif
close(iung)
if(direct_file) then
iung = find_free_unit()
if(pw%label >= 0 ) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.-'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
endif
do iw=range_min,range_max
iww = iw
if( .not. full_range ) iww = iw - range_min + 1
write(unit=iung, rec=iw) pw%pw(:,iww)
enddo
close(iung)
endif
return
END SUBROUTINE write_polaw_range
SUBROUTINE read_polaw_range(label, pw,debug,range_min,range_max, full_range )
!this subroutine reads the green function from disk
!the file name is taken from the label
!reads columns from range_min to range_max
USE io_files, ONLY : prefix,tmp_dir
USE io_global, ONLY : stdout
implicit none
INTEGER, EXTERNAL :: find_free_unit
TYPE(polaw) :: pw!the green function to be read
INTEGER :: label! the label identifing the required green function
LOGICAL :: debug!if true formatted files
INTEGER, INTENT(in) :: range_min, range_max!defining range
LOGICAL, INTENT(IN) :: full_range
LOGICAL :: direct_file = .true.!if true uses direct- access file to read matrix from disk
INTEGER :: iw, jw, iung, iww
CHARACTER(5) :: nfile
!check
if(range_min<1 ) then
write(stdout,*) 'read_polaw_range: out of range ', range_min, range_max
stop
endif
!first deallocate
call free_memory_polaw(pw)
if(label >= 0 ) then
write(nfile,'(5i1)') label/10000,mod(label,10000)/1000,mod(label,1000)/100,mod(label,100)/10,mod(label,10)
iung = find_free_unit()
if(.not.debug) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.'// nfile, status='old',form='unformatted')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.'// nfile, status='old',form='formatted')
endif
else
write(nfile,'(5i1)') -label/10000,mod(-label,10000)/1000,mod(-label,1000)/100,mod(-label,100)/10,mod(-label,10)
iung = find_free_unit()
if(.not.debug) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.-'// nfile, status='old',form='unformatted')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polaw.-'// nfile, status='old',form='formatted')
endif
endif
if(.not.debug) then
read(iung) pw%label
read(iung) pw%ontime
read(iung) pw%time
read(iung) pw%numpw
read(iung) pw%factor
else
read(iung,*) pw%label
read(iung,*) pw%ontime
read(iung,*) pw%time
read(iung,*) pw%numpw
read(iung,*) pw%factor
endif
!now allocate
if( full_range ) then
allocate(pw%pw(pw%numpw,pw%numpw))
else
allocate( pw%pw( pw%numpw, range_max - range_min + 1 ) )
endif
if(.not. direct_file) then
if(.not.debug) then
do iw=1,pw%numpw
read(iung) pw%pw(1:pw%numpw,iw)
enddo
else
do iw=1,pw%numpw
do jw=1,pw%numpw
read(iung,*) pw%pw(jw,iw)
enddo
enddo
endif
endif
close(iung)
if(direct_file) then
!check
if(range_max > pw%numpw ) then
write(stdout,*) 'read_polaw_range: out of range = ', range_min, range_max
stop
endif
iung = find_free_unit()
if(label >= 0 ) then
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
else
open( unit=iung, file=trim(tmp_dir)//trim(prefix)//'-'//'polawd.-'// nfile, &
&status='unknown',recl=pw%numpw*DP,access='direct')
endif
do iw=range_min, range_max
iww = iw
if( .not. full_range ) iww = iw - range_min + 1
read(unit=iung, rec=iw) pw%pw(:,iww)
enddo
close(iung)
endif
return
END SUBROUTINE read_polaw_range
SUBROUTINE create_polarization(time,pr,gf_p,gf_m,qm,debug)
!this subroutine set the polarization in imaginary time
! as P(r,r',it)=G(r,r',it)*G(r,r',-it)
! for our basis
! P_{i,j}=\sum_{l,n,m,o} Q_{i,lm}Q_{j,mo}G_{lm}(it)G_{no}(-it)
!THERE IS ALSO A SPIN FACTOR 2
USE basic_structures, ONLY : q_mat,wannier_P
USE green_function, ONLY : green
USE io_global, ONLY : stdout
USE constants, ONLY : eps8
implicit none
REAL(kind=DP) :: time!imaginary time t, just a check
TYPE(polaw) :: pr!polarization P(it) to be created
TYPE(green) :: gf_p!green function G(it)
TYPE(green) :: gf_m!green function G(-it)
TYPE(q_mat) :: qm!overlap matrix Q
LOGICAL :: debug!if true check for hermeticity
INTEGER :: iw,jw, ip,jp
INTEGER :: l,n,m,o
!first annihilation
call free_memory_polaw(pr)
!check time
if((abs(gf_p%time - time)>=eps8) .OR. (abs(gf_m%time + time) >= eps8)) then!times are wrong
write(stdout,*) 'Subroutine polarization: times are wrong',gf_p%time,gf_m%time
stop
endif
!set pr
pr%ontime=.true.
pr%time=time
pr%numpw=qm%numpw
!allocate
allocate(pr%pw( pr%numpw,pr%numpw))
pr%pw(:,:) =(0.d0,0.d0)
do iw=1,pr%numpw
do jw=iw,pr%numpw
do ip=1,qm%wp(iw)%numij
do jp=1,qm%wp(jw)%numij
l=qm%wp(iw)%ij(1,ip)
n=qm%wp(iw)%ij(2,ip)
m=qm%wp(jw)%ij(1,jp)
o=qm%wp(jw)%ij(2,jp)
pr%pw(iw,jw)=pr%pw(iw,jw)+qm%wp(iw)%o(ip)*qm%wp(jw)%o(jp)* &
& gf_p%gf(l,m,1)*gf_m%gf(n,o,1)
!couples are NOT ordered
if(l/=n) then
pr%pw(iw,jw)=pr%pw(iw,jw)+qm%wp(iw)%o(ip)*qm%wp(jw)%o(jp)* &
& gf_p%gf(n,m,1)*gf_m%gf(l,o,1)
endif
if(m/=o) then
pr%pw(iw,jw)=pr%pw(iw,jw)+qm%wp(iw)%o(ip)*qm%wp(jw)%o(jp)* &
& gf_p%gf(l,o,1)*gf_m%gf(n,m,1)
endif
if(l/=n .AND. m/=o) then
pr%pw(iw,jw)=pr%pw(iw,jw)+qm%wp(iw)%o(ip)*qm%wp(jw)%o(jp)* &
& gf_p%gf(n,o,1)*gf_m%gf(l,m,1)
endif
enddo
pr%pw(jw,iw)=pr%pw(iw,jw)
enddo
enddo
enddo
pr%factor=(0.d0,-1.d0)
!now spin factor
pr%pw(:,:)=2.d0*pr%pw(:,:)
return
END subroutine
SUBROUTINE calculate_w(vp,pp,ww,xc_together,l_symm_epsilon,l_head_epsilon,agz,head,l_divergence,inv_epsi, &
&l_wing_epsilon, awing, l_verbose)
!this subroutine calculates W=(1+vp)^{-1}v
!this is meaningful only on frequency domain
!lapack routines are used
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, head_epsilon
implicit none
TYPE(v_pot) :: vp!coulomb potential
TYPE(polaw) :: pp!polarization on imaginary frequency, destroyed on exit
TYPE(polaw) :: ww!dressed interaction to be calculated
LOGICAL :: xc_together!if true the entire W is taken, otherwise W-v
LOGICAL :: l_symm_epsilon! if true uses the symmetrized form of the dielectric matrix
!for calculating W
LOGICAL :: l_head_epsilon!if true add to the symmetrized form of the dielectric matrix
!the head terms
REAL(kind=DP), DIMENSION(:) :: agz!terms A_ij<\tilde{w^P_j}|G=0>
REAL(kind=DP) :: head!term (G=0,G=0) of the symmetric dielectric matrix
LOGICAL, INTENT(in) :: l_divergence!if true calculate the head of the inverse dielectric matrix
REAL(kind=DP), INTENT(out) :: inv_epsi!head of the inverse dielectric matrix
LOGICAL, INTENT(in) :: l_wing_epsilon!if true calculate the wings of the symmetrized dielectric matrix
REAL(kind=DP), DIMENSION(:) :: awing!the terms A_ij wing_j
LOGICAL, INTENT(in) :: l_verbose
INTEGER iw,jw,kw
REAL(kind=DP), ALLOCATABLE, DIMENSION(:,:) :: dtmp!temporary array
INTEGER, ALLOCATABLE, DIMENSION(:) :: ipiv
INTEGER :: info
REAL(kind=DP),ALLOCATABLE, DIMENSION(:) :: work
INTEGER :: lwork
REAL(kind=DP) sca
REAL(kind=DP) :: workd
!deallocate if the case
call free_memory_polaw(ww)
!check and set
if(pp%ontime) then
write(stdout,*) 'Routine calculate_w: frequencies required'
stop
endif
if(pp%numpw /= vp%numpw) then
write(stdout,*) 'Routine calculate_w: basis set does not correspond',pp%numpw,vp%numpw
stop
endif
ww%ontime=.false.
ww%time=pp%time
ww%label=pp%label
ww%numpw=pp%numpw
allocate(ww%pw(ww%numpw,ww%numpw))
allocate(dtmp(ww%numpw,ww%numpw))
allocate(ipiv(ww%numpw))
if(.not.l_symm_epsilon) then
!not symmetric case calculates -vP
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,-1.d0*dble(pp%factor),&
& vp%vmat,ww%numpw,pp%pw,ww%numpw,0.d0,dtmp,ww%numpw)
else
!symmetric case calculates -v^1/2 P v^1/2
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,-1.d0*dble(pp%factor),&
& vp%vmat,ww%numpw,pp%pw,ww%numpw,0.d0,dtmp,ww%numpw)
pp%pw(:,:)=dtmp(:,:)
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& pp%pw,ww%numpw,vp%vmat,ww%numpw,0.d0,dtmp,ww%numpw)
endif
!if required add the head
if(l_symm_epsilon .and.l_head_epsilon) then
do jw=1,ww%numpw
do iw=1,ww%numpw
dtmp(iw,jw)=dtmp(iw,jw)+agz(iw)*agz(jw)*head
enddo
enddo
endif
!if required add the wings
if(l_symm_epsilon .and.l_wing_epsilon) then
do jw=1,ww%numpw
do iw=1,ww%numpw
dtmp(iw,jw)=dtmp(iw,jw)+agz(iw)*awing(jw)+agz(jw)*awing(iw)
enddo
enddo
endif
do iw=1,ww%numpw
dtmp(iw,iw)=dtmp(iw,iw)+1.d0
enddo
!inverse zmat
call dgetrf(ww%numpw,ww%numpw,dtmp,ww%numpw,ipiv,info)
if(info /= 0) then
write(stdout,*) 'Routine calculate_w: problem with dgetrf :', info
stop
endif
call dgetri(ww%numpw,dtmp,ww%numpw,ipiv,workd,-1,info)
if(l_verbose) write(stdout,*) 'Dimension', workd!ATTENZIONE
allocate(work(int(workd)))
call dgetri(ww%numpw,dtmp,ww%numpw,ipiv,work,int(workd),info)
if(info /= 0) then
write(stdout,*) 'Routine calculate_w: problem with zgetri :', info
stop
endif
if(.not.xc_together) then
do iw=1,ww%numpw
dtmp(iw,iw)=dtmp(iw,iw)-1.d0
enddo
endif
!if required calculates the head (G=0,G=0) of \epsilon^-1
if(l_divergence) then
inv_epsi=0.d0
do jw=1,ww%numpw
do iw=1,ww%numpw
inv_epsi = inv_epsi+dtmp(iw,jw)*agz(iw)*agz(jw)
enddo
enddo
do iw=1,ww%numpw
dtmp(iw,iw)=dtmp(iw,iw)-inv_epsi
enddo
endif
if(l_verbose) write(stdout,*) 'INV EPSI G=0,G=0', inv_epsi
if(.not. l_symm_epsilon) then
!calculates (e-1 -1)v
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& dtmp,ww%numpw,vp%vmat,ww%numpw,0.d0,ww%pw,ww%numpw)
else
!calculates v^1/2 (e-1-1)v^1/2
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& vp%vmat,ww%numpw,dtmp,ww%numpw,0.d0,pp%pw,ww%numpw)
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& pp%pw,ww%numpw,vp%vmat,ww%numpw,0.d0,ww%pw,ww%numpw)
endif
ww%factor=(1.d0,0.d0)
! if(.not.xc_together) then
! do iw=1,ww%numpw
! do jw=1,ww%numpw
! ww%pw(iw,jw)=ww%pw(iw,jw)-vp%vmat(iw,jw)
! enddo
! enddo
! endif
deallocate(dtmp,ipiv,work)
return
END SUBROUTINE
SUBROUTINE create_polarization_contraction(time,pr,cp,uu,l_hf_energies, ene_hf)
!this subroutine set the polarization in imaginary time
! as P(r,r',it)=G(r,r',it)*G(r,r',-it)
! for our basis
!uses contractions
!THERE IS ALSO A SPIN FACTOR 2
!if required uses HF energies
USE io_global, ONLY : stdout
USE constants, ONLY : eps8
USE compact_product, ONLY : contraction_pola
USE basic_structures, ONLY : wannier_u
implicit none
REAL(kind=DP) :: time!imaginary time t, just a check
TYPE(polaw) :: pr!polarization P(it) to be created
TYPE(contraction_pola) :: cp!the contracted products descriptor
TYPE(wannier_u) :: uu!for the KS energies
LOGICAL, INTENT(in) :: l_hf_energies!if true uses HF energies
REAL(kind=DP), INTENT(in) :: ene_hf(:)!HF energies
INTEGER :: iw,jw, vv, cc
INTEGER :: l,n,m,o
REAL(kind=DP) :: offset
REAL(kind=DP),ALLOCATABLE :: expene(:)!to calculate the exponentials just once
!first annihilation
call free_memory_polaw(pr)
!set pr
pr%ontime=.true.
pr%time=time
pr%numpw=cp%numpw
!calculates energy offset
if(.not.l_hf_energies) then
if(cp%nums > cp%nums_occ) then
offset=-(uu%ene(cp%nums_occ+1,1)+uu%ene(cp%nums_occ,1))/2.d0
else
offset=-uu%ene(cp%nums_occ,1)
endif
else
if(cp%nums > cp%nums_occ) then
offset=-(ene_hf(cp%nums_occ+1)+ene_hf(cp%nums_occ))/2.d0
else
offset=-ene_hf(cp%nums_occ)
endif
endif
!calcualte exponentials of ks energies
allocate(expene(cp%nums))
if(.not.l_hf_energies) then
do vv=1,cp%nums_occ
expene(vv)=exp((uu%ene(vv,1)+offset)*time)
enddo
do cc=cp%nums_occ+1,cp%nums
expene(cc)=exp(-(uu%ene(cc,1)+offset)*time)
enddo
else
do vv=1,cp%nums_occ
expene(vv)=exp((ene_hf(vv)+offset)*time)
enddo
do cc=cp%nums_occ+1,cp%nums
expene(cc)=exp(-(ene_hf(cc)+offset)*time)
enddo
endif
!allocate
allocate(pr%pw( pr%numpw,pr%numpw))
pr%pw(:,:)=(0.d0,0.d0)
do iw=1,pr%numpw
do jw=iw,pr%numpw
do vv=1,cp%nums_occ
do cc=1,cp%nums-cp%nums_occ
pr%pw(iw,jw)=pr%pw(iw,jw) + cp%ou(iw,vv,cc)*conjg(cp%ou(jw,vv,cc))*&
& expene(vv)*expene(cc+cp%nums_occ)
enddo
enddo
pr%pw(jw,iw)=pr%pw(iw,jw)
enddo
enddo
pr%factor=(0.d0,-1.d0)
!now spin factor
pr%pw(:,:)=2.d0*pr%pw(:,:)
deallocate(expene)
return
END SUBROUTINE
SUBROUTINE invert_ortho_polaw(op,opi)
!this subroutine inverts the orthonormalization matrix
!acting of products of wanniers
USE io_global, ONLY : stdout
USE basic_structures, ONLY : ortho_polaw, free_memory
implicit none
TYPE(ortho_polaw), INTENT(in) :: op !the descriptor of the orthonormalization matrix to be inverted
TYPE(ortho_polaw), INTENT(out) :: opi !the descriptor of the orthonormalization matrix to be inverted
INTEGER :: info,lwork
INTEGER, ALLOCATABLE, DIMENSION(:) :: ipiv
REAL(kind=DP), ALLOCATABLE, DIMENSION(:) :: work
lwork=op%numpw
allocate(ipiv(op%numpw))
allocate(work(lwork))
call free_memory(opi)
opi%numpw=op%numpw
allocate(opi%on_mat( opi%numpw, opi%numpw))
opi%on_mat(:,:)=op%on_mat(:,:)
call dgetrf(opi%numpw,opi%numpw,opi%on_mat,opi%numpw,ipiv,info)
if(info /= 0) then
write(stdout,*) 'Routine invert_ortho_polaw: problem with dgetrf :', info
stop
endif
call dgetri(opi%numpw,opi%on_mat,opi%numpw,ipiv,work,lwork,info)
if(info /= 0) then
write(stdout,*) 'Routine invert_ortho_polaw: problem with dgetri :', info
stop
endif
if(op%inverse) then
opi%inverse=.false.
else
opi%inverse=.true.
endif
deallocate(ipiv,work)
return
END SUBROUTINE
SUBROUTINE distribute_ortho_polaw(op,opd)
!this subroutine distributes the orthonormalization matrix
! among processors
USE io_global, ONLY : stdout
USE basic_structures, ONLY : ortho_polaw, free_memory
USE mp_world, ONLY : nproc,mpime
implicit none
TYPE(ortho_polaw), INTENT(in) :: op !the descriptor of the orthonormalization matrix to be distributed
TYPE(ortho_polaw), INTENT(out) :: opd!distributed orthonormalization matrix
INTEGER :: l_blk,nbegin,nend,ii
call free_memory(opd)
opd%numpw = op%numpw
opd%inverse = op%inverse
l_blk= op%numpw/nproc
if(l_blk*nproc < op%numpw) l_blk = l_blk+1
nbegin=mpime*l_blk+1
nend=nbegin+l_blk-1
if(nend > op%numpw) nend = op%numpw
allocate(opd%on_mat(op%numpw,l_blk))
do ii=nbegin,nend
opd%on_mat(:,ii-nbegin+1)=op%on_mat(:,ii)
enddo
return
END SUBROUTINE distribute_ortho_polaw
SUBROUTINE collect_ortho_polaw(op,opd)
!this subroutine collects the orthonormalization matrix
! among processors
USE io_global, ONLY : stdout
USE basic_structures, ONLY : ortho_polaw, free_memory
USE mp_world, ONLY : nproc,mpime,world_comm!group
USE parallel_include
implicit none
TYPE(ortho_polaw), INTENT(out) :: op !the descriptor of the orthonormalization matrix to be distributed
TYPE(ortho_polaw), INTENT(in) :: opd!distributed orthonormalization matrix
INTEGER :: l_blk,nbegin,nend,ierr
call free_memory(op)
op%numpw = opd%numpw
op%inverse = opd%inverse
l_blk= op%numpw/nproc
if(l_blk*nproc < op%numpw) l_blk = l_blk+1
nbegin=mpime*l_blk+1
nend=nbegin+l_blk-1
if(nend > op%numpw) nend = op%numpw
allocate(op%on_mat(op%numpw,l_blk*nproc))
#if defined(__MPI)
call MPI_ALLGATHER(opd%on_mat,l_blk*op%numpw,MPI_DOUBLE_PRECISION, op%on_mat, &
& l_blk*op%numpw, MPI_DOUBLE_PRECISION,world_comm, ierr)
#else
op%on_mat(:,:)=opd%on_mat
#endif
return
END SUBROUTINE collect_ortho_polaw
SUBROUTINE orthonormalize(op,pw)
!this subroutine rotates the pw data on the basis of the trasform op
!perform the trasform \sum_{i',j'} B_{i,i'}P_{i',j'}B_{j,j'}
USE io_global, ONLY : stdout
USE basic_structures, ONLY : ortho_polaw
implicit none
TYPE(polaw), INTENT(inout) :: pw!data
TYPE(ortho_polaw), INTENT(in) :: op!trasform
INTEGER :: iw,jw,kw
REAL(kind=DP), ALLOCATABLE :: mat(:,:)
if(op%numpw /= pw%numpw) then
write(stdout,*) 'ROUTINE ORTHONORMALIZE: BASIS INCONSISTENT'
stop
endif
allocate(mat(op%numpw,op%numpw))
call dgemm('N','N',op%numpw,op%numpw,op%numpw,1.d0,&
& op%on_mat,op%numpw,pw%pw,op%numpw,0.d0,mat,op%numpw)
call dgemm('N','T',op%numpw,op%numpw,op%numpw,1.d0,&
& mat,op%numpw,op%on_mat,op%numpw,0.d0,pw%pw,op%numpw)
deallocate(mat)
return
END SUBROUTINE
SUBROUTINE orthonormalize_inverse(op,pw)
!this subroutine rotates the pw data on the basis of the trasform op
!perform the trasform \sum_{i',j'} B_{i',i}P_{i',j'}B_{j',j}
USE io_global, ONLY : stdout
USE basic_structures, ONLY : ortho_polaw
implicit none
TYPE(polaw), INTENT(inout) :: pw!data
TYPE(ortho_polaw), INTENT(in) :: op!trasform
INTEGER :: iw,jw,kw
REAL(kind=DP), ALLOCATABLE :: mat(:,:)
if(op%numpw /= pw%numpw) then
write(stdout,*) 'ROUTINE ORTHONORMALIZE: BASIS INCONSISTENT'
stop
endif
allocate(mat(op%numpw,op%numpw))
call dgemm('T','N',op%numpw,op%numpw,op%numpw,1.d0,&
& op%on_mat,op%numpw,pw%pw,op%numpw,0.d0,mat,op%numpw)
call dgemm('N','N',op%numpw,op%numpw,op%numpw,1.d0,&
& mat,op%numpw,op%on_mat,op%numpw,0.d0,pw%pw,op%numpw)
deallocate(mat)
return
END SUBROUTINE
SUBROUTINE orthonormalize_vpot_inverse(op,vp)
!this subroutine rotates the v_pot data on the basis of the trasform op
!perform the trasform \sum_{i',j'} B_{i',i}P_{i',j'}B_{j',j}
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, ortho_polaw
implicit none
TYPE(v_pot), INTENT(inout) :: vp!data
TYPE(ortho_polaw), INTENT(in) :: op!trasform
INTEGER :: iw,jw,kw
REAL(kind=DP), ALLOCATABLE :: mat(:,:)
if(op%numpw /= vp%numpw) then
write(stdout,*) 'ROUTINE ORTHONORMALIZE: BASIS INCONSISTENT'
stop
endif
allocate(mat(op%numpw,op%numpw))
! mat(:,:)=0.d0
! do iw=1,op%numpw
! do jw=1,op%numpw
! do kw=1,op%numpw
! mat(iw,jw)=mat(iw,jw)+op%on_mat(kw,iw)*vp%vmat(kw,jw)
! enddo
! enddo
! enddo
call dgemm('T','N',op%numpw,op%numpw,op%numpw,1.d0,op%on_mat,op%numpw,vp%vmat,op%numpw,0.d0,mat,op%numpw)
! vp%vmat(:,:)=0.d0
! do iw=1,op%numpw
! do kw=1,op%numpw
! do jw=1,op%numpw
! vp%vmat(iw,jw)=vp%vmat(iw,jw)+op%on_mat(kw,jw)*mat(iw,kw)
! enddo
! enddo
! enddo
call dgemm('N','N',op%numpw,op%numpw,op%numpw,1.d0,mat,op%numpw,op%on_mat,op%numpw,0.d0,vp%vmat,op%numpw)
deallocate(mat)
return
END SUBROUTINE
SUBROUTINE orthonormalize_vpot(op,vp)
!this subroutine rotates the v_pot data on the basis of the trasform op
!perform the trasform \sum_{i',j'} B_{i,i'}P_{i',j'}B_{j,j'}
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, ortho_polaw
implicit none
TYPE(v_pot), INTENT(inout) :: vp!data
TYPE(ortho_polaw), INTENT(in) :: op!trasform
INTEGER :: iw,jw,kw
REAL(kind=DP), ALLOCATABLE :: mat(:,:)
if(op%numpw /= vp%numpw) then
write(stdout,*) 'ROUTINE ORTHONORMALIZE: BASIS INCONSISTENT'
stop
endif
allocate(mat(op%numpw,op%numpw))
! mat(:,:)=0.d0
! do iw=1,op%numpw
! do jw=1,op%numpw
! do kw=1,op%numpw
! mat(iw,jw)=mat(iw,jw)+op%on_mat(iw,kw)*vp%vmat(kw,jw)
! enddo
! enddo
! enddo
call dgemm('N','N',op%numpw,op%numpw,op%numpw,1.d0,op%on_mat,op%numpw,vp%vmat,op%numpw,0.d0,mat,op%numpw)
! vp%vmat(:,:)=0.d0
! do iw=1,op%numpw
! do jw=1,op%numpw
! do kw=1,op%numpw
! vp%vmat(iw,jw)=vp%vmat(iw,jw)+op%on_mat(jw,kw)*mat(iw,kw)
! enddo
! enddo
! enddo
call dgemm('N','T',op%numpw,op%numpw,op%numpw,1.d0,mat,op%numpw,op%on_mat,op%numpw,0.d0,vp%vmat,op%numpw)
deallocate(mat)
return
END SUBROUTINE orthonormalize_vpot
SUBROUTINE orthonormalize_vpot_para(op,vp)
!this subroutine rotates the v_pot data on the basis of the trasform op
!perform the trasform \sum_{i',j'} B_{i,i'}P_{i',j'}B_{j,j'}
!parallel version
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, ortho_polaw
USE mp_world, ONLY : mpime, nproc, world_comm
USE mp, ONLY : mp_sum
implicit none
TYPE(v_pot), INTENT(inout) :: vp!data
TYPE(ortho_polaw), INTENT(in) :: op!trasform
INTEGER :: iw,jw,kw
REAL(kind=DP), ALLOCATABLE :: mat(:,:)
if(op%numpw /= vp%numpw) then
write(stdout,*) 'ROUTINE ORTHONORMALIZE: BASIS INCONSISTENT'
stop
endif
allocate(mat(op%numpw,op%numpw))
mat(:,:)=0.d0
do iw=1,op%numpw
do jw=1,op%numpw
if(mod(jw,nproc)==mpime) then
do kw=1,op%numpw
mat(iw,jw)=mat(iw,jw)+op%on_mat(iw,kw)*vp%vmat(kw,jw)
enddo
endif
enddo
call mp_sum(mat(iw,:),world_comm)
enddo
vp%vmat(:,:)=0.d0
do iw=1,op%numpw
do jw=1,op%numpw
if(mod(jw,nproc)==mpime) then
do kw=1,op%numpw
vp%vmat(iw,jw)=vp%vmat(iw,jw)+op%on_mat(jw,kw)*mat(iw,kw)
enddo
endif
enddo
call mp_sum(vp%vmat(iw,:),world_comm)
enddo
deallocate(mat)
return
END SUBROUTINE orthonormalize_vpot_para
SUBROUTINE invert_v_pot(vp,vpi)
!this subroutine inverts the coulombian matrix
!acting on space of orthonormal products of wanniers
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, free_memory
implicit none
TYPE(v_pot), INTENT(in) :: vp !the descriptor of the coulombian matrix to be inverted
TYPE(v_pot), INTENT(inout) :: vpi !the descriptor of the inverted coulombian matrix
INTEGER :: info,lwork,i,j
INTEGER, ALLOCATABLE, DIMENSION(:) :: ipiv
REAL(kind=DP), ALLOCATABLE, DIMENSION(:) :: work
call free_memory(vpi)
lwork=vp%numpw
allocate(ipiv(vp%numpw))
allocate(work(lwork))
vpi%numpw=vp%numpw
allocate(vpi%vmat( vpi%numpw, vpi%numpw))
!write(stdout,*) size(vpi%vmat,1), size(vpi%vmat,2), size(vp%vmat,1), size(vp%vmat,2)
! vpi%vmat(:,:)=vp%vmat(:,:) ! bug
do j = 1, size(vpi%vmat,2)
do i = 1, size(vpi%vmat,1)
vpi%vmat(i,j)=vp%vmat(i,j)
end do
end do
call dgetrf(vpi%numpw,vpi%numpw,vpi%vmat,vpi%numpw,ipiv,info)
if(info /= 0) then
write(stdout,*) 'Invert V: problem with dgetrf :', info
stop
endif
call dgetri(vpi%numpw,vpi%vmat,vpi%numpw,ipiv,work,lwork,info)
if(info /= 0) then
write(stdout,*) 'Invert V: problem with dgetri :', info
stop
endif
deallocate(ipiv,work)
return
END SUBROUTINE invert_v_pot
SUBROUTINE fake_polarization_io(n)
!this subroutine just call mp_barrier 2*n+1 times
USE mp, ONLY : mp_barrier
USE mp_world, ONLY : world_comm
implicit none
INTEGER :: n
INTEGER :: i
!we take advantage of the t ==> -t symmetry
! do i=-n,n
do i=0,n
call mp_barrier( world_comm )
enddo
return
END SUBROUTINE fake_polarization_io
SUBROUTINE orthonormalize_vpot_inverse_para(op,vp)
!this subroutine rotates the v_pot data on the basis of the trasform op
!perform the trasform \sum_{i',j'} B_{i',i}P_{i',j'}B_{j',j}
!parallel version
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, ortho_polaw
USE mp_world, ONLY : world_comm, mpime, nproc
USE mp, ONLY : mp_sum
implicit none
TYPE(v_pot), INTENT(inout) :: vp!data
TYPE(ortho_polaw), INTENT(in) :: op!trasform
INTEGER :: iw,jw,kw
REAL(kind=DP), ALLOCATABLE :: mat(:,:)
if(op%numpw /= vp%numpw) then
write(stdout,*) 'ROUTINE ORTHONORMALIZE: BASIS INCONSISTENT'
stop
endif
allocate(mat(op%numpw,op%numpw))
mat(:,:)=0.d0
do iw=1,op%numpw
do jw=1,op%numpw
if(mod(jw,nproc)==mpime) then
do kw=1,op%numpw
mat(iw,jw)=mat(iw,jw)+op%on_mat(kw,iw)*vp%vmat(kw,jw)
enddo
endif
enddo
call mp_sum(mat(iw,:),world_comm)
enddo
vp%vmat(:,:)=0.d0
do iw=1,op%numpw
do jw=1,op%numpw
if(mod(jw,nproc)==mpime) then
do kw=1,op%numpw
vp%vmat(iw,jw)=vp%vmat(iw,jw)+op%on_mat(kw,jw)*mat(iw,kw)
enddo
endif
enddo
call mp_sum(vp%vmat(iw,:),world_comm)
enddo
deallocate(mat)
return
END SUBROUTINE orthonormalize_vpot_inverse_para
SUBROUTINE create_polarization_contraction_state(time,pr,uu,l_hf_energies, ene_hf,options)
!this subroutine set the polarization in imaginary time
! as P(r,r',it)=G(r,r',it)*G(r,r',-it)
! for our basis
!uses contractions
!THERE IS ALSO A SPIN FACTOR 2
!if required uses HF energies
!use single occupied state contractions
USE io_global, ONLY : stdout
USE constants, ONLY : eps8
USE compact_product, ONLY : contraction_pola_state, free_memory_contraction_pola_state, &
&read_contraction_pola_state
USE basic_structures, ONLY : wannier_u
USE input_gw, ONLY : input_options
implicit none
REAL(kind=DP) :: time!imaginary time t, just a check
TYPE(polaw) :: pr!polarization P(it) to be created
TYPE(wannier_u) :: uu!for the KS energies
LOGICAL, INTENT(in) :: l_hf_energies!if true uses HF energies
REAL(kind=DP), INTENT(in) :: ene_hf(:)!HF energies
TYPE(input_options) :: options!for i/o purpoose
INTEGER :: iw,jw, vv, cc
INTEGER :: l,n,m,o
REAL(kind=DP) :: offset
REAL(kind=DP),ALLOCATABLE :: expene(:)!to calculate the exponentials just once
REAL(kind=DP),ALLOCATABLE :: exptmp(:)!temporary arrays for speed-up
REAL(kind=DP),ALLOCATABLE :: outmp(:,:)
REAL(kind=DP),ALLOCATABLE :: tmpc(:)
TYPE(contraction_pola_state) :: cps
!first annihilation
call free_memory_polaw(pr)
!set pr
pr%ontime=.true.
pr%time=time
!the following for accessing dimension of polarization matrix
cps%state=1
call read_contraction_pola_state(cps,options)
pr%numpw=cps%numpw
!calculates energy offset
if(.not.l_hf_energies) then
if(uu%nums > uu%nums_occ(1)) then
offset=-(uu%ene(uu%nums_occ(1)+1,1)+uu%ene(uu%nums_occ(1),1))/2.d0
else
offset=-uu%ene(uu%nums_occ(1),1)
endif
else
if(uu%nums > uu%nums_occ(1)) then
offset=-(ene_hf(uu%nums_occ(1)+1)+ene_hf(uu%nums_occ(1)))/2.d0
else
offset=-ene_hf(uu%nums_occ(1))
endif
endif
!calcualte exponentials of ks energies
allocate(expene(uu%nums))
if(.not.l_hf_energies) then
do vv=1,uu%nums_occ(1)
expene(vv)=exp((uu%ene(vv,1)+offset)*time)
enddo
do cc=uu%nums_occ(1)+1,uu%nums
expene(cc)=exp(-(uu%ene(cc,1)+offset)*time)
enddo
else
do vv=1,uu%nums_occ(1)
expene(vv)=exp((ene_hf(vv)+offset)*time)
enddo
do cc=uu%nums_occ(1)+1,uu%nums
expene(cc)=exp(-(ene_hf(cc)+offset)*time)
enddo
endif
!allocate
allocate(pr%pw( pr%numpw,pr%numpw))
pr%pw(:,:)=0.d0
allocate(exptmp(cps%nums-cps%nums_occ))
allocate(outmp(cps%nums-cps%nums_occ,pr%numpw))
allocate(tmpc(cps%nums-cps%nums_occ))
do vv=1,cps%nums_occ
cps%state=vv
write(stdout,*) 'read_contraction_pola_state'
if(vv /= 1) call read_contraction_pola_state(cps,options)
write(stdout,*) 'read_contraction_pola_state', vv
do cc=1,cps%nums-cps%nums_occ
exptmp(cc)=expene(vv)*expene(cc+cps%nums_occ)
enddo
do iw=1,pr%numpw
do cc=1,cps%nums-cps%nums_occ
outmp(cc,iw)=cps%ou(cc,iw)*exptmp(cc)
enddo
enddo
write(stdout,*) 'calculus1'
! do jw=1,pr%numpw
! do iw=jw,pr%numpw
! do cc=1,cps%nums-cps%nums_occ
! tmpc(cc)=cps%ou(cc,iw)*outmp(cc,jw)
! enddo
! pr%pw(iw,jw)=pr%pw(iw,jw)+sum(tmpc(:))
! enddo
! enddo
call dgemm('T','N',pr%numpw,pr%numpw,cps%nums-cps%nums_occ,1.d0,cps%ou,cps%nums-cps%nums_occ, &
outmp,cps%nums-cps%nums_occ,1.d0,pr%pw,pr%numpw)
call free_memory_contraction_pola_state(cps)
enddo
do jw=1,pr%numpw
do iw=jw,pr%numpw
pr%pw(jw,iw)=pr%pw(iw,jw)
enddo
enddo
! pr%pw(:,:)=(0.d0,-1.d0)*pr%pw(:,:)
pr%factor=(0.d0,-1.d0)
!now spin factor
pr%pw(:,:)=2.d0*pr%pw(:,:)
deallocate(expene)
deallocate(exptmp)
deallocate(outmp)
deallocate(tmpc)
return
END SUBROUTINE create_polarization_contraction_state
SUBROUTINE distribute_v_pot(vp,vpd)
!this subroutine distributes the coulomb matrix
! among processors
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, free_memory
USE mp_world, ONLY : nproc,mpime
implicit none
TYPE(v_pot), INTENT(in) :: vp !the descriptor of the coulomb matrix to be distributed
TYPE(v_pot), INTENT(out) :: vpd!distributed coulomb matrix
INTEGER :: l_blk,nbegin,nend,ii
call free_memory(vpd)
vpd%numpw = vp%numpw
l_blk= vp%numpw/nproc
if(l_blk*nproc < vp%numpw) l_blk = l_blk+1
nbegin=mpime*l_blk+1
nend=nbegin+l_blk-1
if(nend > vp%numpw) nend = vp%numpw
allocate(vpd%vmat(vp%numpw,l_blk))
do ii=nbegin,nend
vpd%vmat(:,ii-nbegin+1)=vp%vmat(:,ii)
enddo
return
END SUBROUTINE distribute_v_pot
SUBROUTINE collect_v_pot(vp,vpd)
!this subroutine collects the coulomb matrix
! among processors
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, free_memory
USE mp_world, ONLY : nproc,mpime,world_comm!group
USE parallel_include
implicit none
TYPE(v_pot), INTENT(out) :: vp !the descriptor of the coulomb matrix to be distributed
TYPE(v_pot), INTENT(in) :: vpd!distributed coulomb matrix
INTEGER :: l_blk,nbegin,nend,ierr
call free_memory(vp)
vp%numpw = vpd%numpw
l_blk= vp%numpw/nproc
if(l_blk*nproc < vp%numpw) l_blk = l_blk+1
nbegin=mpime*l_blk+1
nend=nbegin+l_blk-1
if(nend > vp%numpw) nend = vp%numpw
allocate(vp%vmat(vp%numpw,l_blk*nproc))
#if defined(__MPI)
call MPI_ALLGATHER(vpd%vmat,l_blk*vp%numpw,MPI_DOUBLE_PRECISION, vp%vmat, &
& l_blk*vp%numpw, MPI_DOUBLE_PRECISION,world_comm, ierr)
#else
vp%vmat(:,:)=vpd%vmat(:,:)
#endif
return
END SUBROUTINE collect_v_pot
SUBROUTINE calculate_w_g(vp,pp,ww,xc_together,l_symm_epsilon,l_head_epsilon,agz,head,l_divergence,inv_epsi, &
&l_wing_epsilon, awing, awing_c)
!this subroutine calculates W=(1+vp)^{-1}v
!this is meaningful only on frequency domain
!lapack routines are used
!it use exteded basis for G=0 term
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, head_epsilon
implicit none
TYPE(v_pot) :: vp!coulomb potential
TYPE(polaw) :: pp!polarization on imaginary frequency, destroyed on exit
TYPE(polaw) :: ww!dressed interaction to be calculated
LOGICAL :: xc_together!if true the entire W is taken, otherwise W-v
LOGICAL :: l_symm_epsilon! if true uses the symmetrized form of the dielectric matrix
!for calculating W
LOGICAL :: l_head_epsilon!if true add to the symmetrized form of the dielectric matrix
!the head terms
REAL(kind=DP), DIMENSION(:) :: agz!terms A_ij<\tilde{w^P_j}|G=0>
REAL(kind=DP) :: head!term (G=0,G=0) of the symmetric dielectric matrix
LOGICAL, INTENT(in) :: l_divergence!if true calculate the head of the inverse dielectric matrix
REAL(kind=DP), INTENT(out) :: inv_epsi!head of the inverse dielectric matrix
LOGICAL, INTENT(in) :: l_wing_epsilon!if true calculate the wings of the symmetrized dielectric matrix
REAL(kind=DP), DIMENSION(:) :: awing!the terms A_ij wing_j
REAL(kind=DP), DIMENSION(:) :: awing_c!the terms A_ij wing_j
INTEGER iw,jw,kw
REAL(kind=DP), ALLOCATABLE, DIMENSION(:,:) :: dtmp!temporary array
INTEGER, ALLOCATABLE, DIMENSION(:) :: ipiv
INTEGER :: info
REAL(kind=DP),ALLOCATABLE, DIMENSION(:) :: work
INTEGER :: lwork
REAL(kind=DP) sca
REAL(kind=DP) :: workd
REAL(kind=DP) alpha
!deallocate if the case
call free_memory_polaw(ww)
!check and set
if(pp%ontime) then
write(stdout,*) 'Routine calculate_w: frequencies required'
stop
endif
if(pp%numpw /= vp%numpw) then
write(stdout,*) 'Routine calculate_w: basis set does not correspond',pp%numpw,vp%numpw
stop
endif
ww%ontime=.false.
ww%time=pp%time
ww%label=pp%label
ww%numpw=pp%numpw
allocate(ww%pw(ww%numpw,ww%numpw))
allocate(dtmp(ww%numpw+1,ww%numpw+1))
allocate(ipiv(ww%numpw+1))
dtmp(:,:)=0.d0
if(.not.l_symm_epsilon) then
!not symmetric case calculates -vP
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,-1.d0*dble(pp%factor),&
& vp%vmat,ww%numpw,pp%pw,ww%numpw,0.d0,dtmp,ww%numpw+1)
else
!symmetric case calculates -v^1/2 P v^1/2
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,-1.d0*dble(pp%factor),&
& vp%vmat,ww%numpw,pp%pw,ww%numpw,0.d0,dtmp,ww%numpw+1)
pp%pw(1:ww%numpw,1:ww%numpw)=dtmp(1:ww%numpw,1:ww%numpw)
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& pp%pw,ww%numpw,vp%vmat,ww%numpw,0.d0,dtmp,ww%numpw+1)
endif
!calculate normalization factor alpha
sca=1.d0
do iw=1,ww%numpw
sca=sca-agz(iw)**2.d0
enddo
alpha=1.d0/sqrt(sca)
write(stdout,*) 'ALPHA :', alpha
FLUSH(stdout)
!calculate elements 0',0' 0',i i,O'
dtmp(ww%numpw+1,:)=0.d0
dtmp(:,ww%numpw+1)=0.d0
do iw=1,ww%numpw
do jw=1,ww%numpw
dtmp(ww%numpw+1,ww%numpw+1)=dtmp(ww%numpw+1,ww%numpw+1) &
& + alpha**2.d0 * agz(iw)* agz(jw)*dtmp(iw,jw)
enddo
enddo
do iw=1,ww%numpw
do jw=1,ww%numpw
dtmp(ww%numpw+1,iw)=dtmp(ww%numpw+1,iw)-alpha*dtmp(jw,iw)*agz(jw)
enddo
enddo
do iw=1,ww%numpw
dtmp(iw,ww%numpw+1)=dtmp(ww%numpw+1,iw)
enddo
!if required add the head
if(l_symm_epsilon .and.l_head_epsilon) then
! terms i,j
do jw=1,ww%numpw
do iw=1,ww%numpw
dtmp(iw,jw)=dtmp(iw,jw)+agz(iw)*agz(jw)*head
enddo
enddo
endif
!term O',0' 0',i i,0'
dtmp(ww%numpw+1,ww%numpw+1)= dtmp(ww%numpw+1,ww%numpw+1) + &
&head/alpha**2.d0
do iw=1,ww%numpw
dtmp(ww%numpw+1,iw)=dtmp(ww%numpw+1,iw)+head*agz(iw)/alpha
dtmp(iw,ww%numpw+1)=dtmp(iw,ww%numpw+1)+head*agz(iw)/alpha
enddo
!if required add the wings
!TODO ATTENZIONE
if(l_symm_epsilon .and.l_wing_epsilon) then
!elements i,j
do jw=1,ww%numpw
do iw=1,ww%numpw
dtmp(iw,jw)=dtmp(iw,jw)+agz(iw)*awing_c(jw)+agz(jw)*awing_c(iw)
enddo
enddo
! 0',0'
do iw=1,ww%numpw
dtmp(ww%numpw+1,ww%numpw+1)=dtmp(ww%numpw+1,ww%numpw+1) &
& - 2.d0*agz(iw)*awing_c(iw)
enddo
! 0',i ',0'
do iw=1,ww%numpw
dtmp(ww%numpw+1,iw)=dtmp(ww%numpw+1,iw)+awing(iw)/alpha
do jw=1,ww%numpw
dtmp(ww%numpw+1,iw)=dtmp(ww%numpw+1,iw)-alpha*agz(iw)*awing_c(jw)*agz(jw)
enddo
dtmp(iw,ww%numpw+1)=dtmp(ww%numpw+1,iw)
enddo
endif
do iw=1,ww%numpw+1
dtmp(iw,iw)=dtmp(iw,iw)+1.d0
enddo
!inverse zmat
write(stdout,*) 'Before inversion'
FLUSH(stdout)
call dgetrf(ww%numpw+1,ww%numpw+1,dtmp,ww%numpw+1,ipiv,info)
if(info /= 0) then
write(stdout,*) 'Routine calculate_w: problem with dgetrf :', info
stop
endif
write(stdout,*) 'Before inversion2'
FLUSH(stdout)
call dgetri(ww%numpw+1,dtmp,ww%numpw+1,ipiv,workd,-1,info)
write(stdout,*) 'Dimension', workd,ww%numpw,info!ATTENZIONE
FLUSH(stdout)
allocate(work(int(workd)))
call dgetri(ww%numpw+1,dtmp,ww%numpw+1,ipiv,work,int(workd),info)
write(stdout,*) 'Out of dgetri'
FLUSH(stdout)
if(info /= 0) then
write(stdout,*) 'Routine calculate_w: problem with zgetri :', info
stop
endif
if(.not.xc_together) then
do iw=1,ww%numpw+1
dtmp(iw,iw)=dtmp(iw,iw)-1.d0
enddo
endif
!if required calculates the head (G=0,G=0) of \epsilon^-1
if(l_divergence) then
inv_epsi=0.d0
!term i,j
do jw=1,ww%numpw
do iw=1,ww%numpw
inv_epsi = inv_epsi+dtmp(iw,jw)*agz(iw)*agz(jw)
enddo
enddo
!term 0',0'
inv_epsi=inv_epsi+dtmp(ww%numpw+1,ww%numpw+1)/alpha**2.d0
!terms 0',i i,0'
do iw=1,ww%numpw
inv_epsi=inv_epsi+2.d0*agz(iw)*dtmp(ww%numpw+1,iw)/alpha
enddo
do iw=1,ww%numpw+1
dtmp(iw,iw)=dtmp(iw,iw)-inv_epsi
enddo
endif
write(stdout,*) 'INV EPSI G=0,G=0', inv_epsi, dtmp(ww%numpw+1,ww%numpw+1)
FLUSH(stdout)
if(l_symm_epsilon .and.l_head_epsilon) then!ATTENZIONE
!take away the G=0,G=0 term
! terms i,j
write(stdout,*) 'Extract G=0,G=0 term'
do jw=1,ww%numpw
do iw=1,ww%numpw
dtmp(iw,jw)=dtmp(iw,jw)-agz(iw)*agz(jw)*inv_epsi
enddo
enddo
endif
if(.not. l_symm_epsilon) then
!calculates (e-1 -1)v
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& dtmp,ww%numpw+1,vp%vmat,ww%numpw,0.d0,ww%pw,ww%numpw)
else
!calculates v^1/2 (e-1-1)v^1/2
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& vp%vmat,ww%numpw,dtmp,ww%numpw+1,0.d0,pp%pw,ww%numpw)
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& pp%pw,ww%numpw,vp%vmat,ww%numpw,0.d0,ww%pw,ww%numpw)
endif
ww%factor=(1.d0,0.d0)
! if(.not.xc_together) then
! do iw=1,ww%numpw
! do jw=1,ww%numpw
! ww%pw(iw,jw)=ww%pw(iw,jw)-vp%vmat(iw,jw)
! enddo
! enddo
! endif
deallocate(dtmp,ipiv,work)
return
END SUBROUTINE calculate_w_g
SUBROUTINE create_polarization_file(uu, tf, prefix)
USE basic_structures, ONLY : wannier_u, cprim_prod, free_memory, &
&initialize_memory_cprim_prod
USE times_gw, ONLY : times_freqs
USE mp_world, ONLY : world_comm, nproc,mpime
USE io_global, ONLY : stdout
USE mp, ONLY : mp_barrier
implicit none
TYPE(wannier_u), INTENT(in) :: uu!for the energies
TYPE(times_freqs) :: tf
CHARACTER(LEN=256), INTENT(in) :: prefix!to designate the PW files
INTEGER :: l_blk, nbegin, nend
INTEGER :: it,iv,ic, iw, jw
TYPE(polaw) :: pp
TYPE(cprim_prod) :: cpp
LOGICAL :: ok_read
REAL(kind=DP), ALLOCATABLE :: exp_table(:)
LOGICAL :: l_first!trick for gaining access to numpw, quite BAD
REAL(kind=DP), ALLOCATABLE :: cpmat_tmp(:,:)
write(stdout,*) 'Routine create_polarization_file'
allocate(exp_table(uu%nums-uu%nums_occ(1)))
!loop on time
l_blk= (tf%n+1)/nproc
if(l_blk*nproc < (tf%n+1)) l_blk = l_blk+1
nbegin=mpime*l_blk
nend=nbegin+l_blk-1
do it=nbegin,nend
if(it<= tf%n) then
call initialize_polaw(pp)
l_first=.true.
do iv=1,uu%nums_occ(1)
!loop on v
write(stdout,*) 'STATE', iv
FLUSH(stdout)
!set table of exponentials
do ic=uu%nums_occ(1)+1,uu%nums
exp_table(ic-uu%nums_occ(1))=exp((uu%ene(iv,1)-uu%ene(ic,1))*tf%times(it))
enddo
call mp_barrier( world_comm )
call initialize_memory_cprim_prod(cpp)
!!read in Svci
cpp%cprim=iv
call read_data_pw_cprim_prod(cpp, prefix, .true., ok_read, .true.,.false.)
!if required allocate polaw
if(l_first) then
allocate(pp%pw(cpp%numpw,cpp%numpw))
pp%pw(:,:)=0.d0
pp%numpw=cpp%numpw
l_first=.false.
endif
!!!!the following for using blas routine
allocate(cpmat_tmp(cpp%nums_cond,cpp%numpw))
call mytranspose(cpp%cpmat, cpp%numpw, cpmat_tmp, cpp%nums_cond, cpp%numpw, cpp%nums_cond)
do iw=1,cpp%numpw
cpmat_tmp(:,iw)=cpmat_tmp(:,iw)*exp_table(:)
enddo
!!!
!calculate term
! do ic=1,cpp%nums_cond
! do jw=1,cpp%numpw
! do iw=1,cpp%numpw
! pp%pw(iw,jw)=pp%pw(iw,jw)+cpp%cpmat(iw,ic)*cpp%cpmat(jw,ic)*exp_table(ic)
! enddo
! enddo
! enddo
call dgemm('N','N',cpp%numpw,cpp%numpw,cpp%nums_cond,1.d0,cpp%cpmat,cpp%numpw,&
&cpmat_tmp,cpp%nums_cond,1.d0,pp%pw,cpp%numpw)
deallocate(cpmat_tmp)
call free_memory(cpp)
enddo
!write polaw on file
!
pp%label=it
pp%time=tf%times(it)
pp%factor=(0.d0,-1.d0)
pp%numpw=cpp%numpw
pp%ontime=.true.
pp%pw(:,:)=pp%pw(:,:)*2.d0!for spin multiplicity
call write_polaw(pp,.false.)
call free_memory_polaw(pp)
else
!just parallelel reading of file
do iv=1,uu%nums_occ(1)
call mp_barrier( world_comm )
call initialize_memory_cprim_prod(cpp)
cpp%cprim=iv
call read_data_pw_cprim_prod(cpp, prefix, .true., ok_read, .true.,.false.)
call free_memory(cpp)
enddo
endif
enddo
deallocate(exp_table)
return
END SUBROUTINE create_polarization_file
SUBROUTINE square_root_polaw(pw,numpw)
!this subroutine calculate the square root of the polaw matrix
!it is done by calculating the eigenvalues and eigenvectors
!it assumes that the matrix is symmetric and positive definite
USE io_global, ONLY : stdout
implicit none
REAL(kind=DP) :: pw(numpw,numpw)!the matrix to be operated
INTEGER :: numpw!dimension of the matrix
REAL(kind=DP), ALLOCATABLE :: e_va(:), work(:)
REAL(kind=DP), ALLOCATABLE :: tmp_pw(:,:)
INTEGER :: lwork, info
REAL(kind=DP) :: loptwork
INTEGER :: iw,jw,kw
#if defined(_OPENMP)
INTEGER :: ntids
INTEGER :: omp_get_num_threads, omp_get_max_threads
EXTERNAL omp_set_num_threads, omp_get_num_threads, omp_get_max_threads
#endif
allocate(e_va(numpw))
allocate(tmp_pw(numpw, numpw))
tmp_pw(:,:)=pw(:,:)
#if defined(_OPENMP)
! go single-thread
ntids = omp_get_max_threads()
call omp_set_num_threads(1)
#endif
!check for optimal dimension
call DSYEV( 'V', 'U', numpw, tmp_pw, numpw, e_va, loptwork, -1, info)
lwork=int(loptwork)
allocate(work(lwork))
!calculate the eigenvalues, eigenvectors
call DSYEV( 'V', 'U', numpw, tmp_pw, numpw, e_va, work, lwork,info )
if(info /= 0) then
write(stdout,*) 'Problem with dsyev', info
stop
endif
#if defined(_OPENMP)
! go multi-thread
call omp_set_num_threads(ntids)
#endif
!do square root of eigenvector
do iw=1,numpw
if(e_va(iw) < 0.d0) then
write(stdout,*) 'Problem with eigenvalue', iw
stop
endif
e_va(iw)=dsqrt(e_va(iw))
enddo
!reform the matrix
pw(:,:)=0.d0
! Carlo substitute with DGEMM
do kw=1,numpw
do jw=1,numpw
do iw=1,numpw
pw(iw,jw)=pw(iw,jw)+tmp_pw(iw,kw)*tmp_pw(jw,kw)*e_va(kw)
enddo
enddo
enddo
deallocate(tmp_pw)
deallocate(work)
deallocate(e_va)
return
END SUBROUTINE square_root_polaw
SUBROUTINE create_polarization_beta(time, pr, uu, qm)
!this subroutine create the polarization with the strategy beta:
!P_ij(\tau)=\int dr dr' <\omega^{P'}_i(r)U_{v,v'}exp(E_v\tau)\tilde{\omega_v'}(r)*U_{v,v''}\tilde{\omega_v''}(r')
! *U_{c,c'}exp(E_c\tau)\tilde{\omega_c'}(r)U_{c,c''}\tilde{\omega_c''}(r)\omega^{P'}_j(r')
!it makes use of S_{i,vc}=\int dr \omega^{P'}_i(r)\tilde{\omega_v}(r)\tilde{\omega_c}(r)
USE basic_structures, ONLY : wannier_u, free_memory,q_mat, wannier_P
USE times_gw, ONLY : times_freqs
USE io_global, ONLY : stdout
implicit none
REAL(kind=DP), INTENT(in) :: time! imaginary time tau
TYPE(wannier_u), INTENT(in) :: uu!for the energies and trasformation matrix
TYPE(polaw), INTENT(out) :: pr!polarization P(it) to be created
TYPE(q_mat), INTENT(in) :: qm ! for S matrices
INTEGER :: i,j,k, ip, ii, jj
INTEGER :: nums_cond!number of conduction states
INTEGER :: iw,jw
REAL(kind=DP), ALLOCATABLE :: v_val(:,:), exp_table_v(:), v_cond(:,:), exp_table_c(:)
REAL(kind=DP), ALLOCATABLE :: tmp_mat1(:,:), tmp_mat2(:,:)
REAL(kind=DP) :: fermi_en
REAL(kind=DP), ALLOCATABLE :: q(:,:),t(:,:), v(:)
REAL(kind=DP), EXTERNAL :: ddot
write(stdout,*) 'Routine create_polarization_beta'
!0)set polarization structure
pr%ontime=.true.
pr%time=time
pr%numpw=qm%numpw
pr%factor=(0.d0,-1.d0)
!allocate
allocate(pr%pw( pr%numpw,pr%numpw))
pr%pw(:,:) =(0.d0,0.d0)
!1)calculate V_v'v''= U_{vv'}U_{v,v''}exp(E_v \tau}
allocate(v_val(uu%nums_occ(1),uu%nums_occ(1)))
allocate(exp_table_v(uu%nums_occ(1)))
!fermi_en is used to reduce the numerical error
fermi_en=(uu%ene(uu%nums_occ(1)+1,1)+uu%ene(uu%nums_occ(1),1))/2.d0
exp_table_v(1:uu%nums_occ(1))=exp((uu%ene(1:uu%nums_occ(1),1)-fermi_en)*abs(time))
v_val(:,:)=0.d0
allocate(tmp_mat1(uu%nums_occ(1),uu%nums_occ(1)), tmp_mat2(uu%nums_occ(1),uu%nums_occ(1)))
tmp_mat1(1:uu%nums_occ(1),1:uu%nums_occ(1))=dble(uu%umat(1:uu%nums_occ(1),1:uu%nums_occ(1),1))
do i=1,uu%nums_occ(1)
do j=1,uu%nums_occ(1)
tmp_mat2(i,j)=dble(uu%umat(i,j,1))*exp_table_v(i)
enddo
enddo
call dgemm('T','N',uu%nums_occ(1),uu%nums_occ(1),uu%nums_occ(1),1.d0,tmp_mat2,uu%nums_occ(1),tmp_mat1,uu%nums_occ(1),&
&0.d0,v_val,uu%nums_occ(1))
deallocate(tmp_mat1,tmp_mat2)
deallocate(exp_table_v)
!2) calculate V_c'c''= U_{c,c'}U_{c,c''}exp(-E_c \tau}
nums_cond=uu%nums-uu%nums_occ(1)
allocate(v_cond(nums_cond,nums_cond))
allocate(exp_table_c(nums_cond))
exp_table_c(1:nums_cond)=exp((-uu%ene(uu%nums_occ(1)+1:uu%nums,1) +fermi_en)*abs(time))
allocate(tmp_mat1(nums_cond,nums_cond), tmp_mat2(nums_cond,nums_cond))
tmp_mat1(1:nums_cond,1:nums_cond)=dble(uu%umat(uu%nums_occ(1)+1:uu%nums,uu%nums_occ(1)+1:uu%nums,1))
do i=1,nums_cond
do j=1,nums_cond
tmp_mat2(i,j)=dble(uu%umat(uu%nums_occ(1)+i,uu%nums_occ(1)+j,1))*exp_table_c(i)
enddo
enddo
call dgemm('T','N',nums_cond,nums_cond,nums_cond,1.d0,tmp_mat2,nums_cond,tmp_mat1,nums_cond,&
&0.d0,v_cond,nums_cond)
deallocate(tmp_mat1,tmp_mat2)
deallocate(exp_table_c)
do iw=1,pr%numpw
!calculate T_v''c'=S_{i,v'c'}V_{v',v''}
allocate(t(uu%nums_occ(1),nums_cond))
t(:,:)=0.d0
do ip=1,qm%wp(iw)%numij
i=qm%wp(iw)%ij(1,ip)!valence only
j=qm%wp(iw)%ij(2,ip)!valence and conduction
if(i>uu%nums_occ(1)) then
write(stdout,*) 'create_polarization_beta ERROR'
FLUSH(stdout)
stop
endif
!only valence*conduction products are required
if(j>uu%nums_occ(1)) then
do ii=1,uu%nums_occ(1)
t(ii,j-uu%nums_occ(1))=t(ii,j-uu%nums_occ(1))+qm%wp(iw)%o(ip)*v_val(i,ii)
enddo
endif
enddo
!calculate Q v''c''=T_{v''c'}V_{c'c''}
allocate( q(uu%nums_occ(1),nums_cond))
call dgemm('N','N',uu%nums_occ(1),nums_cond,nums_cond,1.d0,t,uu%nums_occ(1),v_cond,nums_cond,0.d0,&
&q,uu%nums_occ(1))
deallocate(t)
!put q on a right order for multiplication with S_{j,v''c''}
!WARNING WARNING ATTENZIONE
!it suppose that the wp(:)%ij are all the same
allocate(v(qm%wp(1)%numij))
v(:)=0.d0
do ip=1,qm%wp(iw)%numij
i=qm%wp(iw)%ij(1,ip)!valence only
j=qm%wp(iw)%ij(2,ip)!valence and conduction
if(j > uu%nums_occ(1)) then
v(ip)=q(i,j-uu%nums_occ(1))
endif
enddo
deallocate(q)
!product with jw
do jw=iw,pr%numpw
pr%pw(iw,jw)= ddot(qm%wp(iw)%numij,qm%wp(jw)%o,1,v,1)
pr%pw(jw,iw)=pr%pw(iw,jw)
enddo
deallocate(v)
enddo
!now spin factor
pr%pw(:,:)=2.d0*pr%pw(:,:)
deallocate(v_val,v_cond)
return
END SUBROUTINE create_polarization_beta
SUBROUTINE create_polarization_upper(uu, tf, prefix)
!this subroutine adds to the polarization the part from upper reduced states
USE basic_structures, ONLY : wannier_u, cprim_prod, free_memory, &
&initialize_memory, upper_states
USE times_gw, ONLY : times_freqs
USE mp_world, ONLY : nproc,mpime
USE io_global, ONLY : stdout
implicit none
TYPE(wannier_u), INTENT(in) :: uu!for the energies
TYPE(times_freqs), INTENT(in) :: tf !for grid on imaginary time
CHARACTER(LEN=256), INTENT(in) :: prefix!to designate the PW files
INTEGER :: l_blk, nbegin, nend
INTEGER :: it,iv,ic, iw, jw
TYPE(upper_states) :: us
TYPE(polaw) :: pp
TYPE(cprim_prod) :: cpp
LOGICAL :: ok_read
REAL(kind=DP), ALLOCATABLE :: exp_table(:)
REAL(kind=DP), ALLOCATABLE :: cpmat_tmp(:,:)
write(stdout,*) 'Routine create_polarization_upper'
!read-in upper states
call initialize_memory(us)
call read_data_pw_upper_states(us,prefix)
allocate(exp_table(us%nums_reduced))
!loop on time
l_blk= (tf%n+1)/nproc
if(l_blk*nproc < (tf%n+1)) l_blk = l_blk+1
nbegin=mpime*l_blk
nend=nbegin+l_blk-1
do it=nbegin,nend
if(it<= tf%n) then
!read polarization
call initialize_polaw(pp)
call read_polaw(it,pp,.false.,.false.)
do iv=1,uu%nums_occ(1)
!loop on v
write(stdout,*) 'STATE', iv
FLUSH(stdout)
!set table of exponentials
do ic=1,us%nums_reduced
exp_table(ic)=exp((uu%ene(iv,1)-us%ene(ic))*tf%times(it))
enddo
call initialize_memory(cpp)
!!read in Svci
cpp%cprim=iv
call read_data_pw_cprim_prod(cpp, prefix, .true., ok_read, .true.,.true.)
!if required allocate polaw
!!!!the following for using blas routine
allocate(cpmat_tmp(us%nums_reduced,cpp%numpw))
call mytranspose(cpp%cpmat, cpp%numpw, cpmat_tmp, us%nums_reduced, cpp%numpw, us%nums_reduced)
do iw=1,cpp%numpw
cpmat_tmp(:,iw)=cpmat_tmp(:,iw)*exp_table(:)
enddo
!!!
!calculate term
! do ic=1,cpp%nums_cond
! do jw=1,cpp%numpw
! do iw=1,cpp%numpw
! pp%pw(iw,jw)=pp%pw(iw,jw)+cpp%cpmat(iw,ic)*cpp%cpmat(jw,ic)*exp_table(ic)
! enddo
! enddo
! enddo
!factor 2 for spin multiplicity
call dgemm('N','N',cpp%numpw,cpp%numpw,us%nums_reduced,2.d0,cpp%cpmat,cpp%numpw,&
&cpmat_tmp,us%nums_reduced,1.d0,pp%pw,cpp%numpw)
deallocate(cpmat_tmp)
call free_memory(cpp)
enddo
!write polaw on file
!
call write_polaw(pp,.false.)
call free_memory_polaw(pp)
else
!just parallelel reading of file
do iv=1,uu%nums_occ(1)
call initialize_memory(cpp)
cpp%cprim=iv
call read_data_pw_cprim_prod(cpp, prefix, .true., ok_read, .true.,.true.)
call free_memory(cpp)
enddo
endif
enddo
deallocate(exp_table)
call free_memory(us)
return
END SUBROUTINE create_polarization_upper
SUBROUTINE calculate_w_g_l(vp,pp,ww,xc_together,l_head_epsilon,head,inv_epsi, &
&l_wing_epsilon, awing, awing_c, l_verbose)
!this subroutine calculates W=(1+vp)^{-1}v
!this is meaningful only on frequency domain
!lapack routines are used
!it use exteded basis for G=0 term
!version for lanczos chain scheme
USE io_global, ONLY : stdout
USE basic_structures, ONLY : v_pot, head_epsilon
implicit none
TYPE(v_pot) :: vp!coulomb potential
TYPE(polaw) :: pp!polarization on imaginary frequency, destroyed on exit
TYPE(polaw) :: ww!dressed interaction to be calculated
LOGICAL :: xc_together!if true the entire W is taken, otherwise W-v
LOGICAL :: l_head_epsilon!if true add to the symmetrized form of the dielectric matrix
!the head terms
REAL(kind=DP) :: head(3)!term (G=0,G=0) of the symmetric dielectric matrix
REAL(kind=DP), INTENT(out) :: inv_epsi!head of the inverse dielectric matrix
LOGICAL, INTENT(in) :: l_wing_epsilon!if true calculate the wings of the symmetrized dielectric matrix
REAL(kind=DP), DIMENSION(pp%numpw,3) :: awing!the terms A_ij wing_j
REAL(kind=DP), DIMENSION(pp%numpw,3) :: awing_c!the terms A_ij wing_j
LOGICAL, INTENT(in) :: l_verbose
INTEGER iw,jw,kw,ipol
REAL(kind=DP), ALLOCATABLE, DIMENSION(:,:) :: dtmp!temporary array
INTEGER, ALLOCATABLE, DIMENSION(:) :: ipiv
INTEGER :: info
REAL(kind=DP),ALLOCATABLE, DIMENSION(:) :: work
INTEGER :: lwork
REAL(kind=DP) sca
REAL(kind=DP) :: workd(1)
REAL(kind=DP) alpha
REAL(kind=DP) head_v
REAL(kind=DP), ALLOCATABLE :: pw_save(:,:)
!deallocate if the case
call free_memory_polaw(ww)
!check and set
if(pp%ontime) then
write(stdout,*) 'Routine calculate_w: frequencies required'
stop
endif
if(pp%numpw /= vp%numpw) then
write(stdout,*) 'Routine calculate_w: basis set does not correspond',pp%numpw,vp%numpw
stop
endif
ww%ontime=.false.
ww%time=pp%time
ww%label=pp%label
ww%numpw=pp%numpw
allocate(ww%pw(ww%numpw,ww%numpw))
allocate(dtmp(ww%numpw,ww%numpw))
allocate(ipiv(ww%numpw))
ww%pw(:,:)=0.d0
allocate(pw_save(pp%numpw,pp%numpw))
do ipol=1,3
if(l_verbose) write(stdout,*) 'MAX P:', maxval(pp%pw(:,:)), 'MIN P:', minval(pp%pw(:,:))
FLUSH(stdout)
if(ipol==1) then
pw_save(:,:)=pp%pw(:,:)
else
pp%pw(:,:)=pw_save(:,:)
endif
dtmp(:,:)=0.d0
head_v=vp%vmat(vp%numpw,vp%numpw)
!DEBUG
if(l_verbose) write(stdout,*) 'IRR POLA HEAD', pp%pw(pp%numpw,pp%numpw)
if(l_verbose) write(stdout,*) 'IRR POLA FIRST', pp%pw(1,1), l_wing_epsilon
! vp%vmat(vp%numpw,1:vp%numpw)=0.d0 !ATTENZIONE DEBUG
! vp%vmat(1:vp%numpw,vp%numpw)=0.d0
pp%pw(pp%numpw,1:pp%numpw)=0.d0
pp%pw(1:pp%numpw,pp%numpw)=0.d0
if(l_wing_epsilon) then!ATTENZIONE
! 0',i ',0'
do iw=1,ww%numpw-1
pp%pw(ww%numpw,iw)=awing(iw,ipol)
pp%pw(iw,ww%numpw)=pp%pw(ww%numpw,iw)
enddo
endif
!symmetric case calculates -v^1/2 P v^1/2
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,-1.d0*dble(pp%factor),&
&vp%vmat,ww%numpw,pp%pw,ww%numpw,0.d0,dtmp,ww%numpw)
pp%pw(1:ww%numpw,1:ww%numpw)=dtmp(1:ww%numpw,1:ww%numpw)
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& pp%pw,ww%numpw,vp%vmat,ww%numpw,0.d0,dtmp,ww%numpw)
!if required add the head
if(l_head_epsilon) then
!term O',0' 0',i i,0'
dtmp(ww%numpw,ww%numpw)= head(ipol)
if(l_verbose) write(stdout,*) 'APPLYING HEAD', head!DEBUG
endif
do iw=1,ww%numpw
dtmp(iw,iw)=dtmp(iw,iw)+1.d0
enddo
!inverse zmat
if(l_verbose) write(stdout,*) 'MAX D:', maxval(dtmp(:,:)), 'MIN D', minval(dtmp(:,:))
if(l_verbose) write(stdout,*) 'Before inversion'
FLUSH(stdout)
call dgetrf(ww%numpw,ww%numpw,dtmp,ww%numpw,ipiv,info)
if(info /= 0) then
write(stdout,*) 'Routine calculate_w: problem with dgetrf :', info
stop
endif
if(l_verbose) write(stdout,*) 'Before inversion2'
FLUSH(stdout)
call dgetri(ww%numpw,dtmp,ww%numpw,ipiv,workd,-1,info)
if(l_verbose) write(stdout,*) 'Dimension', workd,ww%numpw,info!ATTENZIONE
FLUSH(stdout)
allocate(work(int(workd(1))))
call dgetri(ww%numpw,dtmp,ww%numpw,ipiv,work,int(workd(1)),info)
if(l_verbose) write(stdout,*) 'Out of dgetri'
FLUSH(stdout)
if(l_verbose) write(stdout,*) 'MAX D1:', maxval(dtmp(:,:)), 'MIN D1:', minval(dtmp(:,:))
if(info /= 0) then
write(stdout,*) 'Routine calculate_w: problem with zgetri :', info
stop
endif
if(.not.xc_together) then
do iw=1,ww%numpw
dtmp(iw,iw)=dtmp(iw,iw)-1.d0
enddo
endif
inv_epsi=0.d0
!term i,j
!term 0',0'
inv_epsi=dtmp(ww%numpw,ww%numpw)
write(stdout,*) 'INV EPSI G=0,G=0', inv_epsi, head_v
FLUSH(stdout)
vp%vmat(vp%numpw,vp%numpw)=head_v
dtmp(ww%numpw,1:ww%numpw-1)=0.d0
dtmp(1:ww%numpw-1,ww%numpw)=0.d0
!DEBUG
! dtmp(:,:)=0.d0
! do iw=1,ww%numpw
! dtmp(iw,iw)=inv_epsi
! enddo
! dtmp(ww%numpw,ww%numpw)=0.d0
!DEBUG
if(l_verbose) write(stdout,*) 'MAX D2:', maxval(dtmp(:,:)), 'MIN D2:', minval(dtmp(:,:))
FLUSH(stdout)
!calculates v^1/2 (e-1-1)v^1/2
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& vp%vmat,ww%numpw,dtmp,ww%numpw,0.d0,pp%pw,ww%numpw)
call dgemm('N','N',ww%numpw,ww%numpw,ww%numpw,1.d0,&
& pp%pw,ww%numpw,vp%vmat,ww%numpw,1.d0,ww%pw,ww%numpw)
if(l_verbose) write(stdout,*) 'MAX W:', maxval(ww%pw(:,:)), 'MIN W:', minval(ww%pw(:,:))
FLUSH(stdout)
deallocate(work)
enddo
deallocate(pw_save)
ww%pw(:,:)=ww%pw(:,:)/3.d0
! ww%pw(1:ww%numpw-1,1:ww%numpw-1)=0.d0
! ww%pw(:,ww%numpw)=0.d0
ww%factor=(1.d0,0.d0)
if(l_verbose) write(stdout,*) 'MAX:', maxval(ww%pw(:,:)), 'MIN:', minval(ww%pw(:,:))
FLUSH(stdout)
deallocate(dtmp,ipiv)
return
END SUBROUTINE calculate_w_g_l
END MODULE polarization
| gpl-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.