repo_name
stringlengths
7
81
path
stringlengths
4
224
copies
stringclasses
221 values
size
stringlengths
4
7
content
stringlengths
975
1.04M
license
stringclasses
15 values
prool/ccx_prool
CalculiX/ccx_2.17/src/designvariabless.f
1
3623
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2020 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine designvariabless(inpc,textpart,tieset,tietol,istep, & istat,n,iline,ipol,inl,ipoinp,inp,ntie,ntie_,ipoinpc, & set,nset,ier) ! ! reading the input deck: *DESIGNVARIABLES ! implicit none ! character*1 inpc(*) character*81 tieset(3,*),set(*) character*132 textpart(16) ! integer istep,istat,n,i,key,ipos,iline,ipol,inl,ipoinp(2,*), & inp(3,*),ntie,ntie_,ipoinpc(0:*),nset,itype,ier ! real*8 tietol(3,*) ! ! Check of correct position in Inputdeck ! if(istep.gt.0) then write(*,*) '*ERROR reading *DESIGN VARIABLES: *DESIGNVARIABLES' write(*,*) ' should be placed before all step definitions' ier=1 return endif ! ! Check of correct number of ties ! ntie=ntie+1 if(ntie.gt.ntie_) then write(*,*) '*ERROR reading *DESIGN VARIABLES: increase ntie_' ier=1 return endif ! ! Read in *DESIGNVARIABLES ! itype=0 do i=2,n if(textpart(i)(1:5).eq.'TYPE=') then read(textpart(i)(6:85),'(a80)',iostat=istat) & tieset(1,ntie)(1:80) if(istat.gt.0) then call inputerror(inpc,ipoinpc,iline, & "*DESIGNVARIABLE%",ier) return endif itype=1 endif enddo ! if(itype.eq.0) then write(*,*) &'*ERROR reading *DESIGN VARIABLES: type is lacking' call inputerror(inpc,ipoinpc,iline, & "*DESIGNVARIABLE%",ier) return endif ! ! Add "D" at the end of the name of the designvariable keyword ! tieset(1,ntie)(81:81)='D' ! if(tieset(1,ntie)(1:10).eq.'COORDINATE') then call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) if((istat.lt.0).or.(key.eq.1)) then write(*,*) &'*ERROR reading *DESIGN VARIABLES: definition' write(*,*) ' is not complete.' ier=1 return endif ! ! Read the name of the design variable node set ! tieset(2,ntie)(1:81)=textpart(1)(1:81) ipos=index(tieset(2,ntie),' ') tieset(2,ntie)(ipos:ipos)='N' ! ! Check existence of the node set ! do i=1,nset if(set(i).eq.tieset(2,ntie)) exit enddo if(i.gt.nset) then write(*,*) '*ERROR reading *DESIGN VARIABLES' write(*,*) 'node set ',tieset(2,ntie)(1:ipos-1), & 'does not exist. Card image:' call inputerror(inpc,ipoinpc,iline, & "*DESIGN VARIABLES%",ier) return endif endif ! call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) ! return end
gpl-2.0
techno/gcc-mist32
gcc/testsuite/gfortran.dg/deferred_type_param_5.f90
136
1180
! { dg-do compile } ! ! PR fortran/49110 ! PR fortran/52843 ! ! Based on a contributed code by jwmwalrus@gmail.com ! ! Before, character(len=:) result variable were rejected in PURE functions. ! module mod1 use iso_c_binding implicit none contains pure function c_strlen(str) character(KIND = C_CHAR), intent(IN) :: str(*) integer :: c_strlen,i i = 1 do if (i < 1) then c_strlen = 0 return end if if (str(i) == c_null_char) exit i = i + 1 end do c_strlen = i - 1 end function c_strlen pure function c2fstring(cbuffer) result(string) character(:), allocatable :: string character(KIND = C_CHAR), intent(IN) :: cbuffer(*) integer :: i continue string = REPEAT(' ', c_strlen(cbuffer)) do i = 1, c_strlen(cbuffer) if (cbuffer(i) == C_NULL_CHAR) exit string(i:i) = cbuffer(i) enddo string = TRIM(string) end function end module mod1 use mod1 character(len=:), allocatable :: str str = c2fstring("ABCDEF"//c_null_char//"GHI") if (len(str) /= 6 .or. str /= "ABCDEF") call abort() end
gpl-2.0
prool/ccx_prool
ARPACK/EXAMPLES/BAND/dnbdr2.f
3
12107
program dnbdr2 c c ... Construct matrices A in LAPACK-style band form. c The matrix A is derived from the discretization of c the 2-d convection-diffusion operator c c -Laplacian(u) + rho*partial(u)/partial(x). c c on the unit square with zero Dirichlet boundary condition c using standard central difference. c c ... Define the shift SIGMA = (SIGMAR, SIGMAI). c c ... Call DNBAND to find eigenvalues LAMBDA closest to SIGMA c such that c A*x = LAMBDA*x. c c ... Use mode 3 of DNAUPD. c c\BeginLib c c\Routines called: c dnband ARPACK banded eigenproblem solver. c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully. c dlaset LAPACK routine to initialize a matrix to zero. c daxpy Level 1 BLAS that computes y <- alpha*x+y. c dnrm2 Level 1 BLAS that computes the norm of a vector. c dgbmv Level 2 BLAS that computes the band matrix vector product c c\Author c Richard Lehoucq c Danny Sorensen c Chao Yang c Dept. of Computational & c Applied Mathematics c Rice University c Houston, Texas c c\SCCS Information: %Z% c FILE: %M% SID: %I% DATE OF SID: %G% RELEASE: %R% c c\Remarks c 1. None c c\EndLib c c--------------------------------------------------------------------- c c %-------------------------------------% c | Define leading dimensions for all | c | arrays. | c | MAXN - Maximum size of the matrix | c | MAXNEV - Maximum number of | c | eigenvalues to be computed | c | MAXNCV - Maximum number of Arnoldi | c | vectors stored | c | MAXBDW - Maximum bandwidth | c %-------------------------------------% c integer maxn, maxnev, maxncv, maxbdw, lda, & lworkl, ldv parameter ( maxn = 1000, maxnev = 25, maxncv=50, & maxbdw=50, lda = maxbdw, ldv = maxn ) c c %--------------% c | Local Arrays | c %--------------% c integer iparam(11), iwork(maxn) logical select(maxncv) Double precision & a(lda,maxn), m(lda,maxn), rfac(lda,maxn), & workl(3*maxncv*maxncv+6*maxncv), workd(3*maxn), & workev(3*maxncv), v(ldv, maxncv), & resid(maxn), d(maxncv, 3), ax(maxn) Complex*16 & cfac(lda, maxn), workc(maxn) c c %---------------% c | Local Scalars | c %---------------% c character which*2, bmat integer nev, ncv, ku, kl, info, i, j, ido, & n, nx, lo, idiag, isub, isup, mode, maxitr, & nconv logical rvec, first Double precision & tol, rho, h2, h, sigmar, sigmai c c %------------% c | Parameters | c %------------% c Double precision & one, zero, two parameter (one = 1.0D+0, zero = 0.0D+0, & two = 2.0D+0) c c %-----------------------------% c | BLAS & LAPACK routines used | c %-----------------------------% c Double precision & dlapy2, dnrm2 external dlapy2, dnrm2, daxpy, dgbmv c c %--------------------% c | Intrinsic function | c %--------------------% c intrinsic abs c c %-----------------------% c | Executable Statements | c %-----------------------% c c %-------------------------------------------------% c | The number NX is the number of interior points | c | in the discretization of the 2-dimensional | c | convection-diffusion operator on the unit | c | square with zero Dirichlet boundary condition. | c | The number N(=NX*NX) is the dimension of the | c | matrix. A standard eigenvalue problem is | c | solved (BMAT = 'I'). NEV is the number of | c | eigenvalues (closest to (SIGMAR,SIGMAI)) to be | c | approximated. Since the shift-invert moded is | c | used, WHICH is set to 'LM'. The user can modify | c | NX, NEV, NCV, SIGMAR, SIGMAI to solve problems | c | of different sizes, and to get different parts | c | the spectrum. However, The following conditions | c | must be satisfied: | c | N <= MAXN | c | NEV <= MAXNEV | c | NEV + 2 <= NCV <= MAXNCV | c %-------------------------------------------------% c nx = 10 n = nx*nx nev = 4 ncv = 20 if ( n .gt. maxn ) then print *, ' ERROR with _NBDR2: N is greater than MAXN ' go to 9000 else if ( nev .gt. maxnev ) then print *, ' ERROR with _NBDR2: NEV is greater than MAXNEV ' go to 9000 else if ( ncv .gt. maxncv ) then print *, ' ERROR with _NBDR2: NCV is greater than MAXNCV ' go to 9000 end if bmat = 'I' which = 'LM' sigmar = 1.0D+4 sigmai = 0.0D+0 c c %-----------------------------------------------------% c | The work array WORKL is used in DNAUPD as | c | workspace. Its dimension LWORKL is set as | c | illustrated below. The parameter TOL determines | c | the stopping criterion. If TOL<=0, machine | c | precision is used. The variable IDO is used for | c | reverse communication, and is initially set to 0. | c | Setting INFO=0 indicates that a random vector is | c | generated in DNAUPD to start the Arnoldi iteration. | c %-----------------------------------------------------% c lworkl = 3*ncv**2+6*ncv tol = zero ido = 0 info = 0 c c %---------------------------------------------------% c | IPARAM(3) specifies the maximum number of Arnoldi | c | iterations allowed. Mode 3 of DNAUPD is used | c | (IPARAM(7) = 3). All these options can be changed | c | by the user. For details, see the documentation | c | in DNBAND. | c %---------------------------------------------------% c maxitr = 300 mode = 3 c iparam(3) = maxitr iparam(7) = mode c c %----------------------------------------% c | Construct the matrix A in LAPACK-style | c | banded form. | c %----------------------------------------% c c %-------------------------------------% c | KU, KL are number of superdiagonals | c | and subdiagonals within the band of | c | matrices A. | c %-------------------------------------% c kl = nx ku = nx call dlaset('A', 2*kl+ku+1, n, zero, zero, a, lda) call dlaset('A', 2*kl+ku+1, n, zero, zero, m, lda) call dlaset('A', 2*kl+ku+1, n, zero, zero, rfac, lda) c c %---------------% c | Main diagonal | c %---------------% c h = one / dble(nx+1) h2 = h*h c idiag = kl+ku+1 do 30 j = 1, n a(idiag,j) = 4.0D+0 / h2 30 continue c c %-------------------------------------% c | First subdiagonal and superdiagonal | c %-------------------------------------% c isup = kl+ku isub = kl+ku+2 rho = 1.0D+1 do 50 i = 1, nx lo = (i-1)*nx do 40 j = lo+1, lo+nx-1 a(isub,j+1) = -one/h2 + rho/two/h a(isup,j) = -one/h2 - rho/two/h 40 continue 50 continue c c %------------------------------------% c | KL-th subdiagonal and KU-th super- | c | diagonal. | c %------------------------------------% c isup = kl+1 isub = 2*kl+ku+1 do 80 i = 1, nx-1 lo = (i-1)*nx do 70 j = lo+1, lo+nx a(isup,nx+j) = -one / h2 a(isub,j) = -one / h2 70 continue 80 continue c c %------------------------------------------------% c | Call ARPACK banded solver to find eigenvalues | c | and eigenvectors. The real parts of the | c | eigenvalues are returned in the first column | c | of D, the imaginary parts are returned in the | c | second column of D. Eigenvectors are returned | c | in the first NCONV (=IPARAM(5)) columns of V. | c %------------------------------------------------% c rvec = .true. call dnband(rvec, 'A', select, d, d(1,2), v, ldv, sigmar, & sigmai, workev, n, a, m, lda, rfac, cfac, kl, ku, & which, bmat, nev, tol, resid, ncv, v, ldv, iparam, & workd, workl, lworkl, workc, iwork, info) c if ( info .eq. 0) then c c %-----------------------------------% c | Print out convergence information | c %-----------------------------------% c nconv = iparam(5) c print *, ' ' print *, ' _NBDR2 ' print *, ' ====== ' print *, ' ' print *, ' The size of the matrix is ', n print *, ' Number of eigenvalue requested is ', nev print *, ' The number of Arnoldi vectors generated', & ' (NCV) is ', ncv print *, ' The number of converged Ritz values is ', & nconv print *, ' What portion of the spectrum ', which print *, ' The number of Implicit Arnoldi ', & ' update taken is ', iparam(3) print *, ' The number of OP*x is ', iparam(9) print *, ' The convergence tolerance is ', tol print *, ' ' c c %----------------------------% c | Compute the residual norm. | c | || A*x - lambda*x || | c %----------------------------% c first = .true. do 90 j = 1, nconv c if ( d(j,2) .eq. zero ) then c c %--------------------% c | Ritz value is real | c %--------------------% c call dgbmv('Notranspose', n, n, kl, ku, one, & a(kl+1,1), lda, v(1,j), 1, zero, & ax, 1) call daxpy(n, -d(j,1), v(1,j), 1, ax, 1) d(j,3) = dnrm2(n, ax, 1) d(j,3) = d(j,3) / abs(d(j,1)) c else if ( first ) then c c %------------------------% c | Ritz value is complex | c | Residual of one Ritz | c | value of the conjugate | c | pair is computed. | c %------------------------% c call dgbmv('Notranspose', n, n, kl, ku, one, & a(kl+1,1), lda, v(1,j), 1, zero, & ax, 1) call daxpy(n, -d(j,1), v(1,j), 1, ax, 1) call daxpy(n, d(j,2), v(1,j+1), 1, ax, 1) d(j,3) = dnrm2(n, ax, 1) call dgbmv('Notranspose', n, n, kl, ku, one, & a(kl+1,1), lda, v(1,j+1), 1, zero, & ax, 1) call daxpy(n, -d(j,1), v(1,j+1), 1, ax, 1) call daxpy(n, -d(j,2), v(1,j), 1, ax, 1) d(j,3) = dlapy2( d(j,3), dnrm2(n, ax, 1) ) d(j,3) = d(j,3) / dlapy2(d(j,1),d(j,2)) d(j+1,3) = d(j,3) first = .false. else first = .true. end if c 90 continue call dmout(6, nconv, 3, d, maxncv, -6, & 'Ritz values (Real,Imag) and relative residuals') else c c %-------------------------------------% c | Either convergence failed, or there | c | is error. Check the documentation | c | for DNBAND. | c %-------------------------------------% c print *, ' ' print *, ' Error with _nband, info= ', info print *, ' Check the documentation of _nband ' print *, ' ' c end if c 9000 end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.17/src/sigini.f
1
1905
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2020 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine sigini(sigma,coords,ntens,ncrds,noel,npt,layer, & kspt,lrebar,rebarn) ! ! user subroutine sigini ! ! INPUT: ! ! coords coordinates of the integration point ! ntens number of stresses to be defined ! ncrds number of coordinates ! noel element number ! npt integration point number ! layer currently not used ! kspt currently not used ! lrebar currently not used (value: 0) ! rebarn currently not used ! ! OUTPUT: ! ! sigma(1..ntens) residual stress values in the integration ! point. If ntens=6 the order of the ! components is 11,22,33,12,13,23 ! implicit none ! character*80 rebarn integer ntens,ncrds,noel,npt,layer,kspt,lrebar real*8 sigma(*),coords(*) ! sigma(1)=-100.d0*coords(2) sigma(2)=-100.d0*coords(2) sigma(3)=-100.d0*coords(2) sigma(4)=0.d0 sigma(5)=0.d0 sigma(6)=0.d0 ! return end
gpl-2.0
freedesktop-unofficial-mirror/gstreamer-sdk__gcc
gcc/testsuite/gfortran.dg/achar_5.f90
181
1818
! { dg-do compile } ! program test print *, char(255) print *, achar(255) print *, char(255,kind=1) print *, achar(255,kind=1) print *, char(255,kind=4) print *, achar(255,kind=4) print *, char(0) print *, achar(0) print *, char(0,kind=1) print *, achar(0,kind=1) print *, char(0,kind=4) print *, achar(0,kind=4) print *, char(297) ! { dg-error "too large for the collating sequence" } print *, achar(297) ! { dg-error "too large for the collating sequence" } print *, char(297,kind=1) ! { dg-error "too large for the collating sequence" } print *, achar(297,kind=1) ! { dg-error "too large for the collating sequence" } print *, char(297,kind=4) print *, achar(297,kind=4) print *, char(-1) ! { dg-error "negative" } print *, achar(-1) ! { dg-error "negative" } print *, char(-1,kind=1) ! { dg-error "negative" } print *, achar(-1,kind=1) ! { dg-error "negative" } print *, char(-1,kind=4) ! { dg-error "negative" } print *, achar(-1,kind=4) ! { dg-error "negative" } print *, char(huge(0_8)) ! { dg-error "too large for the collating sequence" } print *, achar(huge(0_8)) ! { dg-error "too large for the collating sequence" } print *, char(huge(0_8),kind=1) ! { dg-error "too large for the collating sequence" } print *, achar(huge(0_8),kind=1) ! { dg-error "too large for the collating sequence" } print *, char(huge(0_8),kind=4) ! { dg-error "too large for the collating sequence" } print *, achar(huge(0_8),kind=4) ! { dg-error "too large for the collating sequence" } print *, char(z'FFFFFFFF', kind=4) print *, achar(z'FFFFFFFF', kind=4) print *, char(z'100000000', kind=4) ! { dg-error "too large for the collating sequence" } print *, achar(z'100000000', kind=4) ! { dg-error "too large for the collating sequence" } end program test
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/moehring.f
1
16295
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine moehring (node1,node2,nodem,nelem,lakon,kon,ipkon, & nactdog,identity,ielprop,prop,iflag,v,xflow,f, & nodef,idirf,df,cp,R,dvi,numf,set,mi,ttime,time,iaxial) ! ! moehring element ! This subroutines computes the evolution of the core swirl ratio ! for a disc stator system with either centrifugal or centripetal ! flow. ! Theoretical explanations can be found in ! "Untersuchung dfes radialen Druckverlaufes und des übertragenen ! drehmomentes im Radseitenraum von Kreiselpumpen bei glatter, ! ebene Radwand und bei Anvendung von Rückenschaufeln" ! Uwe Klaus Möhring , Dissertation, ! An der Üniversität Carolo-Wilhelmina zu Braunschweig 1976 ! ! author: Yannick Muller ! implicit none ! logical identity character*8 lakon(*) character*81 set(*) ! integer nelem,nactdog(0:3,*),node1,node2,nodem,numf, & ielprop(*),nodef(*),idirf(*),index,iflag,iaxial, & ipkon(*),kon(*),kgas,key,neval,ier,limit,lenw,last, & iwork2(400),node_up,node_down,mi(*) ! real*8 prop(*),v(0:mi(2),*),xflow,f,df(*),r,dvi,pi, & R_min, R_max,cr, R_shroud,rsrmax,gap,swirl_up, & pup,pdown,tup,tdown,kappa,cp,ttime,time, & Rup,Rdown,K0,Kup,Cq,Re_phi,phi,lambda1, lambda2, & a,b,epsabs, & epsrel,result,abserr,work(1200),zk0,T1,T2,P1,P2,Pr, & qred_crit,omega,rurd,C_p,Cm,Mr,f_k,f_t,f_p,f_m,f_cm, & pdiff,pdiff_min,xflow_0,Cq_0,phi_0 ! external dKdX,dKdP,dkdT,dKdm,f_k,f_t,f_p,f_m,f_cm ! ! numf=4 ! if(iflag.eq.0) then identity=.true. ! if(nactdog(2,node1).ne.0)then identity=.false. elseif(nactdog(2,node2).ne.0)then identity=.false. elseif(nactdog(1,nodem).ne.0)then identity=.false. endif ! elseif(iflag.eq.1)then ! pi=4.d0*datan(1.d0) kappa=(cp/(cp-R)) index=ielprop(nelem) qred_crit=dsqrt(kappa/R)* & (1+0.5d0*(kappa-1))**(-0.5*(kappa+1)/(kappa-1)) ! ! Because there is no explicit expression relating massflow ! to pressure loss for möhrings ! initial mass flow is set to arbitrarily ! with consideration to flow direction ! node1=kon(ipkon(nelem)+1) node2=kon(ipkon(nelem)+3) p1=v(2,node1) p2=v(2,node2) T1=v(0,node1) T2=v(0,node2) ! ! fictious cross section ! A=1E-5 if(p1.gt.p2) then xflow=1/dsqrt(T1)*P1*qred_crit*0.5d0 else xflow=-1/dsqrt(T1)*P1*qred_crit*0.5d0 endif ! elseif(iflag.eq.2)then ! numf=4 index=ielprop(nelem) pi=4.d0*datan(1.d0) ! ! Cr Cr=0.315 ! ! minimal disc radius R_min=prop(index+1) ! ! maximal disc radius R_max=prop(index+2) ! ! R_min/R_max Rurd=R_min/R_max ! ! disc/stator gap gap=prop(index+3) ! ! shroud radius R_shroud=prop(index+4) ! ! R_schroud/R_max rsrmax=R_shroud/R_max ! ! defining flow parameters ! ! massflow xflow=v(1,nodem)*iaxial ! ! upstream node node_up=nint(prop(index+5)) ! ! downstream node node_down=nint(prop(index+6)) ! ! centripetal if(lakon(nelem)(2:5).eq.'MRGP') then if(xflow.lt.0d0) then xflow=-xflow endif ! Rup=R_max Rdown=R_min ! nodef(1)=node_up nodef(2)=node_up nodef(3)=nodem nodef(4)=node_down ! ! centrifugal elseif(lakon(nelem)(2:5).eq.'MRGF') then if(xflow.gt.0d0) then xflow=-xflow endif ! Rup=R_min Rdown=R_max ! ! if(xflow.gt.0) then nodef(1)=node_up nodef(2)=node_up nodef(3)=nodem nodef(4)=node_down endif ! ! upstream pressure pup=v(2,node_up) ! ! downstream pressure pdown=v(2,node_down) ! ! Upstream temperature Tup=v(0,node_up) ! ! downstream temperature Tdown=v(0,node_down) ! idirf(1)=2 idirf(2)=0 idirf(3)=1 idirf(4)=2 ! ! rotation related parameters ! ! rotation ! omega=prop(index+7) ! ! swirl at R_upstream swirl_up=prop(index+8) ! ! core swirl ratio when xflow=0 K0=1/(1+(rsrmax**3.6* & (rsrmax+4.6*gap/R_max))**(4.d0/7.d0)) ! ! core swirl ratio at R_inlet Kup=swirl_up/(omega*Rup) ! ! dynamic_viscosity ! kgas=0 ! call dynamic_viscosity(kgas,Tup,dvi) if(dabs(dvi).lt.1E-30) then write(*,*) '*ERROR in moehring: ' write(*,*) ' no dynamic viscosity defined' write(*,*) ' dvi= ',dvi call exit(201) c kgas=0 c call dynamic_viscosity(kgas,Tup,dvi) endif ! ! defining common coefficients ! Cq=xflow*R*Tup/(Pup*omega*(R_max)**3) ! Re_phi=(omega*R_max**2*Pup)/(dvi*R*Tup) ! phi=Cq*(Re_phi)**0.2d0 ! zk0=(1-K0)/K0 ! ! lambda1 lambda1=(R_max-R_min)/dabs(R_max-R_min)*Pi*Cr/4* & (dvi*R/(omega*R_max**2)**0.2d0*(omega*R_max**3)/R) ! ! lambda2 lambda2=2d0*R/(omega**2*R_max**2) ! !************************************************************************* ! integration of K(X),dKdp(X),dKdT(X),dKdm(X) limit=201 lenw=5*limit ! ! if(lakon(nelem)(2:5).eq.'MRGF') then !xflow.lt.0d0) then ! ! lower integration boundary a=rurd ! ! upper integration boundary b=1d0 ! ! elseif(lakon(nelem)(2:5).eq.'MRGP') then ! ! lower integration boundary ! a=1d0 ! ! upper integration boundary ! b=rurd ! endif ! ! absolute error epsabs=1E-7 ! ! relative error epsrel=1E-7 ! ! choice for local integration rule key=1 ! ! determining minimal pressure difference for xflow<<1 ! if(lakon(nelem)(2:5).eq.'MRGF')then xflow_0=-0.00000003E-3 elseif(lakon(nelem)(2:5).eq.'MRGP') then xflow_0=0.00000003E-3 endif ! Cq_0=xflow_0*R*Tup/(Pup*omega*(R_max)**3) ! phi_0=Cq_0*(Re_phi)**0.2d0 ! call dqag(f_k,a,b,epsabs,epsrel,key,result,abserr,neval,ier, & limit,lenw,last,iwork2,work,phi_0,lambda1,zk0,Pup,Tup, & rurd,xflow_0,kup) ! ! pressure coefficient C_p=2*result pdiff_min=C_p*Pup/(4*R*Tup)*omega**2*R_max**2 pdiff=dabs(pdown-pup) ! ! K(x) ! call dqag(f_k,a,b,epsabs,epsrel,key,result,abserr,neval,ier, & limit,lenw,last,iwork2,work,phi,lambda1,zk0,Pup,Tup,rurd, & xflow,kup) ! ! residual ! if(lakon(nelem)(2:5).eq.'MRGF') then f=lambda2*(Pdown-Pup)/(Pdown+Pup)*Tup-result elseif(lakon(nelem)(2:5).eq.'MRGP') then f=lambda2*(Pup-Pdown)/(Pup+Pdown)*Tup-result endif ! ! pressure coefficient C_p=2*result ! ! moment coefficient call dqag(f_cm,a,b,epsabs,epsrel,key,result,abserr,neval,ier, & limit,lenw,last,iwork2,work,phi,lambda1,zk0,Pup,Tup,rurd, & xflow,kup) ! Cm=0.5d0*Pi*Cr*Re_phi**(-0.2d0)*result Mr=0.5d0*Cm*(Pup/1000d0/(R*Tup))*omega**2*R_max**5 Pr=Mr*omega ! ! pressure ! call dqag(f_p,a,b,epsabs,epsrel,key,result,abserr,neval,ier, & limit,lenw,last,iwork2,work,phi,lambda1,zk0,Pup,Tup,rurd, & xflow,kup) ! ! partial derivative (upstream pressure) ! if(lakon(nelem)(2:5).eq.'MRGF') then df(1)=-2*lambda2**Pdown/(Pdown+Pup)**2*Tup-result elseif(lakon(nelem)(2:5).eq.'MRGP') then df(1)=2*lambda2**Pdown/(Pdown+Pup)**2*Tup-result endif ! ! temperature ! call dqag(f_t,a,b,epsabs,epsrel,key,result,abserr,neval,ier, & limit,lenw,last,iwork2,work,phi,lambda1,zk0,Pup,Tup,rurd, & xflow,kup) ! ! partial derivative (upstream temperature) if(lakon(nelem)(2:5).eq.'MRGF') then df(2)=lambda2**(Pdown-Pup)/(Pdown+Pup)-result elseif(lakon(nelem)(2:5).eq.'MRGP') then df(2)=lambda2**(Pup-Pdown)/(Pdown+Pup)-result endif ! ! mass flow ! call dqag(f_m,a,b,epsabs,epsrel,key,result,abserr,neval,ier, & limit,lenw,last,iwork2,work,phi,lambda1,zk0,Pup,Tup,rurd, & xflow,kup) ! ! partial derivative (mass flow) df(3)=-result ! ! pressure ! partial derivative (downstream pressure) if(lakon(nelem)(2:5).eq.'MRGF') then df(4)=2*lambda2**Pup/(Pdown+Pup)**2*Tup elseif(lakon(nelem)(2:5).eq.'MRGP') then df(4)=-2*lambda2**Pup/(Pdown+Pup)**2*Tup endif ! endif ! xflow=xflow/iaxial df(3)=df(3)*iaxial ! return end ! ****************************************************************************** function f_k(x,phi,lambda1,zk0,Pup,Tup,rurd,xflow,kup) ! implicit none integer neq,idid,ipar,iwork(100),lrw,liw,j real*8 f_k,x,rpar(8),rtol,atol,y(1),info(15), & Rurd,zk0,lambda1,Kup,xflow,pup,tup,phi,t,rwork(160) ! external dKdX ! ! storing the parameters rpar(1)=phi rpar(3)=zk0 ! ! relative error rtol=1.d-7 ! absolute error atol=1.d-7 ! ! initial value if(xflow.lt.0d0) then t=rurd else t=1.d0 endif neq=1 ! ! initialisation info field do j=1,15 info(j)=0 enddo ! initial condition f(0) ! core swirl ratio at Rup repectively Rdown depending ! on the type of element centrifugal or centripetal ! y(1)= Kup ! lrw=160 liw=60 ! ! solving the differential equation Möhring 3.35 ! dK/dX=f(K(X)) ! if(dabs(xflow).gt.1E-6) then call ddeabm(dKdX,neq,t,y,x,info,rtol,atol,idid, & rwork,lrw,iwork,liw,rpar,ipar) else y(1)=1/(Zk0+1) endif ! f_k=y(1)**2*x ! return end ****************************************************************************** function f_p(x,phi,lambda1,zk0,Pup,Tup,rurd,xflow,kup) ! implicit none integer neq,idid,ipar,iwork(100),lrw,liw,j real*8 f_p,x,rpar(8),rtol,atol,y(1),info(15),Rurd, & zk0,lambda1,Kup,xflow,pup,tup,phi,t,rwork(160) ! external dKdp ! storing the parameters rpar(1)=phi rpar(2)=lambda1 rpar(3)=zk0 rpar(4)=Pup rpar(5)=Tup rpar(6)=rurd rpar(7)=xflow rpar(8)=kup ! ! relative error rtol=1.d-7 ! absolute error atol=1.d-7 ! ! initial value if(xflow.lt.0d0) then t=rurd else t=1.d0 endif neq=1 ! ! initialisation info field do j=1,15 info(j)=0 enddo ! initial condition f(0) ! core swirl ratio at Rup ! y(1)= 0d0 ! lrw=160 liw=60 ! call ddeabm(dKdp,neq,t,y,x,info,rtol,atol,idid, & rwork,lrw,iwork,liw,rpar,ipar) ! f_p=2*y(1)*x ! return end ***************************************************************************** function f_t(x,phi,lambda1,zk0,Pup,Tup,rurd,xflow,kup) ! implicit none integer neq,idid,ipar,iwork(100),lrw,liw,j real*8 f_t,x,rpar(8),rtol,atol,y(1),info(15),Rurd, & zk0,lambda1,Kup,xflow, pup,tup,phi,t,rwork(160) ! external dKdt ! ! storing the parameters rpar(1)=phi rpar(2)=lambda1 rpar(3)=zk0 rpar(4)=Pup rpar(5)=Tup rpar(6)=rurd rpar(7)=xflow rpar(8)=kup ! ! relative error rtol=1.d-7 ! absolute error atol=1.d-7 ! ! initial value if(xflow.lt.0d0) then t=rurd else t=1.d0 endif ! if(xflow.lt.0d0) then ! t=rurd ! else ! t=1.d0 ! endif neq=1 ! ! initialisation info field do j=1,15 info(j)=0 enddo ! initial condition f(0) ! core swirl ratio at Rup ! y(1)= 0d0 ! lrw=160 liw=60 ! call ddeabm(dKdt,neq,t,y,x,info,rtol,atol,idid, & rwork,lrw,iwork,liw,rpar,ipar) ! f_t=2d0*y(1)*x ! return end ****************************************************************************** function f_m(x,phi,lambda1,zk0,Pup,Tup,rurd,xflow,kup) ! implicit none integer neq,idid,ipar,j,iwork(100),lrw,liw real*8 f_m,x,rpar(8),rtol,atol,y(1),info(15), & Rurd,zk0,lambda1,Kup,xflow,pup,tup,phi,t,rwork(160) ! external dKdm ! ! storing the parameters rpar(1)=phi rpar(2)=lambda1 rpar(3)=zk0 rpar(4)=Pup rpar(5)=Tup rpar(6)=rurd rpar(7)=xflow rpar(8)=kup ! ! relative error rtol=1.d-7 ! absolute error atol=1.d-7 ! ! initial value if(xflow.lt.0d0) then t=rurd else t=1.d0 endif neq=1 ! ! initialisation info field do j=1,15 info(j)=0 enddo ! initial condition f(0) ! core swirl ratio at Rup ! y(1)=0 ! lrw=160 liw=60 ! ! solving the differential equation Möhring 3.35 ! dK/dX=f(K(X)) ! call ddeabm(dKdm,neq,t,y,x,info,rtol,atol,idid, & rwork,lrw,iwork,liw,rpar,ipar) ! f_m=2*y(1)*x ! return end ****************************************************************************** function f_cm(x,phi,lambda1,zk0,Pup,Tup,rurd,xflow,kup) ! implicit none integer neq,idid,ipar,j,iwork(100),lrw,liw real*8 f_cm,x,rpar(8),rtol,atol,y(1),info(15), & Rurd,zk0,lambda1,Kup,xflow,pup,tup,phi,t,rwork(160) ! external dKdX ! ! storing the parameters rpar(1)=phi rpar(2)=lambda1 rpar(3)=zk0 rpar(4)=Pup rpar(5)=Tup rpar(6)=rurd rpar(7)=xflow rpar(8)=kup ! ! relative error rtol=1.d-7 ! absolute error atol=1.d-7 ! initial value ! if(xflow.lt.0d0) then t=rurd else t=1.d0 endif ! neq=1 ! ! initialisation info field do j=1,15 info(j)=0 enddo ! initial condition f(0) ! core swirl ratio at Rup ! y(1)=Kup ! lrw=160 liw=60 ! ! solving the differential equation Möhring 3.35 ! dK/dX=f(K(X)) ! call ddeabm(dKdX,neq,t,y,x,info,rtol,atol,idid, & rwork,lrw,iwork,liw,rpar,ipar) ! f_cm=dabs(1-y(1))/(1-y(1))*dabs(1-y(1))**(1.75d0) & *x**(3.6d0) ! return end
gpl-2.0
prool/ccx_prool
ARPACK/SRC/cnaup2.f
3
29120
c\BeginDoc c c\Name: cnaup2 c c\Description: c Intermediate level interface called by cnaupd. c c\Usage: c call cnaup2 c ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD, c ISHIFT, MXITER, V, LDV, H, LDH, RITZ, BOUNDS, c Q, LDQ, WORKL, IPNTR, WORKD, RWORK, INFO ) c c\Arguments c c IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in cnaupd. c MODE, ISHIFT, MXITER: see the definition of IPARAM in cnaupd. c c NP Integer. (INPUT/OUTPUT) c Contains the number of implicit shifts to apply during c each Arnoldi iteration. c If ISHIFT=1, NP is adjusted dynamically at each iteration c to accelerate convergence and prevent stagnation. c This is also roughly equal to the number of matrix-vector c products (involving the operator OP) per Arnoldi iteration. c The logic for adjusting is contained within the current c subroutine. c If ISHIFT=0, NP is the number of shifts the user needs c to provide via reverse comunication. 0 < NP < NCV-NEV. c NP may be less than NCV-NEV since a leading block of the current c upper Hessenberg matrix has split off and contains "unwanted" c Ritz values. c Upon termination of the IRA iteration, NP contains the number c of "converged" wanted Ritz values. c c IUPD Integer. (INPUT) c IUPD .EQ. 0: use explicit restart instead implicit update. c IUPD .NE. 0: use implicit update. c c V Complex N by (NEV+NP) array. (INPUT/OUTPUT) c The Arnoldi basis vectors are returned in the first NEV c columns of V. c c LDV Integer. (INPUT) c Leading dimension of V exactly as declared in the calling c program. c c H Complex (NEV+NP) by (NEV+NP) array. (OUTPUT) c H is used to store the generated upper Hessenberg matrix c c LDH Integer. (INPUT) c Leading dimension of H exactly as declared in the calling c program. c c RITZ Complex array of length NEV+NP. (OUTPUT) c RITZ(1:NEV) contains the computed Ritz values of OP. c c BOUNDS Complex array of length NEV+NP. (OUTPUT) c BOUNDS(1:NEV) contain the error bounds corresponding to c the computed Ritz values. c c Q Complex (NEV+NP) by (NEV+NP) array. (WORKSPACE) c Private (replicated) work array used to accumulate the c rotation in the shift application step. c c LDQ Integer. (INPUT) c Leading dimension of Q exactly as declared in the calling c program. c c WORKL Complex work array of length at least c (NEV+NP)**2 + 3*(NEV+NP). (WORKSPACE) c Private (replicated) array on each PE or array allocated on c the front end. It is used in shifts calculation, shifts c application and convergence checking. c c c IPNTR Integer array of length 3. (OUTPUT) c Pointer to mark the starting locations in the WORKD for c vectors used by the Arnoldi iteration. c ------------------------------------------------------------- c IPNTR(1): pointer to the current operand vector X. c IPNTR(2): pointer to the current result vector Y. c IPNTR(3): pointer to the vector B * X when used in the c shift-and-invert mode. X is the current operand. c ------------------------------------------------------------- c c WORKD Complex work array of length 3*N. (WORKSPACE) c Distributed array to be used in the basic Arnoldi iteration c for reverse communication. The user should not use WORKD c as temporary workspace during the iteration !!!!!!!!!! c See Data Distribution Note in CNAUPD. c c RWORK Real work array of length NEV+NP ( WORKSPACE) c Private (replicated) array on each PE or array allocated on c the front end. c c INFO Integer. (INPUT/OUTPUT) c If INFO .EQ. 0, a randomly initial residual vector is used. c If INFO .NE. 0, RESID contains the initial residual vector, c possibly from a previous run. c Error flag on output. c = 0: Normal return. c = 1: Maximum number of iterations taken. c All possible eigenvalues of OP has been found. c NP returns the number of converged Ritz values. c = 2: No shifts could be applied. c = -8: Error return from LAPACK eigenvalue calculation; c This should never happen. c = -9: Starting vector is zero. c = -9999: Could not build an Arnoldi factorization. c Size that was built in returned in NP. c c\EndDoc c c----------------------------------------------------------------------- c c\BeginLib c c\Local variables: c xxxxxx Complex c c\References: c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), c pp 357-385. c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly c Restarted Arnoldi Iteration", Rice University Technical Report c TR95-13, Department of Computational and Applied Mathematics. c c\Routines called: c cgetv0 ARPACK initial vector generation routine. c cnaitr ARPACK Arnoldi factorization routine. c cnapps ARPACK application of implicit shifts routine. c cneigh ARPACK compute Ritz values and error bounds routine. c cngets ARPACK reorder Ritz values and error bounds routine. c csortc ARPACK sorting routine. c ivout ARPACK utility routine that prints integers. c second ARPACK utility routine for timing. c cmout ARPACK utility routine that prints matrices c cvout ARPACK utility routine that prints vectors. c svout ARPACK utility routine that prints vectors. c slamch LAPACK routine that determines machine constants. c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully. c ccopy Level 1 BLAS that copies one vector to another . c cdotc Level 1 BLAS that computes the scalar product of two vectors. c cswap Level 1 BLAS that swaps two vectors. c scnrm2 Level 1 BLAS that computes the norm of a vector. c c\Author c Danny Sorensen Phuong Vu c Richard Lehoucq CRPC / Rice Universitya c Chao Yang Houston, Texas c Dept. of Computational & c Applied Mathematics c Rice University c Houston, Texas c c\SCCS Information: @(#) c FILE: naup2.F SID: 2.5 DATE OF SID: 8/16/96 RELEASE: 2 c c\Remarks c 1. None c c\EndLib c c----------------------------------------------------------------------- c subroutine cnaup2 & ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd, & ishift, mxiter, v, ldv, h, ldh, ritz, bounds, & q, ldq, workl, ipntr, workd, rwork, info ) c c %----------------------------------------------------% c | Include files for debugging and timing information | c %----------------------------------------------------% c include 'debug.h' include 'stat.h' c c %------------------% c | Scalar Arguments | c %------------------% c character bmat*1, which*2 integer ido, info, ishift, iupd, mode, ldh, ldq, ldv, mxiter, & n, nev, np Real & tol c c %-----------------% c | Array Arguments | c %-----------------% c integer ipntr(13) Complex & bounds(nev+np), h(ldh,nev+np), q(ldq,nev+np), & resid(n), ritz(nev+np), v(ldv,nev+np), & workd(3*n), workl( (nev+np)*(nev+np+3) ) Real & rwork(nev+np) c c %------------% c | Parameters | c %------------% c Complex & one, zero Real & rzero parameter (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0), & rzero = 0.0E+0) c c %---------------% c | Local Scalars | c %---------------% c logical cnorm, getv0, initv, update, ushift integer ierr, iter, i, j, kplusp, msglvl, nconv, nevbef, nev0, & np0, nptemp Complex & cmpnorm Real & rtemp, eps23, rnorm character wprime*2 c save cnorm, getv0, initv, update, ushift, & iter, kplusp, msglvl, nconv, nev0, np0, & eps23 c c c %-----------------------% c | Local array arguments | c %-----------------------% c integer kp(3) c c %----------------------% c | External Subroutines | c %----------------------% c external ccopy, cgetv0, cnaitr, cneigh, cngets, cnapps, & csortc, cswap, cmout, cvout, ivout, second c c %--------------------% c | External functions | c %--------------------% c Complex & cdotc Real & scnrm2, slamch, slapy2 external cdotc, scnrm2, slamch, slapy2 c c %---------------------% c | Intrinsic Functions | c %---------------------% c intrinsic aimag, real, min, max c c %-----------------------% c | Executable Statements | c %-----------------------% c if (ido .eq. 0) then c call second (t0) c msglvl = mcaup2 c nev0 = nev np0 = np c c %-------------------------------------% c | kplusp is the bound on the largest | c | Lanczos factorization built. | c | nconv is the current number of | c | "converged" eigenvalues. | c | iter is the counter on the current | c | iteration step. | c %-------------------------------------% c kplusp = nev + np nconv = 0 iter = 0 c c %---------------------------------% c | Get machine dependent constant. | c %---------------------------------% c eps23 = slamch('Epsilon-Machine') eps23 = eps23**(2.0E+0 / 3.0E+0) c c %---------------------------------------% c | Set flags for computing the first NEV | c | steps of the Arnoldi factorization. | c %---------------------------------------% c getv0 = .true. update = .false. ushift = .false. cnorm = .false. c if (info .ne. 0) then c c %--------------------------------------------% c | User provides the initial residual vector. | c %--------------------------------------------% c initv = .true. info = 0 else initv = .false. end if end if c c %---------------------------------------------% c | Get a possibly random starting vector and | c | force it into the range of the operator OP. | c %---------------------------------------------% c 10 continue c if (getv0) then call cgetv0 (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm, & ipntr, workd, info) c if (ido .ne. 99) go to 9000 c if (rnorm .eq. rzero) then c c %-----------------------------------------% c | The initial vector is zero. Error exit. | c %-----------------------------------------% c info = -9 go to 1100 end if getv0 = .false. ido = 0 end if c c %-----------------------------------% c | Back from reverse communication : | c | continue with update step | c %-----------------------------------% c if (update) go to 20 c c %-------------------------------------------% c | Back from computing user specified shifts | c %-------------------------------------------% c if (ushift) go to 50 c c %-------------------------------------% c | Back from computing residual norm | c | at the end of the current iteration | c %-------------------------------------% c if (cnorm) go to 100 c c %----------------------------------------------------------% c | Compute the first NEV steps of the Arnoldi factorization | c %----------------------------------------------------------% c call cnaitr (ido, bmat, n, 0, nev, mode, resid, rnorm, v, ldv, & h, ldh, ipntr, workd, info) c if (ido .ne. 99) go to 9000 c if (info .gt. 0) then np = info mxiter = iter info = -9999 go to 1200 end if c c %--------------------------------------------------------------% c | | c | M A I N ARNOLDI I T E R A T I O N L O O P | c | Each iteration implicitly restarts the Arnoldi | c | factorization in place. | c | | c %--------------------------------------------------------------% c 1000 continue c iter = iter + 1 c if (msglvl .gt. 0) then call ivout (logfil, 1, iter, ndigit, & '_naup2: **** Start of major iteration number ****') end if c c %-----------------------------------------------------------% c | Compute NP additional steps of the Arnoldi factorization. | c | Adjust NP since NEV might have been updated by last call | c | to the shift application routine cnapps. | c %-----------------------------------------------------------% c np = kplusp - nev c if (msglvl .gt. 1) then call ivout (logfil, 1, nev, ndigit, & '_naup2: The length of the current Arnoldi factorization') call ivout (logfil, 1, np, ndigit, & '_naup2: Extend the Arnoldi factorization by') end if c c %-----------------------------------------------------------% c | Compute NP additional steps of the Arnoldi factorization. | c %-----------------------------------------------------------% c ido = 0 20 continue update = .true. c call cnaitr (ido, bmat, n, nev, np, mode, resid, rnorm, v, ldv, & h, ldh, ipntr, workd, info) c if (ido .ne. 99) go to 9000 c if (info .gt. 0) then np = info mxiter = iter info = -9999 go to 1200 end if update = .false. c if (msglvl .gt. 1) then call svout (logfil, 1, rnorm, ndigit, & '_naup2: Corresponding B-norm of the residual') end if c c %--------------------------------------------------------% c | Compute the eigenvalues and corresponding error bounds | c | of the current upper Hessenberg matrix. | c %--------------------------------------------------------% c call cneigh (rnorm, kplusp, h, ldh, ritz, bounds, & q, ldq, workl, rwork, ierr) c if (ierr .ne. 0) then info = -8 go to 1200 end if c c %---------------------------------------------------% c | Select the wanted Ritz values and their bounds | c | to be used in the convergence test. | c | The wanted part of the spectrum and corresponding | c | error bounds are in the last NEV loc. of RITZ, | c | and BOUNDS respectively. | c %---------------------------------------------------% c nev = nev0 np = np0 c c %--------------------------------------------------% c | Make a copy of Ritz values and the corresponding | c | Ritz estimates obtained from cneigh. | c %--------------------------------------------------% c call ccopy(kplusp,ritz,1,workl(kplusp**2+1),1) call ccopy(kplusp,bounds,1,workl(kplusp**2+kplusp+1),1) c c %---------------------------------------------------% c | Select the wanted Ritz values and their bounds | c | to be used in the convergence test. | c | The wanted part of the spectrum and corresponding | c | bounds are in the last NEV loc. of RITZ | c | BOUNDS respectively. | c %---------------------------------------------------% c call cngets (ishift, which, nev, np, ritz, bounds) c c %------------------------------------------------------------% c | Convergence test: currently we use the following criteria. | c | The relative accuracy of a Ritz value is considered | c | acceptable if: | c | | c | error_bounds(i) .le. tol*max(eps23, magnitude_of_ritz(i)). | c | | c %------------------------------------------------------------% c nconv = 0 c do 25 i = 1, nev rtemp = max( eps23, slapy2( real(ritz(np+i)), & aimag(ritz(np+i)) ) ) if ( slapy2(real(bounds(np+i)),aimag(bounds(np+i))) & .le. tol*rtemp ) then nconv = nconv + 1 end if 25 continue c if (msglvl .gt. 2) then kp(1) = nev kp(2) = np kp(3) = nconv call ivout (logfil, 3, kp, ndigit, & '_naup2: NEV, NP, NCONV are') call cvout (logfil, kplusp, ritz, ndigit, & '_naup2: The eigenvalues of H') call cvout (logfil, kplusp, bounds, ndigit, & '_naup2: Ritz estimates of the current NCV Ritz values') end if c c %---------------------------------------------------------% c | Count the number of unwanted Ritz values that have zero | c | Ritz estimates. If any Ritz estimates are equal to zero | c | then a leading block of H of order equal to at least | c | the number of Ritz values with zero Ritz estimates has | c | split off. None of these Ritz values may be removed by | c | shifting. Decrease NP the number of shifts to apply. If | c | no shifts may be applied, then prepare to exit | c %---------------------------------------------------------% c nptemp = np do 30 j=1, nptemp if (bounds(j) .eq. zero) then np = np - 1 nev = nev + 1 end if 30 continue c if ( (nconv .ge. nev0) .or. & (iter .gt. mxiter) .or. & (np .eq. 0) ) then c if (msglvl .gt. 4) then call cvout(logfil, kplusp, workl(kplusp**2+1), ndigit, & '_naup2: Eigenvalues computed by _neigh:') call cvout(logfil, kplusp, workl(kplusp**2+kplusp+1), & ndigit, & '_naup2: Ritz estimates computed by _neigh:') end if c c %------------------------------------------------% c | Prepare to exit. Put the converged Ritz values | c | and corresponding bounds in RITZ(1:NCONV) and | c | BOUNDS(1:NCONV) respectively. Then sort. Be | c | careful when NCONV > NP | c %------------------------------------------------% c c %------------------------------------------% c | Use h( 3,1 ) as storage to communicate | c | rnorm to cneupd if needed | c %------------------------------------------% h(3,1) = cmplx(rnorm,rzero) c c %----------------------------------------------% c | Sort Ritz values so that converged Ritz | c | values appear within the first NEV locations | c | of ritz and bounds, and the most desired one | c | appears at the front. | c %----------------------------------------------% c if (which .eq. 'LM') wprime = 'SM' if (which .eq. 'SM') wprime = 'LM' if (which .eq. 'LR') wprime = 'SR' if (which .eq. 'SR') wprime = 'LR' if (which .eq. 'LI') wprime = 'SI' if (which .eq. 'SI') wprime = 'LI' c call csortc(wprime, .true., kplusp, ritz, bounds) c c %--------------------------------------------------% c | Scale the Ritz estimate of each Ritz value | c | by 1 / max(eps23, magnitude of the Ritz value). | c %--------------------------------------------------% c do 35 j = 1, nev0 rtemp = max( eps23, slapy2( real(ritz(j)), & aimag(ritz(j)) ) ) bounds(j) = bounds(j)/rtemp 35 continue c c %---------------------------------------------------% c | Sort the Ritz values according to the scaled Ritz | c | estimates. This will push all the converged ones | c | towards the front of ritz, bounds (in the case | c | when NCONV < NEV.) | c %---------------------------------------------------% c wprime = 'LM' call csortc(wprime, .true., nev0, bounds, ritz) c c %----------------------------------------------% c | Scale the Ritz estimate back to its original | c | value. | c %----------------------------------------------% c do 40 j = 1, nev0 rtemp = max( eps23, slapy2( real(ritz(j)), & aimag(ritz(j)) ) ) bounds(j) = bounds(j)*rtemp 40 continue c c %-----------------------------------------------% c | Sort the converged Ritz values again so that | c | the "threshold" value appears at the front of | c | ritz and bound. | c %-----------------------------------------------% c call csortc(which, .true., nconv, ritz, bounds) c if (msglvl .gt. 1) then call cvout (logfil, kplusp, ritz, ndigit, & '_naup2: Sorted eigenvalues') call cvout (logfil, kplusp, bounds, ndigit, & '_naup2: Sorted ritz estimates.') end if c c %------------------------------------% c | Max iterations have been exceeded. | c %------------------------------------% c if (iter .gt. mxiter .and. nconv .lt. nev0) info = 1 c c %---------------------% c | No shifts to apply. | c %---------------------% c if (np .eq. 0 .and. nconv .lt. nev0) info = 2 c np = nconv go to 1100 c else if ( (nconv .lt. nev0) .and. (ishift .eq. 1) ) then c c %-------------------------------------------------% c | Do not have all the requested eigenvalues yet. | c | To prevent possible stagnation, adjust the size | c | of NEV. | c %-------------------------------------------------% c nevbef = nev nev = nev + min(nconv, np/2) if (nev .eq. 1 .and. kplusp .ge. 6) then nev = kplusp / 2 else if (nev .eq. 1 .and. kplusp .gt. 3) then nev = 2 end if np = kplusp - nev c c %---------------------------------------% c | If the size of NEV was just increased | c | resort the eigenvalues. | c %---------------------------------------% c if (nevbef .lt. nev) & call cngets (ishift, which, nev, np, ritz, bounds) c end if c if (msglvl .gt. 0) then call ivout (logfil, 1, nconv, ndigit, & '_naup2: no. of "converged" Ritz values at this iter.') if (msglvl .gt. 1) then kp(1) = nev kp(2) = np call ivout (logfil, 2, kp, ndigit, & '_naup2: NEV and NP are') call cvout (logfil, nev, ritz(np+1), ndigit, & '_naup2: "wanted" Ritz values ') call cvout (logfil, nev, bounds(np+1), ndigit, & '_naup2: Ritz estimates of the "wanted" values ') end if end if c if (ishift .eq. 0) then c c %-------------------------------------------------------% c | User specified shifts: pop back out to get the shifts | c | and return them in the first 2*NP locations of WORKL. | c %-------------------------------------------------------% c ushift = .true. ido = 3 go to 9000 end if 50 continue ushift = .false. c if ( ishift .ne. 1 ) then c c %----------------------------------% c | Move the NP shifts from WORKL to | c | RITZ, to free up WORKL | c | for non-exact shift case. | c %----------------------------------% c call ccopy (np, workl, 1, ritz, 1) end if c if (msglvl .gt. 2) then call ivout (logfil, 1, np, ndigit, & '_naup2: The number of shifts to apply ') call cvout (logfil, np, ritz, ndigit, & '_naup2: values of the shifts') if ( ishift .eq. 1 ) & call cvout (logfil, np, bounds, ndigit, & '_naup2: Ritz estimates of the shifts') end if c c %---------------------------------------------------------% c | Apply the NP implicit shifts by QR bulge chasing. | c | Each shift is applied to the whole upper Hessenberg | c | matrix H. | c | The first 2*N locations of WORKD are used as workspace. | c %---------------------------------------------------------% c call cnapps (n, nev, np, ritz, v, ldv, & h, ldh, resid, q, ldq, workl, workd) c c %---------------------------------------------% c | Compute the B-norm of the updated residual. | c | Keep B*RESID in WORKD(1:N) to be used in | c | the first step of the next call to cnaitr. | c %---------------------------------------------% c cnorm = .true. call second (t2) if (bmat .eq. 'G') then nbx = nbx + 1 call ccopy (n, resid, 1, workd(n+1), 1) ipntr(1) = n + 1 ipntr(2) = 1 ido = 2 c c %----------------------------------% c | Exit in order to compute B*RESID | c %----------------------------------% c go to 9000 else if (bmat .eq. 'I') then call ccopy (n, resid, 1, workd, 1) end if c 100 continue c c %----------------------------------% c | Back from reverse communication; | c | WORKD(1:N) := B*RESID | c %----------------------------------% c if (bmat .eq. 'G') then call second (t3) tmvbx = tmvbx + (t3 - t2) end if c if (bmat .eq. 'G') then cmpnorm = cdotc (n, resid, 1, workd, 1) rnorm = sqrt(slapy2(real(cmpnorm),aimag(cmpnorm))) else if (bmat .eq. 'I') then rnorm = scnrm2(n, resid, 1) end if cnorm = .false. c if (msglvl .gt. 2) then call svout (logfil, 1, rnorm, ndigit, & '_naup2: B-norm of residual for compressed factorization') call cmout (logfil, nev, nev, h, ldh, ndigit, & '_naup2: Compressed upper Hessenberg matrix H') end if c go to 1000 c c %---------------------------------------------------------------% c | | c | E N D O F M A I N I T E R A T I O N L O O P | c | | c %---------------------------------------------------------------% c 1100 continue c mxiter = iter nev = nconv c 1200 continue ido = 99 c c %------------% c | Error Exit | c %------------% c call second (t1) tcaup2 = t1 - t0 c 9000 continue c c %---------------% c | End of cnaup2 | c %---------------% c return end
gpl-2.0
alexfrolov/grappa
applications/NPB/MPI/MPI_dummy/mpi_dummy.f
5
8622
subroutine mpi_isend(buf,count,datatype,source, & tag,comm,request,ierror) integer buf(*), count,datatype,source,tag,comm, & request,ierror call mpi_error() return end subroutine mpi_irecv(buf,count,datatype,source, & tag,comm,request,ierror) integer buf(*), count,datatype,source,tag,comm, & request,ierror call mpi_error() return end subroutine mpi_send(buf,count,datatype,dest,tag,comm,ierror) integer buf(*), count,datatype,dest,tag,comm,ierror call mpi_error() return end subroutine mpi_recv(buf,count,datatype,source, & tag,comm,status,ierror) integer buf(*), count,datatype,source,tag,comm, & status(*),ierror call mpi_error() return end subroutine mpi_comm_split(comm,color,key,newcomm,ierror) integer comm,color,key,newcomm,ierror return end subroutine mpi_comm_rank(comm, rank,ierr) implicit none integer comm, rank,ierr rank = 0 return end subroutine mpi_comm_size(comm, size, ierr) implicit none integer comm, size, ierr size = 1 return end double precision function mpi_wtime() implicit none double precision t c This function must measure wall clock time, not CPU time. c Since there is no portable timer in Fortran (77) c we call a routine compiled in C (though the C source may have c to be tweaked). call wtime(t) c The following is not ok for "official" results because it reports c CPU time not wall clock time. It may be useful for developing/testing c on timeshared Crays, though. c call second(t) mpi_wtime = t return end c may be valid to call this in single processor case subroutine mpi_barrier(comm,ierror) return end c may be valid to call this in single processor case subroutine mpi_bcast(buf, nitems, type, root, comm, ierr) implicit none integer buf(*), nitems, type, root, comm, ierr return end subroutine mpi_comm_dup(oldcomm, newcomm,ierror) integer oldcomm, newcomm,ierror newcomm= oldcomm return end subroutine mpi_error() print *, 'mpi_error called' stop end subroutine mpi_abort(comm, errcode, ierr) implicit none integer comm, errcode, ierr print *, 'mpi_abort called' stop end subroutine mpi_finalize(ierr) return end subroutine mpi_init(ierr) return end c assume double precision, which is all SP uses subroutine mpi_reduce(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) implicit none include 'mpif.h' integer nitems, type, op, root, comm, ierr double precision inbuf(*), outbuf(*) if (type .eq. mpi_double_precision) then call mpi_reduce_dp(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) else if (type .eq. mpi_double_complex) then call mpi_reduce_dc(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) else if (type .eq. mpi_complex) then call mpi_reduce_complex(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) else if (type .eq. mpi_real) then call mpi_reduce_real(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) else if (type .eq. mpi_integer) then call mpi_reduce_int(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) else print *, 'mpi_reduce: unknown type ', type end if return end subroutine mpi_reduce_real(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) implicit none integer nitems, type, op, root, comm, ierr, i real inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_reduce_dp(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) implicit none integer nitems, type, op, root, comm, ierr, i double precision inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_reduce_dc(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) implicit none integer nitems, type, op, root, comm, ierr, i double complex inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_reduce_complex(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) implicit none integer nitems, type, op, root, comm, ierr, i complex inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_reduce_int(inbuf, outbuf, nitems, $ type, op, root, comm, ierr) implicit none integer nitems, type, op, root, comm, ierr, i integer inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_allreduce(inbuf, outbuf, nitems, $ type, op, comm, ierr) implicit none integer nitems, type, op, comm, ierr double precision inbuf(*), outbuf(*) call mpi_reduce(inbuf, outbuf, nitems, $ type, op, 0, comm, ierr) return end subroutine mpi_alltoall(inbuf, nitems, type, outbuf, nitems_dum, $ type_dum, comm, ierr) implicit none include 'mpif.h' integer nitems, type, comm, ierr, nitems_dum, type_dum double precision inbuf(*), outbuf(*) if (type .eq. mpi_double_precision) then call mpi_alltoall_dp(inbuf, outbuf, nitems, $ type, comm, ierr) else if (type .eq. mpi_double_complex) then call mpi_alltoall_dc(inbuf, outbuf, nitems, $ type, comm, ierr) else if (type .eq. mpi_complex) then call mpi_alltoall_complex(inbuf, outbuf, nitems, $ type, comm, ierr) else if (type .eq. mpi_real) then call mpi_alltoall_real(inbuf, outbuf, nitems, $ type, comm, ierr) else if (type .eq. mpi_integer) then call mpi_alltoall_int(inbuf, outbuf, nitems, $ type, comm, ierr) else print *, 'mpi_alltoall: unknown type ', type end if return end subroutine mpi_alltoall_dc(inbuf, outbuf, nitems, $ type, comm, ierr) implicit none integer nitems, type, comm, ierr, i double complex inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_alltoall_complex(inbuf, outbuf, nitems, $ type, comm, ierr) implicit none integer nitems, type, comm, ierr, i double complex inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_alltoall_dp(inbuf, outbuf, nitems, $ type, comm, ierr) implicit none integer nitems, type, comm, ierr, i double precision inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_alltoall_real(inbuf, outbuf, nitems, $ type, comm, ierr) implicit none integer nitems, type, comm, ierr, i real inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_alltoall_int(inbuf, outbuf, nitems, $ type, comm, ierr) implicit none integer nitems, type, comm, ierr, i integer inbuf(*), outbuf(*) do i = 1, nitems outbuf(i) = inbuf(i) end do return end subroutine mpi_wait(request,status,ierror) integer request,status,ierror call mpi_error() return end subroutine mpi_waitall(count,requests,status,ierror) integer count,requests(*),status(*),ierror call mpi_error() return end
bsd-3-clause
prool/ccx_prool
CalculiX/ccx_2.15/src/resultsmech_se.f
2
40033
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2018 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine resultsmech_se(co,kon,ipkon,lakon,ne,v, & stx,elcon,nelcon,rhcon,nrhcon,alcon,nalcon,alzero, & ielmat,ielorien,norien,orab,ntmat_,t0,t1,ithermal,prestr, & iprestr,eme,iperturb,fn,iout,vold,nmethod, & veold,dtime,time,ttime,plicon,nplicon,plkcon,nplkcon, & xstateini,xstiff,xstate,npmat_,matname,mi,ielas,icmd, & ncmat_,nstate_,stiini,vini,ener,eei,enerini,istep,iinc, & springarea,reltime,calcul_fn,calcul_cauchy,nener, & ikin,ne0,thicke,emeini,pslavsurf, & pmastsurf,mortar,clearini,nea,neb,ielprop,prop,dfn, & idesvar,nodedesi,fn0,sti,icoordinate,dxstiff, & ialdesi,xdesi) ! ! calculates stresses and the material tangent at the integration ! points and the internal forces at the nodes ! implicit none ! integer cauchy ! character*8 lakon(*),lakonl character*80 amat,matname(*) ! integer kon(*),konl(26),nea,neb,mi(*),mint2d,nopes, & nelcon(2,*),nrhcon(*),nalcon(2,*),ielmat(mi(3),*), & ielorien(mi(3),*),ntmat_,ipkon(*),ne0,iflag,null, & istep,iinc,mt,ne,mattyp,ithermal(2),iprestr,i,j,k,m1,m2,jj, & i1,m3,m4,kk,nener,indexe,nope,norien,iperturb(*),iout, & icmd,ihyper,nmethod,kode,imat,mint3d,iorien,ielas, & istiff,ncmat_,nstate_,ikin,ilayer,nlayer,ki,kl,ielprop(*), & nplicon(0:ntmat_,*),nplkcon(0:ntmat_,*),npmat_,calcul_fn, & calcul_cauchy,nopered,mortar,jfaces,igauss, & idesvar,node,nodedesi(*),kscale,idir,nlgeom_undo, & iactive,icoordinate,ialdesi(*),ii ! real*8 co(3,*),v(0:mi(2),*),shp(4,26),stiini(6,mi(1),*), & stx(6,mi(1),*),xl(3,26),vl(0:mi(2),26),stre(6),prop(*), & elcon(0:ncmat_,ntmat_,*),rhcon(0:1,ntmat_,*),xs2(3,7), & alcon(0:6,ntmat_,*),vini(0:mi(2),*),thickness, & alzero(*),orab(7,*),elas(21),rho,fn(0:mi(2),*), & fnl(3,10),skl(3,3),beta(6),xl2(3,8),qa(4), & vkl(0:3,3),t0(*),t1(*),prestr(6,mi(1),*),eme(6,mi(1),*), & ckl(3,3),vold(0:mi(2),*),eloc(9),veold(0:mi(2),*), & springarea(2,*),elconloc(21),eth(6),xkl(3,3),voldl(0:mi(2),26), & xikl(3,3),ener(mi(1),*),emec(6),eei(6,mi(1),*),enerini(mi(1),*), & emec0(6),veoldl(0:mi(2),26),xsj2(3),shp2(7,8), & e,un,al,um,am1,xi,et,ze,tt,exx,eyy,ezz,exy,exz,eyz, & xsj,vj,t0l,t1l,dtime,weight,pgauss(3),vij,time,ttime, & plicon(0:2*npmat_,ntmat_,*),plkcon(0:2*npmat_,ntmat_,*), & xstiff(27,mi(1),*),xstate(nstate_,mi(1),*),plconloc(802), & vokl(3,3),xstateini(nstate_,mi(1),*),vikl(3,3), & gs(8,4),a,reltime,tlayer(4),dlayer(4),xlayer(mi(3),4), & thicke(mi(3),*),emeini(6,mi(1),*),clearini(3,9,*), & pslavsurf(3,*),pmastsurf(6,*),sti(6,mi(1),*), & fn0(0:mi(2),*),dfn(0:mi(2),*),hglf(3,4),ahr, & dxstiff(27,mi(1),ne,*),xdesi(3,*) ! intent(in) co,kon,ipkon,lakon,ne,v, & stx,elcon,nelcon,rhcon,nrhcon,alcon,nalcon,alzero, & ielmat,ielorien,norien,orab,ntmat_,t0,t1,ithermal,prestr, & iprestr,eme,iperturb,fn,iout,vold,nmethod, & veold,dtime,time,ttime,plicon,nplicon,plkcon,nplkcon, & xstateini,xstate,npmat_,matname,mi,ielas,icmd, & ncmat_,nstate_,stiini,vini,ener,eei,enerini,istep,iinc, & springarea,reltime,calcul_fn,calcul_cauchy,nener, & ikin,ne0,thicke,emeini,pslavsurf, & pmastsurf,mortar,clearini,nea,neb,ielprop,prop, & idesvar,nodedesi,sti,icoordinate,ialdesi,xdesi ! intent(inout) dfn,fn0,dxstiff,xstiff ! include "gauss.f" ! iflag=3 null=0 qa(3)=-1.d0 qa(4)=0.d0 ! mt=mi(2)+1 ! ! ------------------------------------------------------------- ! Initialisation of the loop for the variation of ! the internal forces ! ------------------------------------------------------------- ! ! ! Loop over all elements in thread do ii=nea,neb if(idesvar.gt.0) then i=ialdesi(ii) else i=ii endif ! lakonl=lakon(i) ! if(ipkon(i).lt.0) cycle ! ! no 3D-fluid elements ! if(lakonl(1:1).eq.'F') cycle if(lakonl(1:7).eq.'DCOUP3D') cycle ! if(lakonl(7:8).ne.'LC') then ! imat=ielmat(1,i) amat=matname(imat) if(norien.gt.0) then iorien=ielorien(1,i) else iorien=0 endif ! if(nelcon(1,imat).lt.0) then ihyper=1 else ihyper=0 endif elseif(lakonl(4:5).eq.'20') then ! ! composite materials ! mint2d=4 nopes=8 ! determining the number of layers ! nlayer=0 do k=1,mi(3) if(ielmat(k,i).ne.0) then nlayer=nlayer+1 endif enddo ! ! determining the layer thickness and global thickness ! at the shell integration points ! iflag=1 indexe=ipkon(i) do kk=1,mint2d xi=gauss3d2(1,kk) et=gauss3d2(2,kk) call shape8q(xi,et,xl2,xsj2,xs2,shp2,iflag) tlayer(kk)=0.d0 do k=1,nlayer thickness=0.d0 do j=1,nopes thickness=thickness+thicke(k,indexe+j)*shp2(4,j) enddo tlayer(kk)=tlayer(kk)+thickness xlayer(k,kk)=thickness enddo enddo iflag=3 ! ilayer=0 do k=1,4 dlayer(k)=0.d0 enddo elseif(lakonl(4:5).eq.'15') then ! ! composite materials ! mint2d=3 nopes=6 ! determining the number of layers ! nlayer=0 do k=1,mi(3) if(ielmat(k,i).ne.0) then nlayer=nlayer+1 endif enddo ! ! determining the layer thickness and global thickness ! at the shell integration points ! iflag=1 indexe=ipkon(i) do kk=1,mint2d xi=gauss3d10(1,kk) et=gauss3d10(2,kk) call shape6tri(xi,et,xl2,xsj2,xs2,shp2,iflag) tlayer(kk)=0.d0 do k=1,nlayer thickness=0.d0 do j=1,nopes thickness=thickness+thicke(k,indexe+j)*shp2(4,j) enddo tlayer(kk)=tlayer(kk)+thickness xlayer(k,kk)=thickness enddo enddo iflag=3 ! ilayer=0 do k=1,3 dlayer(k)=0.d0 enddo ! endif ! indexe=ipkon(i) c Bernhardi start if(lakonl(1:5).eq.'C3D8I') then nope=11 elseif(lakonl(4:5).eq.'20') then c Bernhardi end nope=20 elseif(lakonl(4:4).eq.'8') then nope=8 elseif(lakonl(4:5).eq.'10') then nope=10 elseif(lakonl(4:4).eq.'4') then nope=4 elseif(lakonl(4:5).eq.'15') then nope=15 elseif(lakonl(4:4).eq.'6') then nope=6 elseif((lakonl(1:1).eq.'E').and.(lakonl(7:7).ne.'F')) then ! ! spring elements, contact spring elements and ! dashpot elements ! if(lakonl(7:7).eq.'C') then ! ! contact spring elements ! if(mortar.eq.1) then ! ! face-to-face penalty ! nope=kon(ipkon(i)) elseif(mortar.eq.0) then ! ! node-to-face penalty ! nope=ichar(lakonl(8:8))-47 konl(nope+1)=kon(indexe+nope+1) endif else ! ! genuine spring elements and dashpot elements ! nope=ichar(lakonl(8:8))-47 endif else cycle endif ! ! computation of the coordinates of the local nodes w/ variation ! if the designnode belongs to the considered element ! if(idesvar.gt.0) then ! if(icoordinate.eq.1) then ! ! the coordinates of the nodes are the design variables ! do j=1,nope node=kon(indexe+j) if(node.eq.nodedesi(idesvar)) then iactive=j exit endif enddo endif ! endif ! if(lakonl(4:5).eq.'8R') then mint3d=1 elseif(lakonl(4:7).eq.'20RB') then if((lakonl(8:8).eq.'R').or.(lakonl(8:8).eq.'C')) then mint3d=50 else call beamintscheme(lakonl,mint3d,ielprop(i),prop, & null,xi,et,ze,weight) endif elseif((lakonl(4:4).eq.'8').or. & (lakonl(4:6).eq.'20R')) then if(lakonl(7:8).eq.'LC') then mint3d=8*nlayer else mint3d=8 endif elseif(lakonl(4:4).eq.'2') then mint3d=27 elseif(lakonl(4:5).eq.'10') then mint3d=4 elseif(lakonl(4:4).eq.'4') then mint3d=1 elseif(lakonl(4:5).eq.'15') then if(lakonl(7:8).eq.'LC') then mint3d=6*nlayer else mint3d=9 endif elseif(lakonl(4:4).eq.'6') then mint3d=2 elseif(lakonl(1:1).eq.'E') then mint3d=0 endif do j=1,nope konl(j)=kon(indexe+j) do k=1,3 xl(k,j)=co(k,konl(j)) vl(k,j)=v(k,konl(j)) voldl(k,j)=vold(k,konl(j)) enddo enddo ! ! computation of the coordinates of the local nodes w/ variation ! if the designnode belongs to the considered element ! if((idesvar.gt.0).and.(icoordinate.eq.1)) then do j=1,3 xl(j,iactive)=xl(j,iactive)+xdesi(j,idesvar) enddo endif ! ! calculating the forces for the contact elements ! if(mint3d.eq.0) then ! ! "normal" spring and dashpot elements ! kode=nelcon(1,imat) if(lakonl(7:7).eq.'A') then t0l=0.d0 t1l=0.d0 if(ithermal(1).eq.1) then t0l=(t0(konl(1))+t0(konl(2)))/2.d0 t1l=(t1(konl(1))+t1(konl(2)))/2.d0 elseif(ithermal(1).ge.2) then t0l=(t0(konl(1))+t0(konl(2)))/2.d0 t1l=(vold(0,konl(1))+vold(0,konl(2)))/2.d0 endif endif ! ! spring elements (including contact springs) ! if(lakonl(2:2).eq.'S') then if((lakonl(7:7).eq.'A').or.(lakonl(7:7).eq.'1').or. & (lakonl(7:7).eq.'2').or.((mortar.eq.0).and. & ((nmethod.ne.1).or.(iperturb(1).ge.2).or.(iout.ne.-1)))) & then call springforc_n2f(xl,konl,vl,imat,elcon,nelcon,elas, & fnl,ncmat_,ntmat_,nope,lakonl,t1l,kode,elconloc, & plicon,nplicon,npmat_,ener(1,i),nener, & stx(1,1,i),mi,springarea(1,konl(nope+1)),nmethod, & ne0,nstate_,xstateini,xstate,reltime, & ielas,ener(1,i+ne),ielorien,orab,norien,i) elseif((mortar.eq.1).and. & ((nmethod.ne.1).or.(iperturb(1).ge.2).or.(iout.ne.-1))) & then jfaces=kon(indexe+nope+2) igauss=kon(indexe+nope+1) call springforc_f2f(xl,vl,imat,elcon,nelcon,elas, & fnl,ncmat_,ntmat_,nope,lakonl,t1l,kode,elconloc, & plicon,nplicon,npmat_,ener(1,i),nener, & stx(1,1,i),mi,springarea(1,igauss),nmethod, & ne0,nstate_,xstateini,xstate,reltime, & ielas,jfaces,igauss,pslavsurf,pmastsurf, & clearini,ener(1,i+ne),kscale,konl,iout,i) endif ! ! next lines are not executed in linstatic.c before the ! setup of the stiffness matrix (i.e. nmethod=1 and ! iperturb(1)<1 and iout=-1). ! if((lakonl(7:7).eq.'A').or. & ((nmethod.ne.1).or.(iperturb(1).ge.2).or.(iout.ne.-1))) & then if(idesvar.eq.0) then do j=1,nope do k=1,3 fn0(k,indexe+j)=fn0(k,indexe+j)+fnl(k,j) enddo enddo else do j=1,nope do k=1,3 dfn(k,konl(j))=dfn(k,konl(j))+fnl(k,j) enddo enddo endif endif ! ! dashpot elements (including contact dashpots) ! elseif((nmethod.eq.4).or.(nmethod.eq.5).or. & ((abs(nmethod).eq.1).and.(iperturb(1).ge.2))) then endif elseif(ikin.eq.1) then do j=1,nope do k=1,3 veoldl(k,j)=veold(k,konl(j)) enddo enddo endif ! do jj=1,mint3d if(lakonl(4:5).eq.'8R') then xi=gauss3d1(1,jj) et=gauss3d1(2,jj) ze=gauss3d1(3,jj) weight=weight3d1(jj) elseif(lakonl(4:7).eq.'20RB') then if((lakonl(8:8).eq.'R').or.(lakonl(8:8).eq.'C')) then xi=gauss3d13(1,jj) et=gauss3d13(2,jj) ze=gauss3d13(3,jj) weight=weight3d13(jj) else call beamintscheme(lakonl,mint3d,ielprop(i),prop, & jj,xi,et,ze,weight) endif elseif((lakonl(4:4).eq.'8').or. & (lakonl(4:6).eq.'20R')) & then if(lakonl(7:8).ne.'LC') then xi=gauss3d2(1,jj) et=gauss3d2(2,jj) ze=gauss3d2(3,jj) weight=weight3d2(jj) else kl=mod(jj,8) if(kl.eq.0) kl=8 ! xi=gauss3d2(1,kl) et=gauss3d2(2,kl) ze=gauss3d2(3,kl) weight=weight3d2(kl) ! ki=mod(jj,4) if(ki.eq.0) ki=4 ! if(kl.eq.1) then ilayer=ilayer+1 if(ilayer.gt.1) then do k=1,4 dlayer(k)=dlayer(k)+xlayer(ilayer-1,k) enddo endif endif ze=2.d0*(dlayer(ki)+(ze+1.d0)/2.d0*xlayer(ilayer,ki))/ & tlayer(ki)-1.d0 weight=weight*xlayer(ilayer,ki)/tlayer(ki) ! ! material and orientation ! imat=ielmat(ilayer,i) amat=matname(imat) if(norien.gt.0) then iorien=ielorien(ilayer,i) else iorien=0 endif ! if(nelcon(1,imat).lt.0) then ihyper=1 else ihyper=0 endif endif elseif(lakonl(4:4).eq.'2') then xi=gauss3d3(1,jj) et=gauss3d3(2,jj) ze=gauss3d3(3,jj) weight=weight3d3(jj) elseif(lakonl(4:5).eq.'10') then xi=gauss3d5(1,jj) et=gauss3d5(2,jj) ze=gauss3d5(3,jj) weight=weight3d5(jj) elseif(lakonl(4:4).eq.'4') then xi=gauss3d4(1,jj) et=gauss3d4(2,jj) ze=gauss3d4(3,jj) weight=weight3d4(jj) elseif(lakonl(4:5).eq.'15') then if(lakonl(7:8).ne.'LC') then xi=gauss3d8(1,jj) et=gauss3d8(2,jj) ze=gauss3d8(3,jj) weight=weight3d8(jj) else kl=mod(jj,6) if(kl.eq.0) kl=6 ! xi=gauss3d10(1,kl) et=gauss3d10(2,kl) ze=gauss3d10(3,kl) weight=weight3d10(kl) ! ki=mod(jj,3) if(ki.eq.0) ki=3 ! if(kl.eq.1) then ilayer=ilayer+1 if(ilayer.gt.1) then do k=1,3 dlayer(k)=dlayer(k)+xlayer(ilayer-1,k) enddo endif endif ze=2.d0*(dlayer(ki)+(ze+1.d0)/2.d0*xlayer(ilayer,ki))/ & tlayer(ki)-1.d0 weight=weight*xlayer(ilayer,ki)/tlayer(ki) ! ! material and orientation ! imat=ielmat(ilayer,i) amat=matname(imat) if(norien.gt.0) then iorien=ielorien(ilayer,i) else iorien=0 endif ! if(nelcon(1,imat).lt.0) then ihyper=1 else ihyper=0 endif endif elseif(lakonl(4:4).eq.'6') then xi=gauss3d7(1,jj) et=gauss3d7(2,jj) ze=gauss3d7(3,jj) weight=weight3d7(jj) endif ! c Bernhardi start if(lakonl(1:5).eq.'C3D8R') then call shape8hr(xl,xsj,shp,gs,a) elseif(lakonl(1:5).eq.'C3D8I') then call shape8hu(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.20) then c Bernhardi end if(lakonl(7:7).eq.'A') then call shape20h_ax(xi,et,ze,xl,xsj,shp,iflag) elseif((lakonl(7:7).eq.'E').or. & (lakonl(7:7).eq.'S')) then call shape20h_pl(xi,et,ze,xl,xsj,shp,iflag) else call shape20h(xi,et,ze,xl,xsj,shp,iflag) endif elseif(nope.eq.8) then call shape8h(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.10) then call shape10tet(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.4) then call shape4tet(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.15) then call shape15w(xi,et,ze,xl,xsj,shp,iflag) else call shape6w(xi,et,ze,xl,xsj,shp,iflag) endif ! ! vkl(m2,m3) contains the derivative of the m2- ! component of the displacement with respect to ! direction m3 ! do m2=1,3 do m3=1,3 vkl(m2,m3)=0.d0 enddo enddo ! do m1=1,nope do m2=1,3 do m3=1,3 vkl(m2,m3)=vkl(m2,m3)+shp(m3,m1)*vl(m2,m1) enddo c write(*,*) 'vnoeie',i,konl(m1),(vkl(m2,k),k=1,3) enddo enddo ! ! for frequency analysis or buckling with preload the ! strains are calculated with respect to the deformed ! configuration ! for a linear iteration within a nonlinear increment: ! the tangent matrix is calculated at strain at the end ! of the previous increment ! if((iperturb(1).eq.1).or.(iperturb(1).eq.-1))then do m2=1,3 do m3=1,3 vokl(m2,m3)=0.d0 enddo enddo ! do m1=1,nope do m2=1,3 do m3=1,3 vokl(m2,m3)=vokl(m2,m3)+ & shp(m3,m1)*voldl(m2,m1) enddo enddo enddo endif ! kode=nelcon(1,imat) ! ! calculating the strain ! ! attention! exy,exz and eyz are engineering strains! ! exx=vkl(1,1) eyy=vkl(2,2) ezz=vkl(3,3) exy=vkl(1,2)+vkl(2,1) exz=vkl(1,3)+vkl(3,1) eyz=vkl(2,3)+vkl(3,2) ! if(iperturb(2).eq.1) then ! ! Lagrangian strain ! exx=exx+(vkl(1,1)**2+vkl(2,1)**2+vkl(3,1)**2)/2.d0 eyy=eyy+(vkl(1,2)**2+vkl(2,2)**2+vkl(3,2)**2)/2.d0 ezz=ezz+(vkl(1,3)**2+vkl(2,3)**2+vkl(3,3)**2)/2.d0 exy=exy+vkl(1,1)*vkl(1,2)+vkl(2,1)*vkl(2,2)+ & vkl(3,1)*vkl(3,2) exz=exz+vkl(1,1)*vkl(1,3)+vkl(2,1)*vkl(2,3)+ & vkl(3,1)*vkl(3,3) eyz=eyz+vkl(1,2)*vkl(1,3)+vkl(2,2)*vkl(2,3)+ & vkl(3,2)*vkl(3,3) ! ! for frequency analysis or buckling with preload the ! strains are calculated with respect to the deformed ! configuration ! elseif(iperturb(1).eq.1) then exx=exx+vokl(1,1)*vkl(1,1)+vokl(2,1)*vkl(2,1)+ & vokl(3,1)*vkl(3,1) eyy=eyy+vokl(1,2)*vkl(1,2)+vokl(2,2)*vkl(2,2)+ & vokl(3,2)*vkl(3,2) ezz=ezz+vokl(1,3)*vkl(1,3)+vokl(2,3)*vkl(2,3)+ & vokl(3,3)*vkl(3,3) exy=exy+vokl(1,1)*vkl(1,2)+vokl(1,2)*vkl(1,1)+ & vokl(2,1)*vkl(2,2)+vokl(2,2)*vkl(2,1)+ & vokl(3,1)*vkl(3,2)+vokl(3,2)*vkl(3,1) exz=exz+vokl(1,1)*vkl(1,3)+vokl(1,3)*vkl(1,1)+ & vokl(2,1)*vkl(2,3)+vokl(2,3)*vkl(2,1)+ & vokl(3,1)*vkl(3,3)+vokl(3,3)*vkl(3,1) eyz=eyz+vokl(1,2)*vkl(1,3)+vokl(1,3)*vkl(1,2)+ & vokl(2,2)*vkl(2,3)+vokl(2,3)*vkl(2,2)+ & vokl(3,2)*vkl(3,3)+vokl(3,3)*vkl(3,2) endif ! ! storing the local strains ! if(iperturb(1).ne.-1) then eloc(1)=exx eloc(2)=eyy eloc(3)=ezz eloc(4)=exy/2.d0 eloc(5)=exz/2.d0 eloc(6)=eyz/2.d0 else ! ! linear iteration within a nonlinear increment: ! eloc(1)=vokl(1,1)+ & (vokl(1,1)**2+vokl(2,1)**2+vokl(3,1)**2)/2.d0 eloc(2)=vokl(2,2)+ & (vokl(1,2)**2+vokl(2,2)**2+vokl(3,2)**2)/2.d0 eloc(3)=vokl(3,3)+ & (vokl(1,3)**2+vokl(2,3)**2+vokl(3,3)**2)/2.d0 eloc(4)=(vokl(1,2)+vokl(2,1)+vokl(1,1)*vokl(1,2)+ & vokl(2,1)*vokl(2,2)+vokl(3,1)*vokl(3,2))/2.d0 eloc(5)=(vokl(1,3)+vokl(3,1)+vokl(1,1)*vokl(1,3)+ & vokl(2,1)*vokl(2,3)+vokl(3,1)*vokl(3,3))/2.d0 eloc(6)=(vokl(2,3)+vokl(3,2)+vokl(1,2)*vokl(1,3)+ & vokl(2,2)*vokl(2,3)+vokl(3,2)*vokl(3,3))/2.d0 endif ! ! calculating the deformation gradient (needed to ! convert the element stiffness matrix from spatial ! coordinates to material coordinates ! deformation plasticity) ! if((kode.eq.-50).or.(kode.le.-100)) then ! ! calculating the deformation gradient ! c Bernhardi start xkl(1,1)=vkl(1,1)+1.0d0 xkl(2,2)=vkl(2,2)+1.0d0 xkl(3,3)=vkl(3,3)+1.0d0 c Bernhardi end xkl(1,2)=vkl(1,2) xkl(1,3)=vkl(1,3) xkl(2,3)=vkl(2,3) xkl(2,1)=vkl(2,1) xkl(3,1)=vkl(3,1) xkl(3,2)=vkl(3,2) ! ! calculating the Jacobian ! vj=xkl(1,1)*(xkl(2,2)*xkl(3,3)-xkl(2,3)*xkl(3,2)) & -xkl(1,2)*(xkl(2,1)*xkl(3,3)-xkl(2,3)*xkl(3,1)) & +xkl(1,3)*(xkl(2,1)*xkl(3,2)-xkl(2,2)*xkl(3,1)) ! ! inversion of the deformation gradient (only for ! deformation plasticity) ! if(kode.eq.-50) then ! ckl(1,1)=(xkl(2,2)*xkl(3,3)-xkl(2,3)*xkl(3,2))/vj ckl(2,2)=(xkl(1,1)*xkl(3,3)-xkl(1,3)*xkl(3,1))/vj ckl(3,3)=(xkl(1,1)*xkl(2,2)-xkl(1,2)*xkl(2,1))/vj ckl(1,2)=(xkl(1,3)*xkl(3,2)-xkl(1,2)*xkl(3,3))/vj ckl(1,3)=(xkl(1,2)*xkl(2,3)-xkl(2,2)*xkl(1,3))/vj ckl(2,3)=(xkl(2,1)*xkl(1,3)-xkl(1,1)*xkl(2,3))/vj ckl(2,1)=(xkl(3,1)*xkl(2,3)-xkl(2,1)*xkl(3,3))/vj ckl(3,1)=(xkl(2,1)*xkl(3,2)-xkl(2,2)*xkl(3,1))/vj ckl(3,2)=(xkl(3,1)*xkl(1,2)-xkl(1,1)*xkl(3,2))/vj ! ! converting the Lagrangian strain into Eulerian ! strain (only for deformation plasticity) ! cauchy=0 call str2mat(eloc,ckl,vj,cauchy) endif ! endif ! ! calculating fields for incremental plasticity ! if(kode.le.-100) then ! ! calculating the deformation gradient at the ! start of the increment ! ! calculating the displacement gradient at the ! start of the increment ! do m2=1,3 do m3=1,3 vikl(m2,m3)=0.d0 enddo enddo ! do m1=1,nope do m2=1,3 do m3=1,3 vikl(m2,m3)=vikl(m2,m3) & +shp(m3,m1)*vini(m2,konl(m1)) enddo enddo enddo ! ! calculating the deformation gradient of the old ! fields ! xikl(1,1)=vikl(1,1)+1.d0 xikl(2,2)=vikl(2,2)+1.d0 xikl(3,3)=vikl(3,3)+1.d0 xikl(1,2)=vikl(1,2) xikl(1,3)=vikl(1,3) xikl(2,3)=vikl(2,3) xikl(2,1)=vikl(2,1) xikl(3,1)=vikl(3,1) xikl(3,2)=vikl(3,2) ! ! calculating the Jacobian ! vij=xikl(1,1)*(xikl(2,2)*xikl(3,3) & -xikl(2,3)*xikl(3,2)) & -xikl(1,2)*(xikl(2,1)*xikl(3,3) & -xikl(2,3)*xikl(3,1)) & +xikl(1,3)*(xikl(2,1)*xikl(3,2) & -xikl(2,2)*xikl(3,1)) ! ! stresses at the start of the increment ! do m1=1,6 stre(m1)=sti(m1,jj,i) enddo ! endif ! ! prestress values ! if(iprestr.eq.1) then do kk=1,6 beta(kk)=-prestr(kk,jj,i) enddo else do kk=1,6 beta(kk)=0.d0 enddo endif ! if(ithermal(1).ge.1) then ! ! calculating the temperature difference in ! the integration point ! t0l=0.d0 t1l=0.d0 if(ithermal(1).eq.1) then if((lakonl(4:5).eq.'8 ').or. & (lakonl(4:5).eq.'8I')) then do i1=1,8 t0l=t0l+t0(konl(i1))/8.d0 t1l=t1l+t1(konl(i1))/8.d0 enddo elseif(lakonl(4:6).eq.'20 ') then nopered=20 call lintemp(t0,t1,konl,nopered,jj,t0l,t1l) elseif(lakonl(4:6).eq.'10T') then call linscal10(t0,konl,t0l,null,shp) call linscal10(t1,konl,t1l,null,shp) else do i1=1,nope t0l=t0l+shp(4,i1)*t0(konl(i1)) t1l=t1l+shp(4,i1)*t1(konl(i1)) enddo endif elseif(ithermal(1).ge.2) then if((lakonl(4:5).eq.'8 ').or. & (lakonl(4:5).eq.'8I')) then do i1=1,8 t0l=t0l+t0(konl(i1))/8.d0 t1l=t1l+vold(0,konl(i1))/8.d0 enddo elseif(lakonl(4:6).eq.'20 ') then nopered=20 call lintemp_th(t0,vold,konl,nopered,jj,t0l,t1l,mi) elseif(lakonl(4:6).eq.'10T') then call linscal10(t0,konl,t0l,null,shp) call linscal10(vold,konl,t1l,mi(2),shp) else do i1=1,nope t0l=t0l+shp(4,i1)*t0(konl(i1)) t1l=t1l+shp(4,i1)*vold(0,konl(i1)) enddo endif endif tt=t1l-t0l endif ! ! calculating the coordinates of the integration point ! for material orientation purposes (for cylindrical ! coordinate systems) ! if((iorien.gt.0).or.(kode.le.-100)) then do j=1,3 pgauss(j)=0.d0 do i1=1,nope pgauss(j)=pgauss(j)+shp(4,i1)*co(j,konl(i1)) enddo enddo endif ! ! material data; for linear elastic materials ! this includes the calculation of the stiffness ! matrix ! istiff=0 ! call materialdata_me(elcon,nelcon,rhcon,nrhcon,alcon, & nalcon,imat,amat,iorien,pgauss,orab,ntmat_, & elas,rho,i,ithermal,alzero,mattyp,t0l,t1l,ihyper, & istiff,elconloc,eth,kode,plicon,nplicon, & plkcon,nplkcon,npmat_,plconloc,mi(1),dtime,jj, & xstiff,ncmat_) ! ! determining the mechanical strain ! if(ithermal(1).ne.0) then do m1=1,6 emec(m1)=eloc(m1)-eth(m1) c emec0(m1)=emeini(m1,jj,i) enddo else do m1=1,6 emec(m1)=eloc(m1) c emec0(m1)=emeini(m1,jj,i) enddo endif if(kode.le.-100) then do m1=1,6 emec0(m1)=emeini(m1,jj,i) enddo endif ! ! subtracting the plastic initial strains ! if(iprestr.eq.2) then do m1=1,6 emec(m1)=emec(m1)-prestr(m1,jj,i) enddo endif ! ! calculating the local stiffness and stress ! nlgeom_undo=0 call mechmodel(elconloc,elas,emec,kode,emec0,ithermal, & icmd,beta,stre,xkl,ckl,vj,xikl,vij, & plconloc,xstate,xstateini,ielas, & amat,t1l,dtime,time,ttime,i,jj,nstate_,mi(1), & iorien,pgauss,orab,eloc,mattyp,qa(3),istep,iinc, & ipkon,nmethod,iperturb,qa(4),nlgeom_undo) ! if(((nmethod.ne.4).or.(iperturb(1).ne.0)).and. & (nmethod.ne.5)) then if(idesvar.eq.0) then do m1=1,21 xstiff(m1,jj,i)=elas(m1) enddo elseif(icoordinate.ne.1) then ! ! for orientation design variables: store the modified ! stiffness matrix for use in mafillsmse ! idir=idesvar-3*((idesvar-1)/3) do m1=1,21 dxstiff(m1,jj,i,idir)=elas(m1) enddo endif endif ! if((iperturb(1).eq.-1).and.(nlgeom_undo.eq.0)) then ! ! if the forced displacements were changed at ! the start of a nonlinear step, the nodal ! forces due do this displacements are ! calculated in a purely linear way, and ! the first iteration is purely linear in order ! to allow the displacements to redistribute ! in a quasi-static way (only applies to ! quasi-static analyses (*STATIC)) ! eloc(1)=exx-vokl(1,1) eloc(2)=eyy-vokl(2,2) eloc(3)=ezz-vokl(3,3) eloc(4)=exy-(vokl(1,2)+vokl(2,1)) eloc(5)=exz-(vokl(1,3)+vokl(3,1)) eloc(6)=eyz-(vokl(2,3)+vokl(3,2)) ! if(mattyp.eq.1) then e=elas(1) un=elas(2) um=e/(1.d0+un) al=un*um/(1.d0-2.d0*un) um=um/2.d0 am1=al*(eloc(1)+eloc(2)+eloc(3)) stre(1)=am1+2.d0*um*eloc(1) stre(2)=am1+2.d0*um*eloc(2) stre(3)=am1+2.d0*um*eloc(3) stre(4)=um*eloc(4) stre(5)=um*eloc(5) stre(6)=um*eloc(6) elseif(mattyp.eq.2) then stre(1)=eloc(1)*elas(1)+eloc(2)*elas(2) & +eloc(3)*elas(4) stre(2)=eloc(1)*elas(2)+eloc(2)*elas(3) & +eloc(3)*elas(5) stre(3)=eloc(1)*elas(4)+eloc(2)*elas(5) & +eloc(3)*elas(6) stre(4)=eloc(4)*elas(7) stre(5)=eloc(5)*elas(8) stre(6)=eloc(6)*elas(9) elseif(mattyp.eq.3) then stre(1)=eloc(1)*elas(1)+eloc(2)*elas(2)+ & eloc(3)*elas(4)+eloc(4)*elas(7)+ & eloc(5)*elas(11)+eloc(6)*elas(16) stre(2)=eloc(1)*elas(2)+eloc(2)*elas(3)+ & eloc(3)*elas(5)+eloc(4)*elas(8)+ & eloc(5)*elas(12)+eloc(6)*elas(17) stre(3)=eloc(1)*elas(4)+eloc(2)*elas(5)+ & eloc(3)*elas(6)+eloc(4)*elas(9)+ & eloc(5)*elas(13)+eloc(6)*elas(18) stre(4)=eloc(1)*elas(7)+eloc(2)*elas(8)+ & eloc(3)*elas(9)+eloc(4)*elas(10)+ & eloc(5)*elas(14)+eloc(6)*elas(19) stre(5)=eloc(1)*elas(11)+eloc(2)*elas(12)+ & eloc(3)*elas(13)+eloc(4)*elas(14)+ & eloc(5)*elas(15)+eloc(6)*elas(20) stre(6)=eloc(1)*elas(16)+eloc(2)*elas(17)+ & eloc(3)*elas(18)+eloc(4)*elas(19)+ & eloc(5)*elas(20)+eloc(6)*elas(21) endif endif ! skl(1,1)=stre(1) skl(2,2)=stre(2) skl(3,3)=stre(3) skl(2,1)=stre(4) skl(3,1)=stre(5) skl(3,2)=stre(6) ! skl(1,2)=skl(2,1) skl(1,3)=skl(3,1) skl(2,3)=skl(3,2) ! ! calculation of the nodal forces ! if(calcul_fn.eq.1)then if(idesvar.eq.0) then ! ! unperturbed state ! do m1=1,nope do m2=1,3 ! ! linear elastic part ! do m3=1,3 fn0(m2,indexe+m1)=fn0(m2,indexe+m1)+ & xsj*skl(m2,m3)*shp(m3,m1)*weight enddo ! ! nonlinear geometric part ! if((iperturb(2).eq.1).and.(nlgeom_undo.eq.0)) & then do m3=1,3 do m4=1,3 fn0(m2,indexe+m1)=fn0(m2,indexe+m1)+ & xsj*skl(m4,m3)*weight* & (vkl(m2,m4)*shp(m3,m1)+ & vkl(m2,m3)*shp(m4,m1))/2.d0 enddo enddo endif ! enddo enddo c Bernhardi start if(lakonl(1:5).eq.'C3D8R') then ahr=elas(1)*a ! do i1=1,3 do k=1,4 hglf(i1,k)=0.0d0 do j=1,8 hglf(i1,k)=hglf(i1,k)+gs(j,k)*vl(i1,j) enddo hglf(i1,k)=hglf(i1,k)*ahr enddo enddo do i1=1,3 do j=1,8 do k=1,4 fn0(i1,indexe+j)=fn0(i1,indexe+j)+ & hglf(i1,k)*gs(j,k) enddo enddo enddo endif c Bernhardi end else ! ! perturbed state ! do m1=1,nope do m2=1,3 ! ! linear elastic part ! do m3=1,3 dfn(m2,konl(m1))=dfn(m2,konl(m1))+ & xsj*skl(m2,m3)*shp(m3,m1)*weight enddo ! ! nonlinear geometric part ! if((iperturb(2).eq.1).and.(nlgeom_undo.eq.0)) & then do m3=1,3 do m4=1,3 dfn(m2,konl(m1))=dfn(m2,konl(m1))+ & xsj*skl(m4,m3)*weight* & (vkl(m2,m4)*shp(m3,m1)+ & vkl(m2,m3)*shp(m4,m1))/2.d0 enddo enddo endif ! enddo enddo c Bernhardi start if(lakonl(1:5).eq.'C3D8R') then ! ahr=elas(1)*a ! do i1=1,3 do k=1,4 hglf(i1,k)=0.0d0 do j=1,8 hglf(i1,k)=hglf(i1,k)+gs(j,k)*vl(i1,j) enddo hglf(i1,k)=hglf(i1,k)*ahr enddo enddo do i1=1,3 do j=1,8 do k=1,4 dfn(i1,konl(j))=dfn(i1,konl(j)) & +hglf(i1,k)*gs(j,k) enddo enddo enddo endif c Bernhardi end endif endif ! enddo ! enddo loop over the integration points ! ! subtracting the unperturbed state of the element at stake ! if(idesvar.gt.0) then do m1=1,nope do m2=1,3 dfn(m2,konl(m1))=dfn(m2,konl(m1)) & -fn0(m2,indexe+m1) enddo enddo endif ! ! end of loop over all elements in thread enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.10/src/changesolidsections.f
4
6507
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine changesolidsections(inpc,textpart,set,istartset, & iendset,ialset,nset,ielmat,matname,nmat,ielorien,orname,norien, & lakon,thicke,kon,ipkon,irstrt,istep,istat,n,iline,ipol,inl, & ipoinp,inp,cs,mcs,iaxial,ipoinpc,mi) ! ! reading the input deck: *CHANGE SOLID SECTION ! implicit none ! character*1 inpc(*) character*8 lakon(*) character*80 matname(*),orname(*),material,orientation character*81 set(*),elset character*132 textpart(16) ! integer mi(*),istartset(*),iendset(*),ialset(*),ielmat(mi(3),*), & ielorien(mi(3),*),kon(*),ipkon(*),indexe,irstrt,nset,nmat, & norien, & istep,istat,n,key,i,j,k,l,imaterial,iorientation,ipos, & iline,ipol,inl,ipoinp(2,*),inp(3,*),mcs,iaxial,ipoinpc(0:*) ! real*8 thicke(mi(3),*),thickness,pi,cs(17,*) ! if(istep.eq.0) then write(*,*) '*ERROR reading *CHANGE SOLID SECTION:' write(*,*) ' *CHANGE SOLID SECTION should' write(*,*) ' be placed within a step definition' call exit(201) endif ! pi=4.d0*datan(1.d0) ! orientation=' & ' elset=' & ' ipos=0 ! do i=2,n if(textpart(i)(1:9).eq.'MATERIAL=') then material=textpart(i)(10:89) elseif(textpart(i)(1:12).eq.'ORIENTATION=') then orientation=textpart(i)(13:92) elseif(textpart(i)(1:6).eq.'ELSET=') then elset=textpart(i)(7:86) elset(81:81)=' ' ipos=index(elset,' ') elset(ipos:ipos)='E' else write(*,*) '*WARNING reading *CHANGE SOLID SECTION:' write(*,*) ' parameter not recognized:' write(*,*) ' ', & textpart(i)(1:index(textpart(i),' ')-1) call inputwarning(inpc,ipoinpc,iline, &"*CHANGE SOLID SECTIONQ%") endif enddo ! ! check for the existence of the set,the material and orientation ! do i=1,nmat if(matname(i).eq.material) exit enddo if(i.gt.nmat) then do i=1,nmat if(matname(i)(1:11).eq.'ANISO_CREEP') then if(matname(i)(12:20).eq.material(1:9)) exit elseif(matname(i)(1:10).eq.'ANISO_PLAS') then if(matname(i)(11:20).eq.material(1:10)) exit endif enddo endif if(i.gt.nmat) then write(*,*) & '*ERROR reading *CHANGE SOLID SECTION: nonexistent material' write(*,*) ' ' call inputerror(inpc,ipoinpc,iline, &"*CHANGE SOLID SECTION%") call exit(201) endif imaterial=i ! if(orientation.eq.' ') then iorientation=0 else do i=1,norien if(orname(i).eq.orientation) exit enddo if(i.gt.norien) then write(*,*) '*ERROR reading *CHANGE SOLID SECTION:' write(*,*) ' nonexistent orientation' write(*,*) ' ' call inputerror(inpc,ipoinpc,iline, &"*CHANGE SOLID SECTION%") call exit(201) endif iorientation=i endif ! if(ipos.eq.0) then write(*,*) & '*ERROR reading *CHANGE SOLID SECTION: no element set ',elset write(*,*) ' was been defined. ' call inputerror(inpc,ipoinpc,iline, &"*CHANGE SOLID SECTION%") call exit(201) endif do i=1,nset if(set(i).eq.elset) exit enddo if(i.gt.nset) then elset(ipos:ipos)=' ' write(*,*) '*ERROR reading *CHANGE SOLID SECTION:' write(*,*) ' element set ',elset write(*,*) ' has not yet been defined. ' call inputerror(inpc,ipoinpc,iline, &"*CHANGE SOLID SECTION%") call exit(201) endif ! ! assigning the elements of the set the appropriate material ! and orientation number ! do j=istartset(i),iendset(i) if(ialset(j).gt.0) then if((lakon(ialset(j))(1:1).eq.'B').or. & (lakon(ialset(j))(1:1).eq.'S')) then write(*,*) '*ERROR reading *CHANGE SOLID SECTION:' write(*,*) ' *CHANGE SOLID SECTION can' write(*,*) ' not be used for beam or shell elements &' write(*,*) ' Faulty element: ',ialset(j) call exit(201) endif ielmat(1,ialset(j))=imaterial if(norien.gt.0) ielorien(1,ialset(j))=iorientation else k=ialset(j-2) do k=k-ialset(j) if(k.ge.ialset(j-1)) exit if((lakon(k)(1:1).eq.'B').or. & (lakon(k)(1:1).eq.'S')) then write(*,*) '*ERROR reading *CHANGE SOLID SECTION:' write(*,*) ' *CHANGE SOLID SECTION can' write(*,*) ' not be used for beam or shell eleme &nts' write(*,*) ' Faulty element: ',k call exit(201) endif ielmat(1,k)=imaterial if(norien.gt.0) ielorien(1,k)=iorientation enddo endif enddo ! call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) ! ! assigning a thickness to plane stress elements and an angle to ! axisymmetric elements ! if(key.eq.0) then write(*,*) '*ERROR reading *CHANGE SOLID SECTION' write(*,*) ' no second line allowed' call inputerror(inpc,ipoinpc,iline, &"*CHANGE SOLID SECTION%") endif ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.16/src/radmatrix.f
1
10082
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2019 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! ! ! center of gravity of the projection of the vertices for ! visibility purposes ! exact integration for one triangle: routine cubtri ! if the surfaces are far enough away, one-point integration ! is used ! subroutine radmatrix(ntr,adrad,aurad,bcr,sideload,nelemload, & xloadact,lakon,vold,ipkon,kon,co,nloadtr,tarea,tenv,physcon, & erad,adview,auview,ithermal,iinc,iit,fenv,istep,dtime,ttime, & time,iviewfile,xloadold,reltime,nmethod,mi,iemchange,nam, & iamload,jqrad,irowrad,nzsrad) ! implicit none ! character*8 lakonl,lakon(*) character*20 sideload(*) ! integer ntr,nelemload(2,*),nope,nopes,mint2d,i,j,k,l, & node,ifaceq(8,6),ifacet(6,4),iviewfile,mi(*), & ifacew(8,5),nelem,ig,index,konl(20),iflag, & ipkon(*),kon(*),nloadtr(*),i1,ithermal,iinc,iit, & istep,jltyp,nfield,nmethod,iemchange,nam, & iamload(2,*),irowrad(*),jqrad(*),nzsrad ! real*8 adrad(*),aurad(*),bcr(ntr,1),xloadact(2,*),h(2), & xl2(3,8),coords(3),dxsj2,temp,xi,et,weight,xsj2(3), & vold(0:mi(2),*),co(3,*),shp2(7,8),xs2(3,7), & areamean,tarea(*),tenv(*),erad(*),fenv(*),physcon(*), & adview(*),auview(*),tl2(8),tvar(2),field, & dtime,ttime,time,areaj,xloadold(2,*),reltime, & fform ! data ifaceq /4,3,2,1,11,10,9,12, & 5,6,7,8,13,14,15,16, & 1,2,6,5,9,18,13,17, & 2,3,7,6,10,19,14,18, & 3,4,8,7,11,20,15,19, & 4,1,5,8,12,17,16,20/ data ifacet /1,3,2,7,6,5, & 1,2,4,5,9,8, & 2,3,4,6,10,9, & 1,4,3,8,10,7/ data ifacew /1,3,2,9,8,7,0,0, & 4,5,6,10,11,12,0,0, & 1,2,5,4,7,14,10,13, & 2,3,6,5,8,15,11,14, & 4,6,3,1,12,15,9,13/ data iflag /2/ ! external fform ! include "gauss.f" ! tvar(1)=time tvar(2)=ttime+time ! ! filling acr and bcr ! do i1=1,ntr i=nloadtr(i1) nelem=nelemload(1,i) lakonl=lakon(nelem) ! ! calculate the mean temperature of the face ! read(sideload(i)(2:2),'(i1)') ig ! ! number of nodes and integration points in the face ! if(lakonl(4:4).eq.'2') then nope=20 nopes=8 elseif(lakonl(4:4).eq.'8') then nope=8 nopes=4 elseif(lakonl(4:5).eq.'10') then nope=10 nopes=6 elseif(lakonl(4:4).eq.'4') then nope=4 nopes=3 elseif(lakonl(4:5).eq.'15') then nope=15 else nope=6 endif ! if(lakonl(4:5).eq.'8R') then mint2d=1 elseif((lakonl(4:4).eq.'8').or.(lakonl(4:6).eq.'20R')) & then if(lakonl(7:7).eq.'A') then mint2d=2 else mint2d=4 endif elseif(lakonl(4:4).eq.'2') then mint2d=9 elseif(lakonl(4:5).eq.'10') then mint2d=3 elseif(lakonl(4:4).eq.'4') then mint2d=1 endif ! if(lakonl(4:4).eq.'6') then mint2d=1 if(ig.le.2) then nopes=3 else nopes=4 endif endif if(lakonl(4:5).eq.'15') then if(ig.le.2) then mint2d=3 nopes=6 else mint2d=4 nopes=8 endif endif ! ! connectivity of the element ! index=ipkon(nelem) if(index.lt.0) then write(*,*) '*ERROR in radmatrix: element ',nelem write(*,*) ' is not defined' call exit(201) endif do k=1,nope konl(k)=kon(index+k) enddo ! ! coordinates of the nodes belonging to the face ! if((nope.eq.20).or.(nope.eq.8)) then do k=1,nopes tl2(k)=vold(0,konl(ifaceq(k,ig))) ! do j=1,3 xl2(j,k)=co(j,konl(ifaceq(k,ig)))+ & vold(j,konl(ifaceq(k,ig))) enddo enddo elseif((nope.eq.10).or.(nope.eq.4)) then do k=1,nopes tl2(k)=vold(0,konl(ifacet(k,ig))) do j=1,3 xl2(j,k)=co(j,konl(ifacet(k,ig)))+ & vold(j,konl(ifacet(k,ig))) enddo enddo else do k=1,nopes tl2(k)=vold(0,konl(ifacew(k,ig))) do j=1,3 xl2(j,k)=co(j,konl(ifacew(k,ig)))+ & vold(j,konl(ifacew(k,ig))) enddo enddo endif ! ! integration to obtain the center of gravity and the mean ! temperature; radiation coefficient ! areamean=0.d0 tarea(i1)=0.d0 ! read(sideload(i)(2:2),'(i1)') jltyp jltyp=jltyp+10 if(sideload(i)(5:6).ne.'NU') then erad(i1)=xloadact(1,i) ! ! if an amplitude was defined for the emissivity it is ! assumed that the emissivity changes with the step, so ! acr has to be calculated anew in every iteration ! if(nam.gt.0) then if(iamload(1,i).ne.0) then iemchange=1 endif endif else erad(i1)=0.d0 endif ! do l=1,mint2d if((lakonl(4:5).eq.'8R').or. & ((lakonl(4:4).eq.'6').and.(nopes.eq.4))) then xi=gauss2d1(1,l) et=gauss2d1(2,l) weight=weight2d1(l) elseif((lakonl(4:4).eq.'8').or. & (lakonl(4:6).eq.'20R').or. & ((lakonl(4:5).eq.'15').and.(nopes.eq.8))) then xi=gauss2d2(1,l) et=gauss2d2(2,l) weight=weight2d2(l) elseif(lakonl(4:4).eq.'2') then xi=gauss2d3(1,l) et=gauss2d3(2,l) weight=weight2d3(l) elseif((lakonl(4:5).eq.'10').or. & ((lakonl(4:5).eq.'15').and.(nopes.eq.6))) then xi=gauss2d5(1,l) et=gauss2d5(2,l) weight=weight2d5(l) elseif((lakonl(4:4).eq.'4').or. & ((lakonl(4:4).eq.'6').and.(nopes.eq.3))) then xi=gauss2d4(1,l) et=gauss2d4(2,l) weight=weight2d4(l) endif ! if(nopes.eq.8) then call shape8q(xi,et,xl2,xsj2,xs2,shp2,iflag) elseif(nopes.eq.4) then call shape4q(xi,et,xl2,xsj2,xs2,shp2,iflag) elseif(nopes.eq.6) then call shape6tri(xi,et,xl2,xsj2,xs2,shp2,iflag) else call shape3tri(xi,et,xl2,xsj2,xs2,shp2,iflag) endif ! dxsj2=dsqrt(xsj2(1)*xsj2(1)+xsj2(2)*xsj2(2)+ & xsj2(3)*xsj2(3)) ! temp=0.d0 do j=1,nopes temp=temp+tl2(j)*shp2(4,j) enddo ! tarea(i1)=tarea(i1)+temp*dxsj2*weight areamean=areamean+dxsj2*weight ! if(sideload(i)(5:6).eq.'NU') then areaj=dxsj2*weight do k=1,3 coords(k)=0.d0 enddo do j=1,nopes do k=1,3 coords(k)=coords(k)+xl2(k,j)*shp2(4,j) enddo enddo call radiate(h(1),tenv(i1),temp,istep, & iinc,tvar,nelem,l,coords,jltyp,field,nfield, & sideload(i),node,areaj,vold,mi,iemchange) if(nmethod.eq.1) h(1)=xloadold(1,i)+ & (h(1)-xloadold(1,i))*reltime erad(i1)=erad(i1)+h(1) endif ! enddo tarea(i1)=tarea(i1)/areamean-physcon(1) if(sideload(i)(5:6).eq.'NU') then erad(i1)=erad(i1)/mint2d endif ! ! updating the right hand side ! bcr(i1,1)=physcon(2)*(erad(i1)*tarea(i1)**4+ & (1.d0-erad(i1))*fenv(i1)*tenv(i1)**4) c write(*,*) 'radmatrix ',bcr(i1,1) ! enddo ! ! adrad and aurad is recalculated only if the viewfactors ! or the emissivity changed ! if(((ithermal.eq.3).and.(iviewfile.ge.0)).or. & ((iit.eq.-1).and.(iviewfile.ne.-2)).or.(iemchange.eq.1).or. & ((iit.eq.0).and.(abs(nmethod).eq.1))) then ! do i=1,ntr erad(i)=1.d0-erad(i) enddo ! ! diagonal entries ! do i=1,ntr adrad(i)=1.d0-erad(i)*adview(i) enddo ! ! lower triangular entries ! do i=1,nzsrad aurad(i)=-erad(irowrad(i))*auview(i) enddo ! ! upper triangular entries ! do i=1,ntr do j=nzsrad+jqrad(i),nzsrad+jqrad(i+1)-1 aurad(j)=-erad(i)*auview(j) enddo enddo ! do i=1,ntr erad(i)=1.d0-erad(i) enddo endif ! return end
gpl-2.0
spthm/sphray
src/OpenGL/OpenGL_openglut.F90
2
67729
MODULE OpenGL_glut USE OpenGL_kinds IMPLICIT NONE PRIVATE ! Portions copyright (C) 2004, the OpenGLUT project contributors. ! OpenGLUT branched from freeglut in February, 2004. ! ! openglut.h ! ! The openglut library include file ! ! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ! OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ! PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER ! IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN ! CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ! openglut_std.h ! ! The GLUT-compatible part of the OpenGLUT library include file ! ! Portions copyright (c) 2004, the OpenGLUT project contributors. ! OpenGLUT branched from freeglut in Feburary, 2004. ! ! Copyright (c) 1999-2000 Pawel W. Olszta. All Rights Reserved. ! Written by Pawel W. Olszta, <olszta@sourceforge.net> ! Creation date: Thu Dec 2 1999 ! ! Permission is hereby granted, free of charge, to any person obtaining a ! copy of this software and associated documentation files (the "Software"), ! to deal in the Software without restriction, including without limitation ! the rights to use, copy, modify, merge, publish, distribute, sublicense, ! and/or sell copies of the Software, and to permit persons to whom the ! Software is furnished to do so, subject to the following conditions: ! ! The above copyright notice and this permission notice shall be included ! in all copies or substantial portions of the Software. ! ! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ! OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ! PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER ! IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN ! CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ! The OpenGLUT, freeglut, and GLUT API versions ! ! FREEGLUT and FREEGLUT_VERSION are commented out. Unless ! OpenGLUT is going to ensure very good freeglut compatibility, ! providing freeglut API level symbols is probably more harmful than helpful. ! Let the application programmer use the OpenGLUT version to determine ! features, not our pseudo-freeglut version compatibility. ! ! If this is an issue, we can re-enable it later. ! INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_API_VERSION = 4 ! GLUT API macro definitions -- the special key codes: INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F1 = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F2 = z'0002' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F3 = z'0003' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F4 = z'0004' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F5 = z'0005' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F6 = z'0006' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F7 = z'0007' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F8 = z'0008' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F9 = z'0009' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F10 = z'000A' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F11 = z'000B' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_F12 = z'000C' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_LEFT = z'0064' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_UP = z'0065' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_RIGHT = z'0066' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_DOWN = z'0067' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_PAGE_UP = z'0068' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_PAGE_DOWN = z'0069' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_HOME = z'006A' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_END = z'006B' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_INSERT = z'006C' ! GLUT API macro definitions -- mouse state definitions INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_LEFT_BUTTON = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_MIDDLE_BUTTON = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_RIGHT_BUTTON = z'0002' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_DOWN = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_UP = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_LEFT = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ENTERED = z'0001' ! GLUT API macro definitions -- the display mode definitions INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_RGB = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_RGBA = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_INDEX = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_SINGLE = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_DOUBLE = z'0002' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ACCUM = z'0004' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ALPHA = z'0008' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_DEPTH = z'0010' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_STENCIL = z'0020' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_MULTISAMPLE = z'0080' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_STEREO = z'0100' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_LUMINANCE = z'0200' ! GLUT API macro definitions -- windows and menu related definitions INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_MENU_NOT_IN_USE = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_MENU_IN_USE = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_NOT_VISIBLE = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VISIBLE = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_HIDDEN = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_FULLY_RETAINED = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_PARTIALLY_RETAINED = z'0002' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_FULLY_COVERED = z'0003' ! GLUT API macro definitions -- fonts definitions ! ???, , PUBLIC :: GLUT_STROKE_ROMAN=((void *)0x0000) ! ???, , PUBLIC :: GLUT_STROKE_MONO_ROMAN=((void *)0x0001) ! ???, , PUBLIC :: GLUT_BITMAP_9_BY_15=((void *)0x0002) ! ???, , PUBLIC :: GLUT_BITMAP_8_BY_13=((void *)0x0003) ! ???, , PUBLIC :: GLUT_BITMAP_TIMES_ROMAN_10=((void *)0x0004) ! ???, , PUBLIC :: GLUT_BITMAP_TIMES_ROMAN_24=((void *)0x0005) ! ???, , PUBLIC :: GLUT_BITMAP_HELVETICA_10=((void *)0x0006) ! ???, , PUBLIC :: GLUT_BITMAP_HELVETICA_12=((void *)0x0007) ! ???, , PUBLIC :: GLUT_BITMAP_HELVETICA_18=((void *)0x0008) ! GLUT API macro definitions -- the glutGet parameters INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_X = z'0064' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_Y = z'0065' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_WIDTH = z'0066' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_HEIGHT = z'0067' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_BUFFER_SIZE = z'0068' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_STENCIL_SIZE = z'0069' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_DEPTH_SIZE = z'006A' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_RED_SIZE = z'006B' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_GREEN_SIZE = z'006C' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_BLUE_SIZE = z'006D' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_ALPHA_SIZE = z'006E' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_ACCUM_RED_SIZE = z'006F' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_ACCUM_GREEN_SIZE = z'0070' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_ACCUM_BLUE_SIZE = z'0071' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_ACCUM_ALPHA_SIZE = z'0072' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_DOUBLEBUFFER = z'0073' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_RGBA = z'0074' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_PARENT = z'0075' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_NUM_CHILDREN = z'0076' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_COLORMAP_SIZE = z'0077' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_NUM_SAMPLES = z'0078' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_STEREO = z'0079' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_CURSOR = z'007A' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_SCREEN_WIDTH = z'00C8' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_SCREEN_HEIGHT = z'00C9' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_SCREEN_WIDTH_MM = z'00CA' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_SCREEN_HEIGHT_MM = z'00CB' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_MENU_NUM_ITEMS = z'012C' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_DISPLAY_MODE_POSSIBLE = z'0190' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_INIT_WINDOW_X = z'01F4' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_INIT_WINDOW_Y = z'01F5' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_INIT_WINDOW_WIDTH = z'01F6' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_INIT_WINDOW_HEIGHT = z'01F7' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_INIT_DISPLAY_MODE = z'01F8' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ELAPSED_TIME = z'02BC' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_FORMAT_ID = z'007B' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_INIT_STATE = z'007C' ! GLUT API macro definitions -- the glutDeviceGet parameters INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_HAS_KEYBOARD = z'0258' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_HAS_MOUSE = z'0259' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_HAS_SPACEBALL = z'025A' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_HAS_DIAL_AND_BUTTON_BOX = z'025B' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_HAS_TABLET = z'025C' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_NUM_MOUSE_BUTTONS = z'025D' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_NUM_SPACEBALL_BUTTONS = z'025E' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_NUM_BUTTON_BOX_BUTTONS = z'025F' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_NUM_DIALS = z'0260' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_NUM_TABLET_BUTTONS = z'0261' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_DEVICE_IGNORE_KEY_REPEAT = z'0262' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_DEVICE_KEY_REPEAT = z'0263' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_HAS_JOYSTICK = z'0264' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_OWNS_JOYSTICK = z'0265' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_JOYSTICK_BUTTONS = z'0266' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_JOYSTICK_AXES = z'0267' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_JOYSTICK_POLL_RATE = z'0268' ! GLUT API macro definitions -- the glutLayerGet parameters INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_OVERLAY_POSSIBLE = z'0320' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_LAYER_IN_USE = z'0321' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_HAS_OVERLAY = z'0322' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_TRANSPARENT_INDEX = z'0323' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_NORMAL_DAMAGED = z'0324' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_OVERLAY_DAMAGED = z'0325' ! GLUT API macro definitions -- the glutVideoResizeGet parameters INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_POSSIBLE = z'0384' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_IN_USE = z'0385' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_X_DELTA = z'0386' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_Y_DELTA = z'0387' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_WIDTH_DELTA = z'0388' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_HEIGHT_DELTA = z'0389' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_X = z'038A' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_Y = z'038B' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_WIDTH = z'038C' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VIDEO_RESIZE_HEIGHT = z'038D' ! GLUT API macro definitions -- the glutUseLayer parameters INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_NORMAL = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_OVERLAY = z'0001' ! GLUT API macro definitions -- the glutGetModifiers parameters INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ACTIVE_SHIFT = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ACTIVE_CTRL = z'0002' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ACTIVE_ALT = z'0004' ! GLUT API macro definitions -- the glutSetCursor parameters INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_RIGHT_ARROW = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_LEFT_ARROW = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_INFO = z'0002' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_DESTROY = z'0003' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_HELP = z'0004' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_CYCLE = z'0005' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_SPRAY = z'0006' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_WAIT = z'0007' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_TEXT = z'0008' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_CROSSHAIR = z'0009' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_UP_DOWN = z'000A' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_LEFT_RIGHT = z'000B' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_TOP_SIDE = z'000C' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_BOTTOM_SIDE = z'000D' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_LEFT_SIDE = z'000E' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_RIGHT_SIDE = z'000F' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_TOP_LEFT_CORNER = z'0010' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_TOP_RIGHT_CORNER = z'0011' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_BOTTOM_RIGHT_CORNER = z'0012' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_BOTTOM_LEFT_CORNER = z'0013' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_INHERIT = z'0064' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_NONE = z'0065' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CURSOR_FULL_CROSSHAIR = z'0066' ! GLUT API macro definitions -- RGB color component specification definitions INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_RED = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_GREEN = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_BLUE = z'0002' ! GLUT API macro definitions -- additional keyboard and joystick definitions INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_REPEAT_OFF = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_REPEAT_ON = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_KEY_REPEAT_DEFAULT = z'0002' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_JOYSTICK_BUTTON_A = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_JOYSTICK_BUTTON_B = z'0002' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_JOYSTICK_BUTTON_C = z'0004' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_JOYSTICK_BUTTON_D = z'0008' ! GLUT API macro definitions -- game mode definitions INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_GAME_MODE_ACTIVE = z'0000' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_GAME_MODE_POSSIBLE = z'0001' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_GAME_MODE_WIDTH = z'0002' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_GAME_MODE_HEIGHT = z'0003' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_GAME_MODE_PIXEL_DEPTH = z'0004' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_GAME_MODE_REFRESH_RATE = z'0005' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_GAME_MODE_DISPLAY_CHANGED = z'0006' ! Initialization functions, see og_init.c ! void glutInit( int* pargc, char** argv ) PUBLIC glutInit INTERFACE glutInit MODULE PROCEDURE glutInit_f03 END INTERFACE glutInit INTERFACE SUBROUTINE glutInit_gl(pargc, argv) BIND(C,NAME="glutInit") IMPORT ! INTEGER(GLint), DIMENSION(*) :: pargc INTEGER(GLint) :: pargc TYPE(C_PTR), INTENT(IN) :: argv END SUBROUTINE glutInit_gl END INTERFACE ! void glutInitWindowPosition( int x, int y ) PUBLIC glutInitWindowPosition INTERFACE SUBROUTINE glutInitWindowPosition(x, y) BIND(C,NAME="glutInitWindowPosition") IMPORT INTEGER(GLint), VALUE :: x, y END SUBROUTINE glutInitWindowPosition END INTERFACE ! void glutInitWindowSize( int width, int height ) PUBLIC glutInitWindowSize INTERFACE SUBROUTINE glutInitWindowSize(width, height) BIND(C,NAME="glutInitWindowSize") IMPORT INTEGER(GLint), VALUE :: width, height END SUBROUTINE glutInitWindowSize END INTERFACE ! void glutInitDisplayMode( unsigned int displayMode ) PUBLIC glutInitDisplayMode INTERFACE SUBROUTINE glutInitDisplayMode(displayMode) BIND(C,NAME="glutInitDisplayMode") IMPORT INTEGER(GLuint), VALUE :: displayMode END SUBROUTINE glutInitDisplayMode END INTERFACE ! void glutInitDisplayString( const char* displayMode ) PUBLIC glutInitDisplayString INTERFACE SUBROUTINE glutInitDisplayString(displayMode) BIND(C,NAME="glutInitDisplayString") IMPORT ! CHARACTER, INTENT(IN) :: displayMode CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: displayMode END SUBROUTINE glutInitDisplayString END INTERFACE ! Process loop function, see og_main.c ! void glutMainLoop( void ) PUBLIC glutMainLoop INTERFACE SUBROUTINE glutMainLoop() BIND(C,NAME="glutMainLoop") IMPORT END SUBROUTINE glutMainLoop END INTERFACE ! Window management functions, see og_window.c ! int glutCreateWindow( const char* title ) PUBLIC glutCreateWindow INTERFACE FUNCTION glutCreateWindow(title) BIND(C,NAME="glutCreateWindow") IMPORT INTEGER(GLint) :: glutCreateWindow ! CHARACTER, INTENT(IN) :: title CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: title END FUNCTION glutCreateWindow END INTERFACE ! int glutCreateSubWindow( int window, int x, int y, int width, int height) PUBLIC glutCreateSubWindow INTERFACE FUNCTION glutCreateSubWindow(window, x, y, width, height) BIND(C,NAME="glutCreateSubWindow") IMPORT INTEGER(GLint) :: glutCreateSubWindow INTEGER(GLint), VALUE :: window, x, y, width, height END FUNCTION glutCreateSubWindow END INTERFACE ! void glutDestroyWindow( int window ) PUBLIC glutDestroyWindow INTERFACE SUBROUTINE glutDestroyWindow(window) BIND(C,NAME="glutDestroyWindow") IMPORT INTEGER(GLint), VALUE :: window END SUBROUTINE glutDestroyWindow END INTERFACE ! void glutSetWindow( int window ) PUBLIC glutSetWindow INTERFACE SUBROUTINE glutSetWindow(window) BIND(C,NAME="glutSetWindow") IMPORT INTEGER(GLint), VALUE :: window END SUBROUTINE glutSetWindow END INTERFACE ! int glutGetWindow( void ) PUBLIC glutGetWindow INTERFACE FUNCTION glutGetWindow() BIND(C,NAME="glutGetWindow") IMPORT INTEGER(GLint) :: glutGetWindow END FUNCTION glutGetWindow END INTERFACE ! void glutSetWindowTitle( const char* title ) PUBLIC glutSetWindowTitle INTERFACE SUBROUTINE glutSetWindowTitle(title) BIND(C,NAME="glutSetWindowTitle") IMPORT ! CHARACTER, INTENT(IN) :: title CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: title END SUBROUTINE glutSetWindowTitle END INTERFACE ! void glutSetIconTitle( const char* title ) PUBLIC glutSetIconTitle INTERFACE SUBROUTINE glutSetIconTitle(title) BIND(C,NAME="glutSetIconTitle") IMPORT ! CHARACTER, INTENT(IN) :: title CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: title END SUBROUTINE glutSetIconTitle END INTERFACE ! void glutReshapeWindow( int width, int height ) PUBLIC glutReshapeWindow INTERFACE SUBROUTINE glutReshapeWindow(width, height) BIND(C,NAME="glutReshapeWindow") IMPORT INTEGER(GLint), VALUE :: width, height END SUBROUTINE glutReshapeWindow END INTERFACE ! void glutPositionWindow( int x, int y ) PUBLIC glutPositionWindow INTERFACE SUBROUTINE glutPositionWindow(x, y) BIND(C,NAME="glutPositionWindow") IMPORT INTEGER(GLint), VALUE :: x, y END SUBROUTINE glutPositionWindow END INTERFACE ! void glutShowWindow( void ) PUBLIC glutShowWindow INTERFACE SUBROUTINE glutShowWindow() BIND(C,NAME="glutShowWindow") IMPORT END SUBROUTINE glutShowWindow END INTERFACE ! void glutHideWindow( void ) PUBLIC glutHideWindow INTERFACE SUBROUTINE glutHideWindow() BIND(C,NAME="glutHideWindow") IMPORT END SUBROUTINE glutHideWindow END INTERFACE ! void glutIconifyWindow( void ) PUBLIC glutIconifyWindow INTERFACE SUBROUTINE glutIconifyWindow() BIND(C,NAME="glutIconifyWindow") IMPORT END SUBROUTINE glutIconifyWindow END INTERFACE ! void glutPushWindow( void ) PUBLIC glutPushWindow INTERFACE SUBROUTINE glutPushWindow() BIND(C,NAME="glutPushWindow") IMPORT END SUBROUTINE glutPushWindow END INTERFACE ! void glutPopWindow( void ) PUBLIC glutPopWindow INTERFACE SUBROUTINE glutPopWindow() BIND(C,NAME="glutPopWindow") IMPORT END SUBROUTINE glutPopWindow END INTERFACE ! void glutFullScreen( void ) PUBLIC glutFullScreen INTERFACE SUBROUTINE glutFullScreen() BIND(C,NAME="glutFullScreen") IMPORT END SUBROUTINE glutFullScreen END INTERFACE ! Display-connected functions, see og_display.c ! void glutPostWindowRedisplay( int window ) PUBLIC glutPostWindowRedisplay INTERFACE SUBROUTINE glutPostWindowRedisplay(window) BIND(C,NAME="glutPostWindowRedisplay") IMPORT INTEGER(GLint), VALUE :: window END SUBROUTINE glutPostWindowRedisplay END INTERFACE ! void glutPostRedisplay( void ) PUBLIC glutPostRedisplay INTERFACE SUBROUTINE glutPostRedisplay() BIND(C,NAME="glutPostRedisplay") IMPORT END SUBROUTINE glutPostRedisplay END INTERFACE ! void glutSwapBuffers( void ) PUBLIC glutSwapBuffers INTERFACE SUBROUTINE glutSwapBuffers() BIND(C,NAME="glutSwapBuffers") IMPORT END SUBROUTINE glutSwapBuffers END INTERFACE ! Mouse cursor functions, see og_cursor.c ! void glutWarpPointer( int x, int y ) PUBLIC glutWarpPointer INTERFACE SUBROUTINE glutWarpPointer(x, y) BIND(C,NAME="glutWarpPointer") IMPORT INTEGER(GLint), VALUE :: x, y END SUBROUTINE glutWarpPointer END INTERFACE ! void glutSetCursor( int cursor ) PUBLIC glutSetCursor INTERFACE SUBROUTINE glutSetCursor(cursor) BIND(C,NAME="glutSetCursor") IMPORT INTEGER(GLint), VALUE :: cursor END SUBROUTINE glutSetCursor END INTERFACE ! Overlay stuff, see og_overlay.c ! void glutEstablishOverlay( void ) PUBLIC glutEstablishOverlay INTERFACE SUBROUTINE glutEstablishOverlay() BIND(C,NAME="glutEstablishOverlay") IMPORT END SUBROUTINE glutEstablishOverlay END INTERFACE ! void glutRemoveOverlay( void ) PUBLIC glutRemoveOverlay INTERFACE SUBROUTINE glutRemoveOverlay() BIND(C,NAME="glutRemoveOverlay") IMPORT END SUBROUTINE glutRemoveOverlay END INTERFACE ! void glutUseLayer( GLenum layer ) PUBLIC glutUseLayer INTERFACE SUBROUTINE glutUseLayer(layer) BIND(C,NAME="glutUseLayer") IMPORT INTEGER(GLenum), VALUE :: layer END SUBROUTINE glutUseLayer END INTERFACE ! void glutPostOverlayRedisplay( void ) PUBLIC glutPostOverlayRedisplay INTERFACE SUBROUTINE glutPostOverlayRedisplay() BIND(C,NAME="glutPostOverlayRedisplay") IMPORT END SUBROUTINE glutPostOverlayRedisplay END INTERFACE ! void glutPostWindowOverlayRedisplay( int window ) PUBLIC glutPostWindowOverlayRedisplay INTERFACE SUBROUTINE glutPostWindowOverlayRedisplay(window) BIND(C,NAME="glutPostWindowOverlayRedisplay") IMPORT INTEGER(GLint), VALUE :: window END SUBROUTINE glutPostWindowOverlayRedisplay END INTERFACE ! void glutShowOverlay( void ) PUBLIC glutShowOverlay INTERFACE SUBROUTINE glutShowOverlay() BIND(C,NAME="glutShowOverlay") IMPORT END SUBROUTINE glutShowOverlay END INTERFACE ! void glutHideOverlay( void ) PUBLIC glutHideOverlay INTERFACE SUBROUTINE glutHideOverlay() BIND(C,NAME="glutHideOverlay") IMPORT END SUBROUTINE glutHideOverlay END INTERFACE ! Menu stuff, see og_menu.c ! int glutCreateMenu( void (* callback)( int menu ) ) PUBLIC glutCreateMenu INTERFACE FUNCTION glutCreateMenu(proc) BIND(C,NAME="glutCreateMenu") IMPORT INTEGER(GLint) :: glutCreateMenu ! void proc( int menu ) INTERFACE SUBROUTINE proc(menu) BIND(C) IMPORT INTEGER(GLint), VALUE :: menu END SUBROUTINE proc END INTERFACE END FUNCTION glutCreateMenu END INTERFACE ! void glutDestroyMenu( int menu ) PUBLIC glutDestroyMenu INTERFACE SUBROUTINE glutDestroyMenu(menu) BIND(C,NAME="glutDestroyMenu") IMPORT INTEGER(GLint), VALUE :: menu END SUBROUTINE glutDestroyMenu END INTERFACE ! int glutGetMenu( void ) PUBLIC glutGetMenu INTERFACE FUNCTION glutGetMenu() BIND(C,NAME="glutGetMenu") IMPORT INTEGER(GLint) :: glutGetMenu END FUNCTION glutGetMenu END INTERFACE ! void glutSetMenu( int menu ) PUBLIC glutSetMenu INTERFACE SUBROUTINE glutSetMenu(menu) BIND(C,NAME="glutSetMenu") IMPORT INTEGER(GLint), VALUE :: menu END SUBROUTINE glutSetMenu END INTERFACE ! void glutAddMenuEntry( const char* label, int value ) PUBLIC glutAddMenuEntry INTERFACE SUBROUTINE glutAddMenuEntry(label, value) BIND(C,NAME="glutAddMenuEntry") IMPORT ! CHARACTER, INTENT(IN) :: label CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: label INTEGER(GLint), VALUE :: value END SUBROUTINE glutAddMenuEntry END INTERFACE ! void glutAddSubMenu( const char* label, int subMenu ) PUBLIC glutAddSubMenu INTERFACE SUBROUTINE glutAddSubMenu(label, subMenu) BIND(C,NAME="glutAddSubMenu") IMPORT ! CHARACTER, INTENT(IN) :: label CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: label INTEGER(GLint), VALUE :: subMenu END SUBROUTINE glutAddSubMenu END INTERFACE ! void glutChangeToMenuEntry( int item, const char* label, int value) PUBLIC glutChangeToMenuEntry INTERFACE SUBROUTINE glutChangeToMenuEntry(item, label, value) BIND(C,NAME="glutChangeToMenuEntry") IMPORT ! CHARACTER, INTENT(IN) :: label CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: label INTEGER(GLint), VALUE :: item, value END SUBROUTINE glutChangeToMenuEntry END INTERFACE ! void glutChangeToSubMenu( int item, const char* label, int value) PUBLIC glutChangeToSubMenu INTERFACE SUBROUTINE glutChangeToSubMenu(item, label, value) BIND(C,NAME="glutChangeToSubMenu") IMPORT ! CHARACTER, INTENT(IN) :: label CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: label INTEGER(GLint), VALUE :: item, value END SUBROUTINE glutChangeToSubMenu END INTERFACE ! void glutRemoveMenuItem( int item ) PUBLIC glutRemoveMenuItem INTERFACE SUBROUTINE glutRemoveMenuItem(item) BIND(C,NAME="glutRemoveMenuItem") IMPORT INTEGER(GLint), VALUE :: item END SUBROUTINE glutRemoveMenuItem END INTERFACE ! void glutAttachMenu( int button ) PUBLIC glutAttachMenu INTERFACE SUBROUTINE glutAttachMenu(button) BIND(C,NAME="glutAttachMenu") IMPORT INTEGER(GLint), VALUE :: button END SUBROUTINE glutAttachMenu END INTERFACE ! void glutDetachMenu( int button ) PUBLIC glutDetachMenu INTERFACE SUBROUTINE glutDetachMenu(button) BIND(C,NAME="glutDetachMenu") IMPORT INTEGER(GLint), VALUE :: button END SUBROUTINE glutDetachMenu END INTERFACE ! Global callback functions, see og_callbacks.c ! void glutTimerFunc( unsigned int time, void (* callback)( int value), int value) PUBLIC glutTimerFunc INTERFACE glutTimerFunc MODULE PROCEDURE glutTimerFunc_f03 END INTERFACE glutTimerFunc INTERFACE SUBROUTINE glutTimerFunc_gl(time, proc, value) BIND(C,NAME="glutTimerFunc") IMPORT INTEGER(GLint), VALUE :: value INTEGER(GLuint), VALUE :: time ! void proc( int value) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutTimerFunc_gl END INTERFACE ! void glutIdleFunc( void (* callback)( void ) ) PUBLIC glutIdleFunc INTERFACE glutIdleFunc MODULE PROCEDURE glutIdleFunc_f03 END INTERFACE glutIdleFunc INTERFACE SUBROUTINE glutIdleFunc_gl(proc) BIND(C,NAME="glutIdleFunc") IMPORT ! void proc( void ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutIdleFunc_gl END INTERFACE ! Window-specific callback functions, see og_callbacks.c ! void glutKeyboardFunc( void (* callback)( unsigned char key, int x, int y)) PUBLIC glutKeyboardFunc INTERFACE glutKeyboardFunc MODULE PROCEDURE glutKeyboardFunc_f03 END INTERFACE glutKeyboardFunc INTERFACE SUBROUTINE glutKeyboardFunc_gl(proc) BIND(C,NAME="glutKeyboardFunc") IMPORT ! void proc( unsigned char key, int x, int y) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutKeyboardFunc_gl END INTERFACE ! void glutSpecialFunc( void (* callback)( int key, int x, int y ) ) PUBLIC glutSpecialFunc INTERFACE glutSpecialFunc MODULE PROCEDURE glutSpecialFunc_f03 END INTERFACE glutSpecialFunc INTERFACE SUBROUTINE glutSpecialFunc_gl(proc) BIND(C,NAME="glutSpecialFunc") IMPORT ! void proc( int key, int x, int y ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutSpecialFunc_gl END INTERFACE ! void glutReshapeFunc( void (* callback)( int h, int w) ) PUBLIC glutReshapeFunc INTERFACE glutReshapeFunc MODULE PROCEDURE glutReshapeFunc_f03 END INTERFACE glutReshapeFunc INTERFACE SUBROUTINE glutReshapeFunc_gl(proc) BIND(C,NAME="glutReshapeFunc") IMPORT ! void proc( int h, int w) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutReshapeFunc_gl END INTERFACE ! void glutVisibilityFunc( void (* callback)( int visible) ) PUBLIC glutVisibilityFunc INTERFACE glutVisibilityFunc MODULE PROCEDURE glutVisibilityFunc_f03 END INTERFACE glutVisibilityFunc INTERFACE SUBROUTINE glutVisibilityFunc_gl(proc) BIND(C,NAME="glutVisibilityFunc") IMPORT ! void proc( int visible) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutVisibilityFunc_gl END INTERFACE ! void glutDisplayFunc( void (* callback)( void ) ) PUBLIC glutDisplayFunc INTERFACE glutDisplayFunc MODULE PROCEDURE glutDisplayFunc_f03 END INTERFACE glutDisplayFunc INTERFACE SUBROUTINE glutDisplayFunc_gl(proc) BIND(C,NAME="glutDisplayFunc") IMPORT ! void proc( void ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutDisplayFunc_gl END INTERFACE ! void glutMouseFunc( void (* callback)( int button, int state, int x, int y )) PUBLIC glutMouseFunc INTERFACE glutMouseFunc MODULE PROCEDURE glutMouseFunc_f03 END INTERFACE glutMouseFunc INTERFACE SUBROUTINE glutMouseFunc_gl(proc) BIND(C,NAME="glutMouseFunc") IMPORT ! void proc( int button, int state, int x, int y ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutMouseFunc_gl END INTERFACE ! void glutMotionFunc( void (* callback)( int x, int y) ) PUBLIC glutMotionFunc INTERFACE glutMotionFunc MODULE PROCEDURE glutMotionFunc_f03 END INTERFACE glutMotionFunc INTERFACE SUBROUTINE glutMotionFunc_gl(proc) BIND(C,NAME="glutMotionFunc") IMPORT ! void proc( int x, int y) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutMotionFunc_gl END INTERFACE ! void glutPassiveMotionFunc( void (* callback)( int x, int y)) PUBLIC glutPassiveMotionFunc INTERFACE glutPassiveMotionFunc MODULE PROCEDURE glutPassiveMotionFunc_f03 END INTERFACE glutPassiveMotionFunc INTERFACE SUBROUTINE glutPassiveMotionFunc_gl(proc) BIND(C,NAME="glutPassiveMotionFunc") IMPORT ! void proc( int x, int y) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutPassiveMotionFunc_gl END INTERFACE ! void glutEntryFunc( void (* callback)( int value) ) PUBLIC glutEntryFunc INTERFACE glutEntryFunc MODULE PROCEDURE glutEntryFunc_f03 END INTERFACE glutEntryFunc INTERFACE SUBROUTINE glutEntryFunc_gl(proc) BIND(C,NAME="glutEntryFunc") IMPORT ! void proc( int value) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutEntryFunc_gl END INTERFACE ! void glutKeyboardUpFunc( void (* callback)( unsigned char key, int x, int y)) PUBLIC glutKeyboardUpFunc INTERFACE glutKeyboardUpFunc MODULE PROCEDURE glutKeyboardUpFunc_f03 END INTERFACE glutKeyboardUpFunc INTERFACE SUBROUTINE glutKeyboardUpFunc_gl(proc) BIND(C,NAME="glutKeyboardUpFunc") IMPORT ! void proc( unsigned char key, int x, int y) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutKeyboardUpFunc_gl END INTERFACE ! void glutSpecialUpFunc( void (* callback)( int key, int x, int y)) PUBLIC glutSpecialUpFunc INTERFACE glutSpecialUpFunc MODULE PROCEDURE glutSpecialUpFunc_f03 END INTERFACE glutSpecialUpFunc INTERFACE SUBROUTINE glutSpecialUpFunc_gl(proc) BIND(C,NAME="glutSpecialUpFunc") IMPORT ! void proc( int key, int x, int y) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutSpecialUpFunc_gl END INTERFACE ! void glutJoystickFunc( void (* callback)( unsigned int buttonMask, int x, int y, int z ), int pollInterval) PUBLIC glutJoystickFunc INTERFACE glutJoystickFunc MODULE PROCEDURE glutJoystickFunc_f03 END INTERFACE glutJoystickFunc INTERFACE SUBROUTINE glutJoystickFunc_gl(proc, pollInterval) BIND(C,NAME="glutJoystickFunc") IMPORT INTEGER(GLint), VALUE :: pollInterval ! void proc( unsigned int buttonMask, int x, int y, int z ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutJoystickFunc_gl END INTERFACE ! void glutMenuStateFunc( void (* callback)( int menu ) ) PUBLIC glutMenuStateFunc INTERFACE glutMenuStateFunc MODULE PROCEDURE glutMenuStateFunc_f03 END INTERFACE glutMenuStateFunc INTERFACE SUBROUTINE glutMenuStateFunc_gl(proc) BIND(C,NAME="glutMenuStateFunc") IMPORT ! void proc( int menu ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutMenuStateFunc_gl END INTERFACE ! void glutMenuStatusFunc( void (* callback)( int status, int x, int y)) PUBLIC glutMenuStatusFunc INTERFACE glutMenuStatusFunc MODULE PROCEDURE glutMenuStatusFunc_f03 END INTERFACE glutMenuStatusFunc INTERFACE SUBROUTINE glutMenuStatusFunc_gl(proc) BIND(C,NAME="glutMenuStatusFunc") IMPORT ! void proc( int status, int x, int y) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutMenuStatusFunc_gl END INTERFACE ! void glutOverlayDisplayFunc( void (* callback)( void ) ) PUBLIC glutOverlayDisplayFunc INTERFACE glutOverlayDisplayFunc MODULE PROCEDURE glutOverlayDisplayFunc_f03 END INTERFACE glutOverlayDisplayFunc INTERFACE SUBROUTINE glutOverlayDisplayFunc_gl(proc) BIND(C,NAME="glutOverlayDisplayFunc") IMPORT ! void proc( void ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutOverlayDisplayFunc_gl END INTERFACE ! void glutWindowStatusFunc( void (* callback)( int status) ) PUBLIC glutWindowStatusFunc INTERFACE glutWindowStatusFunc MODULE PROCEDURE glutWindowStatusFunc_f03 END INTERFACE glutWindowStatusFunc INTERFACE SUBROUTINE glutWindowStatusFunc_gl(proc) BIND(C,NAME="glutWindowStatusFunc") IMPORT ! void proc( int status) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutWindowStatusFunc_gl END INTERFACE ! void glutSpaceballMotionFunc( void (* callback)( int key, int x, int y )) PUBLIC glutSpaceballMotionFunc INTERFACE glutSpaceballMotionFunc MODULE PROCEDURE glutSpaceballMotionFunc_f03 END INTERFACE glutSpaceballMotionFunc INTERFACE SUBROUTINE glutSpaceballMotionFunc_gl(proc) BIND(C,NAME="glutSpaceballMotionFunc") IMPORT ! void proc( int key, int x, int y ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutSpaceballMotionFunc_gl END INTERFACE ! void glutSpaceballRotateFunc( void (* callback)( int key, int x, int y )) PUBLIC glutSpaceballRotateFunc INTERFACE glutSpaceballRotateFunc MODULE PROCEDURE glutSpaceballRotateFunc_f03 END INTERFACE glutSpaceballRotateFunc INTERFACE SUBROUTINE glutSpaceballRotateFunc_gl(proc) BIND(C,NAME="glutSpaceballRotateFunc") IMPORT ! void proc( int key, int x, int y ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutSpaceballRotateFunc_gl END INTERFACE ! void glutSpaceballButtonFunc( void (* callback)( int x, int y)) PUBLIC glutSpaceballButtonFunc INTERFACE glutSpaceballButtonFunc MODULE PROCEDURE glutSpaceballButtonFunc_f03 END INTERFACE glutSpaceballButtonFunc INTERFACE SUBROUTINE glutSpaceballButtonFunc_gl(proc) BIND(C,NAME="glutSpaceballButtonFunc") IMPORT ! void proc( int x, int y) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutSpaceballButtonFunc_gl END INTERFACE ! void glutButtonBoxFunc( void (* callback)( int x, int y ) ) PUBLIC glutButtonBoxFunc INTERFACE glutButtonBoxFunc MODULE PROCEDURE glutButtonBoxFunc_f03 END INTERFACE glutButtonBoxFunc INTERFACE SUBROUTINE glutButtonBoxFunc_gl(proc) BIND(C,NAME="glutButtonBoxFunc") IMPORT ! void proc( int x, int y ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutButtonBoxFunc_gl END INTERFACE ! void glutDialsFunc( void (* callback)( int x, int y ) ) PUBLIC glutDialsFunc INTERFACE glutDialsFunc MODULE PROCEDURE glutDialsFunc_f03 END INTERFACE glutDialsFunc INTERFACE SUBROUTINE glutDialsFunc_gl(proc) BIND(C,NAME="glutDialsFunc") IMPORT ! void proc( int x, int y ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutDialsFunc_gl END INTERFACE ! void glutTabletMotionFunc( void (* callback)( int x, int y ) ) PUBLIC glutTabletMotionFunc INTERFACE glutTabletMotionFunc MODULE PROCEDURE glutTabletMotionFunc_f03 END INTERFACE glutTabletMotionFunc INTERFACE SUBROUTINE glutTabletMotionFunc_gl(proc) BIND(C,NAME="glutTabletMotionFunc") IMPORT ! void proc( int x, int y ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutTabletMotionFunc_gl END INTERFACE ! void glutTabletButtonFunc( void (* callback)( int button, int state, int x, int y )) PUBLIC glutTabletButtonFunc INTERFACE glutTabletButtonFunc MODULE PROCEDURE glutTabletButtonFunc_f03 END INTERFACE glutTabletButtonFunc INTERFACE SUBROUTINE glutTabletButtonFunc_gl(proc) BIND(C,NAME="glutTabletButtonFunc") IMPORT ! void proc( int button, int state, int x, int y ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutTabletButtonFunc_gl END INTERFACE ! State setting and retrieval functions, see og_state.c ! int glutGet( GLenum query ) PUBLIC glutGet INTERFACE FUNCTION glutGet(query) BIND(C,NAME="glutGet") IMPORT INTEGER(GLint) :: glutGet INTEGER(GLenum), VALUE :: query END FUNCTION glutGet END INTERFACE ! int glutDeviceGet( GLenum query ) PUBLIC glutDeviceGet INTERFACE FUNCTION glutDeviceGet(query) BIND(C,NAME="glutDeviceGet") IMPORT INTEGER(GLint) :: glutDeviceGet INTEGER(GLenum), VALUE :: query END FUNCTION glutDeviceGet END INTERFACE ! int glutGetModifiers( void ) PUBLIC glutGetModifiers INTERFACE FUNCTION glutGetModifiers() BIND(C,NAME="glutGetModifiers") IMPORT INTEGER(GLint) :: glutGetModifiers END FUNCTION glutGetModifiers END INTERFACE ! int glutLayerGet( GLenum query ) PUBLIC glutLayerGet INTERFACE FUNCTION glutLayerGet(query) BIND(C,NAME="glutLayerGet") IMPORT INTEGER(GLint) :: glutLayerGet INTEGER(GLenum), VALUE :: query END FUNCTION glutLayerGet END INTERFACE ! Font stuff, see og_font.c ! void glutBitmapCharacter( void* font, int character ) PUBLIC glutBitmapCharacter INTERFACE SUBROUTINE glutBitmapCharacter(font, character) BIND(C,NAME="glutBitmapCharacter") IMPORT INTEGER(GLint), VALUE :: character TYPE(C_PTR), VALUE :: font END SUBROUTINE glutBitmapCharacter END INTERFACE ! int glutBitmapWidth( void* font, int character ) PUBLIC glutBitmapWidth INTERFACE FUNCTION glutBitmapWidth(font, character) BIND(C,NAME="glutBitmapWidth") IMPORT INTEGER(GLint) :: glutBitmapWidth INTEGER(GLint), VALUE :: character TYPE(C_PTR), VALUE :: font END FUNCTION glutBitmapWidth END INTERFACE ! void glutStrokeCharacter( void* font, int character ) PUBLIC glutStrokeCharacter INTERFACE SUBROUTINE glutStrokeCharacter(font, character) BIND(C,NAME="glutStrokeCharacter") IMPORT INTEGER(GLint), VALUE :: character TYPE(C_PTR), VALUE :: font END SUBROUTINE glutStrokeCharacter END INTERFACE ! float glutStrokeWidth( void* font, int character ) PUBLIC glutStrokeWidth INTERFACE FUNCTION glutStrokeWidth(font, character) BIND(C,NAME="glutStrokeWidth") IMPORT REAL(C_FLOAT) :: glutStrokeWidth INTEGER(GLint), VALUE :: character TYPE(C_PTR), VALUE :: font END FUNCTION glutStrokeWidth END INTERFACE ! int glutBitmapLength( void* font, const unsigned char* string ) PUBLIC glutBitmapLength INTERFACE FUNCTION glutBitmapLength(font, string) BIND(C,NAME="glutBitmapLength") IMPORT INTEGER(GLint) :: glutBitmapLength ! CHARACTER, INTENT(IN) :: string CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: string TYPE(C_PTR), VALUE :: font END FUNCTION glutBitmapLength END INTERFACE ! float glutStrokeLength( void* font, const unsigned char* string ) PUBLIC glutStrokeLength INTERFACE FUNCTION glutStrokeLength(font, string) BIND(C,NAME="glutStrokeLength") IMPORT REAL(C_FLOAT) :: glutStrokeLength ! CHARACTER, INTENT(IN) :: string CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: string TYPE(C_PTR), VALUE :: font END FUNCTION glutStrokeLength END INTERFACE ! Geometry functions, see og_geometry.c ! void glutWireCube( GLdouble size ) PUBLIC glutWireCube INTERFACE SUBROUTINE glutWireCube(size) BIND(C,NAME="glutWireCube") IMPORT REAL(GLdouble), VALUE :: size END SUBROUTINE glutWireCube END INTERFACE ! void glutSolidCube( GLdouble size ) PUBLIC glutSolidCube INTERFACE SUBROUTINE glutSolidCube(size) BIND(C,NAME="glutSolidCube") IMPORT REAL(GLdouble), VALUE :: size END SUBROUTINE glutSolidCube END INTERFACE ! void glutWireSphere( GLdouble radius, GLint slices, GLint stacks) PUBLIC glutWireSphere INTERFACE SUBROUTINE glutWireSphere(radius, slices, stacks) BIND(C,NAME="glutWireSphere") IMPORT INTEGER(GLint), VALUE :: slices, stacks REAL(GLdouble), VALUE :: radius END SUBROUTINE glutWireSphere END INTERFACE ! void glutSolidSphere( GLdouble radius, GLint slices, GLint stacks) PUBLIC glutSolidSphere INTERFACE SUBROUTINE glutSolidSphere(radius, slices, stacks) BIND(C,NAME="glutSolidSphere") IMPORT INTEGER(GLint), VALUE :: slices, stacks REAL(GLdouble), VALUE :: radius END SUBROUTINE glutSolidSphere END INTERFACE ! void glutWireCone( GLdouble base, GLdouble height, GLint slices, GLint stacks) PUBLIC glutWireCone INTERFACE SUBROUTINE glutWireCone(base, height, slices, stacks) BIND(C,NAME="glutWireCone") IMPORT INTEGER(GLint), VALUE :: slices, stacks REAL(GLdouble), VALUE :: base, height END SUBROUTINE glutWireCone END INTERFACE ! void glutSolidCone( GLdouble base, GLdouble height, GLint slices, GLint stacks) PUBLIC glutSolidCone INTERFACE SUBROUTINE glutSolidCone(base, height, slices, stacks) BIND(C,NAME="glutSolidCone") IMPORT INTEGER(GLint), VALUE :: slices, stacks REAL(GLdouble), VALUE :: base, height END SUBROUTINE glutSolidCone END INTERFACE ! void glutWireTorus( GLdouble innerRadius, GLdouble outerRadius, GLint sides, GLint rings) PUBLIC glutWireTorus INTERFACE SUBROUTINE glutWireTorus(innerRadius, outerRadius, sides, rings) BIND(C,NAME="glutWireTorus") IMPORT INTEGER(GLint), VALUE :: sides, rings REAL(GLdouble), VALUE :: innerRadius, outerRadius END SUBROUTINE glutWireTorus END INTERFACE ! void glutSolidTorus( GLdouble innerRadius, GLdouble outerRadius, GLint sides, GLint rings) PUBLIC glutSolidTorus INTERFACE SUBROUTINE glutSolidTorus(innerRadius, outerRadius, sides, rings) BIND(C,NAME="glutSolidTorus") IMPORT INTEGER(GLint), VALUE :: sides, rings REAL(GLdouble), VALUE :: innerRadius, outerRadius END SUBROUTINE glutSolidTorus END INTERFACE ! void glutWireDodecahedron( void ) PUBLIC glutWireDodecahedron INTERFACE SUBROUTINE glutWireDodecahedron() BIND(C,NAME="glutWireDodecahedron") IMPORT END SUBROUTINE glutWireDodecahedron END INTERFACE ! void glutSolidDodecahedron( void ) PUBLIC glutSolidDodecahedron INTERFACE SUBROUTINE glutSolidDodecahedron() BIND(C,NAME="glutSolidDodecahedron") IMPORT END SUBROUTINE glutSolidDodecahedron END INTERFACE ! void glutWireOctahedron( void ) PUBLIC glutWireOctahedron INTERFACE SUBROUTINE glutWireOctahedron() BIND(C,NAME="glutWireOctahedron") IMPORT END SUBROUTINE glutWireOctahedron END INTERFACE ! void glutSolidOctahedron( void ) PUBLIC glutSolidOctahedron INTERFACE SUBROUTINE glutSolidOctahedron() BIND(C,NAME="glutSolidOctahedron") IMPORT END SUBROUTINE glutSolidOctahedron END INTERFACE ! void glutWireTetrahedron( void ) PUBLIC glutWireTetrahedron INTERFACE SUBROUTINE glutWireTetrahedron() BIND(C,NAME="glutWireTetrahedron") IMPORT END SUBROUTINE glutWireTetrahedron END INTERFACE ! void glutSolidTetrahedron( void ) PUBLIC glutSolidTetrahedron INTERFACE SUBROUTINE glutSolidTetrahedron() BIND(C,NAME="glutSolidTetrahedron") IMPORT END SUBROUTINE glutSolidTetrahedron END INTERFACE ! void glutWireIcosahedron( void ) PUBLIC glutWireIcosahedron INTERFACE SUBROUTINE glutWireIcosahedron() BIND(C,NAME="glutWireIcosahedron") IMPORT END SUBROUTINE glutWireIcosahedron END INTERFACE ! void glutSolidIcosahedron( void ) PUBLIC glutSolidIcosahedron INTERFACE SUBROUTINE glutSolidIcosahedron() BIND(C,NAME="glutSolidIcosahedron") IMPORT END SUBROUTINE glutSolidIcosahedron END INTERFACE ! Teapot rendering functions, found in og_teapot.c ! void glutWireTeapot( GLdouble size ) PUBLIC glutWireTeapot INTERFACE SUBROUTINE glutWireTeapot(size) BIND(C,NAME="glutWireTeapot") IMPORT REAL(GLdouble), VALUE :: size END SUBROUTINE glutWireTeapot END INTERFACE ! void glutSolidTeapot( GLdouble size ) PUBLIC glutSolidTeapot INTERFACE SUBROUTINE glutSolidTeapot(size) BIND(C,NAME="glutSolidTeapot") IMPORT REAL(GLdouble), VALUE :: size END SUBROUTINE glutSolidTeapot END INTERFACE ! Game mode functions, see og_gamemode.c ! void glutGameModeString( const char* string ) PUBLIC glutGameModeString INTERFACE SUBROUTINE glutGameModeString(string) BIND(C,NAME="glutGameModeString") IMPORT ! CHARACTER, INTENT(IN) :: string CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: string END SUBROUTINE glutGameModeString END INTERFACE ! int glutEnterGameMode( void ) PUBLIC glutEnterGameMode INTERFACE FUNCTION glutEnterGameMode() BIND(C,NAME="glutEnterGameMode") IMPORT INTEGER(GLint) :: glutEnterGameMode END FUNCTION glutEnterGameMode END INTERFACE ! void glutLeaveGameMode( void ) PUBLIC glutLeaveGameMode INTERFACE SUBROUTINE glutLeaveGameMode() BIND(C,NAME="glutLeaveGameMode") IMPORT END SUBROUTINE glutLeaveGameMode END INTERFACE ! int glutGameModeGet( GLenum query ) PUBLIC glutGameModeGet INTERFACE FUNCTION glutGameModeGet(query) BIND(C,NAME="glutGameModeGet") IMPORT INTEGER(GLint) :: glutGameModeGet INTEGER(GLenum), VALUE :: query END FUNCTION glutGameModeGet END INTERFACE ! Video resize functions, see og_videoresize.c ! int glutVideoResizeGet( GLenum query ) PUBLIC glutVideoResizeGet INTERFACE FUNCTION glutVideoResizeGet(query) BIND(C,NAME="glutVideoResizeGet") IMPORT INTEGER(GLint) :: glutVideoResizeGet INTEGER(GLenum), VALUE :: query END FUNCTION glutVideoResizeGet END INTERFACE ! void glutSetupVideoResizing( void ) PUBLIC glutSetupVideoResizing INTERFACE SUBROUTINE glutSetupVideoResizing() BIND(C,NAME="glutSetupVideoResizing") IMPORT END SUBROUTINE glutSetupVideoResizing END INTERFACE ! void glutStopVideoResizing( void ) PUBLIC glutStopVideoResizing INTERFACE SUBROUTINE glutStopVideoResizing() BIND(C,NAME="glutStopVideoResizing") IMPORT END SUBROUTINE glutStopVideoResizing END INTERFACE ! void glutVideoResize( int x, int y, int width, int height) PUBLIC glutVideoResize INTERFACE SUBROUTINE glutVideoResize(x, y, width, height) BIND(C,NAME="glutVideoResize") IMPORT INTEGER(GLint), VALUE :: x, y, width, height END SUBROUTINE glutVideoResize END INTERFACE ! void glutVideoPan( int x, int y, int width, int height ) PUBLIC glutVideoPan INTERFACE SUBROUTINE glutVideoPan(x, y, width, height) BIND(C,NAME="glutVideoPan") IMPORT INTEGER(GLint), VALUE :: x, y, width, height END SUBROUTINE glutVideoPan END INTERFACE ! Colormap functions, see og_misc.c ! void glutSetColor( int color, GLfloat red, GLfloat green, GLfloat blue) PUBLIC glutSetColor INTERFACE SUBROUTINE glutSetColor(color, red, green, blue) BIND(C,NAME="glutSetColor") IMPORT INTEGER(GLint), VALUE :: color REAL(GLfloat), VALUE :: red, green, blue END SUBROUTINE glutSetColor END INTERFACE ! GLfloat glutGetColor( int color, int component ) PUBLIC glutGetColor INTERFACE FUNCTION glutGetColor(color, component) BIND(C,NAME="glutGetColor") IMPORT REAL(GLfloat) :: glutGetColor INTEGER(GLint), VALUE :: color, component END FUNCTION glutGetColor END INTERFACE ! void glutCopyColormap( int window ) PUBLIC glutCopyColormap INTERFACE SUBROUTINE glutCopyColormap(window) BIND(C,NAME="glutCopyColormap") IMPORT INTEGER(GLint), VALUE :: window END SUBROUTINE glutCopyColormap END INTERFACE ! Misc keyboard and joystick functions, see og_misc.c ! void glutIgnoreKeyRepeat( int ignore ) PUBLIC glutIgnoreKeyRepeat INTERFACE SUBROUTINE glutIgnoreKeyRepeat(ignore) BIND(C,NAME="glutIgnoreKeyRepeat") IMPORT INTEGER(GLint), VALUE :: ignore END SUBROUTINE glutIgnoreKeyRepeat END INTERFACE ! void glutSetKeyRepeat( int repeatMode ) PUBLIC glutSetKeyRepeat INTERFACE SUBROUTINE glutSetKeyRepeat(repeatMode) BIND(C,NAME="glutSetKeyRepeat") IMPORT INTEGER(GLint), VALUE :: repeatMode END SUBROUTINE glutSetKeyRepeat END INTERFACE ! void glutForceJoystickFunc( void ) PUBLIC glutForceJoystickFunc INTERFACE SUBROUTINE glutForceJoystickFunc() BIND(C,NAME="glutForceJoystickFunc") IMPORT END SUBROUTINE glutForceJoystickFunc END INTERFACE ! Misc functions, see og_misc.c ! int glutExtensionSupported( const char* extension ) PUBLIC glutExtensionSupported INTERFACE FUNCTION glutExtensionSupported(extension) BIND(C,NAME="glutExtensionSupported") IMPORT INTEGER(GLint) :: glutExtensionSupported ! CHARACTER, INTENT(IN) :: extension CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: extension END FUNCTION glutExtensionSupported END INTERFACE ! void glutReportErrors( void ) PUBLIC glutReportErrors INTERFACE SUBROUTINE glutReportErrors() BIND(C,NAME="glutReportErrors") IMPORT END SUBROUTINE glutReportErrors END INTERFACE ! _______________________________________ ! OpenGLUT EXTENSIONS ! _______________________________________ ! GLUT API Extension macro definitions -- behavior when the user clicks ! on the window-close/program-quit widget box. INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ACTION_EXIT = 0 INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ACTION_GLUTMAINLOOP_RETURNS = 1 INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ACTION_CONTINUE_EXECUTION = 2 ! Create a new rendering context when the user opens a new window? INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_CREATE_NEW_CONTEXT = 0 INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_USE_CURRENT_CONTEXT = 1 ! GLUT API Extension macro definitions -- display mode INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_OFFSCREEN = z'0400' ! GLUT API Extension macro definitions -- the glutGet parameters INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_ACTION_ON_WINDOW_CLOSE = z'01F9' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_BORDER_WIDTH = z'01FA' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_WINDOW_HEADER_HEIGHT = z'01FB' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_VERSION = z'01FC' INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_RENDERING_CONTEXT = z'01FD' ! Process loop function, see freeglut_main.c ! void glutMainLoopEvent( void ) PUBLIC glutMainLoopEvent INTERFACE SUBROUTINE glutMainLoopEvent() BIND(C,NAME="glutMainLoopEvent") IMPORT END SUBROUTINE glutMainLoopEvent END INTERFACE ! void glutLeaveMainLoop( void ) PUBLIC glutLeaveMainLoop INTERFACE SUBROUTINE glutLeaveMainLoop() BIND(C,NAME="glutLeaveMainLoop") IMPORT END SUBROUTINE glutLeaveMainLoop END INTERFACE ! Window-specific callback functions, see freeglut_callbacks.c ! void glutMouseWheelFunc( void (* callback)( int button, int state, int x, int y )) PUBLIC glutMouseWheelFunc INTERFACE glutMouseWheelFunc MODULE PROCEDURE glutMouseWheelFunc_f03 END INTERFACE glutMouseWheelFunc INTERFACE SUBROUTINE glutMouseWheelFunc_gl(proc) BIND(C,NAME="glutMouseWheelFunc") IMPORT ! void proc( int button, int state, int x, int y ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutMouseWheelFunc_gl END INTERFACE ! void glutCloseFunc( void (* callback)( void ) ) PUBLIC glutCloseFunc INTERFACE glutCloseFunc MODULE PROCEDURE glutCloseFunc_f03 END INTERFACE glutCloseFunc INTERFACE SUBROUTINE glutCloseFunc_gl(proc) BIND(C,NAME="glutCloseFunc") IMPORT ! void proc( void ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutCloseFunc_gl END INTERFACE ! void glutWMCloseFunc( void (* callback)( void ) ) PUBLIC glutWMCloseFunc INTERFACE glutWMCloseFunc MODULE PROCEDURE glutWMCloseFunc_f03 END INTERFACE glutWMCloseFunc INTERFACE SUBROUTINE glutWMCloseFunc_gl(proc) BIND(C,NAME="glutWMCloseFunc") IMPORT ! void proc( void ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutWMCloseFunc_gl END INTERFACE ! A. Donev: Also a destruction callback for menus ! void glutMenuDestroyFunc( void (* callback)( void ) ) PUBLIC glutMenuDestroyFunc INTERFACE glutMenuDestroyFunc MODULE PROCEDURE glutMenuDestroyFunc_f03 END INTERFACE glutMenuDestroyFunc INTERFACE SUBROUTINE glutMenuDestroyFunc_gl(proc) BIND(C,NAME="glutMenuDestroyFunc") IMPORT ! void proc( void ) TYPE(C_FUNPTR), VALUE :: proc END SUBROUTINE glutMenuDestroyFunc_gl END INTERFACE ! State setting and retrieval functions, see freeglut_state.c ! void glutSetOption ( GLenum option_flag, int value ) PUBLIC glutSetOption INTERFACE SUBROUTINE glutSetOption(option_flag, value) BIND(C,NAME="glutSetOption") IMPORT INTEGER(GLenum), VALUE :: option_flag INTEGER(GLint), VALUE :: value END SUBROUTINE glutSetOption END INTERFACE ! A.Donev: User-data manipulation ! void* glutGetWindowData( void ) PUBLIC glutGetWindowData INTERFACE FUNCTION glutGetWindowData() BIND(C,NAME="glutGetWindowData") IMPORT TYPE(C_PTR) :: glutGetWindowData END FUNCTION glutGetWindowData END INTERFACE ! void glutSetWindowData(void* data) PUBLIC glutSetWindowData INTERFACE SUBROUTINE glutSetWindowData(data) BIND(C,NAME="glutSetWindowData") IMPORT TYPE(C_PTR), VALUE :: data END SUBROUTINE glutSetWindowData END INTERFACE ! void* glutGetMenuData( void ) PUBLIC glutGetMenuData INTERFACE FUNCTION glutGetMenuData() BIND(C,NAME="glutGetMenuData") IMPORT TYPE(C_PTR) :: glutGetMenuData END FUNCTION glutGetMenuData END INTERFACE ! void glutSetMenuData(void* data) PUBLIC glutSetMenuData INTERFACE SUBROUTINE glutSetMenuData(data) BIND(C,NAME="glutSetMenuData") IMPORT TYPE(C_PTR), VALUE :: data END SUBROUTINE glutSetMenuData END INTERFACE ! Font stuff, see freeglut_font.c ! int glutBitmapHeight( void* font ) PUBLIC glutBitmapHeight INTERFACE FUNCTION glutBitmapHeight(font) BIND(C,NAME="glutBitmapHeight") IMPORT INTEGER(GLint) :: glutBitmapHeight TYPE(C_PTR), VALUE :: font END FUNCTION glutBitmapHeight END INTERFACE ! GLfloat glutStrokeHeight( void* font ) PUBLIC glutStrokeHeight INTERFACE FUNCTION glutStrokeHeight(font) BIND(C,NAME="glutStrokeHeight") IMPORT REAL(GLfloat) :: glutStrokeHeight TYPE(C_PTR), VALUE :: font END FUNCTION glutStrokeHeight END INTERFACE ! void glutBitmapString( void* font, const unsigned char *string) PUBLIC glutBitmapString INTERFACE SUBROUTINE glutBitmapString(font, string) BIND(C,NAME="glutBitmapString") IMPORT ! CHARACTER, INTENT(IN) :: string CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: string TYPE(C_PTR), VALUE :: font END SUBROUTINE glutBitmapString END INTERFACE ! void glutStrokeString( void* font, const unsigned char *string) PUBLIC glutStrokeString INTERFACE SUBROUTINE glutStrokeString(font, string) BIND(C,NAME="glutStrokeString") IMPORT ! CHARACTER, INTENT(IN) :: string CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: string TYPE(C_PTR), VALUE :: font END SUBROUTINE glutStrokeString END INTERFACE ! Geometry functions, see freeglut_geometry.c ! void glutWireRhombicDodecahedron( void ) PUBLIC glutWireRhombicDodecahedron INTERFACE SUBROUTINE glutWireRhombicDodecahedron() BIND(C,NAME="glutWireRhombicDodecahedron") IMPORT END SUBROUTINE glutWireRhombicDodecahedron END INTERFACE ! void glutSolidRhombicDodecahedron( void ) PUBLIC glutSolidRhombicDodecahedron INTERFACE SUBROUTINE glutSolidRhombicDodecahedron() BIND(C,NAME="glutSolidRhombicDodecahedron") IMPORT END SUBROUTINE glutSolidRhombicDodecahedron END INTERFACE ! void glutWireSierpinskiSponge( int num_levels, const GLdouble offset[3], GLdouble scale) PUBLIC glutWireSierpinskiSponge INTERFACE SUBROUTINE glutWireSierpinskiSponge(num_levels, offset, scale) BIND(C,NAME="glutWireSierpinskiSponge") IMPORT INTEGER(GLint), VALUE :: num_levels REAL(GLdouble), DIMENSION(3), INTENT(IN) :: offset REAL(GLdouble), VALUE :: scale END SUBROUTINE glutWireSierpinskiSponge END INTERFACE ! void glutSolidSierpinskiSponge( int num_levels, const GLdouble offset[3], GLdouble scale) PUBLIC glutSolidSierpinskiSponge INTERFACE SUBROUTINE glutSolidSierpinskiSponge(num_levels, offset, scale) BIND(C,NAME="glutSolidSierpinskiSponge") IMPORT INTEGER(GLint), VALUE :: num_levels REAL(GLdouble), DIMENSION(3), INTENT(IN) :: offset REAL(GLdouble), VALUE :: scale END SUBROUTINE glutSolidSierpinskiSponge END INTERFACE ! void glutWireCylinder( GLdouble radius, GLdouble height, GLint slices, GLint stacks) PUBLIC glutWireCylinder INTERFACE SUBROUTINE glutWireCylinder(radius, height, slices, stacks) BIND(C,NAME="glutWireCylinder") IMPORT INTEGER(GLint), VALUE :: slices, stacks REAL(GLdouble), VALUE :: radius, height END SUBROUTINE glutWireCylinder END INTERFACE ! void glutSolidCylinder( GLdouble radius, GLdouble height, GLint slices, GLint stacks) PUBLIC glutSolidCylinder INTERFACE SUBROUTINE glutSolidCylinder(radius, height, slices, stacks) BIND(C,NAME="glutSolidCylinder") IMPORT INTEGER(GLint), VALUE :: slices, stacks REAL(GLdouble), VALUE :: radius, height END SUBROUTINE glutSolidCylinder END INTERFACE ! Extension functions, see freeglut_ext.c ! void *glutGetProcAddress( const char *procName ) PUBLIC glutGetProcAddress INTERFACE FUNCTION glutGetProcAddress(procName) BIND(C,NAME="glutGetProcAddress") IMPORT TYPE(C_PTR) :: glutGetProcAddress ! CHARACTER, INTENT(IN) :: procName CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: procName END FUNCTION glutGetProcAddress END INTERFACE ! GLUT API Extension macro definitions -- display mode INTEGER(GLenum), PARAMETER, PUBLIC :: GLUT_BORDERLESS = z'0800' ! OpenGLUT experimental functions. ! Allow for conditional compilation of experimental features. ! Font variables in GLUT_fonts.c TYPE(C_PTR), BIND(C), PUBLIC, PROTECTED :: GLUT_STROKE_ROMAN, & GLUT_STROKE_MONO_ROMAN, GLUT_BITMAP_9_BY_15, GLUT_BITMAP_8_BY_13, & GLUT_BITMAP_TIMES_ROMAN_10, GLUT_BITMAP_TIMES_ROMAN_24, & GLUT_BITMAP_HELVETICA_10, GLUT_BITMAP_HELVETICA_12, & GLUT_BITMAP_HELVETICA_18 ! A special callback function for compatibility with f90gl TYPE(C_FUNPTR), PUBLIC, SAVE, BIND(C) :: GLUT_NULL_FUNC=C_NULL_FUNPTR CONTAINS SUBROUTINE glutInit_f03() INTEGER(C_INT) :: argcp=1 TYPE(C_PTR), DIMENSION(1), TARGET :: argv=C_NULL_PTR CHARACTER(C_CHAR), DIMENSION(1), TARGET :: empty_string=C_NULL_CHAR ! A hack INTERFACE SUBROUTINE SetNullFunc() BIND(C,NAME='SetNullFunc') END SUBROUTINE END INTERFACE argv(1)=C_LOC(empty_string) CALL glutInit_gl(argcp, C_LOC(argv)) END SUBROUTINE SUBROUTINE glutTimerFunc_f03(time, proc, value) INTEGER(GLint), VALUE :: value INTEGER(GLuint), VALUE :: time INTERFACE SUBROUTINE proc(value) BIND(C) IMPORT INTEGER(GLint), VALUE :: value END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutTimerFunc_gl(time, C_FUNLOC(proc), value) ELSE CALL glutTimerFunc_gl(time, C_NULL_FUNPTR, value) END IF END SUBROUTINE glutTimerFunc_f03 SUBROUTINE glutIdleFunc_f03(proc) INTERFACE SUBROUTINE proc() BIND(C) IMPORT END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutIdleFunc_gl(C_FUNLOC(proc)) ELSE CALL glutIdleFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutIdleFunc_f03 SUBROUTINE glutKeyboardFunc_f03(proc) INTERFACE SUBROUTINE proc(key, x, y) BIND(C) IMPORT INTEGER(GLbyte), VALUE :: key INTEGER(GLint), VALUE :: x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutKeyboardFunc_gl(C_FUNLOC(proc)) ELSE CALL glutKeyboardFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutKeyboardFunc_f03 SUBROUTINE glutSpecialFunc_f03(proc) INTERFACE SUBROUTINE proc(key, x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: key, x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutSpecialFunc_gl(C_FUNLOC(proc)) ELSE CALL glutSpecialFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutSpecialFunc_f03 SUBROUTINE glutReshapeFunc_f03(proc) INTERFACE SUBROUTINE proc(h, w) BIND(C) IMPORT INTEGER(GLint), VALUE :: h, w END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutReshapeFunc_gl(C_FUNLOC(proc)) ELSE CALL glutReshapeFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutReshapeFunc_f03 SUBROUTINE glutVisibilityFunc_f03(proc) INTERFACE SUBROUTINE proc(visible) BIND(C) IMPORT INTEGER(GLint), VALUE :: visible END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutVisibilityFunc_gl(C_FUNLOC(proc)) ELSE CALL glutVisibilityFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutVisibilityFunc_f03 SUBROUTINE glutDisplayFunc_f03(proc) INTERFACE SUBROUTINE proc() BIND(C) IMPORT END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutDisplayFunc_gl(C_FUNLOC(proc)) ELSE CALL glutDisplayFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutDisplayFunc_f03 SUBROUTINE glutMouseFunc_f03(proc) INTERFACE SUBROUTINE proc(button, state, x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: button, state, x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutMouseFunc_gl(C_FUNLOC(proc)) ELSE CALL glutMouseFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutMouseFunc_f03 SUBROUTINE glutMotionFunc_f03(proc) INTERFACE SUBROUTINE proc(x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutMotionFunc_gl(C_FUNLOC(proc)) ELSE CALL glutMotionFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutMotionFunc_f03 SUBROUTINE glutPassiveMotionFunc_f03(proc) INTERFACE SUBROUTINE proc(x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutPassiveMotionFunc_gl(C_FUNLOC(proc)) ELSE CALL glutPassiveMotionFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutPassiveMotionFunc_f03 SUBROUTINE glutEntryFunc_f03(proc) INTERFACE SUBROUTINE proc(value) BIND(C) IMPORT INTEGER(GLint), VALUE :: value END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutEntryFunc_gl(C_FUNLOC(proc)) ELSE CALL glutEntryFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutEntryFunc_f03 SUBROUTINE glutKeyboardUpFunc_f03(proc) INTERFACE SUBROUTINE proc(key, x, y) BIND(C) IMPORT INTEGER(GLbyte), VALUE :: key INTEGER(GLint), VALUE :: x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutKeyboardUpFunc_gl(C_FUNLOC(proc)) ELSE CALL glutKeyboardUpFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutKeyboardUpFunc_f03 SUBROUTINE glutSpecialUpFunc_f03(proc) INTERFACE SUBROUTINE proc(key, x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: key, x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutSpecialUpFunc_gl(C_FUNLOC(proc)) ELSE CALL glutSpecialUpFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutSpecialUpFunc_f03 SUBROUTINE glutJoystickFunc_f03(proc, pollInterval) INTEGER(GLint), VALUE :: pollInterval INTERFACE SUBROUTINE proc(buttonMask, x, y, z) BIND(C) IMPORT INTEGER(GLint), VALUE :: x, y, z INTEGER(GLuint), VALUE :: buttonMask END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutJoystickFunc_gl(C_FUNLOC(proc), pollInterval) ELSE CALL glutJoystickFunc_gl(C_NULL_FUNPTR, pollInterval) END IF END SUBROUTINE glutJoystickFunc_f03 SUBROUTINE glutMenuStateFunc_f03(proc) INTERFACE SUBROUTINE proc(menu) BIND(C) IMPORT INTEGER(GLint), VALUE :: menu END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutMenuStateFunc_gl(C_FUNLOC(proc)) ELSE CALL glutMenuStateFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutMenuStateFunc_f03 SUBROUTINE glutMenuStatusFunc_f03(proc) INTERFACE SUBROUTINE proc(status, x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: status, x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutMenuStatusFunc_gl(C_FUNLOC(proc)) ELSE CALL glutMenuStatusFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutMenuStatusFunc_f03 SUBROUTINE glutOverlayDisplayFunc_f03(proc) INTERFACE SUBROUTINE proc() BIND(C) IMPORT END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutOverlayDisplayFunc_gl(C_FUNLOC(proc)) ELSE CALL glutOverlayDisplayFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutOverlayDisplayFunc_f03 SUBROUTINE glutWindowStatusFunc_f03(proc) INTERFACE SUBROUTINE proc(status) BIND(C) IMPORT INTEGER(GLint), VALUE :: status END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutWindowStatusFunc_gl(C_FUNLOC(proc)) ELSE CALL glutWindowStatusFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutWindowStatusFunc_f03 SUBROUTINE glutSpaceballMotionFunc_f03(proc) INTERFACE SUBROUTINE proc(key, x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: key, x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutSpaceballMotionFunc_gl(C_FUNLOC(proc)) ELSE CALL glutSpaceballMotionFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutSpaceballMotionFunc_f03 SUBROUTINE glutSpaceballRotateFunc_f03(proc) INTERFACE SUBROUTINE proc(key, x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: key, x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutSpaceballRotateFunc_gl(C_FUNLOC(proc)) ELSE CALL glutSpaceballRotateFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutSpaceballRotateFunc_f03 SUBROUTINE glutSpaceballButtonFunc_f03(proc) INTERFACE SUBROUTINE proc(x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutSpaceballButtonFunc_gl(C_FUNLOC(proc)) ELSE CALL glutSpaceballButtonFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutSpaceballButtonFunc_f03 SUBROUTINE glutButtonBoxFunc_f03(proc) INTERFACE SUBROUTINE proc(x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutButtonBoxFunc_gl(C_FUNLOC(proc)) ELSE CALL glutButtonBoxFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutButtonBoxFunc_f03 SUBROUTINE glutDialsFunc_f03(proc) INTERFACE SUBROUTINE proc(x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutDialsFunc_gl(C_FUNLOC(proc)) ELSE CALL glutDialsFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutDialsFunc_f03 SUBROUTINE glutTabletMotionFunc_f03(proc) INTERFACE SUBROUTINE proc(x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutTabletMotionFunc_gl(C_FUNLOC(proc)) ELSE CALL glutTabletMotionFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutTabletMotionFunc_f03 SUBROUTINE glutTabletButtonFunc_f03(proc) INTERFACE SUBROUTINE proc(button, state, x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: button, state, x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutTabletButtonFunc_gl(C_FUNLOC(proc)) ELSE CALL glutTabletButtonFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutTabletButtonFunc_f03 SUBROUTINE glutMouseWheelFunc_f03(proc) INTERFACE SUBROUTINE proc(button, state, x, y) BIND(C) IMPORT INTEGER(GLint), VALUE :: button, state, x, y END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutMouseWheelFunc_gl(C_FUNLOC(proc)) ELSE CALL glutMouseWheelFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutMouseWheelFunc_f03 SUBROUTINE glutCloseFunc_f03(proc) INTERFACE SUBROUTINE proc() BIND(C) IMPORT END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutCloseFunc_gl(C_FUNLOC(proc)) ELSE CALL glutCloseFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutCloseFunc_f03 SUBROUTINE glutWMCloseFunc_f03(proc) INTERFACE SUBROUTINE proc() BIND(C) IMPORT END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutWMCloseFunc_gl(C_FUNLOC(proc)) ELSE CALL glutWMCloseFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutWMCloseFunc_f03 SUBROUTINE glutMenuDestroyFunc_f03(proc) INTERFACE SUBROUTINE proc() BIND(C) IMPORT END SUBROUTINE proc END INTERFACE OPTIONAL :: proc IF(PRESENT(proc)) THEN CALL glutMenuDestroyFunc_gl(C_FUNLOC(proc)) ELSE CALL glutMenuDestroyFunc_gl(C_NULL_FUNPTR) END IF END SUBROUTINE glutMenuDestroyFunc_f03 END MODULE OpenGL_glut
gpl-3.0
techno/gcc-mist32
gcc/testsuite/gfortran.dg/allocatable_dummy_1.f90
188
1177
! { dg-do run } ! Test procedures with allocatable dummy arguments program alloc_dummy implicit none integer, allocatable :: a(:) integer, allocatable :: b(:) call init(a) if (.NOT.allocated(a)) call abort() if (.NOT.all(a == [ 1, 2, 3 ])) call abort() call useit(a, b) if (.NOT.all(b == [ 1, 2, 3 ])) call abort() if (.NOT.all(whatever(a) == [ 1, 2, 3 ])) call abort() call kill(a) if (allocated(a)) call abort() call kill(b) if (allocated(b)) call abort() contains subroutine init(x) integer, allocatable, intent(out) :: x(:) allocate(x(3)) x = [ 1, 2, 3 ] end subroutine init subroutine useit(x, y) integer, allocatable, intent(in) :: x(:) integer, allocatable, intent(out) :: y(:) if (allocated(y)) call abort() call init(y) y = x end subroutine useit function whatever(x) integer, allocatable :: x(:) integer :: whatever(size(x)) whatever = x end function whatever subroutine kill(x) integer, allocatable, intent(out) :: x(:) end subroutine kill end program alloc_dummy
gpl-2.0
rsignell-usgs/seagrid
seagrid/mex_matlab76_win32/mexsepeli.F
7
120051
#include <fintrf.h> c c purpose mexsepeli solves for the 2nd order finite c difference approximation to the separable c elliptic equation arising from conformal c mapping and grid generation. c c c c c The calling sequence from MATLAB should be c c >> [x, y, perturb, ierror] = mexsepeli ( x, y, ... c l2, m2, ... c seta, sxi, ... c nwrk, nx2 ); c c c Output Parameters c x,y: c represent "x" and "y" grid coordinates c perturb: c Optional. Don't think this is needed for our c application. c ierror: c Optional. An error flag that indicates invalid c input parameters or failure to find a solution. c = 0 no error c = 4 if attempt to find a solution fails. c (the linear system generated is not c diagonally dominant.) c c Input Parameters c x,y: c represent "x" and "y" grid coordinates c l2: c x independent variable ranges from 0 to l2 c m2: c y independent variable ranges from 0 to m2 c seta; c digitized points on boundaries 1,3 c sxi: c digitized points on boundaries 2,4 c c c So c 1) nlhs = 2 c 2) plhs(1) = x c plhs(2) = y c 3) nrhs = 6 c 4) prhs(1) = x c prhs(2) = y c prhs(3) = l2 c prhs(4) = m2 c prhs(5) = seta c prhs(6) = sxi c c c $Id: mexsepeli.F,v 1.3 2004/09/30 20:57:43 jevans Exp $ c Currently locked by $Locker: $ (not locked if blank) c (Time in GMT, EST=GMT-5:00 c $Log: mexsepeli.F,v $ c Revision 1.3 2004/09/30 20:57:43 jevans c Several automatic casts (from real*8 to complex) were being done that g77 c was complaining about. Some new complex variables were added that made c the cast explicit. g77 no longer spits out any warnings. c c Revision 1.2 2004/09/30 20:32:39 jevans c Removed all declarations of variables that the solaris compiler claimed c were never used. Seems to run fine. c c Revision 1.1.1.1 2004/09/30 15:22:15 jevans c initial import c c Revision 1.1.1.1 2004/03/02 16:53:17 jevans c MEXSEPELI c c Revision 1.4 2003/02/09 17:51:14 jevans c Converted some more CMPLX statements to DCMPLX. Linux compilation didn't c catch it, but Alpha did. c c Revision 1.2 2003/01/15 23:23:04 jevans c Lots of matrices redefined as for their sizes. Who knows if it works? c How the hell did it ever work before? God how I luv fortran. c c Revision 1.1.1.1 2003/01/15 22:31:12 jevans c Imported sources c c c c c $Id: mexsepeli.F,v 1.3 2004/09/30 20:57:43 jevans Exp $ c Currently locked by $Locker: $ (not locked if blank) c (Time in GMT, EST=GMT-5:00 c $Log: mexsepeli.F,v $ c Revision 1.3 2004/09/30 20:57:43 jevans c Several automatic casts (from real*8 to complex) were being done that g77 c was complaining about. Some new complex variables were added that made c the cast explicit. g77 no longer spits out any warnings. c c Revision 1.2 2004/09/30 20:32:39 jevans c Removed all declarations of variables that the solaris compiler claimed c were never used. Seems to run fine. c c Revision 1.1.1.1 2004/09/30 15:22:15 jevans c initial import c c Revision 1.1.1.1 2004/03/02 16:53:17 jevans c MEXSEPELI c c Revision 1.4 2003/02/09 17:51:14 jevans c Converted some more CMPLX statements to DCMPLX. Linux compilation didn't c catch it, but Alpha did. c c Revision 1.2 2003/01/15 23:23:04 jevans c Lots of matrices redefined as for their sizes. Who knows if it works? c How the hell did it ever work before? God how I luv fortran. c c Revision 1.1.1.1 2003/01/15 22:31:12 jevans c Imported sources c c Revision 1.2 1997/10/03 19:43:04 jevans c Had to change compile time options to include "-align dcommons" c and "-r8". c c the "mexCopyReal8ToPtr" and related functions suffer from the c fact that they assume all arrays to be a single column. Since c my x and y are dimensioned to be larger than their logical c size (i.e. they are 800x800, but might logically be only 100x80 c or so), those arrays had to be columnified before passing them c back to MATLAB, and "uncolumnified" upon passing them into c MATLAB. c c Revision 1.1 1997/10/03 17:50:43 jevans c Initial revision c c c subroutine mexFunction ( nlhs, plhs, nrhs, prhs ) crps POINTER plhs(*), prhs(*) integer plhs(*), prhs(*) integer nlhs, nrhs include 'mexsepeli.inc' c c These are the number of rows and columns (m by n) of the c matrices we work with. integer size_m, size_n, size_mn integer i, j, k c c Need some temporary space to store the double-precision c matlab arguments. The correct number of rows and columns c is not known at first. real*8 tempx(0:nx2,0:ny2), tempy(0:nx2,0:ny2) c c input ranges for independent variables. c 0 < x < l2, 0 < y < y2 integer l2, m2 c c Pointers to input arguments crps POINTER p integer p real*8 pa(1) real*8 PERTRB c c Check for proper number of arguments. c There must be at least 1 argument on the left hand size and c no more than 3. if ( nlhs .lt. 1 ) then call mexErrMsgTxt ( 'Not enough input args for mexsepeli.' ) elseif ( nlhs .gt. 3 ) then call mexErrMsgTxt ( 'Too many input args for mexsepeli.' ) endif if ( nrhs .ne. 6 ) then call mexErrMsgTxt('mexsepeli requires 6 input arguments') endif c c Check that all input arguments were numeric. if ( mxIsNumeric(prhs(1)) .ne. 1 ) then call mexErrMsgTxt + ( 'x input array should be numeric' ) endif if ( mxIsNumeric(prhs(2)) .ne. 1 ) then call mexErrMsgTxt + ( 'y input array should be numeric' ) endif if ( mxIsNumeric(prhs(3)) .ne. 1 ) then call mexErrMsgTxt + ( 'l2 input should be numeric' ) endif if ( mxIsNumeric(prhs(4)) .ne. 1 ) then call mexErrMsgTxt + ( 'm2 input should be numeric' ) endif if ( mxIsNumeric(prhs(5)) .ne. 1 ) then call mexErrMsgTxt + ( 'seta input array should be numeric' ) endif if ( mxIsNumeric(prhs(6)) .ne. 1 ) then call mexErrMsgTxt + ( 'sxi input array should be numeric' ) endif c c Check to see that the l2 and m2 arguments were scalars size_m = mxGetM ( prhs(3) ) size_n = mxGetN ( prhs(3) ) if ( size_n .ne. 1 .or. size_m .ne. 1 ) then call mexErrMsgTxt + ('l2 argument should be a scalar' ) endif size_m = mxGetM ( prhs(4) ) size_n = mxGetN ( prhs(4) ) if ( size_n .ne. 1 .or. size_m .ne. 1 ) then call mexErrMsgTxt + ('m2 argument should be a scalar' ) endif c c Load the data into Fortran matrices. c c x p = mxGetPr(prhs(1)) size_m = mxGetM ( prhs(1) ) size_n = mxGetN ( prhs(1) ) size_mn = size_m*size_n call mxCopyPtrToReal8(p,tempx,size_mn) k = 0 do 10 j = 0, size_n - 1 do 5 i = 0, size_m - 1 x(i,j) = tempx(k,0) k = k + 1 5 continue 10 continue c c y p = mxGetPr(prhs(2)) size_m = mxGetM ( prhs(2) ) size_n = mxGetN ( prhs(2) ) size_mn = size_m*size_n call mxCopyPtrToReal8(p,tempy,size_mn) k = 0 do 20 j = 0, size_n - 1 do 15 i = 0, size_m - 1 y(i,j) = tempy(k,0) k = k + 1 15 continue 20 continue c c l2 p = mxGetPr(prhs(3)) call mxCopyPtrToReal8(p,pa,1) l2 = pa(1) c c m2 p = mxGetPr(prhs(4)) call mxCopyPtrToReal8(p,pa,1) m2 = pa(1) c c seta p = mxGetPr(prhs(5)) size_m = mxGetM ( prhs(5) ) size_n = mxGetN ( prhs(5) ) neta = size_m*size_n call mxCopyPtrToReal8(p,seta,neta) c c sxi p = mxGetPr(prhs(6)) size_m = mxGetM ( prhs(6) ) size_n = mxGetN ( prhs(6) ) nxi = size_m*size_n call mxCopyPtrToReal8(p,sxi,nxi) c c Construct right hand side do 30 j = 0, neta - 1 do 25 i = 0, nxi - 1 rhs(i,j) = 0. 25 continue 30 continue c c Call the computational subroutine. ewrk(1) = nwrk call sepeli(0,2,0.d0,dble(l2),l2,1,wrk,wrk,wrk,wrk,0.d0, * dble(m2),m2, * 1,wrk,wrk,wrk,wrk,rhs,x,nx2+1,ewrk,pertrb,ierr) if ( ierr .eq. 1 ) then call mexErrMsgTxt + ( 'range of independent variables is out of whack' ) else if ( ierr .eq. 2 ) then call mexErrMsgTxt + ( 'boundary condition mbdcnd wrongly specified' ) else if ( ierr .eq. 3 ) then call mexErrMsgTxt + ( 'boundary condition nbdcnd wrongly specified' ) else if ( ierr .eq. 4 ) then call mexErrMsgTxt + ( 'linear system generated is not diagonally dominant' ) else if ( ierr .eq. 5 ) then call mexErrMsgTxt + ( 'idmn is too small' ) else if ( ierr .eq. 6 ) then call mexErrMsgTxt + ( 'm is too small or too large' ) else if ( ierr .eq. 7 ) then call mexErrMsgTxt + ( 'n is too small or too large' ) else if ( ierr .eq. 8 ) then call mexErrMsgTxt + ( 'iorder is not 2 or 4' ) else if ( ierr .eq. 9 ) then call mexErrMsgTxt + ( 'intl is not 0 or 1' ) else if ( ierr .eq. 10 ) then call mexErrMsgTxt + ( 'afun*dfun less than or equal to 0' ) else if ( ierr .eq. 11 ) then call mexErrMsgTxt + ( 'work space length input in w(1) is not right' ) end if ewrk(1) = nwrk call sepeli(0,2,0.d0,dble(l2),l2,1,wrk,wrk,wrk,wrk,0.d0, * dble(m2),m2, * 1,wrk,wrk,wrk,wrk,rhs,y,nx2+1,ewrk,pertrb,ierr) if ( ierr .eq. 1 ) then call mexErrMsgTxt + ( 'range of independent variables is out of whack' ) else if ( ierr .eq. 2 ) then call mexErrMsgTxt + ( 'boundary condition mbdcnd wrongly specified' ) else if ( ierr .eq. 3 ) then call mexErrMsgTxt + ( 'boundary condition nbdcnd wrongly specified' ) else if ( ierr .eq. 4 ) then call mexErrMsgTxt + ( 'linear system generated is not diagonally dominant' ) else if ( ierr .eq. 5 ) then call mexErrMsgTxt + ( 'idmn is too small' ) else if ( ierr .eq. 6 ) then call mexErrMsgTxt + ( 'm is too small or too large' ) else if ( ierr .eq. 7 ) then call mexErrMsgTxt + ( 'n is too small or too large' ) else if ( ierr .eq. 8 ) then call mexErrMsgTxt + ( 'iorder is not 2 or 4' ) else if ( ierr .eq. 9 ) then call mexErrMsgTxt + ( 'intl is not 0 or 1' ) else if ( ierr .eq. 10 ) then call mexErrMsgTxt + ( 'afun*dfun less than or equal to 0' ) else if ( ierr .eq. 11 ) then call mexErrMsgTxt + ( 'work space length input in w(1) is not right' ) end if c c Create matrices for output arguments c Since the mxCopyReal8ToPtr routine just assumes one long c column matrix, we have to "columnify" both x and y. c c x size_m = mxGetM ( prhs(1) ) size_n = mxGetN ( prhs(1) ) size_mn = size_m*size_n plhs(1) = mxCreateFull(size_m, size_n, 0) p = mxGetPr(plhs(1)) k = 0 do 40 j = 0, size_n - 1 do 35 i = 0, size_m - 1 tempx(k,0) = x(i,j) k = k + 1 35 continue 40 continue call mxCopyReal8ToPtr ( tempx, p, size_mn ) c c y size_m = mxGetM ( prhs(2) ) size_n = mxGetN ( prhs(2) ) size_mn = size_m*size_n plhs(2) = mxCreateFull(size_m, size_n, 0) p = mxGetPr(plhs(2)) k = 0 do 50 j = 0, size_n - 1 do 45 i = 0, size_m - 1 tempy(k,0) = y(i,j) k = k + 1 45 continue 50 continue call mxCopyReal8ToPtr ( tempy, p, size_mn ) return end c Subroutine SEPELI(INTL,IORDER,A,B,M,MBDCND,BDA,ALPHA,BDB,BETA,C,D, c * N,NBDCND,BDC,GAMA,BDD,XNU,COFX,COFY,GRHS,USOL,IDMN,W,PERTRB, c * IERROR) Subroutine SEPELI(INTL,IORDER,A,B,M,MBDCND,BDA,ALPHA,BDB,BETA,C,D, * N,NBDCND,BDC,GAMA,BDD,XNU,GRHS,USOL,IDMN,W,PERTRB, * IERROR) c c dimension of bda(n+1), bdb(n+1), bdc(m+1), bdd(m+1), c arguments usol(idmn,n+1),grhs(idmn,n+1), c w (see argument list) c c latest revision march 1985 c c purpose sepeli solves for either the second-order c finite difference approximation or a c fourth-order approximation to a separable c elliptic equation c c 2 2 c af(x)*d u/dx + bf(x)*du/dx + cf(x)*u + c 2 2 c df(y)*d u/dy + ef(y)*du/dy + ff(y)*u c c = g(x,y) c c on a rectangle (x greater than or equal to a c and less than or equal to b; y greater than c or equal to c and less than or equal to d). c any combination of periodic or mixed boundary c conditions is allowed. c c the possible boundary conditions are: c in the x-direction: c (0) periodic, u(x+b-a,y)=u(x,y) for all c y,x (1) u(a,y), u(b,y) are specified for c all y c (2) u(a,y), du(b,y)/dx+beta*u(b,y) are c specified for all y c (3) du(a,y)/dx+alpha*u(a,y),du(b,y)/dx+ c beta*u(b,y) are specified for all y c (4) du(a,y)/dx+alpha*u(a,y),u(b,y) are c specified for all y c c in the y-direction: c (0) periodic, u(x,y+d-c)=u(x,y) for all x,y c (1) u(x,c),u(x,d) are specified for all x c (2) u(x,c),du(x,d)/dy+xnu*u(x,d) are c specified for all x c (3) du(x,c)/dy+gama*u(x,c),du(x,d)/dy+ c xnu*u(x,d) are specified for all x c (4) du(x,c)/dy+gama*u(x,c),u(x,d) are c specified for all x c c usage call sepeli (intl,iorder,a,b,m,mbdcnd,bda, c alpha,bdb,beta,c,d,n,nbdcnd,bdc, c gama,bdd,xnu,cofx,cofy,grhs,usol, c idmn,w,pertrb,ierror) c c arguments c on input intl c = 0 on initial entry to sepeli or if any c of the arguments c,d, n, nbdcnd, cofy c are changed from a previous call c = 1 if c, d, n, nbdcnd, cofy are unchanged c from the previous call. c c iorder c = 2 if a second-order approximation c is sought c = 4 if a fourth-order approximation c is sought c c a,b c the range of the x-independent variable, c i.e., x is greater than or equal to a c and less than or equal to b. a must be c less than b. c c m c the number of panels into which the c interval [a,b] is subdivided. hence, c there will be m+1 grid points in the x- c direction given by xi=a+(i-1)*dlx c for i=1,2,...,m+1 where dlx=(b-a)/m is c the panel width. m must be less than c idmn and greater than 5. c c mbdcnd c indicates the type of boundary condition c at x=a and x=b c c = 0 if the solution is periodic in x, i.e., c u(x+b-a,y)=u(x,y) for all y,x c = 1 if the solution is specified at x=a c and x=b, i.e., u(a,y) and u(b,y) are c specified for all y c = 2 if the solution is specified at x=a and c the boundary condition is mixed at x=b, c i.e., u(a,y) and du(b,y)/dx+beta*u(b,y) c are specified for all y c = 3 if the boundary conditions at x=a and c x=b are mixed, i.e., c du(a,y)/dx+alpha*u(a,y) and c du(b,y)/dx+beta*u(b,y) are specified c for all y c = 4 if the boundary condition at x=a is c mixed and the solution is specified c at x=b, i.e., du(a,y)/dx+alpha*u(a,y) c and u(b,y) are specified for all y c c bda c a one-dimensional array of length n+1 c that specifies the values of c du(a,y)/dx+ alpha*u(a,y) at x=a, when c mbdcnd=3 or 4. c bda(j) = du(a,yj)/dx+alpha*u(a,yj), c j=1,2,...,n+1. when mbdcnd has any other c other value, bda is a dummy parameter. c c alpha c the scalar multiplying the solution in c case of a mixed boundary condition at x=a c (see argument bda). if mbdcnd is not c equal to 3 or 4 then alpha is a dummy c parameter. c c bdb c a one-dimensional array of length n+1 c that specifies the values of c du(b,y)/dx+ beta*u(b,y) at x=b. c when mbdcnd=2 or 3 c bdb(j) = du(b,yj)/dx+beta*u(b,yj), c j=1,2,...,n+1. when mbdcnd has any other c other value, bdb is a dummy parameter. c c beta c the scalar multiplying the solution in c case of a mixed boundary condition at c x=b (see argument bdb). if mbdcnd is c not equal to 2 or 3 then beta is a dummy c parameter. c c c,d c the range of the y-independent variable, c i.e., y is greater than or equal to c c and less than or equal to d. c must be c less than d. c c n c the number of panels into which the c interval [c,d] is subdivided. c hence, there will be n+1 grid points c in the y-direction given by c yj=c+(j-1)*dly for j=1,2,...,n+1 where c dly=(d-c)/n is the panel width. c in addition, n must be greater than 4. c c nbdcnd c indicates the types of boundary conditions c at y=c and y=d c c = 0 if the solution is periodic in y, c i.e., u(x,y+d-c)=u(x,y) for all x,y c = 1 if the solution is specified at y=c c and y = d, i.e., u(x,c) and u(x,d) c are specified for all x c = 2 if the solution is specified at y=c c and the boundary condition is mixed c at y=d, i.e., u(x,c) and c du(x,d)/dy+xnu*u(x,d) are specified c for all x c = 3 if the boundary conditions are mixed c at y=c and y=d, i.e., c du(x,d)/dy+gama*u(x,c) and c du(x,d)/dy+xnu*u(x,d) are specified c for all x c = 4 if the boundary condition is mixed c at y=c and the solution is specified c at y=d, i.e. du(x,c)/dy+gama*u(x,c) c and u(x,d) are specified for all x c c bdc c a one-dimensional array of length m+1 c that specifies the value of c du(x,c)/dy+gama*u(x,c) at y=c. c when nbdcnd=3 or 4 bdc(i) = du(xi,c)/dy + c gama*u(xi,c), i=1,2,...,m+1. c when nbdcnd has any other value, bdc c is a dummy parameter. c c gama c the scalar multiplying the solution in c case of a mixed boundary condition at c y=c (see argument bdc). if nbdcnd is c not equal to 3 or 4 then gama is a dummy c parameter. c c bdd c a one-dimensional array of length m+1 c that specifies the value of c du(x,d)/dy + xnu*u(x,d) at y=c. c when nbdcnd=2 or 3 bdd(i) = du(xi,d)/dy + c xnu*u(xi,d), i=1,2,...,m+1. c when nbdcnd has any other value, bdd c is a dummy parameter. c c xnu c the scalar multiplying the solution in c case of a mixed boundary condition at c y=d (see argument bdd). if nbdcnd is c not equal to 2 or 3 then xnu is a c dummy parameter. c c cofx c a user-supplied subprogram with c parameters x, afun, bfun, cfun which c returns the values of the x-dependent c coefficients af(x), bf(x), cf(x) in the c elliptic equation at x. c c cofy c a user-supplied subprogram with parameters c y, dfun, efun, ffun which returns the c values of the y-dependent coefficients c df(y), ef(y), ff(y) in the elliptic c equation at y. c c note: cofx and cofy must be declared c external in the calling routine. c the values returned in afun and dfun c must satisfy afun*dfun greater than 0 c for a less than x less than b, c less c than y less than d (see ierror=10). c the coefficients provided may lead to a c matrix equation which is not diagonally c dominant in which case solution may fail c (see ierror=4). c c grhs c a two-dimensional array that specifies the c values of the right-hand side of the c elliptic equation, i.e., c grhs(i,j)=g(xi,yi), for i=2,...,m, c j=2,...,n. at the boundaries, grhs is c defined by c c mbdcnd grhs(1,j) grhs(m+1,j) c ------ --------- ----------- c 0 g(a,yj) g(b,yj) c 1 * * c 2 * g(b,yj) j=1,2,...,n+1 c 3 g(a,yj) g(b,yj) c 4 g(a,yj) * c c nbdcnd grhs(i,1) grhs(i,n+1) c ------ --------- ----------- c 0 g(xi,c) g(xi,d) c 1 * * c 2 * g(xi,d) i=1,2,...,m+1 c 3 g(xi,c) g(xi,d) c 4 g(xi,c) * c c where * means these quantities are not used. c grhs should be dimensioned idmn by at least c n+1 in the calling routine. c c usol c a two-dimensional array that specifies the c values of the solution along the boundaries. c at the boundaries, usol is defined by c c mbdcnd usol(1,j) usol(m+1,j) c ------ --------- ----------- c 0 * * c 1 u(a,yj) u(b,yj) c 2 u(a,yj) * j=1,2,...,n+1 c 3 * * c 4 * u(b,yj) c c nbdcnd usol(i,1) usol(i,n+1) c ------ --------- ----------- c 0 * * c 1 u(xi,c) u(xi,d) c 2 u(xi,c) * i=1,2,...,m+1 c 3 * * c 4 * u(xi,d) c c where * means the quantities are not used c in the solution. c c if iorder=2, the user may equivalence grhs c and usol to save space. note that in this c case the tables specifying the boundaries c of the grhs and usol arrays determine the c boundaries uniquely except at the corners. c if the tables call for both g(x,y) and c u(x,y) at a corner then the solution must c be chosen. for example, if mbdcnd=2 and c nbdcnd=4, then u(a,c), u(a,d), u(b,d) must c be chosen at the corners in addition c to g(b,c). c c if iorder=4, then the two arrays, usol and c grhs, must be distinct. c c usol should be dimensioned idmn by at least c n+1 in the calling routine. c c idmn c the row (or first) dimension of the arrays c grhs and usol as it appears in the program c calling sepeli. this parameter is used c to specify the variable dimension of grhs c and usol. idmn must be at least 7 and c greater than or equal to m+1. c c w c a one-dimensional array that must be c provided by the user for work space. c let k=int(log2(n+1))+1 and set l=2**(k+1). c then (k-2)*l+k+10*n+12*m+27 will suffice c as a length of w. the actual length of w c in the calling routine must be set in w(1) c (see ierror=11). c c on output usol c contains the approximate solution to the c elliptic equation. c usol(i,j) is the approximation to u(xi,yj) c for i=1,2...,m+1 and j=1,2,...,n+1. c the approximation has error c o(dlx**2+dly**2) if called with iorder=2 c and o(dlx**4+dly**4) if called with c iorder=4. c c w c contains intermediate values that must not c be destroyed if sepeli is called again with c intl=1. in addition w(1) contains the c exact minimal length (in floating point) c required for the work space (see ierror=11). c c pertrb c if a combination of periodic or derivative c boundary conditions c (i.e., alpha=beta=0 if mbdcnd=3; c gama=xnu=0 if nbdcnd=3) is specified c and if the coefficients of u(x,y) in the c separable elliptic equation are zero c (i.e., cf(x)=0 for x greater than or equal c to a and less than or equal to b; c ff(y)=0 for y greater than or equal to c c and less than or equal to d) then a c solution may not exist. pertrb is a c constant calculated and subtracted from c the right-hand side of the matrix equations c generated by sepeli which insures that a c solution exists. sepeli then computes this c solution which is a weighted minimal least c squares solution to the original problem. c c ierror c an error flag that indicates invalid input c parameters or failure to find a solution c = 0 no error c = 1 if a greater than b or c greater than d c = 2 if mbdcnd less than 0 or mbdcnd greater c than 4 c = 3 if nbdcnd less than 0 or nbdcnd greater c than 4 c = 4 if attempt to find a solution fails. c (the linear system generated is not c diagonally dominant.) c = 5 if idmn is too small c (see discussion of idmn) c = 6 if m is too small or too large c (see discussion of m) c = 7 if n is too small (see discussion of n) c = 8 if iorder is not 2 or 4 c = 9 if intl is not 0 or 1 c = 10 if afun*dfun less than or equal to 0 c for some interior mesh point (xi,yj) c = 11 if the work space length input in w(1) c is less than the exact minimal work c space length required output in w(1). c c note (concerning ierror=4): for the c coefficients input through cofx, cofy, c the discretization may lead to a block c tridiagonal linear system which is not c diagonally dominant (for example, this c happens if cfun=0 and bfun/(2.*dlx) greater c than afun/dlx**2). in this case solution c may fail. this cannot happen in the limit c as dlx, dly approach zero. hence, the c condition may be remedied by taking larger c values for m or n. c c special conditions see cofx, cofy argument descriptions above. c c i/o none c c precision single c c required library blktri, comf, q8qst4, and sepaux, which are c files loaded by default on ncar's cray machines. c c language fortran c c history developed at ncar during 1975-76 by c john c. adams of the scientific computing c division. released on ncar's public software c libraries in january 1980. c c portability fortran 66 c c algorithm sepeli automatically discretizes the c separable elliptic equation which is then c solved by a generalized cyclic reduction c algorithm in the subroutine, blktri. the c fourth-order solution is obtained using c 'deferred corrections' which is described c and referenced in sections, references and c method. c c timing the operational count is proportional to c m*n*log2(n). c c accuracy the following accuracy results were obtained c on a cdc 7600. note that the fourth-order c accuracy is not realized until the mesh is c sufficiently refined. c c second-order fourth-order c m n error error c c 6 6 6.8e-1 1.2e0 c 14 14 1.4e-1 1.8e-1 c 30 30 3.2e-2 9.7e-3 c 62 62 7.5e-3 3.0e-4 c 126 126 1.8e-3 3.5e-6 c c portability fortran 66 c c references keller, h.b., numerical methods for two-point c boundary-value problems, blaisdel (1968), c waltham, mass. c c swarztrauber, p., and r. sweet (1975): c efficient fortran subprograms for the c solution of elliptic partial differential c equations. ncar technical note c ncar-tn/ia-109, pp. 135-137. c*********************************************************************** IMPLICIT NONE integer IDMN, INTL, IORDER, MBDCND, NBDCND, M, N, IERROR integer L, LOGB2N, LL, K, LENGTH, LINPUT integer LOUTPT integer I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13 Dimension GRHS(IDMN,1), USOL(IDMN,IDMN) Dimension BDA(1), BDB(1), BDC(1), BDD(1), W(1) real*8 BDA real*8 ALPHA real*8 BDB real*8 BETA real*8 BDC real*8 GAMA real*8 BDD real*8 XNU real*8 GRHS real*8 USOL real*8 W real*8 A, B, C, D, PERTRB c External COFX, COFY Logical Q8Q4 Save Q8Q4 Data Q8Q4 /.TRUE./ c If (Q8Q4) Then c call q8qst4('loclib','sepeli','sepeli','version 01') Q8Q4 = .FALSE. End If c c check input parameters c c Call CHKPRM(INTL,IORDER,A,B,M,MBDCND,C,D,N,NBDCND,COFX,COFY,IDMN, c * IERROR) Call CHKPRM(INTL,IORDER,A,B,M,MBDCND,C,D,N,NBDCND,IDMN, * IERROR) If (IERROR.NE.0) Return c c compute minimum work space and check work space length input c L = N + 1 If (NBDCND.EQ.0) L = N LOGB2N = INT(DLOG(DBLE(L)+0.d5)/DLOG(2.d0)) + 1 LL = 2 ** (LOGB2N+1) K = M + 1 L = N + 1 LENGTH = (LOGB2N-2) * LL + LOGB2N + MAX0(2*L,6*K) + 5 If (NBDCND.EQ.0) LENGTH = LENGTH + 2 * L IERROR = 11 LINPUT = INT(W(1)+0.5) LOUTPT = LENGTH + 6 * (K+L) + 1 W(1) = DBLE(LOUTPT) If (LOUTPT.GT.LINPUT) Return IERROR = 0 c c set work space indices c I1 = LENGTH + 2 I2 = I1 + L I3 = I2 + L I4 = I3 + L I5 = I4 + L I6 = I5 + L I7 = I6 + L I8 = I7 + K I9 = I8 + K I10 = I9 + K I11 = I10 + K I12 = I11 + K I13 = 2 c Call SPELIP(INTL,IORDER,A,B,M,MBDCND,BDA,ALPHA,BDB,BETA,C,D,N, c * NBDCND,BDC,GAMA,BDD,XNU,COFX,COFY,W(I1),W(I2),W(I3),W(I4), c * W(I5),W(I6),W(I7),W(I8),W(I9),W(I10),W(I11),W(I12),GRHS,USOL, c * IDMN,W(I13),PERTRB,IERROR) Call SPELIP(INTL,IORDER,A,B,M,MBDCND,BDA,ALPHA,BDB,BETA,C,D,N, * NBDCND,BDC,GAMA,BDD,XNU,W(I1),W(I2),W(I3),W(I4), * W(I5),W(I6),W(I7),W(I8),W(I9),W(I10),W(I11),W(I12),GRHS,USOL, * IDMN,W(I13),PERTRB,IERROR) Return End c Subroutine SPELIP(INTL,IORDER,A,B,M,MBDCND,BDA,ALPHA,BDB,BETA,C,D, c * N,NBDCND,BDC,GAMA,BDD,XNU,COFX,COFY,AN,BN,CN,DN,UN,ZN,AM,BM, c * CM,DM,UM,ZM,GRHS,USOL,IDMN,W,PERTRB,IERROR) Subroutine SPELIP(INTL,IORDER,A,B,M,MBDCND,BDA,ALPHA,BDB,BETA,C,D, * N,NBDCND,BDC,GAMA,BDD,XNU,AN,BN,CN,DN,UN,ZN,AM,BM, * CM,DM,UM,ZM,GRHS,USOL,IDMN,W,PERTRB,IERROR) c c spelip sets up vectors and arrays for input to blktri c and computes a second order solution in usol. a return jump to c sepeli occurrs if iorder=2. if iorder=4 a fourth order c solution is generated in usol. c IMPLICIT NONE integer IDMN Dimension BDA(1), BDB(1), BDC(1), BDD(1), W(1) Dimension GRHS(IDMN,1), USOL(IDMN,IDMN) Dimension AN(1), BN(1), CN(1), DN(1), UN(1), ZN(1) Dimension AM(1), BM(1), CM(1), DM(1), UM(1), ZM(1) integer KSWX, KSWY, K, MBDCND, NBDCND integer AIT, BIT, CIT, DIT, IS, MIT, NIT, L real*8 MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4 Common /SPLP/ KSWX, KSWY, K, L, * MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4, * AIT, BIT, CIT, DIT, MIT, NIT, IS Logical SINGLR real*8 BDA, BDB, BDC, BDD real*8 ALPHA, BETA, GAMA real*8 A, B, C, D, W real*8 XNU real*8 GRHS, USOL real*8 AN, BN, CN, DN, UN, ZN real*8 AM, BM, CM, DM, UM, ZM real*8 YJ, DJ, EJ, FJ real*8 XI, AI, BI, CI real*8 PRTRB, PERTRB integer M, N, I, J, I1, MP, NP, IORDER, IORD, INTL, IERROR real*8 AXI, BXI, CXI, DYJ, EYJ, FYJ, AX1, CXM, DY1, FYN c External COFX, COFY c c set parameters internally c KSWX = MBDCND + 1 KSWY = NBDCND + 1 K = M + 1 L = N + 1 AIT = A BIT = B CIT = C DIT = D c c set right hand side values from grhs in usol on the interior c and non-specified boundaries. c Do 20 I = 2, M Do 10 J = 2, N USOL(I,J) = GRHS(I,J) 10 Continue 20 Continue If (KSWX.NE.2.AND.KSWX.NE.3) Then Do 30 J = 2, N USOL(1,J) = GRHS(1,J) 30 Continue End If If (KSWX.NE.2.AND.KSWX.NE.5) Then Do 40 J = 2, N USOL(K,J) = GRHS(K,J) 40 Continue End If If (KSWY.NE.2.AND.KSWY.NE.3) Then Do 50 I = 2, M USOL(I,1) = GRHS(I,1) 50 Continue End If If (KSWY.NE.2.AND.KSWY.NE.5) Then Do 60 I = 2, M USOL(I,L) = GRHS(I,L) 60 Continue End If If (KSWX.NE.2.AND.KSWX.NE.3.AND.KSWY.NE.2.AND.KSWY.NE.3) * USOL(1,1) = GRHS(1,1) If (KSWX.NE.2.AND.KSWX.NE.5.AND.KSWY.NE.2.AND.KSWY.NE.3) * USOL(K,1) = GRHS(K,1) If (KSWX.NE.2.AND.KSWX.NE.3.AND.KSWY.NE.2.AND.KSWY.NE.5) * USOL(1,L) = GRHS(1,L) If (KSWX.NE.2.AND.KSWX.NE.5.AND.KSWY.NE.2.AND.KSWY.NE.5) * USOL(K,L) = GRHS(K,L) I1 = 1 c c set switches for periodic or non-periodic boundaries c MP = 1 NP = 1 If (KSWX.EQ.1) MP = 0 If (KSWY.EQ.1) NP = 0 c c set dlx,dly and size of block tri-diagonal system generated c in nint,mint c DLX = (BIT-AIT) / DBLE(M) MIT = K - 1 If (KSWX.EQ.2) MIT = K - 2 If (KSWX.EQ.4) MIT = K DLY = (DIT-CIT) / DBLE(N) NIT = L - 1 If (KSWY.EQ.2) NIT = L - 2 If (KSWY.EQ.4) NIT = L TDLX3 = 2.0 * DLX ** 3 DLX4 = DLX ** 4 TDLY3 = 2.0 * DLY ** 3 DLY4 = DLY ** 4 c c set subscript limits for portion of array to input to blktri c IS = 1 JS = 1 If (KSWX.EQ.2.OR.KSWX.EQ.3) IS = 2 If (KSWY.EQ.2.OR.KSWY.EQ.3) JS = 2 NS = NIT + JS - 1 MS = MIT + IS - 1 c c set x - direction c Do 70 I = 1, MIT XI = AIT + DBLE(IS+I-2) * DLX Call COFX(XI,AI,BI,CI) AXI = (AI/DLX-0.5*BI) / DLX BXI = -2. * AI / DLX ** 2 + CI CXI = (AI/DLX+0.5*BI) / DLX AM(I) = AXI BM(I) = BXI CM(I) = CXI 70 Continue c c set y direction c Do 80 J = 1, NIT YJ = CIT + DBLE(JS+J-2) * DLY Call COFY(YJ,DJ,EJ,FJ) DYJ = (DJ/DLY-0.5*EJ) / DLY EYJ = (-2.*DJ/DLY**2+FJ) FYJ = (DJ/DLY+0.5*EJ) / DLY AN(J) = DYJ BN(J) = EYJ CN(J) = FYJ 80 Continue c c adjust edges in x direction unless periodic c AX1 = AM(1) CXM = CM(MIT) Go To (130,90,110,120,100), KSWX c c dirichlet-dirichlet in x direction c 90 AM(1) = 0.0 CM(MIT) = 0.0 Go To 130 c c mixed-dirichlet in x direction c 100 AM(1) = 0.0 BM(1) = BM(1) + 2. * ALPHA * DLX * AX1 CM(1) = CM(1) + AX1 CM(MIT) = 0.0 Go To 130 c c dirichlet-mixed in x direction c 110 AM(1) = 0.0 AM(MIT) = AM(MIT) + CXM BM(MIT) = BM(MIT) - 2. * BETA * DLX * CXM CM(MIT) = 0.0 Go To 130 c c mixed - mixed in x direction c 120 Continue AM(1) = 0.0 BM(1) = BM(1) + 2. * DLX * ALPHA * AX1 CM(1) = CM(1) + AX1 AM(MIT) = AM(MIT) + CXM BM(MIT) = BM(MIT) - 2. * DLX * BETA * CXM CM(MIT) = 0.0 130 Continue c c adjust in y direction unless periodic c DY1 = AN(1) FYN = CN(NIT) Go To (180,140,160,170,150), KSWY c c dirichlet-dirichlet in y direction c 140 Continue AN(1) = 0.0 CN(NIT) = 0.0 Go To 180 c c mixed-dirichlet in y direction c 150 Continue AN(1) = 0.0 BN(1) = BN(1) + 2. * DLY * GAMA * DY1 CN(1) = CN(1) + DY1 CN(NIT) = 0.0 Go To 180 c c dirichlet-mixed in y direction c 160 AN(1) = 0.0 AN(NIT) = AN(NIT) + FYN BN(NIT) = BN(NIT) - 2. * DLY * XNU * FYN CN(NIT) = 0.0 Go To 180 c c mixed - mixed direction in y direction c 170 Continue AN(1) = 0.0 BN(1) = BN(1) + 2. * DLY * GAMA * DY1 CN(1) = CN(1) + DY1 AN(NIT) = AN(NIT) + FYN BN(NIT) = BN(NIT) - 2.0 * DLY * XNU * FYN CN(NIT) = 0.0 180 If (KSWX.NE.1) Then c c adjust usol along x edge c Do 190 J = JS, NS If (KSWX.EQ.2.OR.KSWX.EQ.3) Then USOL(IS,J) = USOL(IS,J) - AX1 * USOL(1,J) Else USOL(IS,J) = USOL(IS,J) + 2.0 * DLX * AX1 * BDA(J) End If If (KSWX.EQ.2.OR.KSWX.EQ.5) Then USOL(MS,J) = USOL(MS,J) - CXM * USOL(K,J) Else USOL(MS,J) = USOL(MS,J) - 2.0 * DLX * CXM * BDB(J) End If 190 Continue End If If (KSWY.NE.1) Then c c adjust usol along y edge c Do 200 I = IS, MS If (KSWY.EQ.2.OR.KSWY.EQ.3) Then USOL(I,JS) = USOL(I,JS) - DY1 * USOL(I,1) Else USOL(I,JS) = USOL(I,JS) + 2.0 * DLY * DY1 * BDC(I) End If If (KSWY.EQ.2.OR.KSWY.EQ.5) Then USOL(I,NS) = USOL(I,NS) - FYN * USOL(I,L) Else USOL(I,NS) = USOL(I,NS) - 2.0 * DLY * FYN * BDD(I) End If 200 Continue End If c c save adjusted edges in grhs if iorder=4 c If (IORDER.EQ.4) Then Do 210 J = JS, NS GRHS(IS,J) = USOL(IS,J) GRHS(MS,J) = USOL(MS,J) 210 Continue Do 220 I = IS, MS GRHS(I,JS) = USOL(I,JS) GRHS(I,NS) = USOL(I,NS) 220 Continue End If IORD = IORDER PERTRB = 0.0 c c check if operator is singular c c Call CHKSNG(MBDCND,NBDCND,ALPHA,BETA,GAMA,XNU,COFX,COFY,SINGLR) Call CHKSNG(MBDCND,NBDCND,ALPHA,BETA,GAMA,XNU,SINGLR) c c compute non-zero eigenvector in null space of transpose c if singular c If (SINGLR) Call SEPTRI(MIT,AM,BM,CM,DM,UM,ZM) If (SINGLR) Call SEPTRI(NIT,AN,BN,CN,DN,UN,ZN) c c make initialization call to blktri c If (INTL.EQ.0) Call BLKTRI(INTL,NP,NIT,AN,BN,CN,MP,MIT,AM,BM,CM, * IDMN,USOL(IS,JS),IERROR,W) If (IERROR.NE.0) Return c c adjust right hand side if necessary c 230 Continue If (SINGLR) Call SEPORT(USOL,IDMN,ZN,ZM,PERTRB) c c compute solution c Call BLKTRI(I1,NP,NIT,AN,BN,CN,MP,MIT,AM,BM,CM,IDMN,USOL(IS,JS), * IERROR,W) If (IERROR.NE.0) Return c c set periodic boundaries if necessary c If (KSWX.EQ.1) Then Do 240 J = 1, L USOL(K,J) = USOL(1,J) 240 Continue End If If (KSWY.EQ.1) Then Do 250 I = 1, K USOL(I,L) = USOL(I,1) 250 Continue End If c c minimize solution with respect to weighted least squares c norm if operator is singular c If (SINGLR) Call SEPMIN(USOL,IDMN,ZN,ZM,PRTRB) c c return if deferred corrections and a fourth order solution are c not flagged c If (IORD.EQ.2) Return IORD = 2 c c compute new right hand side for fourth order solution c c Call DEFER(COFX,COFY,IDMN,USOL,GRHS) Call DEFER(IDMN,USOL,GRHS) Go To 230 End c Subroutine CHKPRM(INTL,IORDER,A,B,M,MBDCND,C,D,N,NBDCND,COFX,COFY, c * IDMN,IERROR) Subroutine CHKPRM(INTL,IORDER,A,B,M,MBDCND,C,D,N,NBDCND, * IDMN,IERROR) c c this program checks the input parameters for errors c c External COFX, COFY c c check definition of solution region c IMPLICIT NONE integer IERROR, MBDCND, NBDCND, IDMN, M, N, IORDER, INTL real*8 A, B, C, D real*8 YJ, DJ, EJ, FJ real*8 XI, AI, BI, CI, DLX, DLY integer I, J IERROR = 1 If (A.GE.B.OR.C.GE.D) Return c c check boundary switches c IERROR = 2 If (MBDCND.LT.0.OR.MBDCND.GT.4) Return IERROR = 3 If (NBDCND.LT.0.OR.NBDCND.GT.4) Return c c check first dimension in calling routine c IERROR = 5 If (IDMN.LT.7) Return c c check m c IERROR = 6 If (M.GT.(IDMN-1).OR.M.LT.6) Return c c check n c IERROR = 7 If (N.LT.5) Return c c check iorder c IERROR = 8 If (IORDER.NE.2.AND.IORDER.NE.4) Return c c check intl c IERROR = 9 If (INTL.NE.0.AND.INTL.NE.1) Return c c check that equation is elliptic c DLX = (B-A) / DBLE(M) DLY = (D-C) / DBLE(N) Do 20 I = 2, M XI = A + DBLE(I-1) * DLX Call COFX(XI,AI,BI,CI) Do 10 J = 2, N YJ = C + DBLE(J-1) * DLY Call COFY(YJ,DJ,EJ,FJ) If (AI*DJ.LE.0.0) Then IERROR = 10 Return End If 10 Continue 20 Continue c c no error found c IERROR = 0 Return End c Subroutine CHKSNG(MBDCND,NBDCND,ALPHA,BETA,GAMA,XNU,COFX,COFY, c * SINGLR) Subroutine CHKSNG(MBDCND,NBDCND,ALPHA,BETA,GAMA,XNU, * SINGLR) c c this subroutine checks if the pde sepeli c must solve is a singular operator c IMPLICIT NONE integer MBDCND, NBDCND integer KSWX, KSWY, K, L integer AIT, BIT, CIT, DIT, IS, MIT, NIT real*8 MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4 Common /SPLP/ KSWX, KSWY, K, L, * MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4, * AIT, BIT, CIT, DIT, MIT, NIT, IS integer I, J Logical SINGLR real*8 ALPHA real*8 BETA real*8 GAMA real*8 XNU real*8 YJ, DJ, EJ, FJ real*8 XI, AI, BI, CI SINGLR = .FALSE. c c check if the boundary conditions are c entirely periodic and/or mixed c If ((MBDCND.NE.0.AND.MBDCND.NE.3).OR.(NBDCND.NE.0.AND.NBDCND.NE.3) * ) Return c c check that mixed conditions are pure neuman c If (MBDCND.EQ.3) Then If (ALPHA.NE.0.0.OR.BETA.NE.0.0) Return End If If (NBDCND.EQ.3) Then If (GAMA.NE.0.0.OR.XNU.NE.0.0) Return End If c c check that non-derivative coefficient functions c are zero c Do 10 I = IS, MS XI = AIT + DBLE(I-1) * DLX Call COFX(XI,AI,BI,CI) If (CI.NE.0.0) Return 10 Continue Do 20 J = JS, NS YJ = CIT + DBLE(J-1) * DLY Call COFY(YJ,DJ,EJ,FJ) If (FJ.NE.0.0) Return 20 Continue c c the operator must be singular if this point is reached c SINGLR = .TRUE. Return End c Subroutine DEFER(COFX,COFY,IDMN,USOL,GRHS) Subroutine DEFER(IDMN,USOL,GRHS) c c this subroutine first approximates the truncation error given by c trun1(x,y)=dlx**2*tx+dly**2*ty where c tx=afun(x)*uxxxx/12.0+bfun(x)*uxxx/6.0 on the interior and c at the boundaries if periodic(here uxxx,uxxxx are the third c and fourth partial derivatives of u with respect to x). c tx is of the form afun(x)/3.0*(uxxxx/4.0+uxxx/dlx) c at x=a or x=b if the boundary condition there is mixed. c tx=0.0 along specified boundaries. ty has symmetric form c in y with x,afun(x),bfun(x) replaced by y,dfun(y),efun(y). c the second order solution in usol is used to approximate c (via second order finite differencing) the truncation error c and the result is added to the right hand side in grhs c and then transferred to usol to be used as a new right c hand side when calling blktri for a fourth order solution. c IMPLICIT NONE integer KSWX, KSWY, K integer AIT, BIT, CIT, DIT, IS, MIT, NIT real*8 MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4 integer L Common /SPLP/ KSWX, KSWY, K, L, * MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4, * AIT, BIT, CIT, DIT, MIT, NIT, IS integer IDMN Dimension GRHS(IDMN,1), USOL(IDMN,1) real*8 GRHS, USOL, UXXX, UXXXX, UYYY, UYYYY c External COFX, COFY real*8 YJ, DJ, EJ, FJ real*8 XI, AI, BI, CI, TX, TY integer I, J c c compute truncation error approximation over the entire mesh c Do 20 J = JS, NS YJ = CIT + DBLE(J-1) * DLY Call COFY(YJ,DJ,EJ,FJ) Do 10 I = IS, MS XI = AIT + DBLE(I-1) * DLX Call COFX(XI,AI,BI,CI) c c compute partial derivative approximations at (xi,yj) c Call SEPDX(USOL,IDMN,I,J,UXXX,UXXXX) Call SEPDY(USOL,IDMN,I,J,UYYY,UYYYY) TX = AI * UXXXX / 12.0 + BI * UXXX / 6.0 TY = DJ * UYYYY / 12.0 + EJ * UYYY / 6.0 c c reset form of truncation if at boundary which is non-periodic c If (.NOT.(KSWX.EQ.1.OR.(I.GT.1.AND.I.LT.K))) Then TX = AI / 3.0 * (UXXXX/4.0+UXXX/DLX) End If If (.NOT.(KSWY.EQ.1.OR.(J.GT.1.AND.J.LT.L))) Then TY = DJ / 3.0 * (UYYYY/4.0+UYYY/DLY) End If GRHS(I,J) = GRHS(I,J) + DLX ** 2 * TX + DLY ** 2 * TY 10 Continue 20 Continue c c reset the right hand side in usol c Do 40 I = IS, MS Do 30 J = JS, NS USOL(I,J) = GRHS(I,J) 30 Continue 40 Continue Return c c revision history--- c c december 1979 first added to nssl c----------------------------------------------------------------------- End Subroutine BLKTRI(IFLG,NP,N,AN,BN,CN,MP,M,AM,BM,CM,IDIMY,Y,IERROR, * W) c c dimension of an(n),bn(n),cn(n),am(m),bm(m),cm(m),y(idimy,n), c arguments w(see argument list) c c latest revision january 1985 c c usage call blktri (iflg,np,n,an,bn,cn,mp,m,am,bm, c cm,idimy,y,ierror,w) c c purpose blktri solves a system of linear equations c of the form c c an(j)*x(i,j-1) + am(i)*x(i-1,j) + c (bn(j)+bm(i))*x(i,j) + cn(j)*x(i,j+1) + c cm(i)*x(i+1,j) = y(i,j) c c for i = 1,2,...,m and j = 1,2,...,n. c c i+1 and i-1 are evaluated modulo m and c j+1 and j-1 modulo n, i.e., c c x(i,0) = x(i,n), x(i,n+1) = x(i,1), c x(0,j) = x(m,j), x(m+1,j) = x(1,j). c c these equations usually result from the c discretization of separable elliptic c equations. boundary conditions may be c dirichlet, neumann, or periodic. c c arguments c c on input iflg c c = 0 initialization only. c certain quantities that depend on np, c n, an, bn, and cn are computed and c stored in the work array w. c c = 1 the quantities that were computed c in the initialization are used c to obtain the solution x(i,j). c c note: c a call with iflg=0 takes c approximately one half the time c as a call with iflg = 1. c however, the initialization does c not have to be repeated unless np, c n, an, bn, or cn change. c c np c = 0 if an(1) and cn(n) are not zero, c which corresponds to periodic c bounary conditions. c c = 1 if an(1) and cn(n) are zero. c c n c the number of unknowns in the j-direction. c n must be greater than 4. c the operation count is proportional to c mnlog2(n), hence n should be selected c less than or equal to m. c c an,bn,cn c one-dimensional arrays of length n c that specify the coefficients in the c linear equations given above. c c mp c = 0 if am(1) and cm(m) are not zero, c which corresponds to periodic c boundary conditions. c c = 1 if am(1) = cm(m) = 0 . c c m c the number of unknowns in the i-direction. c m must be greater than 4. c c am,bm,cm c one-dimensional arrays of length m that c specify the coefficients in the linear c equations given above. c c idimy c the row (or first) dimension of the c two-dimensional array y as it appears c in the program calling blktri. c this parameter is used to specify the c variable dimension of y. c idimy must be at least m. c c y c a two-dimensional array that specifies c the values of the right side of the linear c system of equations given above. c y must be dimensioned at least m*n. c c w c a one-dimensional array that must be c provided by the user for work space. c if np=1 define k=int(log2(n))+1 and c set l=2**(k+1) then w must have dimension c (k-2)*l+k+5+max(2n,6m) c c if np=0 define k=int(log2(n-1))+1 and c set l=2**(k+1) then w must have dimension c (k-2)*l+k+5+2n+max(2n,6m) c c **important** c for purposes of checking, the required c dimension of w is computed by blktri and c stored in w(1) in floating point format. c c arguments c c on output y c contains the solution x. c c ierror c an error flag that indicates invalid c input parameters. except for number zer0, c a solution is not attempted. c c = 0 no error. c = 1 m is less than 5 c = 2 n is less than 5 c = 3 idimy is less than m. c = 4 blktri failed while computing results c that depend on the coefficient arrays c an, bn, cn. check these arrays. c = 5 an(j)*cn(j-1) is less than 0 for some j. c c possible reasons for this condition are c 1. the arrays an and cn are not correct c 2. too large a grid spacing was used c in the discretization of the elliptic c equation. c 3. the linear equations resulted from a c partial differential equation which c was not elliptic. c c w c contains intermediate values that must c not be destroyed if blktri will be called c again with iflg=1. w(1) contains the c number of locations required by w in c floating point format. c c c special conditions the algorithm may fail if abs(bm(i)+bn(j)) c is less than abs(am(i))+abs(an(j))+ c abs(cm(i))+abs(cn(j)) c for some i and j. the algorithm will also c fail if an(j)*cn(j-1) is less than zero for c some j. c see the description of the output parameter c ierror. c c i/o none c c precision single c c required library comf and q8qst4, which are automatically loaded c files ncar's cray machines. c c language fortran c c history written by paul swarztrauber at ncar in the c early 1970's. rewritten and released in c january, 1980. c c algorithm generalized cyclic reduction c c portability fortran 66. approximate machine accuracy c is computed in function epmach. c c references swarztrauber,p. and r. sweet, 'efficient c fortran subprograms for the solution of c elliptic equations' c ncar tn/ia-109, july, 1975, 138 pp. c c swarztrauber p. n.,a direct method for c the discrete solution of separable c elliptic equations, s.i.a.m. c j. numer. anal.,11(1974) pp. 1136-1150. c*********************************************************************** IMPLICIT NONE integer IDIMY Dimension AN(1), BN(1), CN(1), AM(1), BM(1), CM(1), Y(IDIMY,1) Dimension W(2) External PROD, PRODP, CPROD, CPRODP integer M, N, NP, MP integer K, NM, NCMPLX, IK, NL real*8 EPS, NPP, CNV Common /CBLKT/ K, NM, NCMPLX, IK, NPP, CNV, EPS real*8 AN, BN, CN, AM, BM, CM, Y, W integer IERROR, NH, IWAH, IW1, IWBH, IW2, IW3, IWD, IWW, IWU integer IFLG c c the following call is for monitoring library use at ncar c Logical Q8Q4 Save Q8Q4 Data Q8Q4 /.TRUE./ If (Q8Q4) Then c call q8qst4('loclib','blktri','blktri','version 01') Q8Q4 = .FALSE. End If c c test m and n for the proper form c NM = N IERROR = 0 If (M.LT.5) Then IERROR = 1 Else If (NM.LT.3) Then IERROR = 2 Else If (IDIMY.LT.M) Then IERROR = 3 Else NH = N NPP = NP If (NPP.NE.0) Then NH = NH + 1 End If IK = 2 K = 1 10 IK = IK + IK K = K + 1 If (NH.GT.IK) Go To 10 NL = IK IK = IK + IK NL = NL - 1 IWAH = (K-2) * IK + K + 6 If (NPP.NE.0) Then c c divide w into working sub arrays c IW1 = IWAH IWBH = IW1 + NM W(1) = DBLE(IW1-1+DMAX1(2.d0*NM,6.d0*M)) Else IWBH = IWAH + NM + NM IW1 = IWBH W(1) = DBLE(IW1-1+DMAX1(2.d0*NM,6.d0*M)) NM = NM - 1 End If c c subroutine comp b computes the roots of the b polynomials c If (IERROR.EQ.0) Then IW2 = IW1 + M IW3 = IW2 + M IWD = IW3 + M IWW = IWD + M IWU = IWW + M If (IFLG.EQ.0) Then Call COMPB(NL,IERROR,AN,BN,CN,W(2),W(IWAH),W(IWBH)) Else If (MP.NE.0) Then c c subroutine blktr1 solves the linear system c Call BLKTR1(NL,AN,BN,CN,M,AM,BM,CM,IDIMY,Y,W(2), * W(IW1),W(IW2),W(IW3),W(IWD),W(IWW),W(IWU),1) c Call BLKTR1(NL,AN,BN,CN,M,AM,BM,CM,IDIMY,Y,W(2), c * W(IW1),W(IW2),W(IW3),W(IWD),W(IWW),W(IWU),PROD, c * CPROD) Else c Call BLKTR1(NL,AN,BN,CN,M,AM,BM,CM,IDIMY,Y,W(2), c * W(IW1),W(IW2),W(IW3),W(IWD),W(IWW),W(IWU),PRODP, c * CPRODP) Call BLKTR1(NL,AN,BN,CN,M,AM,BM,CM,IDIMY,Y,W(2), * W(IW1),W(IW2),W(IW3),W(IWD),W(IWW),W(IWU),2) End If End If End If End If End If End If Return End Subroutine BLKTR1(N,AN,BN,CN,M,AM,BM,CM,IDIMY,Y,B,W1,W2,W3,WD,WW, c WU,PRDCT,CPRDCT) * WU, PFLAG ) c c blktr1 solves the linear system c c b contains the roots of all the b polynomials c w1,w2,w3,wd,ww,wu are all working arrays c prdct is either prodp or prod depending on whether the boundary c conditions in the m direction are periodic or not c cprdct is either cprodp or cprod which are the complex versions c of prodp and prod. these are called in the event that some c of the roots of the b sub p polynomial are complex c c If PFLAG==1, then use PROD and CPROD as callable functions. c Otherwise use PRODP and CPRODP c IMPLICIT NONE integer IDIMY Dimension AN(1), BN(1), CN(1), AM(1), BM(1), CM(1), B(1), W1(1), * W2(1), W3(1), WD(1), WW(1), WU(1), Y(IDIMY,1) real*8 AN, BN, CN, AM, BM, CM, B, W1 real*8 W2, W3, WD, WW, WU, Y real*8 DUM integer M, N integer PFLAG integer K, NM, NCMPLX, IK real*8 EPS, NPP, CNV Common /CBLKT/ K, NM, NCMPLX, IK, NPP, CNV, EPS integer I2,IR,IM2,NM2, I1, IRM1, IM3, NM3 integer I3, IM1, NM1, KDO, L, I4, IF,I, IPI1, IPI2, IPI3 integer NC, IDXA, IP2, NA, NP2, IP1, NP1, J, IP3, NP3 integer IZ, NZ, IDXC, IZR, LL, IFD, IP, NP, IMI1, IMI2 c c Added this to avoid compiler warning on g77 c John Evans Complex cbip, cw1, cw3, cww c c begin reduction phase c KDO = K - 1 Do 40 L = 1, KDO IR = L - 1 I2 = 2 ** IR I1 = I2 / 2 I3 = I2 + I1 I4 = I2 + I2 IRM1 = IR - 1 Call INDXB(I2,IR,IM2,NM2) Call INDXB(I1,IRM1,IM3,NM3) Call INDXB(I3,IRM1,IM1,NM1) If (PFLAG.eq.1) Then Call PROD(NM2,B(IM2),NM3,B(IM3),NM1,B(IM1),0,DUM,Y(1,I2), * W3, M, AM,BM,CM,WD,WW,WU) Else Call PRODP(NM2,B(IM2),NM3,B(IM3),NM1,B(IM1),0,DUM,Y(1,I2), * W3,M,AM,BM,CM,WD,WW,WU) End If c c Call PRDCT(NM2,B(IM2),NM3,B(IM3),NM1,B(IM1),0,DUM,Y(1,I2),W3,M, c * AM,BM,CM,WD,WW,WU) c IF = 2 ** K Do 30 I = I4, IF, I4 If (I.LE.NM) Then IPI1 = I + I1 IPI2 = I + I2 IPI3 = I + I3 Call INDXC(I,IR,IDXC,NC) If (I.LT.IF) Then Call INDXA(I,IR,IDXA,NA) Call INDXB(I-I1,IRM1,IM1,NM1) Call INDXB(IPI2,IR,IP2,NP2) Call INDXB(IPI1,IRM1,IP1,NP1) Call INDXB(IPI3,IRM1,IP3,NP3) c Call PRDCT(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W3,W1,M,AM, c * BM,CM,WD,WW,WU) If (PFLAG .eq.1) Then Call PROD(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W3,W1, * M,AM,BM,CM,WD,WW,WU) Else Call PRODP(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W3,W1, * M,AM,BM,CM,WD,WW,WU) End If If (IPI2.GT.NM) Then Do 10 J = 1, M W3(J) = 0. W2(J) = 0. 10 Continue Else c Call PRDCT(NP2,B(IP2),NP1,B(IP1),NP3,B(IP3),0,DUM, c * Y(1,IPI2),W3,M,AM,BM,CM,WD,WW,WU) c Call PRDCT(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W3,W2,M, c * AM,BM,CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NP2,B(IP2),NP1,B(IP1),NP3,B(IP3),0,DUM, * Y(1,IPI2),W3,M,AM,BM,CM,WD,WW,WU) Call PROD(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W3, * W2,M,AM,BM,CM,WD,WW,WU) Else Call PRODP(NP2,B(IP2),NP1,B(IP1),NP3,B(IP3),0,DUM, * Y(1,IPI2),W3,M,AM,BM,CM,WD,WW,WU) Call PRODP(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W3, * W2,M,AM,BM,CM,WD,WW,WU) End If End If Do 20 J = 1, M Y(J,I) = W1(J) + W2(J) + Y(J,I) 20 Continue End If End If 30 Continue 40 Continue If (NPP.EQ.0) Then c c the periodic case is treated using the capacitance matrix method c IF = 2 ** K I = IF / 2 I1 = I / 2 Call INDXB(I-I1,K-2,IM1,NM1) Call INDXB(I+I1,K-2,IP1,NP1) Call INDXB(I,K-1,IZ,NZ) c Call PRDCT(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,Y(1,I),W1,M,AM, c * BM,CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,Y(1,I),W1, * M,AM,BM,CM,WD,WW,WU) Else Call PRODP(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,Y(1,I), * W1,M,AM,BM,CM,WD,WW,WU) End If IZR = I Do 50 J = 1, M W2(J) = W1(J) 50 Continue Do 70 LL = 2, K L = K - LL + 1 IR = L - 1 I2 = 2 ** IR I1 = I2 / 2 I = I2 Call INDXC(I,IR,IDXC,NC) Call INDXB(I,IR,IZ,NZ) Call INDXB(I-I1,IR-1,IM1,NM1) Call INDXB(I+I1,IR-1,IP1,NP1) c Call PRDCT(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W1,W1,M,AM,BM, c * CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W1,W1,M, * AM,BM,CM,WD,WW,WU) Else Call PRODP(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W1,W1, * M,AM,BM,CM,WD,WW,WU) End If Do 60 J = 1, M W1(J) = Y(J,I) + W1(J) 60 Continue c Call PRDCT(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W1,W1,M,AM,BM, c * CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W1,W1,M, * AM,BM,CM,WD,WW,WU) Else Call PRODP(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W1,W1, * M,AM,BM,CM,WD,WW,WU) End If 70 Continue Do 100 LL = 2, K L = K - LL + 1 IR = L - 1 I2 = 2 ** IR I1 = I2 / 2 I4 = I2 + I2 IFD = IF - I2 Do 90 I = I2, IFD, I4 If (I-I2-IZR.EQ.0) Then If (I.GT.NM) Go To 100 Call INDXA(I,IR,IDXA,NA) Call INDXB(I,IR,IZ,NZ) Call INDXB(I-I1,IR-1,IM1,NM1) Call INDXB(I+I1,IR-1,IP1,NP1) c Call PRDCT(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W2,W2,M,AM, c * BM,CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W2,W2, * M,AM,BM,CM,WD,WW,WU) Else Call PRODP(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W2, * W2,M,AM,BM,CM,WD,WW,WU) End If Do 80 J = 1, M W2(J) = Y(J,I) + W2(J) 80 Continue c Call PRDCT(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W2,W2,M, c * AM,BM,CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W2, * W2,M,AM,BM,CM,WD,WW,WU) Else Call PRODP(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM, * W2,W2,M,AM,BM,CM,WD,WW,WU) End If IZR = I If (I.EQ.NM) Go To 110 End If 90 Continue 100 Continue 110 Do 120 J = 1, M Y(J,NM+1) = Y(J,NM+1) - CN(NM+1) * W1(J) - AN(NM+1) * W2(J) 120 Continue Call INDXB(IF/2,K-1,IM1,NM1) Call INDXB(IF,K-1,IP,NP) If (NCMPLX.NE.0) Then cbip = CMPLX ( B(IP) ) cw1 = CMPLX ( W1(1) ) cw3 = CMPLX ( W3(1) ) cww = CMPLX ( WW(1) ) c Call CPRDCT(NM+1,B(IP),NM1,B(IM1),0,DUM,0,DUM,Y(1,NM+1), c * Y(1,NM+1),M,AM,BM,CM,W1,W3,WW) If (PFLAG.eq.1) Then Call CPROD(NM+1, cbip, NM1,B(IM1),0,DUM,0,DUM, * Y(1,NM+1),Y(1,NM+1),M,AM,BM,CM, cw1, cw3, cww) Else Call CPRODP(NM+1,cbip,NM1,B(IM1),0,DUM,0,DUM, * Y(1,NM+1),Y(1,NM+1),M,AM,BM,CM, cw1, cw3, cww) End If Else c Call PRDCT(NM+1,B(IP),NM1,B(IM1),0,DUM,0,DUM,Y(1,NM+1), c * Y(1,NM+1),M,AM,BM,CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NM+1,B(IP),NM1,B(IM1),0,DUM,0,DUM,Y(1,NM+1), * Y(1,NM+1),M,AM,BM,CM,WD,WW,WU) Else Call PRODP(NM+1,B(IP),NM1,B(IM1),0,DUM,0,DUM,Y(1,NM+1), * Y(1,NM+1),M,AM,BM,CM,WD,WW,WU) End If End If Do 130 J = 1, M W1(J) = AN(1) * Y(J,NM+1) W2(J) = CN(NM) * Y(J,NM+1) Y(J,1) = Y(J,1) - W1(J) Y(J,NM) = Y(J,NM) - W2(J) 130 Continue Do 150 L = 1, KDO IR = L - 1 I2 = 2 ** IR I4 = I2 + I2 I1 = I2 / 2 I = I4 Call INDXA(I,IR,IDXA,NA) Call INDXB(I-I2,IR,IM2,NM2) Call INDXB(I-I2-I1,IR-1,IM3,NM3) Call INDXB(I-I1,IR-1,IM1,NM1) c Call PRDCT(NM2,B(IM2),NM3,B(IM3),NM1,B(IM1),0,DUM,W1,W1,M,AM, c * BM,CM,WD,WW,WU) c Call PRDCT(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W1,W1,M,AM,BM, c * CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NM2,B(IM2),NM3,B(IM3),NM1,B(IM1),0,DUM,W1,W1, * M,AM,BM,CM,WD,WW,WU) Call PROD(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W1,W1,M, * AM,BM,CM,WD,WW,WU) Else Call PRODP(NM2,B(IM2),NM3,B(IM3),NM1,B(IM1),0,DUM,W1, * W1,M,AM,BM,CM,WD,WW,WU) Call PRODP(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W1,W1, * M,AM,BM,CM,WD,WW,WU) End If Do 140 J = 1, M Y(J,I) = Y(J,I) - W1(J) 140 Continue 150 Continue c IZR = NM Do 180 L = 1, KDO IR = L - 1 I2 = 2 ** IR I1 = I2 / 2 I3 = I2 + I1 I4 = I2 + I2 IRM1 = IR - 1 Do 170 I = I4, IF, I4 IPI1 = I + I1 IPI2 = I + I2 IPI3 = I + I3 If (IPI2.NE.IZR) Then If (I-IZR) 170, 180, 170 End If Call INDXC(I,IR,IDXC,NC) Call INDXB(IPI2,IR,IP2,NP2) Call INDXB(IPI1,IRM1,IP1,NP1) Call INDXB(IPI3,IRM1,IP3,NP3) c Call PRDCT(NP2,B(IP2),NP1,B(IP1),NP3,B(IP3),0,DUM,W2,W2,M, c * AM,BM,CM,WD,WW,WU) c Call PRDCT(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W2,W2,M,AM,BM, c * CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NP2,B(IP2),NP1,B(IP1),NP3,B(IP3),0,DUM,W2, * W2,M,AM,BM,CM,WD,WW,WU) Call PROD(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W2,W2,M, * AM,BM,CM,WD,WW,WU) Else Call PRODP(NP2,B(IP2),NP1,B(IP1),NP3,B(IP3),0,DUM,W2, * W2,M,AM,BM,CM,WD,WW,WU) Call PRODP(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W2,W2,M, * AM,BM,CM,WD,WW,WU) End If Do 160 J = 1, M Y(J,I) = Y(J,I) - W2(J) 160 Continue IZR = I Go To 180 170 Continue 180 Continue End If c c begin back substitution phase c Do 230 LL = 1, K L = K - LL + 1 IR = L - 1 IRM1 = IR - 1 I2 = 2 ** IR I1 = I2 / 2 I4 = I2 + I2 IFD = IF - I2 Do 220 I = I2, IFD, I4 If (I.LE.NM) Then IMI1 = I - I1 IMI2 = I - I2 IPI1 = I + I1 IPI2 = I + I2 Call INDXA(I,IR,IDXA,NA) Call INDXC(I,IR,IDXC,NC) Call INDXB(I,IR,IZ,NZ) Call INDXB(IMI1,IRM1,IM1,NM1) Call INDXB(IPI1,IRM1,IP1,NP1) If (I.LE.I2) Then Do 190 J = 1, M W1(J) = 0. 190 Continue Else c Call PRDCT(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),Y(1,IMI2), c * W1,M,AM,BM,CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA), * Y(1,IMI2),W1,M,AM,BM,CM,WD,WW,WU) Else Call PRODP(NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA), * Y(1,IMI2),W1,M,AM,BM,CM,WD,WW,WU) End If End If If (IPI2.GT.NM) Then Do 200 J = 1, M W2(J) = 0. 200 Continue Else c Call PRDCT(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),Y(1,IPI2), c * W2,M,AM,BM,CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC), * Y(1,IPI2),W2,M,AM,BM,CM,WD,WW,WU) Else Call PRODP(NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC), * Y(1,IPI2),W2,M,AM,BM,CM,WD,WW,WU) End If End If Do 210 J = 1, M W1(J) = Y(J,I) + W1(J) + W2(J) 210 Continue c Call PRDCT(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W1,Y(1,I),M, c * AM,BM,CM,WD,WW,WU) If (PFLAG.eq.1) Then Call PROD(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W1, * Y(1,I),M,AM,BM,CM,WD,WW,WU) Else Call PRODP(NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W1, * Y(1,I),M,AM,BM,CM,WD,WW,WU) End If End If 220 Continue 230 Continue Return End Subroutine INDXB(I,IR,IDX,IDP) c c b(idx) is the location of the first root of the b(i,ir) polynomial c IMPLICIT NONE integer IDP, IDX, I, IR integer IZH, ID, IPL integer K, NM, NCMPLX, IK real*8 EPS, NPP, CNV Common /CBLKT/ K, NM, NCMPLX, IK, NPP, CNV, EPS IDP = 0 If (IR) 30, 10, 20 10 If (I.GT.NM) Go To 30 IDX = I IDP = 1 Return 20 IZH = 2 ** IR ID = I - IZH - IZH IDX = ID + ID + (IR-1) * IK + IR + (IK-I) / IZH + 4 IPL = IZH - 1 IDP = IZH + IZH - 1 If (I-IPL-NM.GT.0) Then IDP = 0 Return End If If (I+IPL-NM.GT.0) Then IDP = NM + IPL - I + 1 End If 30 Return End Subroutine INDXA(I,IR,IDXA,NA) IMPLICIT NONE integer K, NM, NCMPLX, IK real*8 EPS, NPP, CNV Common /CBLKT/ K, NM, NCMPLX, IK, NPP, CNV, EPS integer NA, IDXA, I, IR NA = 2 ** IR IDXA = I - NA + 1 If (I.GT.NM) Then NA = 0 End If Return End Subroutine INDXC(I,IR,IDXC,NC) IMPLICIT NONE integer K, NM, NCMPLX, IK, NC, IR, I, IDXC real*8 EPS, NPP, CNV Common /CBLKT/ K, NM, NCMPLX, IK, NPP, CNV, EPS NC = 2 ** IR IDXC = I If (IDXC+NC-1-NM.GT.0) Then NC = 0 End If Return End Subroutine PROD(ND,BD,NM1,BM1,NM2,BM2,NA,AA,X,Y,M,A,B,C,D,W,U) c c prod applies a sequence of matrix operations to the vector x and c stores the result in y c bd,bm1,bm2 are arrays containing roots of certian b polynomials c nd,nm1,nm2 are the lengths of the arrays bd,bm1,bm2 respectively c aa array containing scalar multipliers of the vector x c na is the length of the array aa c x,y the matrix operations are applied to x and the result is y c a,b,c are arrays which contain the tridiagonal matrix c m is the order of the matrix c d,w,u are working arrays c is determines whether or not a change in sign is made c IMPLICIT NONE Dimension A(1), B(1), C(1), X(1), Y(1), D(2), W(2), BD(1), * BM1(1), BM2(1), AA(1), U(1) real*8 bd,bm1, bm2, aa, a, b, c, d, u, w, x, y, rt real*8 den integer nd, nm1, nm2, na, m, j, mm, id, ibr, m1, m2, ia integer k Do 10 J = 1, M W(J) = X(J) Y(J) = W(J) 10 Continue MM = M - 1 ID = ND IBR = 0 M1 = NM1 M2 = NM2 IA = NA 20 If (IA.GT.0) Then RT = AA(IA) If (ND.EQ.0) RT = -RT IA = IA - 1 c c scalar multiplication c Do 30 J = 1, M Y(J) = RT * W(J) 30 Continue End If If (ID.GT.0) Then RT = BD(ID) ID = ID - 1 If (ID.EQ.0) IBR = 1 c c begin solution to system c D(M) = A(M) / (B(M)-RT) W(M) = Y(M) / (B(M)-RT) Do 40 J = 2, MM K = M - J DEN = B(K+1) - RT - C(K+1) * D(K+2) D(K+1) = A(K+1) / DEN W(K+1) = (Y(K+1)-C(K+1)*W(K+2)) / DEN 40 Continue DEN = B(1) - RT - C(1) * D(2) W(1) = 1. If (DEN.NE.0) Then W(1) = (Y(1)-C(1)*W(2)) / DEN End If Do 50 J = 2, M W(J) = W(J) - D(J) * W(J-1) 50 Continue If (NA) 80, 80, 20 60 Do 70 J = 1, M Y(J) = W(J) 70 Continue IBR = 1 Go To 20 80 If (M1.LE.0) Then If (M2) 60, 60, 90 End If If (M2.GT.0) Then If (ABS(BM1(M1)).LE.ABS(BM2(M2))) Go To 90 End If If (IBR.LE.0) Then If (ABS(BM1(M1)-BD(ID)).LT.ABS(BM1(M1)-RT)) Go To 60 End If RT = RT - BM1(M1) M1 = M1 - 1 Go To 100 90 If (IBR.LE.0) Then If (ABS(BM2(M2)-BD(ID)).LT.ABS(BM2(M2)-RT)) Go To 60 End If RT = RT - BM2(M2) M2 = M2 - 1 100 Do 110 J = 1, M Y(J) = Y(J) + RT * W(J) 110 Continue Go To 20 End If Return End Subroutine PRODP(ND,BD,NM1,BM1,NM2,BM2,NA,AA,X,Y,M,A,B,C,D,U,W) c c prodp applies a sequence of matrix operations to the vector x and c stores the result in y periodic boundary conditions c c bd,bm1,bm2 are arrays containing roots of certian b polynomials c nd,nm1,nm2 are the lengths of the arrays bd,bm1,bm2 respectively c aa array containing scalar multipliers of the vector x c na is the length of the array aa c x,y the matrix operations are applied to x and the result is y c a,b,c are arrays which contain the tridiagonal matrix c m is the order of the matrix c d,u,w are working arrays c is determines whether or not a change in sign is made c IMPLICIT NONE Dimension A(1), B(1), C(1), X(1), Y(1), D(1), U(1), BD(1), * BM1(1), BM2(1), AA(1), W(1) real*8 bd,bm1, bm2, aa, a, b, c, d, u, w, x, y, rt, bh, ym, v real*8 den, am integer nd, nm1, nm2, na, m, j, mm, mm2, id, ibr, m1, m2, ia integer k Do 10 J = 1, M Y(J) = X(J) W(J) = Y(J) 10 Continue MM = M - 1 MM2 = M - 2 ID = ND IBR = 0 M1 = NM1 M2 = NM2 IA = NA 20 If (IA.GT.0) Then RT = AA(IA) If (ND.EQ.0) RT = -RT IA = IA - 1 Do 30 J = 1, M Y(J) = RT * W(J) 30 Continue End If If (ID.GT.0) Then RT = BD(ID) ID = ID - 1 If (ID.EQ.0) IBR = 1 c c begin solution to system c BH = B(M) - RT YM = Y(M) DEN = B(1) - RT D(1) = C(1) / DEN U(1) = A(1) / DEN W(1) = Y(1) / DEN V = C(M) If (MM2.GE.2) Then Do 40 J = 2, MM2 DEN = B(J) - RT - A(J) * D(J-1) D(J) = C(J) / DEN U(J) = -A(J) * U(J-1) / DEN W(J) = (Y(J)-A(J)*W(J-1)) / DEN BH = BH - V * U(J-1) YM = YM - V * W(J-1) V = -V * D(J-1) 40 Continue End If DEN = B(M-1) - RT - A(M-1) * D(M-2) D(M-1) = (C(M-1)-A(M-1)*U(M-2)) / DEN W(M-1) = (Y(M-1)-A(M-1)*W(M-2)) / DEN AM = A(M) - V * D(M-2) BH = BH - V * U(M-2) YM = YM - V * W(M-2) DEN = BH - AM * D(M-1) If (DEN.NE.0) Then W(M) = (YM-AM*W(M-1)) / DEN Else W(M) = 1. End If W(M-1) = W(M-1) - D(M-1) * W(M) Do 50 J = 2, MM K = M - J W(K) = W(K) - D(K) * W(K+1) - U(K) * W(M) 50 Continue If (NA) 80, 80, 20 60 Do 70 J = 1, M Y(J) = W(J) 70 Continue IBR = 1 Go To 20 80 If (M1.LE.0) Then If (M2) 60, 60, 90 End If If (M2.GT.0) Then If (ABS(BM1(M1)).LE.ABS(BM2(M2))) Go To 90 End If If (IBR.LE.0) Then If (ABS(BM1(M1)-BD(ID)).LT.ABS(BM1(M1)-RT)) Go To 60 End If RT = RT - BM1(M1) M1 = M1 - 1 Go To 100 90 If (IBR.LE.0) Then If (ABS(BM2(M2)-BD(ID)).LT.ABS(BM2(M2)-RT)) Go To 60 End If RT = RT - BM2(M2) M2 = M2 - 1 100 Do 110 J = 1, M Y(J) = Y(J) + RT * W(J) 110 Continue Go To 20 End If Return End Subroutine CPROD(ND,BD,NM1,BM1,NM2,BM2,NA,AA,X,YY,M,A,B,C,D,W,Y) c c prod applies a sequence of matrix operations to the vector x and c stores the result in yy (complex case) c aa array containing scalar multipliers of the vector x c nd,nm1,nm2 are the lengths of the arrays bd,bm1,bm2 respectively c bd,bm1,bm2 are arrays containing roots of certian b polynomials c na is the length of the array aa c x,yy the matrix operations are applied to x and the result is yy c a,b,c are arrays which contain the tridiagonal matrix c m is the order of the matrix c d,w,y are working arrays c isgn determines whether or not a change in sign is made c IMPLICIT NONE Complex Y, D, W, BD, CRT, DEN, Y1, Y2 Dimension A(1), B(1), C(1), X(1), Y(2), D(2), W(2), BD(1), * BM1(1), BM2(1), AA(1), YY(1) integer J, M, MM, ND, NM1, NM2, ID, M1, M2, IA integer NA, IFLG, K real*8 BM1, BM2, AA, X, YY, A, B, C, RT Do 10 J = 1, M Y(J) = DCMPLX(X(J),0.d0) 10 Continue MM = M - 1 ID = ND M1 = NM1 M2 = NM2 IA = NA 20 IFLG = 0 If (ID.GT.0) Then CRT = BD(ID) ID = ID - 1 c c begin solution to system c D(M) = A(M) / (B(M)-CRT) W(M) = Y(M) / (B(M)-CRT) Do 30 J = 2, MM K = M - J DEN = B(K+1) - CRT - C(K+1) * D(K+2) D(K+1) = A(K+1) / DEN W(K+1) = (Y(K+1)-C(K+1)*W(K+2)) / DEN 30 Continue DEN = B(1) - CRT - C(1) * D(2) If (CABS(DEN).NE.0) Then Y(1) = (Y(1)-C(1)*W(2)) / DEN Else Y(1) = (1.,0.) End If Do 40 J = 2, M Y(J) = W(J) - D(J) * Y(J-1) 40 Continue End If If (M1.LE.0) Then If (M2.LE.0) Go To 60 RT = BM2(M2) M2 = M2 - 1 Else If (M2.LE.0) Then RT = BM1(M1) M1 = M1 - 1 Else If (ABS(BM1(M1)).GT.ABS(BM2(M2))) Then RT = BM1(M1) M1 = M1 - 1 Else RT = BM2(M2) M2 = M2 - 1 End If End If End If Y1 = (B(1)-RT) * Y(1) + C(1) * Y(2) If (MM.GE.2) Then c c matrix multiplication c Do 50 J = 2, MM Y2 = A(J) * Y(J-1) + (B(J)-RT) * Y(J) + C(J) * Y(J+1) Y(J-1) = Y1 Y1 = Y2 50 Continue End If Y(M) = A(M) * Y(M-1) + (B(M)-RT) * Y(M) Y(M-1) = Y1 IFLG = 1 Go To 20 60 If (IA.GT.0) Then RT = AA(IA) IA = IA - 1 IFLG = 1 c c scalar multiplication c Do 70 J = 1, M Y(J) = RT * Y(J) 70 Continue End If If (IFLG.GT.0) Go To 20 Do 80 J = 1, M YY(J) = REAL(Y(J)) 80 Continue Return End Subroutine CPRODP(ND,BD,NM1,BM1,NM2,BM2,NA,AA,X,YY,M,A,B,C,D,U,Y) c c prodp applies a sequence of matrix operations to the vector x and c stores the result in yy periodic boundary conditions c and complex case c c bd,bm1,bm2 are arrays containing roots of certian b polynomials c nd,nm1,nm2 are the lengths of the arrays bd,bm1,bm2 respectively c aa array containing scalar multipliers of the vector x c na is the length of the array aa c x,yy the matrix operations are applied to x and the result is yy c a,b,c are arrays which contain the tridiagonal matrix c m is the order of the matrix c d,u,y are working arrays c isgn determines whether or not a change in sign is made c IMPLICIT NONE Complex Y, D, U, V, DEN, BH, YM, AM, Y1, Y2, YH, BD, CRT Dimension A(1), B(1), C(1), X(1), Y(2), D(1), U(1), BD(1), * BM1(1), BM2(1), AA(1), YY(1) integer J, M, MM, MM2, ND, NM1, NM2, ID, M1, M2, IA integer NA, IFLG, K real*8 BM1, BM2, AA, X, YY, A, B, C, RT Do 10 J = 1, M Y(J) = DCMPLX(X(J),0.d0) 10 Continue MM = M - 1 MM2 = M - 2 ID = ND M1 = NM1 M2 = NM2 IA = NA 20 IFLG = 0 If (ID.GT.0) Then CRT = BD(ID) ID = ID - 1 IFLG = 1 c c begin solution to system c BH = B(M) - CRT YM = Y(M) DEN = B(1) - CRT D(1) = C(1) / DEN U(1) = A(1) / DEN Y(1) = Y(1) / DEN V = DCMPLX(C(M),0.d0) If (MM2.GE.2) Then Do 30 J = 2, MM2 DEN = B(J) - CRT - A(J) * D(J-1) D(J) = C(J) / DEN U(J) = -A(J) * U(J-1) / DEN Y(J) = (Y(J)-A(J)*Y(J-1)) / DEN BH = BH - V * U(J-1) YM = YM - V * Y(J-1) V = -V * D(J-1) 30 Continue End If DEN = B(M-1) - CRT - A(M-1) * D(M-2) D(M-1) = (C(M-1)-A(M-1)*U(M-2)) / DEN Y(M-1) = (Y(M-1)-A(M-1)*Y(M-2)) / DEN AM = A(M) - V * D(M-2) BH = BH - V * U(M-2) YM = YM - V * Y(M-2) DEN = BH - AM * D(M-1) If (CABS(DEN).NE.0) Then Y(M) = (YM-AM*Y(M-1)) / DEN Else Y(M) = (1.,0.) End If Y(M-1) = Y(M-1) - D(M-1) * Y(M) Do 40 J = 2, MM K = M - J Y(K) = Y(K) - D(K) * Y(K+1) - U(K) * Y(M) 40 Continue End If If (M1.LE.0) Then If (M2.LE.0) Go To 60 RT = BM2(M2) M2 = M2 - 1 Else If (M2.LE.0) Then RT = BM1(M1) M1 = M1 - 1 Else If (DABS(BM1(M1)).GT.DABS(BM2(M2))) Then RT = BM1(M1) M1 = M1 - 1 Else RT = BM2(M2) M2 = M2 - 1 End If End If End If c c matrix multiplication c YH = Y(1) Y1 = (B(1)-RT) * Y(1) + C(1) * Y(2) + A(1) * Y(M) If (MM.GE.2) Then Do 50 J = 2, MM Y2 = A(J) * Y(J-1) + (B(J)-RT) * Y(J) + C(J) * Y(J+1) Y(J-1) = Y1 Y1 = Y2 50 Continue End If Y(M) = A(M) * Y(M-1) + (B(M)-RT) * Y(M) + C(M) * YH Y(M-1) = Y1 IFLG = 1 Go To 20 60 If (IA.GT.0) Then RT = AA(IA) IA = IA - 1 IFLG = 1 c c scalar multiplication c Do 70 J = 1, M Y(J) = RT * Y(J) 70 Continue End If If (IFLG.GT.0) Go To 20 Do 80 J = 1, M YY(J) = REAL(Y(J)) 80 Continue Return End Subroutine PPADD(N,IERROR,A,C,CBP,BP,BH) c c ppadd computes the eigenvalues of the periodic tridiagonal matrix c with coefficients an,bn,cn c c n is the order of the bh and bp polynomials c on output bp contians the eigenvalues c cbp is the same as bp except type complex c bh is used to temporarily store the roots of the b hat polynomial c which enters through bp c IMPLICIT NONE DOUBLE Complex CX, FSG, HSG, DD DOUBLE Complex F, FP, FPP, CDIS, R1, R2, R3, CBP Dimension A(1), C(1), BP(1), BH(3), CBP(1) real*8 A, C, BP, BH real*8 XR, XM real*8 SGN integer K, NM, NCMPLX, IK real*8 EPS, NPP, XL, CNV Common /CBLKT/ K, NM, NCMPLX, IK, NPP, CNV, EPS real*8 PSGF, PPSPF, PPSGF External PSGF, PPSPF, PPSGF real*8 SCNV, DB, BSRH, PSG integer IZ, N, IZM, IZM2, J, NT, MODIZ, IS, IF, IG, IT, ICV, I2 integer I3, NHALF, IERROR SCNV = DSQRT(CNV) IZ = N IZM = IZ - 1 IZM2 = IZ - 2 If (BP(N)-BP(1)) 10, 240, 30 10 Do 20 J = 1, N NT = N - J BH(J) = BP(NT+1) 20 Continue Go To 50 30 Do 40 J = 1, N BH(J) = BP(J) 40 Continue 50 NCMPLX = 0 MODIZ = MOD(IZ,2) IS = 1 If (MODIZ.NE.0) Then If (A(1)) 80, 240, 60 End If 60 XL = BH(1) DB = BH(3) - BH(1) 70 XL = XL - DB If (PSGF(XL,IZ,C,A,BH).LE.0) Go To 70 SGN = -1. CBP(1) = DCMPLX(BSRH(XL,BH(1),IZ,C,A,BH,PSGF,SGN),0.d0) IS = 2 80 IF = IZ - 1 If (MODIZ.NE.0) Then If (A(1)) 90, 240, 110 End If 90 XR = BH(IZ) DB = BH(IZ) - BH(IZ-2) 100 XR = XR + DB If (PSGF(XR,IZ,C,A,BH).LT.0) Go To 100 SGN = 1. CBP(IZ) = DCMPLX(BSRH(BH(IZ),XR,IZ,C,A,BH,PSGF,SGN),0.d0) IF = IZ - 2 110 Do 180 IG = IS, IF, 2 XL = BH(IG) XR = BH(IG+1) SGN = -1. XM = BSRH(XL,XR,IZ,C,A,BH,PPSPF,SGN) PSG = PSGF(XM,IZ,C,A,BH) If (ABS(PSG).GT.EPS) Then If (PSG*PPSGF(XM,IZ,C,A,BH)) 120, 130, 140 c c case of a real zero c 120 SGN = 1. CBP(IG) = DCMPLX(BSRH(BH(IG),XM,IZ,C,A,BH,PSGF,SGN),0.d0) SGN = -1. CBP(IG+1) = DCMPLX(BSRH(XM,BH(IG+1),IZ,C,A,BH,PSGF,SGN),0.d0) Go To 180 End If c c case of a multiple zero c 130 CBP(IG) = DCMPLX(XM,0.d0) CBP(IG+1) = DCMPLX(XM,0.d0) Go To 180 c c case of a complex zero c 140 IT = 0 ICV = 0 CX = DCMPLX(XM,0.d0) 150 FSG = (1.,0.) HSG = (1.,0.) FP = (0.,0.) FPP = (0.,0.) Do 160 J = 1, IZ DD = 1. / (CX-BH(J)) FSG = FSG * A(J) * DD HSG = HSG * C(J) * DD FP = FP + DD FPP = FPP - DD * DD 160 Continue If (MODIZ.EQ.0) Then F = (1.,0.) - FSG - HSG Else F = (1.,0.) + FSG + HSG End If I3 = 0 If (CDABS(FP).GT.0) Then I3 = 1 R3 = -F / FP End If I2 = 0 If (CDABS(FPP).GT.0) Then I2 = 1 CDIS = CDSQRT(FP**2-2.*F*FPP) R1 = CDIS - FP R2 = -FP - CDIS If (CDABS(R1).GT.CDABS(R2)) Then R1 = R1 / FPP Else R1 = R2 / FPP End If R2 = 2. * F / FPP / R1 If (CDABS(R2).LT.CDABS(R1)) R1 = R2 If (I3.LE.0) Go To 170 If (CDABS(R3).LT.CDABS(R1)) R1 = R3 Else R1 = R3 End If 170 CX = CX + R1 IT = IT + 1 If (IT.GT.50) Go To 240 If (CDABS(R1).GT.SCNV) Go To 150 If (ICV.LE.0) Then ICV = 1 Go To 150 End If CBP(IG) = CX CBP(IG+1) = CONJG(CX) 180 Continue If (CDABS(CBP(N))-CDABS(CBP(1))) 190, 240, 210 190 NHALF = N / 2 Do 200 J = 1, NHALF NT = N - J CX = CBP(J) CBP(J) = CBP(NT+1) CBP(NT+1) = CX 200 Continue 210 NCMPLX = 1 Do 220 J = 2, IZ If (DIMAG(CBP(J)).NE.0) Go To 250 220 Continue NCMPLX = 0 Do 230 J = 2, IZ BP(J) = DREAL(CBP(J)) 230 Continue Go To 250 240 IERROR = 4 250 Continue Return End Function PSGF(X,IZ,C,A,BH) IMPLICIT NONE DOUBLE PRECISION PSGF Dimension A(1), C(1), BH(1) real*8 A, X, C, BH integer IZ real*8 FSG, HSG, DD integer J FSG = 1. HSG = 1. Do 10 J = 1, IZ DD = 1. / (X-BH(J)) FSG = FSG * A(J) * DD HSG = HSG * C(J) * DD 10 Continue If (MOD(IZ,2).EQ.0) Then PSGF = 1. - FSG - HSG Return End If PSGF = 1. + FSG + HSG Return End Function BSRH(XLL,XRR,IZ,C,A,BH,F,SGN) IMPLICIT NONE DOUBLE PRECISION BSRH DOUBLE PRECISION F Dimension A(1), C(1), BH(1) real*8 XLL, XRR, A, C, BH, SGN integer IZ integer K, NM, NCMPLX, IK real*8 EPS, NPP, XL, CNV Common /CBLKT/ K, NM, NCMPLX, IK, NPP, CNV, EPS real*8 DX, X, XR XL = XLL XR = XRR DX = .5 * ABS(XR-XL) 10 X = .5 * (XL+XR) If (SGN*F(X,IZ,C,A,BH)) 30, 50, 20 20 XR = X Go To 40 30 XL = X 40 DX = .5 * DX If (DX.GT.CNV) Go To 10 50 BSRH = .5 * (XL+XR) Return End Function PPSGF(X,IZ,C,A,BH) IMPLICIT NONE real*8 PPSGF Dimension A(1), C(1), BH(1) real*8 A, C, BH, X integer J, IZ real*8 SUM SUM = 0. Do 10 J = 1, IZ SUM = SUM - 1. / (X-BH(J)) ** 2 10 Continue PPSGF = SUM Return End Function PPSPF(X,IZ,C,A,BH) IMPLICIT NONE real*8 PPSPF Dimension A(1), C(1), BH(1) real*8 SUM, A, C, BH, X integer J, IZ SUM = 0. Do 10 J = 1, IZ SUM = SUM + 1. / (X-BH(J)) 10 Continue PPSPF = SUM Return End Subroutine COMPB(N,IERROR,AN,BN,CN,B,AH,BH) c c compb computes the roots of the b polynomials using subroutine c tevls which is a modification the eispack program tqlrat. c ierror is set to 4 if either tevls fails or if a(j+1)*c(j) is c less than zero for some j. ah,bh are temporary work arrays. c IMPLICIT NONE Dimension AN(1), BN(1), CN(1), B(1), AH(1), BH(1) real*8 AN, BN, CN, B, AH, BH integer N, IERROR real*8 BNORM, EPMACH integer J, K, NM, NCMPLX, IK, DUM, IF, KDO, L, IR, I2, I4, IPL integer IFD, I, IB, NB, JS, JF, LS, LH, NMP, L1, L2, J2, J1, N2M2 real*8 EPS, NPP, CNV, ARG, D1, D2, D3 Common /CBLKT/ K, NM, NCMPLX, IK, NPP, CNV, EPS EPS = EPMACH(DUM) BNORM = DABS(BN(1)) Do 10 J = 2, NM BNORM = DMAX1(BNORM,DABS(BN(J))) ARG = AN(J) * CN(J-1) If (ARG.LT.0) Go To 110 B(J) = SIGN(SQRT(ARG),AN(J)) 10 Continue CNV = EPS * BNORM IF = 2 ** K KDO = K - 1 Do 50 L = 1, KDO IR = L - 1 I2 = 2 ** IR I4 = I2 + I2 IPL = I4 - 1 IFD = IF - I4 Do 40 I = I4, IFD, I4 Call INDXB(I,L,IB,NB) If (NB.LE.0) Go To 50 JS = I - IPL JF = JS + NB - 1 LS = 0 Do 20 J = JS, JF LS = LS + 1 BH(LS) = BN(J) AH(LS) = B(J) 20 Continue Call TEVLS(NB,BH,AH,IERROR) If (IERROR.NE.0) Go To 100 LH = IB - 1 Do 30 J = 1, NB LH = LH + 1 B(LH) = -BH(J) 30 Continue 40 Continue 50 Continue Do 60 J = 1, NM B(J) = -BN(J) 60 Continue If (NPP.EQ.0) Then NMP = NM + 1 NB = NM + NMP Do 70 J = 1, NB L1 = MOD(J-1,NMP) + 1 L2 = MOD(J+NM-1,NMP) + 1 ARG = AN(L1) * CN(L2) If (ARG.LT.0) Go To 110 BH(J) = SIGN(SQRT(ARG),-AN(L1)) AH(J) = -BN(L1) 70 Continue Call TEVLS(NB,AH,BH,IERROR) If (IERROR.NE.0) Go To 100 Call INDXB(IF,K-1,J2,LH) Call INDXB(IF/2,K-1,J1,LH) J2 = J2 + 1 LH = J2 N2M2 = J2 + NM + NM - 2 80 D1 = DABS(B(J1)-B(J2-1)) D2 = DABS(B(J1)-B(J2)) D3 = DABS(B(J1)-B(J2+1)) If (.NOT.((D2.LT.D1).AND.(D2.LT.D3))) Then B(LH) = B(J2) J2 = J2 + 1 LH = LH + 1 If (J2-N2M2) 80, 80, 90 End If J2 = J2 + 1 J1 = J1 + 1 If (J2.LE.N2M2) Go To 80 90 B(LH) = B(N2M2+1) Call INDXB(IF,K-1,J1,J2) J2 = J1 + NMP + NMP Call PPADD(NM+1,IERROR,AN,CN,B(J1),B(J1),B(J2)) End If Return 100 IERROR = 4 Return 110 IERROR = 5 Return End Subroutine TEVLS(N,D,E2,IERR) c IMPLICIT NONE Integer I, J, L, M, N, II, L1, MML, IERR Real*8 D(N), E2(N) Real*8 B, C, F, G, H, P, R, S c c real sqrt,abs,sign c integer K, NM, NCMPLX, IK, NHALF, NTOP real*8 MACHEP, NPP, CNV, DHOLD Common /CBLKT/ K, NM, NCMPLX, IK, NPP, CNV, MACHEP c c this subroutine is a modification of the eispack subroutine tqlrat c algorithm 464, comm. acm 16, 689(1973) by reinsch. c c this subroutine finds the eigenvalues of a symmetric c tridiagonal matrix by the rational ql method. c c on input- c c n is the order of the matrix, c c d contains the diagonal elements of the input matrix, c c e2 contains the subdiagonal elements of the c input matrix in its last n-1 positions. e2(1) is arbitrary. c c on output- c c d contains the eigenvalues in ascending order. if an c error exit is made, the eigenvalues are correct and c ordered for indices 1,2,...ierr-1, but may not be c the smallest eigenvalues, c c e2 has been destroyed, c c ierr is set to c zero for normal return, c j if the j-th eigenvalue has not been c determined after 30 iterations. c c questions and comments should be directed to b. s. garbow, c applied mathematics division, argonne national laboratory c c c ********** machep is a machine dependent parameter specifying c the relative precision of floating point arithmetic. c c ********** c IERR = 0 If (N.NE.1) Then c Do 10 I = 2, N E2(I-1) = E2(I) * E2(I) 10 Continue c F = 0.0 B = 0.0 E2(N) = 0.0 c Do 90 L = 1, N J = 0 H = MACHEP * (DABS(D(L))+DSQRT(E2(L))) If (B.LE.H) Then B = H C = B * B End If c c ********** look for small squared sub-diagonal element ********** c Do 20 M = L, N If (E2(M).LE.C) Go To 30 c c ********** e2(n) is always zero, so there is no exit c through the bottom of the loop ********** c 20 Continue c 30 If (M.NE.L) Then 40 If (J.EQ.30) Go To 110 J = J + 1 c c ********** form shift ********** c L1 = L + 1 S = SQRT(E2(L)) G = D(L) P = (D(L1)-G) / (2.0*S) R = SQRT(P*P+1.0) D(L) = S / (P+SIGN(R,P)) H = G - D(L) c Do 50 I = L1, N D(I) = D(I) - H 50 Continue c F = F + H c c ********** rational ql transformation ********** c G = D(M) If (G.EQ.0.0) G = B H = G S = 0.0 MML = M - L c c ********** for i=m-1 step -1 until l do -- ********** c Do 60 II = 1, MML I = M - II P = G * H R = P + E2(I) E2(I+1) = S * R S = E2(I) / R D(I+1) = H + S * (H+D(I)) G = D(I) - E2(I) / G If (G.EQ.0.0) G = B H = G * P / R 60 Continue c E2(L) = S * G D(L) = H c c ********** guard against underflowed h ********** c If (H.NE.0.0) Then If (ABS(E2(L)).GT.ABS(C/H)) Then E2(L) = H * E2(L) If (E2(L).NE.0.0) Go To 40 End If End If End If P = D(L) + F c c ********** order eigenvalues ********** c If (L.NE.1) Then c c ********** for i=l step -1 until 2 do -- ********** c Do 70 II = 2, L I = L + 2 - II If (P.GE.D(I-1)) Go To 80 D(I) = D(I-1) 70 Continue End If c I = 1 80 D(I) = P 90 Continue c If (ABS(D(N)).GE.ABS(D(1))) Go To 120 NHALF = N / 2 Do 100 I = 1, NHALF NTOP = N - I DHOLD = D(I) D(I) = D(NTOP+1) D(NTOP+1) = DHOLD 100 Continue Go To 120 c c ********** set error -- no convergence to an c eigenvalue after 30 iterations ********** c 110 IERR = L End If 120 Return c c ********** last card of tqlrat ********** c c c revision history--- c c december 1979 first added to nssl c----------------------------------------------------------------------- End c package comf the entries in this package are lowlevel c entries, supporting ulib packages blktri c and cblktri. that is, these routines are c not called directly by users, but rather c by entries within blktri and cblktri. c description of entries epmach and pimach c follow below. c c latest revision january 1985 c c special conditions none c c i/o none c c precision single c c required library none c files c c language fortran c ******************************************************************** c c function epmach (dum) c c purpose to compute an approximate machine accuracy c epsilon according to the following definition: c epsilon is the smallest number such that c (1.+epsilon).gt.1.) c c usage eps = epmach (dum) c c arguments c on input dum c dummy value c c arguments c on output none c c history the original version, written when the c blktri package was converted from the c cdc 7600 to run on the cray-1, calculated c machine accuracy by successive divisions c by 10. use of this constant caused blktri c to compute solutions on the cray-1 with four c fewer places of accuracy than the version c on the 7600. it was found that computing c machine accuracy by successive divisions c of 2 produced a machine accuracy 29% less c than the value generated by successive c divisions by 10, and that use of this c machine constant in the blktri package c recovered the accuracy that appeared to c be lost on conversion. c c algorithm computes machine accuracy by successive c divisions of two. c c portability this code will execute on machines other c than the cray1, but the returned value may c be unsatisfactory. see history above. c ******************************************************************** c c function pimach (dum) c c purpose to supply the value of the constant pi c correct to machine precision where c pi=3.141592653589793238462643383279502884197 c 1693993751058209749446 c c usage pi = pimach (dum) c c arguments c on input dum c dummy value c c arguments c on output none c c algorithm the value of pi is set in a constant. c c portability this entry is portable, but users should c check to see whether greater accuracy is c required. c c*********************************************************************** Function EPMACH(DUM) IMPLICIT NONE real*8 EPMACH, V, EPS integer DUM Common /VALUE/ V EPS = 1. 10 EPS = EPS / 2. Call STORE(EPS+1.) If (V.GT.1.) Go To 10 EPMACH = 100. * EPS Return End Subroutine STORE(X) IMPLICIT NONE real*8 X, V Common /VALUE/ V V = X Return End C Function PIMACH(DUM) C IMPLICIT NONE C real*8 PIMACH c pi=3.1415926535897932384626433832795028841971693993751058209749446 c C PIMACH = 3.14159265358979 C Return C End c package sepaux contains no user entry points. c c latest revision march 1985 c c purpose this package contains auxiliary routines for c ncar public software packages such as sepeli c and sepx4. c c usage since this package contains no user entries, c no usage instructions or argument descriptions c are given here. c c special conditions none c c i/o none c c precision single c c required library none c files c c language fortran c c history developed in the late 1970's by john c. adams c of ncar's scienttific computing division. c c portability fortran 66 c ********************************************************************** Subroutine SEPORT(USOL,IDMN,ZN,ZM,PERTRB) c c this subroutine orthoganalizes the array usol with respect to c the constant array in a weighted least squares norm c IMPLICIT NONE integer KSWX, KSWY, K , L integer AIT, BIT, CIT, DIT, IS, MIT, NIT real*8 MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4 Common /SPLP/ KSWX, KSWY, K, L, * MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4, * AIT, BIT, CIT, DIT, MIT, NIT, IS integer IDMN Dimension USOL(IDMN,1), ZN(1), ZM(1) real*8 USOL, ZN, ZM, UTE, ETE, PERTRB integer ISTR, JSTR, IFNL, JFNL, I, II, J, JJ ISTR = IS IFNL = MS JSTR = JS JFNL = NS c c compute weighted inner products c UTE = 0.0 ETE = 0.0 Do 20 I = IS, MS II = I - IS + 1 Do 10 J = JS, NS JJ = J - JS + 1 ETE = ETE + ZM(II) * ZN(JJ) UTE = UTE + USOL(I,J) * ZM(II) * ZN(JJ) 10 Continue 20 Continue c c set perturbation parameter c PERTRB = UTE / ETE c c subtract off constant pertrb c Do 40 I = ISTR, IFNL Do 30 J = JSTR, JFNL USOL(I,J) = USOL(I,J) - PERTRB 30 Continue 40 Continue Return End Subroutine SEPMIN(USOL,IDMN,ZN,ZM,PERTB) c c this subroutine orhtogonalizes the array usol with respect to c the constant array in a weighted least squares norm c IMPLICIT NONE integer KSWX, KSWY, K, IDMN, ISTR, JSTR,L, IFNL, JFNL integer AIT, BIT, CIT, DIT, IS, MIT, NIT real*8 MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4 real*8 UTE, ETE, PERTB, PERTRB integer I, II, J, JJ Common /SPLP/ KSWX, KSWY, K, L, * MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4, * AIT, BIT, CIT, DIT, MIT, NIT, IS Dimension USOL(IDMN,1), ZN(1), ZM(1) real*8 USOL, ZN, ZM c c entry at sepmin occurrs when the final solution is c to be minimized with respect to the weighted c least squares norm c ISTR = 1 IFNL = K JSTR = 1 JFNL = L c c compute weighted inner products c UTE = 0.0 ETE = 0.0 Do 20 I = IS, MS II = I - IS + 1 Do 10 J = JS, NS JJ = J - JS + 1 ETE = ETE + ZM(II) * ZN(JJ) UTE = UTE + USOL(I,J) * ZM(II) * ZN(JJ) 10 Continue 20 Continue c c set perturbation parameter c PERTRB = UTE / ETE c c subtract off constant pertrb c Do 40 I = ISTR, IFNL Do 30 J = JSTR, JFNL USOL(I,J) = USOL(I,J) - PERTRB 30 Continue 40 Continue Return End Subroutine SEPTRI(N,A,B,C,D,U,Z) c c this subroutine solves for a non-zero eigenvector corresponding c to the zero eigenvalue of the transpose of the rank c deficient one matrix with subdiagonal a, diagonal b, and c superdiagonal c , with a(1) in the (1,n) position, with c c(n) in the (n,1) position, and all other elements zero. c IMPLICIT NONE integer N Dimension A(N), B(N), C(N), D(N), U(N), Z(N) real*8 A, B, C, D, U, Z real*8 BN, V, DEN, AN integer K, NM1, NM2, J BN = B(N) D(1) = A(2) / B(1) V = A(1) U(1) = C(N) / B(1) NM2 = N - 2 Do 10 J = 2, NM2 DEN = B(J) - C(J-1) * D(J-1) D(J) = A(J+1) / DEN U(J) = -C(J-1) * U(J-1) / DEN BN = BN - V * U(J-1) V = -V * D(J-1) 10 Continue DEN = B(N-1) - C(N-2) * D(N-2) D(N-1) = (A(N)-C(N-2)*U(N-2)) / DEN AN = C(N-1) - V * D(N-2) BN = BN - V * U(N-2) DEN = BN - AN * D(N-1) c c set last component equal to one c Z(N) = 1.0 Z(N-1) = -D(N-1) NM1 = N - 1 Do 20 J = 2, NM1 K = N - J Z(K) = -D(K) * Z(K+1) - U(K) * Z(N) 20 Continue Return End Subroutine SEPDX(U,IDMN,I,J,UXXX,UXXXX) c c this program computes second order finite difference c approximations to the third and fourth x c partial derivatives of u at the (i,j) mesh point c IMPLICIT NONE integer KSWX, KSWY, K, L, I, J integer AIT, BIT, CIT, DIT, IS, MIT, NIT real*8 MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4 Common /SPLP/ KSWX, KSWY, K, L, * MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4, * AIT, BIT, CIT, DIT, MIT, NIT, IS integer IDMN Dimension U(IDMN,1) real*8 U, UXXX, UXXXX If (I.LE.2.OR.I.GE.(K-1)) Then If (I.NE.1) Then If (I.EQ.2) Go To 10 If (I.EQ.K-1) Go To 20 If (I.EQ.K) Go To 30 End If c c compute partial derivative approximations at x=a c If (KSWX.NE.1) Then UXXX = (-5.0*U(1,J)+18.0*U(2,J)-24.0*U(3,J)+14.0*U(4,J)-3.0* * U(5,J)) / (TDLX3) UXXXX = (3.0*U(1,J)-14.0*U(2,J)+26.0*U(3,J)-24.0*U(4,J)+11.0* * U(5,J)-2.0*U(6,J)) / DLX4 Return End If c c periodic at x=a c UXXX = (-U(K-2,J)+2.0*U(K-1,J)-2.0*U(2,J)+U(3,J)) / (TDLX3) UXXXX = (U(K-2,J)-4.0*U(K-1,J)+6.0*U(1,J)-4.0*U(2,J)+U(3,J)) / * DLX4 Return c c compute partial derivative approximations at x=a+dlx c 10 If (KSWX.NE.1) Then UXXX = (-3.0*U(1,J)+10.0*U(2,J)-12.0*U(3,J)+6.0*U(4,J)- * U(5,J)) / TDLX3 UXXXX = (2.0*U(1,J)-9.0*U(2,J)+16.0*U(3,J)-14.0*U(4,J)+6.0* * U(5,J)-U(6,J)) / DLX4 Return End If c c periodic at x=a+dlx c UXXX = (-U(K-1,J)+2.0*U(1,J)-2.0*U(3,J)+U(4,J)) / (TDLX3) UXXXX = (U(K-1,J)-4.0*U(1,J)+6.0*U(2,J)-4.0*U(3,J)+U(4,J)) / * DLX4 Return End If c c compute partial derivative approximations on the interior c UXXX = (-U(I-2,J)+2.0*U(I-1,J)-2.0*U(I+1,J)+U(I+2,J)) / TDLX3 UXXXX = (U(I-2,J)-4.0*U(I-1,J)+6.0*U(I,J)-4.0*U(I+1,J)+U(I+2,J)) / * DLX4 Return c c compute partial derivative approximations at x=b-dlx c 20 If (KSWX.NE.1) Then UXXX = (U(K-4,J)-6.0*U(K-3,J)+12.0*U(K-2,J)-10.0*U(K-1,J)+3.0* * U(K,J)) / TDLX3 UXXXX = (-U(K-5,J)+6.0*U(K-4,J)-14.0*U(K-3,J)+16.0*U(K-2,J)-9.0* * U(K-1,J)+2.0*U(K,J)) / DLX4 Return End If c c periodic at x=b-dlx c UXXX = (-U(K-3,J)+2.0*U(K-2,J)-2.0*U(1,J)+U(2,J)) / TDLX3 UXXXX = (U(K-3,J)-4.0*U(K-2,J)+6.0*U(K-1,J)-4.0*U(1,J)+U(2,J)) / * DLX4 Return c c compute partial derivative approximations at x=b c 30 UXXX = -(3.0*U(K-4,J)-14.0*U(K-3,J)+24.0*U(K-2,J)-18.0*U(K-1,J)+ * 5.0*U(K,J)) / TDLX3 UXXXX = (-2.0*U(K-5,J)+11.0*U(K-4,J)-24.0*U(K-3,J)+26.0*U(K-2,J)- * 14.0*U(K-1,J)+3.0*U(K,J)) / DLX4 Return End Subroutine SEPDY(U,IDMN,I,J,UYYY,UYYYY) IMPLICIT NONE c c this program computes second order finite difference c approximations to the third and fourth y c partial derivatives of u at the (i,j) mesh point c integer KSWX, KSWY, K integer AIT, BIT, CIT, DIT, IS, MIT, NIT real*8 MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4 Common /SPLP/ KSWX, KSWY, K, L, * MS, JS, NS, DLX, DLY, TDLX3, TDLY3, DLX4, DLY4, * AIT, BIT, CIT, DIT, MIT, NIT, IS integer IDMN, I, J, L Dimension U(IDMN,IDMN) real*8 U, UYYY, UYYYY If (J.LE.2.OR.J.GE.(L-1)) Then If (J.NE.1) Then If (J.EQ.2) Go To 10 If (J.EQ.L-1) Go To 20 If (J.EQ.L) Go To 30 End If c c compute partial derivative approximations at y=c c If (KSWY.NE.1) Then UYYY = (-5.0*U(I,1)+18.0*U(I,2)-24.0*U(I,3)+14.0*U(I,4)-3.0* * U(I,5)) / TDLY3 UYYYY = (3.0*U(I,1)-14.0*U(I,2)+26.0*U(I,3)-24.0*U(I,4)+11.0* * U(I,5)-2.0*U(I,6)) / DLY4 Return End If c c periodic at x=a c UYYY = (-U(I,L-2)+2.0*U(I,L-1)-2.0*U(I,2)+U(I,3)) / TDLY3 UYYYY = (U(I,L-2)-4.0*U(I,L-1)+6.0*U(I,1)-4.0*U(I,2)+U(I,3)) / * DLY4 Return c c compute partial derivative approximations at y=c+dly c 10 If (KSWY.NE.1) Then UYYY = (-3.0*U(I,1)+10.0*U(I,2)-12.0*U(I,3)+6.0*U(I,4)- * U(I,5)) / TDLY3 UYYYY = (2.0*U(I,1)-9.0*U(I,2)+16.0*U(I,3)-14.0*U(I,4)+6.0* * U(I,5)-U(I,6)) / DLY4 Return End If c c periodic at y=c+dly c UYYY = (-U(I,L-1)+2.0*U(I,1)-2.0*U(I,3)+U(I,4)) / TDLY3 UYYYY = (U(I,L-1)-4.0*U(I,1)+6.0*U(I,2)-4.0*U(I,3)+U(I,4)) / * DLY4 Return End If c c compute partial derivative approximations on the interior c UYYY = (-U(I,J-2)+2.0*U(I,J-1)-2.0*U(I,J+1)+U(I,J+2)) / TDLY3 UYYYY = (U(I,J-2)-4.0*U(I,J-1)+6.0*U(I,J)-4.0*U(I,J+1)+U(I,J+2)) / * DLY4 Return c c compute partial derivative approximations at y=d-dly c 20 If (KSWY.NE.1) Then UYYY = (U(I,L-4)-6.0*U(I,L-3)+12.0*U(I,L-2)-10.0*U(I,L-1)+3.0* * U(I,L)) / TDLY3 UYYYY = (-U(I,L-5)+6.0*U(I,L-4)-14.0*U(I,L-3)+16.0*U(I,L-2)-9.0* * U(I,L-1)+2.0*U(I,L)) / DLY4 Return End If c c periodic at y=d-dly c UYYY = (-U(I,L-3)+2.0*U(I,L-2)-2.0*U(I,1)+U(I,2)) / TDLY3 UYYYY = (U(I,L-3)-4.0*U(I,L-2)+6.0*U(I,L-1)-4.0*U(I,1)+U(I,2)) / * DLY4 Return c c compute partial derivative approximations at y=d c 30 UYYY = -(3.0*U(I,L-4)-14.0*U(I,L-3)+24.0*U(I,L-2)-18.0*U(I,L-1)+ * 5.0*U(I,L)) / TDLY3 UYYYY = (-2.0*U(I,L-5)+11.0*U(I,L-4)-24.0*U(I,L-3)+26.0*U(I,L-2)- * 14.0*U(I,L-1)+3.0*U(I,L)) / DLY4 Return c c revision history--- c c december 1979 first added to nssl c----------------------------------------------------------------------- End Subroutine COFX(XX,AFUN,BFUN,CFUN) c c subroutine to compute the coefficients of the elliptic equation c solved to fill in the grid. it is passed (along with cofy) to c the elliptic solver sepeli. Include 'mexsepeli.inc' integer I real*8 DXDI, AFUN, BFUN, CFUN, XX I = DNINT(XX) DXDI = 0.5 * (SXI(I+1)-SXI(I-1)) AFUN = 1. / DXDI ** 2 BFUN = (-SXI(I+1)+2.*SXI(I)-SXI(I-1)) / DXDI ** 3 CFUN = 0. Return End Subroutine COFY(YY,DFUN,EFUN,FFUN) Include 'mexsepeli.inc' integer J real*8 DEDJ, DFUN, EFUN, FFUN, YY J = DNINT(YY) DEDJ = 0.5 * (SETA(J+1)-SETA(J-1)) DFUN = 1. / DEDJ ** 2 EFUN = (-SETA(J+1)+2.*SETA(J)-SETA(J-1)) / DEDJ ** 3 FFUN = 0. Return End
cc0-1.0
alexfrolov/grappa
applications/NPB/MPI/BT/full_mpiio.f
8
8075
c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine setup_btio c--------------------------------------------------------------------- c--------------------------------------------------------------------- include 'header.h' include 'mpinpb.h' integer ierr integer mstatus(MPI_STATUS_SIZE) integer sizes(4), starts(4), subsizes(4) integer cell_btype(maxcells), cell_ftype(maxcells) integer cell_blength(maxcells) integer info character*20 cb_nodes, cb_size integer c, m integer cell_disp(maxcells) call mpi_bcast(collbuf_nodes, 1, MPI_INTEGER, > root, comm_setup, ierr) call mpi_bcast(collbuf_size, 1, MPI_INTEGER, > root, comm_setup, ierr) if (collbuf_nodes .eq. 0) then info = MPI_INFO_NULL else write (cb_nodes,*) collbuf_nodes write (cb_size,*) collbuf_size call MPI_Info_create(info, ierr) call MPI_Info_set(info, 'cb_nodes', cb_nodes, ierr) call MPI_Info_set(info, 'cb_buffer_size', cb_size, ierr) call MPI_Info_set(info, 'collective_buffering', 'true', ierr) endif call MPI_Type_contiguous(5, MPI_DOUBLE_PRECISION, $ element, ierr) call MPI_Type_commit(element, ierr) call MPI_Type_extent(element, eltext, ierr) do c = 1, ncells c c Outer array dimensions ar same for every cell c sizes(1) = IMAX+4 sizes(2) = JMAX+4 sizes(3) = KMAX+4 c c 4th dimension is cell number, total of maxcells cells c sizes(4) = maxcells c c Internal dimensions of cells can differ slightly between cells c subsizes(1) = cell_size(1, c) subsizes(2) = cell_size(2, c) subsizes(3) = cell_size(3, c) c c Cell is 4th dimension, 1 cell per cell type to handle varying c cell sub-array sizes c subsizes(4) = 1 c c type constructors use 0-based start addresses c starts(1) = 2 starts(2) = 2 starts(3) = 2 starts(4) = c-1 c c Create buftype for a cell c call MPI_Type_create_subarray(4, sizes, subsizes, $ starts, MPI_ORDER_FORTRAN, element, $ cell_btype(c), ierr) c c block length and displacement for joining cells - c 1 cell buftype per block, cell buftypes have own displacment c generated from cell number (4th array dimension) c cell_blength(c) = 1 cell_disp(c) = 0 enddo c c Create combined buftype for all cells c call MPI_Type_struct(ncells, cell_blength, cell_disp, $ cell_btype, combined_btype, ierr) call MPI_Type_commit(combined_btype, ierr) do c = 1, ncells c c Entire array size c sizes(1) = PROBLEM_SIZE sizes(2) = PROBLEM_SIZE sizes(3) = PROBLEM_SIZE c c Size of c'th cell c subsizes(1) = cell_size(1, c) subsizes(2) = cell_size(2, c) subsizes(3) = cell_size(3, c) c c Starting point in full array of c'th cell c starts(1) = cell_low(1,c) starts(2) = cell_low(2,c) starts(3) = cell_low(3,c) call MPI_Type_create_subarray(3, sizes, subsizes, $ starts, MPI_ORDER_FORTRAN, $ element, cell_ftype(c), ierr) cell_blength(c) = 1 cell_disp(c) = 0 enddo call MPI_Type_struct(ncells, cell_blength, cell_disp, $ cell_ftype, combined_ftype, ierr) call MPI_Type_commit(combined_ftype, ierr) iseek=0 if (node .eq. root) then call MPI_File_delete(filenm, MPI_INFO_NULL, ierr) endif call MPI_Barrier(comm_solve, ierr) call MPI_File_open(comm_solve, $ filenm, $ MPI_MODE_RDWR+MPI_MODE_CREATE, $ MPI_INFO_NULL, fp, ierr) if (ierr .ne. MPI_SUCCESS) then print *, 'Error opening file' stop endif call MPI_File_set_view(fp, iseek, element, $ combined_ftype, 'native', info, ierr) if (ierr .ne. MPI_SUCCESS) then print *, 'Error setting file view' stop endif do m = 1, 5 xce_sub(m) = 0.d0 end do idump_sub = 0 return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine output_timestep c--------------------------------------------------------------------- c--------------------------------------------------------------------- include 'header.h' include 'mpinpb.h' integer mstatus(MPI_STATUS_SIZE) integer ierr call MPI_File_write_at_all(fp, iseek, u, $ 1, combined_btype, mstatus, ierr) if (ierr .ne. MPI_SUCCESS) then print *, 'Error writing to file' stop endif call MPI_Type_size(combined_btype, iosize, ierr) iseek = iseek + iosize/eltext idump_sub = idump_sub + 1 if (rd_interval .gt. 0) then if (idump_sub .ge. rd_interval) then iseek = 0 call acc_sub_norms(idump+1) iseek = 0 idump_sub = 0 endif endif return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine acc_sub_norms(idump_cur) include 'header.h' include 'mpinpb.h' integer idump_cur integer ii, m, ichunk integer ierr integer mstatus(MPI_STATUS_SIZE) double precision xce_single(5) ichunk = idump_cur - idump_sub + 1 do ii=0, idump_sub-1 call MPI_File_read_at_all(fp, iseek, u, $ 1, combined_btype, mstatus, ierr) if (ierr .ne. MPI_SUCCESS) then print *, 'Error reading back file' call MPI_File_close(fp, ierr) stop endif call MPI_Type_size(combined_btype, iosize, ierr) iseek = iseek + iosize/eltext if (node .eq. root) print *, 'Reading data set ', ii+ichunk call error_norm(xce_single) do m = 1, 5 xce_sub(m) = xce_sub(m) + xce_single(m) end do enddo return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine btio_cleanup c--------------------------------------------------------------------- c--------------------------------------------------------------------- include 'header.h' include 'mpinpb.h' integer ierr call MPI_File_close(fp, ierr) return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine accumulate_norms(xce_acc) c--------------------------------------------------------------------- c--------------------------------------------------------------------- include 'header.h' include 'mpinpb.h' double precision xce_acc(5) integer m, ierr if (rd_interval .gt. 0) goto 20 call MPI_File_open(comm_solve, $ filenm, $ MPI_MODE_RDONLY, $ MPI_INFO_NULL, $ fp, $ ierr) iseek = 0 call MPI_File_set_view(fp, iseek, element, combined_ftype, $ 'native', MPI_INFO_NULL, ierr) c clear the last time step call clear_timestep c read back the time steps and accumulate norms call acc_sub_norms(idump) call MPI_File_close(fp, ierr) 20 continue do m = 1, 5 xce_acc(m) = xce_sub(m) / dble(idump) end do return end
bsd-3-clause
epfl-cosmo/q-e
PHonon/Gamma/find_equiv_sites.f90
15
1270
! ! Copyright (C) 2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! SUBROUTINE find_equiv_sites (nat,nsym,irt,has_equivalent, & n_diff_sites,n_equiv_atoms,equiv_atoms) ! IMPLICIT NONE INTEGER :: nat, nsym, na, nb, ns, n_diff_sites, irt(48,nat), & equiv_atoms(nat,nat), n_equiv_atoms(nat), has_equivalent(nat) ! n_diff_sites = 0 DO na = 1,nat has_equivalent(na) = 0 ENDDO ! DO na = 1,nat IF (has_equivalent(na)==0) THEN n_diff_sites = n_diff_sites + 1 n_equiv_atoms (n_diff_sites) = 1 equiv_atoms(n_diff_sites,1) = na ! DO nb = na+1,nat DO ns = 1, nsym IF ( irt(ns,nb) == na) THEN has_equivalent(nb) = 1 n_equiv_atoms (n_diff_sites) = & n_equiv_atoms (n_diff_sites) + 1 equiv_atoms(n_diff_sites, & n_equiv_atoms(n_diff_sites)) = nb GOTO 10 ENDIF ENDDO 10 CONTINUE ENDDO ENDIF ENDDO ! RETURN END SUBROUTINE find_equiv_sites
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.16/src/calcinitialflux.f
1
1469
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2019 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine calcinitialflux(area,vfa,xxna, & ipnei,nef,neifa,lakonf,flux) ! ! correction of v due to the balance of mass ! the correction is in normal direction to the face ! implicit none ! character*8 lakonf(*) ! integer i,j,indexf,ipnei(*),ifa,nef,neifa(*),numfaces ! real*8 area(*),vfa(0:7,*),xxna(3,*),flux(*) ! do i=1,nef do indexf=ipnei(i)+1,ipnei(i+1) ifa=neifa(indexf) flux(indexf)=vfa(5,ifa)* & (vfa(1,ifa)*xxna(1,indexf)+ & vfa(2,ifa)*xxna(2,indexf)+ & vfa(3,ifa)*xxna(3,indexf)) enddo enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/extrapolate_vel.f
1
4729
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine extrapolate_vel(nface,ielfa,xrlfa,vel,vfa, & ifabou,xboun,ipnei,nef,icyclic,c,ifatie,xxn) ! ! inter/extrapolation of v at the center of the elements ! to the center of the faces ! implicit none ! integer nface,ielfa(4,*),ifabou(*),iel1,iel2,iel3,i,j,ipointer, & indexf,ipnei(*),nef,icyclic,ifatie(*) ! real*8 xrlfa(3,*),vel(nef,0:7),vfa(0:7,*),xboun(*),xl1,xl2, & c(3,3),xxn(3,*),dd ! c$omp parallel default(none) c$omp& shared(nface,ielfa,xrlfa,vfa,vel,ipnei,ifabou,xboun, c$omp& icyclic,c,ifatie,xxn) c$omp& private(i,iel1,xl1,iel2,xl2,j,iel3,ipointer,indexf,dd) c$omp do do i=1,nface iel1=ielfa(1,i) xl1=xrlfa(1,i) iel2=ielfa(2,i) if(iel2.gt.0) then xl2=xrlfa(2,i) if((icyclic.eq.0).or.(ifatie(i).eq.0)) then do j=1,3 vfa(j,i)=xl1*vel(iel1,j)+xl2*vel(iel2,j) enddo elseif(ifatie(i).gt.0) then do j=1,3 vfa(j,i)=xl1*vel(iel1,j)+xl2* & (c(j,1)*vel(iel2,1) & +c(j,2)*vel(iel2,2) & +c(j,3)*vel(iel2,3)) enddo else do j=1,3 vfa(j,i)=xl1*vel(iel1,j)+xl2* & (c(1,j)*vel(iel2,1) & +c(2,j)*vel(iel2,2) & +c(3,j)*vel(iel2,3)) enddo endif else indexf=ipnei(iel1)+ielfa(4,i) iel3=ielfa(3,i) c write(*,*) 'extrapolate_vel ',iel1,iel2,iel3 if(iel2.lt.0) then ipointer=-iel2 ! ! global x-direction ! if(ifabou(ipointer+1).gt.0) then ! ! v_1 given ! vfa(1,i)=xboun(ifabou(ipointer+1)) elseif((ifabou(ipointer+4).ne.0).and.(iel3.ne.0)) then ! ! p given; linear interpolation ! vfa(1,i)=xl1*vel(iel1,1)+xrlfa(3,i)*vel(iel3,1) else ! ! constant extrapolation ! vfa(1,i)=vel(iel1,1) endif ! ! global y-direction ! if(ifabou(ipointer+2).gt.0) then ! ! v_2 given ! vfa(2,i)=xboun(ifabou(ipointer+2)) elseif((ifabou(ipointer+4).ne.0).and.(iel3.ne.0)) then ! ! p given; linear interpolation ! vfa(2,i)=xl1*vel(iel1,2)+xrlfa(3,i)*vel(iel3,2) else ! ! constant extrapolation ! vfa(2,i)=vel(iel1,2) endif ! ! global z-direction ! if(ifabou(ipointer+3).gt.0) then ! ! v_3 given ! vfa(3,i)=xboun(ifabou(ipointer+3)) elseif((ifabou(ipointer+4).ne.0).and.(iel3.ne.0)) then ! ! p given; linear interpolation ! vfa(3,i)=xl1*vel(iel1,3)+xrlfa(3,i)*vel(iel3,3) else ! ! constant extrapolation ! vfa(3,i)=vel(iel1,3) endif ! ! correction for sliding boundary conditions ! c if(ifabou(ipointer+5).eq.2) then if(ifabou(ipointer+5).lt.0) then dd=vfa(1,i)*xxn(1,indexf)+ & vfa(2,i)*xxn(2,indexf)+ & vfa(3,i)*xxn(3,indexf) do j=1,3 vfa(j,i)=vfa(j,i)-dd*xxn(j,indexf) enddo endif ! else ! ! constant extrapolation ! do j=1,3 vfa(j,i)=vel(iel1,j) enddo endif endif enddo c$omp end do c$omp end parallel ! c write(*,*) 'extrapolate_vel ' c do i=1,nef c write(*,*) i,(vel(i,j),j=0,5) c enddo c do i=1,nface c write(*,*) i,(vfa(j,i),j=0,5) c enddo return end
gpl-2.0
techno/gcc-mist32
gcc/testsuite/gfortran.dg/internal_references_1.f90
135
1045
! { dg-do compile } ! This tests the patch for PRs 24327, 25024 & 25625, which ! are all connected with references to internal procedures. ! This is a composite of the PR testcases; and each is ! labelled by PR. ! ! Contributed by Paul Thomas <pault@gcc.gnu.org> ! ! PR25625 - would neglect to point out that there were 2 subroutines p. module m implicit none contains subroutine p (i) ! { dg-error "is already defined" } integer :: i end subroutine subroutine p (i) ! { dg-error "is already defined" } integer :: i end subroutine end module ! ! PR25124 - would happily ignore the declaration of foo in the main program. program test real :: foo, x ! { dg-error "explicit interface and must not have attributes declared" } x = bar () ! This is OK because it is a regular reference. x = foo () contains function foo () ! { dg-error "explicit interface and must not have attributes declared" } foo = 1.0 end function foo function bar () bar = 1.0 end function bar end program test
gpl-2.0
grlee77/scipy
scipy/integrate/quadpack/dqagp.f
32
10517
subroutine dqagp(f,a,b,npts2,points,epsabs,epsrel,result,abserr, * neval,ier,leniw,lenw,last,iwork,work) c***begin prologue dqagp c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1 c***keywords automatic integrator, general-purpose, c singularities at user specified points, c extrapolation, globally adaptive c***author piessens,robert,appl. math. & progr. div - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral i = integral of f over (a,b), c hopefully satisfying following claim for accuracy c break points of the integration interval, where local c difficulties of the integrand may occur (e.g. c singularities, discontinuities), are provided by the user. c***description c c computation of a definite integral c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x). the actual name for f needs to be c declared e x t e r n a l in the driver program. c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration c c npts2 - integer c number equal to two more than the number of c user-supplied break points within the integration c range, npts.ge.2. c if npts2.lt.2, the routine will end with ier = 6. c c points - double precision c vector of dimension npts2, the first (npts2-2) c elements of which are the user provided break c points. if these points do not constitute an c ascending sequence there will be an automatic c sorting. c c epsabs - double precision c absolute accuracy requested c epsrel - double precision c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c on return c result - double precision c approximation to the integral c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the requested c accuracy has been achieved. c ier.gt.0 abnormal termination of the routine. c the estimates for integral and error are c less reliable. it is assumed that the c requested accuracy has not been achieved. c error messages c ier = 1 maximum number of subdivisions allowed c has been achieved. one can allow more c subdivisions by increasing the value of c limit (and taking the according dimension c adjustments into account). however, if c this yields no improvement it is advised c to analyze the integrand in order to c determine the integration difficulties. if c the position of a local difficulty can be c determined (i.e. singularity, c discontinuity within the interval), it c should be supplied to the routine as an c element of the vector points. if necessary c an appropriate special-purpose integrator c must be used, which is designed for c handling the type of difficulty involved. c = 2 the occurrence of roundoff error is c detected, which prevents the requested c tolerance from being achieved. c the error may be under-estimated. c = 3 extremely bad integrand behaviour occurs c at some points of the integration c interval. c = 4 the algorithm does not converge. c roundoff error is detected in the c extrapolation table. c it is presumed that the requested c tolerance cannot be achieved, and that c the returned result is the best which c can be obtained. c = 5 the integral is probably divergent, or c slowly convergent. it must be noted that c divergence can occur with any other value c of ier.gt.0. c = 6 the input is invalid because c npts2.lt.2 or c break points are specified outside c the integration range or c (epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) c result, abserr, neval, last are set to c zero. except when leniw or lenw or npts2 is c invalid, iwork(1), iwork(limit+1), c work(limit*2+1) and work(limit*3+1) c are set to zero. c work(1) is set to a and work(limit+1) c to b (where limit = (leniw-npts2)/2). c c dimensioning parameters c leniw - integer c dimensioning parameter for iwork c leniw determines limit = (leniw-npts2)/2, c which is the maximum number of subintervals in the c partition of the given integration interval (a,b), c leniw.ge.(3*npts2-2). c if leniw.lt.(3*npts2-2), the routine will end with c ier = 6. c c lenw - integer c dimensioning parameter for work c lenw must be at least leniw*2-npts2. c if lenw.lt.leniw*2-npts2, the routine will end c with ier = 6. c c last - integer c on return, last equals the number of subintervals c produced in the subdivision process, which c determines the number of significant elements c actually in the work arrays. c c work arrays c iwork - integer c vector of dimension at least leniw. on return, c the first k elements of which contain c pointers to the error estimates over the c subintervals, such that work(limit*3+iwork(1)),..., c work(limit*3+iwork(k)) form a decreasing c sequence, with k = last if last.le.(limit/2+2), and c k = limit+1-last otherwise c iwork(limit+1), ...,iwork(limit+last) contain the c subdivision levels of the subintervals, i.e. c if (aa,bb) is a subinterval of (p1,p2) c where p1 as well as p2 is a user-provided c break point or integration limit, then (aa,bb) has c level l if abs(bb-aa) = abs(p2-p1)*2**(-l), c iwork(limit*2+1), ..., iwork(limit*2+npts2) have c no significance for the user, c note that limit = (leniw-npts2)/2. c c work - double precision c vector of dimension at least lenw c on return c work(1), ..., work(last) contain the left c end points of the subintervals in the c partition of (a,b), c work(limit+1), ..., work(limit+last) contain c the right end points, c work(limit*2+1), ..., work(limit*2+last) contain c the integral approximations over the subintervals, c work(limit*3+1), ..., work(limit*3+last) c contain the corresponding error estimates, c work(limit*4+1), ..., work(limit*4+npts2) c contain the integration limits and the c break points sorted in an ascending sequence. c note that limit = (leniw-npts2)/2. c c***references (none) c***routines called dqagpe,xerror c***end prologue dqagp c double precision a,abserr,b,epsabs,epsrel,f,points,result,work integer ier,iwork,last,leniw,lenw,limit,lvl,l1,l2,l3,l4,neval, * npts2 c dimension iwork(leniw),points(npts2),work(lenw) c external f c c check validity of limit and lenw. c c***first executable statement dqagp ier = 6 neval = 0 last = 0 result = 0.0d+00 abserr = 0.0d+00 if(leniw.lt.(3*npts2-2).or.lenw.lt.(leniw*2-npts2).or.npts2.lt.2) * go to 10 c c prepare call for dqagpe. c limit = (leniw-npts2)/2 l1 = limit+1 l2 = limit+l1 l3 = limit+l2 l4 = limit+l3 c call dqagpe(f,a,b,npts2,points,epsabs,epsrel,limit,result,abserr, * neval,ier,work(1),work(l1),work(l2),work(l3),work(l4), * iwork(1),iwork(l1),iwork(l2),last) c c call error handler if necessary. c lvl = 0 10 if(ier.eq.6) lvl = 1 if(ier.ne.0) call xerror('abnormal return from dqagp',26,ier,lvl) return end
bsd-3-clause
prool/ccx_prool
CalculiX/ccx_2.9/src/radresult.f
5
1853
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine radresult(ntr,xloadact,bcr,nloadtr,tarea, & tenv,physcon,erad,auview,fenv,irowrad,jqrad, & nzsrad,q) ! implicit none ! integer i,j,k,ntr,nloadtr(*),irowrad(*),jqrad(*),nzsrad ! real*8 xloadact(2,*), tarea(*),tenv(*),auview(*), & erad(*),fenv(*),physcon(*),bcr(ntr),q(*) ! ! calculating the flux and transforming the flux into an ! equivalent temperature ! write(*,*) '' ! do i=1,ntr q(i)=bcr(i) enddo ! ! lower triangle ! do i=1,ntr do j=jqrad(i),jqrad(i+1)-1 k=irowrad(j) q(k)=q(k)-auview(j)*bcr(i) ! ! upper triangle ! q(i)=q(i)-auview(nzsrad+j)*bcr(k) enddo enddo ! do i=1,ntr j=nloadtr(i) q(i)=q(i)-fenv(i)*physcon(2)*tenv(i)**4 xloadact(2,j)= & max(tarea(i)**4-q(i)/(erad(i)*physcon(2)),0.d0) xloadact(2,j)=(xloadact(2,j))**0.25+physcon(1) enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.15/src/mafillk.f
1
7696
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2018 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine mafillk(nef,ipnei,neifa,neiel,vfa,xxn,area, & au,ad,jq,irow,nzs,b,vel,umfa,xlet,xle,gradkfa,xxi, & body,volume,ielfa,lakonf,ifabou,nbody,neq, & dtimef,velo,veloo,cvfa,hcfa,cvel,gradvel,xload,gamma,xrlfa, & xxj,nactdohinv,a1,a2,a3,flux,nefa,nefb,iau6,xxni,xxnj, & iturbulent,f1,of2,yy,umel,gradkel,gradoel) ! ! filling the matrix for the conservation of energy ! implicit none ! logical knownflux ! character*8 lakonf(*) ! integer i,nef,indexf,ipnei(*),j,ifa,iel,neifa(*), & neiel(*),jq(*),irow(*),nzs,ielfa(4,*),nefa,nefb, & ipointer,ifabou(*),nbody,neq,indexb,nactdohinv(*), & iau6(6,*),iturbulent ! real*8 xflux,vfa(0:7,*),xxn(3,*),area(*),au(*),ad(*),b(neq), & vel(nef,0:7),umfa(*),xlet(*),xle(*),coef,gradkfa(3,*), & xxi(3,*),body(0:3,*),volume(*),dtimef,velo(nef,0:7), & veloo(nef,0:7),rhovol,cvel(*),gradvel(3,3,*),sk, & cvfa(*),hcfa(*),div,xload(2,*),gamma(*),xrlfa(3,*), & xxj(3,*),a1,a2,a3,flux(*),xxnj(3,*),xxni(3,*),difcoef, & f1(*),of2(*),yy(*),umel(*),gradkel(3,*),gradoel(3,*), & cd,arg1 ! intent(in) nef,ipnei,neifa,neiel,vfa,xxn,area, & jq,irow,nzs,vel,umfa,xlet,xle,gradkfa,xxi, & body,volume,ielfa,lakonf,ifabou,nbody,neq, & dtimef,velo,veloo,cvfa,hcfa,cvel,gradvel,xload,gamma,xrlfa, & xxj,nactdohinv,a1,a2,a3,flux,nefa,nefb,iturbulent ! intent(inout) au,ad,b ! do i=nefa,nefb ! if(iturbulent.eq.1) then ! ! k-epsilon model ! sk=1.d0 elseif(iturbulent.eq.2) then ! ! k-omega model ! sk=0.5d0 else ! ! BSL and SST model ! cd=max(2.d0*vel(i,5)*0.856d0* & (gradkel(1,i)*gradoel(1,i)+ & gradkel(2,i)*gradoel(2,i)+ & gradkel(3,i)*gradoel(3,i))/vel(i,7), & 1.d-20) arg1=min(max(dsqrt(vel(i,6))/(0.09d0*vel(i,7)*yy(i)), & 500.d0*umel(i)/(vel(i,5)*yy(i)**2*vel(i,7))), & 4.d0*vel(i,5)*0.856d0*vel(i,6)/(cd*yy(i)**2)) f1(i)=dtanh(arg1**4) if(iturbulent.eq.3) then ! ! BSL model ! sk=0.5d0*f1(i)+(1.d0-f1(i)) else ! ! SST model ! sk=0.85d0*f1(i)+(1.d0-f1(i)) endif endif ! do indexf=ipnei(i)+1,ipnei(i+1) ! ! convection ! ifa=neifa(indexf) iel=neiel(indexf) xflux=flux(indexf) ! if(xflux.ge.0.d0) then ! ! outflowing flux ! ad(i)=ad(i)+xflux ! b(i)=b(i)-gamma(ifa)*(vfa(6,ifa)-vel(i,6))*xflux ! else if(iel.gt.0) then ! ! incoming flux from neighboring element ! au(indexf)=au(indexf)+xflux ! b(i)=b(i)-gamma(ifa)*(vfa(6,ifa)-vel(iel,6))*xflux ! else ! ! incoming flux through boundary ! if(ielfa(2,ifa).lt.0) then indexb=-ielfa(2,ifa) if(((ifabou(indexb+1).ne.0).and. & (ifabou(indexb+2).ne.0).and. & (ifabou(indexb+3).ne.0)).or. & (dabs(xflux).lt.1.d-10)) then b(i)=b(i)-vfa(6,ifa)*xflux endif endif endif endif ! ! diffusion ! if(iturbulent.le.3) then ! ! k-epsilon, k-omega or BSL model ! difcoef=umfa(ifa)+sk*vfa(5,ifa)*vfa(6,ifa)/vfa(7,ifa) else ! ! SST model ! difcoef=umfa(ifa)+sk*vfa(5,ifa)*(0.31d0*vfa(6,ifa))/ & max(0.31d0*vfa(7,ifa),of2(i)) endif ! if(iel.ne.0) then ! ! neighboring element ! coef=difcoef*area(ifa)/xlet(indexf) ad(i)=ad(i)+coef au(indexf)=au(indexf)-coef ! ! correction for non-orthogonal grid ! b(i)=b(i)+difcoef*area(ifa)* & (gradkfa(1,ifa)*xxnj(1,indexf)+ & gradkfa(2,ifa)*xxnj(2,indexf)+ & gradkfa(3,ifa)*xxnj(3,indexf)) else ! ! boundary; either temperature given or adiabatic ! or outlet ! knownflux=.false. ipointer=abs(ielfa(2,ifa)) if(ipointer.gt.0) then if((ifabou(ipointer+5).ne.0).or. & (ifabou(ipointer+1).ne.0).or. & (ifabou(ipointer+2).ne.0).or. & (ifabou(ipointer+3).ne.0)) then ! ! no outlet: ! (i.e. no wall || no sliding || at least one velocity given) ! turbulent variable is assumed fixed ! coef=difcoef*area(ifa)/xle(indexf) ad(i)=ad(i)+coef b(i)=b(i)+coef*vfa(6,ifa) else ! ! outlet: no diffusion ! endif endif ! ! correction for non-orthogonal grid ! if(.not.knownflux) then b(i)=b(i)+difcoef*area(ifa)* & (gradkfa(1,ifa)*xxni(1,indexf)+ & gradkfa(2,ifa)*xxni(2,indexf)+ & gradkfa(3,ifa)*xxni(3,indexf)) endif endif enddo ! ! viscous dissipation ! rhovol=vel(i,5)*volume(i) ! ! sink terms are treated implicitly (lhs) ! ad(i)=ad(i)+rhovol*0.09d0*vel(i,7) ! ! source terms are treated explicitly (rhs) ! if(iturbulent.le.3) then ! ! k-epsilon, k-omega and BSL-model: the turbulent ! viscosity=k/omega ! b(i)=b(i)+rhovol*vel(i,6)*(( & (2.d0*(gradvel(1,1,i)**2+gradvel(2,2,i)**2+ & gradvel(3,3,i)**2)+ & (gradvel(1,2,i)+gradvel(2,1,i))**2+ & (gradvel(1,3,i)+gradvel(3,1,i))**2+ & (gradvel(2,3,i)+gradvel(3,2,i))**2))/vel(i,7)) else ! ! SST model: other definition of the turbulent ! viscosity ! b(i)=b(i)+rhovol*0.31d0*vel(i,6)*(( & (2.d0*(gradvel(1,1,i)**2+gradvel(2,2,i)**2+ & gradvel(3,3,i)**2)+ & (gradvel(1,2,i)+gradvel(2,1,i))**2+ & (gradvel(1,3,i)+gradvel(3,1,i))**2+ & (gradvel(2,3,i)+gradvel(3,2,i))**2))/ & max(0.31d0*vel(i,7),of2(i))) endif ! ! transient term ! b(i)=b(i)-(a2*velo(i,6)+a3*veloo(i,6))*rhovol rhovol=a1*rhovol ad(i)=ad(i)+rhovol ! enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.17/src/shape6tritilde_lin.f
1
6422
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2020 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! ! ! function to evaluate transformed shape funciton \f$ shape(\xi,\eta) \f$ ! for quad-lin mortar method, see phd-thesis Sitzmann Chapter 4.1. ! ! Author: Saskia Sitzmann ! ! [in] xi xi-coordinate ! [in] et eta-coordinate ! [in] xl local node coordinates ! [out] xsj jacobian vector ! [out] xs local derivative of the global coordinates ! [out] shp evaluated shape functions and derivatives ! [in] iflag flag indicating what to compute ! subroutine shape6tritilde_lin(xi,et,xl,xsj,xs,shp,iflag) ! ! iflag=1: calculate only the value of the shape functions ! iflag=2: calculate the value of the shape functions, ! their derivatives w.r.t. the local coordinates ! and the Jacobian vector (local normal to the ! surface) ! iflag=3: calculate the value of the shape functions, the ! value of their derivatives w.r.t. the global ! coordinates and the Jacobian vector (local normal ! to the surface) ! iflag=4: calculate the value of the shape functions, the ! value of their 1st and 2nd order derivatives ! w.r.t. the local coordinates, the Jacobian vector ! (local normal to the surface) ! ! shape functions and derivatives for a 6-node quadratic ! isoparametric triangular element. 0<=xi,et<=1,xi+et<=1 ! implicit none ! integer i,j,k,iflag ! real*8 shp(7,8),xs(3,7),xsi(2,3),xl(3,8),sh(3),xsj(3) ! real*8 xi,et ! ! ! ! shape functions and their glocal derivatives for an element ! described with two local parameters and three global ones. ! ! shape functions ! shp(4,1)=1.d0-xi-et shp(4,2)=xi shp(4,3)=et shp(4,4)=4.d0*xi*(1.d0-xi-et) shp(4,5)=4.d0*xi*et shp(4,6)=4.d0*et*(1.d0-xi-et) ! ! Caution: derivatives and exspecially jacobian for untransformed ! basis functions are given ! needed for consistent integration ! if(iflag.eq.1) return ! ! local derivatives of the shape functions: xi-derivative ! shp(1,1)=4.d0*(xi+et)-3.d0 shp(1,2)=4.d0*xi-1.d0 shp(1,3)=0.d0 shp(1,4)=4.d0*(1.d0-2.d0*xi-et) shp(1,5)=4.d0*et shp(1,6)=-4.d0*et ! ! local derivatives of the shape functions: eta-derivative ! shp(2,1)=4.d0*(xi+et)-3.d0 shp(2,2)=0.d0 shp(2,3)=4.d0*et-1.d0 shp(2,4)=-4.d0*xi shp(2,5)=4.d0*xi shp(2,6)=4.d0*(1.d0-xi-2.d0*et) ! ! computation of the local derivative of the global coordinates ! (xs) ! do i=1,3 do j=1,2 xs(i,j)=0.d0 do k=1,6 xs(i,j)=xs(i,j)+xl(i,k)*shp(j,k) enddo enddo enddo ! ! computation of the jacobian vector ! xsj(1)=xs(2,1)*xs(3,2)-xs(3,1)*xs(2,2) xsj(2)=xs(1,2)*xs(3,1)-xs(3,2)*xs(1,1) xsj(3)=xs(1,1)*xs(2,2)-xs(2,1)*xs(1,2) ! if(iflag.eq.3) then ! ! computation of the global derivative of the local coordinates ! (xsi) (inversion of xs) ! if(dabs(xsj(3)).gt.1.d-10) then xsi(1,1)=xs(2,2)/xsj(3) xsi(2,2)=xs(1,1)/xsj(3) xsi(1,2)=-xs(1,2)/xsj(3) xsi(2,1)=-xs(2,1)/xsj(3) if(dabs(xsj(2)).gt.1.d-10) then xsi(2,3)=xs(1,1)/(-xsj(2)) xsi(1,3)=-xs(1,2)/(-xsj(2)) elseif(dabs(xsj(1)).gt.1.d-10) then xsi(2,3)=xs(2,1)/xsj(1) xsi(1,3)=-xs(2,2)/xsj(1) else xsi(2,3)=0.d0 xsi(1,3)=0.d0 endif elseif(dabs(xsj(2)).gt.1.d-10) then xsi(1,1)=xs(3,2)/(-xsj(2)) xsi(2,3)=xs(1,1)/(-xsj(2)) xsi(1,3)=-xs(1,2)/(-xsj(2)) xsi(2,1)=-xs(3,1)/(-xsj(2)) if(dabs(xsj(1)).gt.1.d-10) then xsi(1,2)=xs(3,2)/xsj(1) xsi(2,2)=-xs(3,1)/xsj(1) else xsi(1,2)=0.d0 xsi(2,2)=0.d0 endif else xsi(1,2)=xs(3,2)/xsj(1) xsi(2,3)=xs(2,1)/xsj(1) xsi(1,3)=-xs(2,2)/xsj(1) xsi(2,2)=-xs(3,1)/xsj(1) xsi(1,1)=0.d0 xsi(2,1)=0.d0 endif ! ! computation of the global derivatives of the shape functions ! do k=1,6 do j=1,3 sh(j)=shp(1,k)*xsi(1,j)+shp(2,k)*xsi(2,j) enddo do j=1,3 shp(j,k)=sh(j) enddo enddo ! elseif(iflag.eq.4) then ! ! local 2nd order derivatives of the shape functions: xi,xi-derivative ! shp(5,1)=0.d0 shp(5,2)=0.d0 shp(5,3)=0.d0 shp(5,4)=-8.d0 shp(5,5)=0.d0 shp(5,6)=0.d0 ! ! local 2nd order derivatives of the shape functions: xi,eta-derivative ! shp(6,1)=0.d0 shp(6,2)=0.d0 shp(6,3)=0.d0 shp(6,4)=-4.d0 shp(6,5)=4.d0 shp(6,6)=-4.d0 ! ! local 2nd order derivatives of the shape functions: eta,eta-derivative ! shp(7,1)=0.d0 shp(7,2)=0.d0 shp(7,3)=0.d0 shp(7,4)=0.d0 shp(7,5)=0.d0 shp(7,6)=-8.d0 ! ! computation of the local 2nd derivatives of the global coordinates ! (xs) ! do i=1,3 do j=5,7 xs(i,j)=0.d0 do k=1,6 xs(i,j)=xs(i,j)+xl(i,k)*shp(j,k) enddo enddo enddo endif ! return end
gpl-2.0
epfl-cosmo/q-e
PW/src/get_locals.f90
19
2317
! ! Copyright (C) 2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- subroutine get_locals(rholoc,magloc, rho) !--------------------------------------------------------------------------- ! ! Here local integrations are carried out around atoms. ! The points and weights for these integrations are determined in the ! subroutine make_pointlists, the result may be printed in the ! subroutine report_mag. If constraints are present, the results of this ! calculation are used in v_of_rho for determining the penalty functional. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat USE cell_base, ONLY : omega USE lsda_mod, ONLY : nspin USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp USE noncollin_module, ONLY : pointlist, factlist, noncolin implicit none ! ! I/O variables ! real(DP) :: & rholoc(nat), & ! integrated charge arount the atoms magloc(nspin-1,nat) ! integrated magnetic moment around the atom real(DP) :: rho (dfftp%nnr, nspin) ! ! local variables ! integer i,ipol real(DP) :: fact real(DP), allocatable :: auxrholoc(:,:) allocate (auxrholoc(0:nat,nspin)) auxrholoc(:,:) = 0.d0 do i=1,dfftp%nnr auxrholoc(pointlist(i),1:nspin) = auxrholoc(pointlist(i),1:nspin) + & rho(i,1:nspin) * factlist(i) end do ! call mp_sum( auxrholoc( 0:nat, 1:nspin), intra_bgrp_comm ) ! fact = omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) if (nspin.eq.2) then rholoc(1:nat) = (auxrholoc(1:nat,1)+auxrholoc(1:nat,2)) * fact magloc(1,1:nat) = (auxrholoc(1:nat,1)-auxrholoc(1:nat,2)) * fact else rholoc(1:nat) = auxrholoc(1:nat,1) * fact if (noncolin) then do ipol=1,3 magloc(ipol,1:nat) = auxrholoc(1:nat,ipol+1) * fact end do end if endif ! deallocate (auxrholoc) end subroutine get_locals
gpl-2.0
prool/ccx_prool
ARPACK_i8/LAPACK/classq.f
5
3038
SUBROUTINE CLASSQ( N, X, INCX, SCALE, SUMSQ ) * * -- LAPACK auxiliary routine (version 2.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * October 31, 1992 * * .. Scalar Arguments .. INTEGER INCX, N REAL SCALE, SUMSQ * .. * .. Array Arguments .. COMPLEX X( * ) * .. * * Purpose * ======= * * CLASSQ returns the values scl and ssq such that * * ( scl**2 )*ssq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, * * where x( i ) = abs( X( 1 + ( i - 1 )*INCX ) ). The value of sumsq is * assumed to be at least unity and the value of ssq will then satisfy * * 1.0 .le. ssq .le. ( sumsq + 2*n ). * * scale is assumed to be non-negative and scl returns the value * * scl = max( scale, abs( real( x( i ) ) ), abs( aimag( x( i ) ) ) ), * i * * scale and sumsq must be supplied in SCALE and SUMSQ respectively. * SCALE and SUMSQ are overwritten by scl and ssq respectively. * * The routine makes only one pass through the vector X. * * Arguments * ========= * * N (input) INTEGER * The number of elements to be used from the vector X. * * X (input) REAL * The vector x as described above. * x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. * * INCX (input) INTEGER * The increment between successive values of the vector X. * INCX > 0. * * SCALE (input/output) REAL * On entry, the value scale in the equation above. * On exit, SCALE is overwritten with the value scl . * * SUMSQ (input/output) REAL * On entry, the value sumsq in the equation above. * On exit, SUMSQ is overwritten with the value ssq . * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER IX REAL TEMP1 * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, REAL * .. * .. Executable Statements .. * IF( N.GT.0 ) THEN DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX IF( REAL( X( IX ) ).NE.ZERO ) THEN TEMP1 = ABS( REAL( X( IX ) ) ) IF( SCALE.LT.TEMP1 ) THEN SUMSQ = 1 + SUMSQ*( SCALE / TEMP1 )**2 SCALE = TEMP1 ELSE SUMSQ = SUMSQ + ( TEMP1 / SCALE )**2 END IF END IF IF( AIMAG( X( IX ) ).NE.ZERO ) THEN TEMP1 = ABS( AIMAG( X( IX ) ) ) IF( SCALE.LT.TEMP1 ) THEN SUMSQ = 1 + SUMSQ*( SCALE / TEMP1 )**2 SCALE = TEMP1 ELSE SUMSQ = SUMSQ + ( TEMP1 / SCALE )**2 END IF END IF 10 CONTINUE END IF * RETURN * * End of CLASSQ * END
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/identamta.f
6
1618
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! ! ! identifies the position id of reftime in an ordered array ! amta(1,istart...iend) of real numbers; amta is defined as amta(2,*) ! ! id is such that amta(1,id).le.reftime and amta(1,id+1).gt.reftime ! subroutine identamta(amta,reftime,istart,iend,id) ! implicit none ! integer id,istart,iend,n2,m real*8 amta(2,*),reftime id=istart-1 if(iend.lt.istart) return n2=iend+1 do m=(n2+id)/2 if(reftime.ge.amta(1,m)) then id=m else n2=m endif if((n2-id).eq.1) return enddo end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.8p2/src/identamta.f
6
1618
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! ! ! identifies the position id of reftime in an ordered array ! amta(1,istart...iend) of real numbers; amta is defined as amta(2,*) ! ! id is such that amta(1,id).le.reftime and amta(1,id+1).gt.reftime ! subroutine identamta(amta,reftime,istart,iend,id) ! implicit none ! integer id,istart,iend,n2,m real*8 amta(2,*),reftime id=istart-1 if(iend.lt.istart) return n2=iend+1 do m=(n2+id)/2 if(reftime.ge.amta(1,m)) then id=m else n2=m endif if((n2-id).eq.1) return enddo end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/writepf.f
6
2068
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine writepf(d,bjr,bji,freq,nev,mode,nherm) ! ! writes the participation factors to unit 5 ! implicit none ! integer j,nev,mode,nherm real*8 d(*),bjr(*),bji(*),freq,pi ! pi=4.d0*datan(1.d0) ! write(5,*) if(mode.eq.0) then write(5,100) freq else write(5,101) mode endif ! 100 format('P A R T I C I P A T I O N F A C T O R S F O R', &' F R E Q U E N C Y ',e20.13,' (CYCLES/TIME)') 101 format('P A R T I C I P A T I O N F A C T O R S F O R', &' M O D E ',i5) ! if(nherm.eq.1) then write(5,*) write(5,*) 'MODE NO FREQUENCY FACTOR' write(5,*) ' (CYCLES/TIME) REAL IMAGINARY' write(5,*) do j=1,nev write(5,'(i7,3(2x,e14.7))') j,d(j)/(2.d0*pi),bjr(j),bji(j) enddo else write(5,*) write(5,*) &'MODE NO FREQ. (REAL) FREQ. (IMAG) FACTOR' write(5,*) &' (CYCLES/TIME) (RAD/TIME) REAL IMAGINARY' write(5,*) do j=1,nev write(5,'(i7,4(2x,e14.7))') j,d(2*j-1)/(2.d0*pi),d(2*j), & bjr(j),bji(j) enddo endif ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.8p2/src/resultsini_em.f
2
11252
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine resultsini_em(nk,v,ithermal,filab,iperturb,f,fn, & nactdof,iout,qa,b,nodeboun,ndirboun, & xboun,nboun,ipompc,nodempc,coefmpc,labmpc,nmpc,nmethod,cam,neq, & veold,dtime,mi,vini,nprint,prlab, & intpointvarm,calcul_fn,calcul_f,calcul_qa,calcul_cauchy,iener, & ikin,intpointvart,xforc,nforc) ! ! initialization ! ! 1. storing the calculated primary variables nodewise ! 2. inserting the boundary conditions nodewise (SPC's and MPC's) ! 3. determining which derived variables (strains, stresses, ! internal forces...) have to be calculated ! implicit none ! character*6 prlab(*) character*20 labmpc(*) character*87 filab(*) ! integer mi(*),nactdof(0:mi(2),*),nodeboun(*),ndirboun(*), & ipompc(*),nodempc(3,*),mt,nk,ithermal(2),i,j, & iener,iperturb(*),iout,nboun,nmpc,nmethod,ist,ndir,node,index, & neq,nprint,ikin,calcul_fn,nforc, & calcul_f,calcul_cauchy,calcul_qa,intpointvarm,intpointvart, & irefnode,irotnode,iexpnode,irefnodeprev ! real*8 v(0:mi(2),*),vini(0:mi(2),*),f(*),fn(0:mi(2),*), & cam(5),b(*),xboun(*),coefmpc(*), & veold(0:mi(2),*),xforc(*), & qa(3),dtime,bnac, & fixed_disp ! mt=mi(2)+1 ! if((iout.ne.2).and.(iout.gt.-1)) then ! if((nmethod.ne.4).or.(iperturb(1).le.1)) then if(ithermal(1).ne.2) then do i=1,nk do j=1,mi(2) if(nactdof(j,i).ne.0) then bnac=b(nactdof(j,i)) else cycle endif v(j,i)=v(j,i)+bnac if((iperturb(1).ne.0).and.(abs(nmethod).eq.1)) then if(dabs(bnac).gt.cam(1)) then cam(1)=dabs(bnac) cam(4)=nactdof(j,i)-0.5d0 endif endif enddo enddo endif if(ithermal(1).gt.1) then do i=1,nk if(nactdof(0,i).ne.0) then bnac=b(nactdof(0,i)) else cycle endif v(0,i)=v(0,i)+bnac if((iperturb(1).ne.0).and.(abs(nmethod).eq.1)) then if(dabs(bnac).gt.cam(2)) then cam(2)=dabs(bnac) cam(5)=nactdof(0,i)-0.5d0 endif endif enddo endif ! else ! ! direct integration dynamic step ! b contains the acceleration increment ! if(ithermal(1).ne.2) then do i=1,nk do j=1,mi(2) veold(j,i)=0.d0 if(nactdof(j,i).ne.0) then bnac=b(nactdof(j,i)) else cycle endif v(j,i)=v(j,i)+bnac if(dabs(bnac).gt.cam(1)) then cam(1)=dabs(bnac) cam(4)=nactdof(j,i)-0.5d0 endif enddo enddo endif if(ithermal(1).gt.1) then do i=1,nk veold(0,i)=0.d0 if(nactdof(0,i).ne.0) then bnac=b(nactdof(0,i)) else cycle endif v(0,i)=v(0,i)+bnac if(dabs(bnac).gt.cam(2)) then cam(2)=dabs(bnac) cam(5)=nactdof(0,i)-0.5d0 endif cam(3)=max(cam(3),dabs(v(0,i)-vini(0,i))) enddo endif endif ! endif ! ! initialization ! calcul_fn=0 calcul_f=0 calcul_qa=0 calcul_cauchy=0 ! ! determining which quantities have to be calculated ! if((iperturb(1).ge.2).or.((iperturb(1).le.0).and.(iout.lt.0))) & then if((iout.lt.1).and.(iout.gt.-2)) then calcul_fn=1 calcul_f=1 calcul_qa=1 elseif((iout.ne.-2).and.(iperturb(2).eq.1)) then calcul_cauchy=1 endif endif ! if(iout.gt.0) then if((filab(5)(1:4).eq.'RF ').or. & (filab(10)(1:4).eq.'RFL ')) then calcul_fn=1 else do i=1,nprint if((prlab(i)(1:4).eq.'RF ').or. & (prlab(i)(1:4).eq.'RFL ')) then calcul_fn=1 exit endif enddo endif endif ! ! check whether user-defined concentrated forces were defined ! do i=1,nforc if((xforc(i).lt.1.2357111318d0).and. & (xforc(i).gt.1.2357111316d0)) then calcul_fn=1 exit endif enddo ! ! initializing fn ! if(calcul_fn.eq.1) then do i=1,nk do j=0,mi(2) fn(j,i)=0.d0 enddo enddo endif ! ! initializing f ! if(calcul_f.eq.1) then do i=1,neq f(i)=0.d0 enddo endif ! ! SPC's and MPC's have to be taken into account for ! iout=0,1 and -1 ! if(abs(iout).lt.2) then ! ! inserting the boundary conditions ! do i=1,nboun if(ndirboun(i).gt.mi(2)) cycle fixed_disp=xboun(i) c if((nmethod.eq.4).and.(iperturb(1).gt.1)) then c ndir=ndirboun(i) c node=nodeboun(i) c veold(ndir,node)=(xboun(i)-v(ndir,node))/dtime c endif v(ndirboun(i),nodeboun(i))=fixed_disp enddo ! ! inserting the mpc information ! do i=1,nmpc ist=ipompc(i) node=nodempc(1,ist) ndir=nodempc(2,ist) if(ndir.eq.0) then if(ithermal(1).lt.2) cycle elseif(ndir.gt.mi(2)) then cycle else if(ithermal(1).eq.2) cycle endif index=nodempc(3,ist) fixed_disp=0.d0 if(index.ne.0) then do fixed_disp=fixed_disp-coefmpc(index)* & v(nodempc(2,index),nodempc(1,index)) index=nodempc(3,index) if(index.eq.0) exit enddo endif fixed_disp=fixed_disp/coefmpc(ist) v(ndir,node)=fixed_disp enddo endif ! ! storing the knot information in the .dat-file ! irefnodeprev=0 do i=1,nmpc if(iout.gt.0) then if(labmpc(i)(1:4).eq.'KNOT') then irefnode=nodempc(1,nodempc(3,ipompc(i))) if(irefnode.ne.irefnodeprev) then irefnodeprev=irefnode iexpnode=nodempc(1,nodempc(3,nodempc(3,ipompc(i)))) if(labmpc(i)(5:5).ne.'2') then irotnode=nodempc(1,nodempc(3,nodempc(3, & nodempc(3,ipompc(i))))) else irotnode=nodempc(1,nodempc(3,nodempc(3, & nodempc(3,nodempc(3,nodempc(3,ipompc(i))))))) endif write(5,*) write(5,'(a5)') labmpc(i)(1:5) write(5,'("tra",i5,3(1x,e11.4))') & irefnode,(v(j,irefnode),j=1,3) write(5,'("rot",i5,3(1x,e11.4))') & irotnode,(v(j,irotnode),j=1,3) if(labmpc(i)(5:5).eq.'2') then write(5,'("exp",i5,3(1x,e11.4))') & iexpnode,(v(j,iexpnode),j=1,3) else write(5,'("exp",i5,3(1x,e11.4))') & iexpnode,v(1,iexpnode) endif endif endif endif enddo ! ! check whether there are any strain output requests ! iener=0 ikin=0 if((filab(7)(1:4).eq.'ENER').or.(filab(27)(1:4).eq.'CELS')) then iener=1 endif do i=1,nprint if((prlab(i)(1:4).eq.'ENER').or.(prlab(i)(1:4).eq.'ELSE').or. & (prlab(i)(1:4).eq.'CELS')) then iener=1 elseif(prlab(i)(1:4).eq.'ELKE') then ikin=1 endif enddo ! qa(1)=0.d0 qa(2)=0.d0 ! ! check whether integration point variables are needed in ! modal dynamics and steady state dynamics calculations ! intpointvarm=1 intpointvart=1 ! if((nmethod.ge.4).and.(iperturb(1).lt.2)) then intpointvarm=0 if((filab(3)(1:4).eq.'S ').or. & (filab(4)(1:4).eq.'E ').or. & (filab(5)(1:4).eq.'RF ').or. & (filab(6)(1:4).eq.'PEEQ').or. & (filab(7)(1:4).eq.'ENER').or. & (filab(8)(1:4).eq.'SDV ').or. & (filab(13)(1:4).eq.'ZZS ').or. & (filab(13)(1:4).eq.'ERR ').or. & (filab(18)(1:4).eq.'PHS ').or. & (filab(20)(1:4).eq.'MAXS').or. & (filab(26)(1:4).eq.'CONT').or. & (filab(27)(1:4).eq.'CELS')) intpointvarm=1 do i=1,nprint if((prlab(i)(1:4).eq.'S ').or. & (prlab(i)(1:4).eq.'E ').or. & (prlab(i)(1:4).eq.'PEEQ').or. & (prlab(i)(1:4).eq.'ENER').or. & (prlab(i)(1:4).eq.'ELKE').or. & (prlab(i)(1:4).eq.'CDIS').or. & (prlab(i)(1:4).eq.'CSTR').or. & (prlab(i)(1:4).eq.'CELS').or. & (prlab(i)(1:4).eq.'SDV ').or. & (prlab(i)(1:4).eq.'RF ')) then intpointvarm=1 exit endif enddo ! intpointvart=0 if((filab(9)(1:4).eq.'HFL ').or. & (filab(10)(1:4).eq.'RFL ')) intpointvart=1 do i=1,nprint if((prlab(i)(1:4).eq.'HFL ').or. & (prlab(i)(1:4).eq.'RFL ')) intpointvart=1 enddo ! ! if internal forces are requested integration point ! values have to be calculated ! if(calcul_fn.eq.1) then intpointvarm=1 intpointvart=1 endif endif ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/xlocal.f
10
9640
! ! 3D local of the gauss points within the faces of ! the elements ! ! xlocal8r: C3D8R element ! xlocal8: C3D8 and C3D20R element ! xlocal20: C3D20 element ! xlocal4: C3D4 element ! xlocal10: C3D10 element ! xlocal6: C3D6 element ! xlocal15: C3D15 element ! xlocal8r=reshape((/ & 0.000000000000000D+0, 0.000000000000000D+0,-0.100000000000000D+1 &, 0.000000000000000D+0, 0.000000000000000D+0, 0.100000000000000D+1 &, 0.000000000000000D+0,-0.100000000000000D+1, 0.000000000000000D+0 &, 0.100000000000000D+1, 0.000000000000000D+0, 0.000000000000000D+0 &, 0.000000000000000D+0, 0.100000000000000D+1, 0.000000000000000D+0 &,-0.100000000000000D+1, 0.000000000000000D+0,0.000000000000000D+0/ &),(/3,1,6/)) ! xlocal8=reshape((/ &-0.577350269189626D+0, 0.577350269189626D+0,-0.100000000000000D+1 &, 0.577350269189626D+0, 0.577350269189626D+0,-0.100000000000000D+1 &,-0.577350269189626D+0,-0.577350269189626D+0,-0.100000000000000D+1 &, 0.577350269189626D+0,-0.577350269189626D+0,-0.100000000000000D+1 &,-0.577350269189626D+0,-0.577350269189626D+0, 0.100000000000000D+1 &, 0.577350269189626D+0,-0.577350269189626D+0, 0.100000000000000D+1 &,-0.577350269189626D+0, 0.577350269189626D+0, 0.100000000000000D+1 &, 0.577350269189626D+0, 0.577350269189626D+0, 0.100000000000000D+1 &,-0.577350269189626D+0,-0.100000000000000D+1,-0.577350269189626D+0 &, 0.577350269189626D+0,-0.100000000000000D+1,-0.577350269189626D+0 &,-0.577350269189626D+0,-0.100000000000000D+1, 0.577350269189626D+0 &, 0.577350269189626D+0,-0.100000000000000D+1, 0.577350269189626D+0 &, 0.100000000000000D+1,-0.577350269189626D+0,-0.577350269189626D+0 &, 0.100000000000000D+1, 0.577350269189626D+0,-0.577350269189626D+0 &, 0.100000000000000D+1,-0.577350269189626D+0, 0.577350269189626D+0 &, 0.100000000000000D+1, 0.577350269189626D+0, 0.577350269189626D+0 &, 0.577350269189626D+0, 0.100000000000000D+1,-0.577350269189626D+0 &,-0.577350269189626D+0, 0.100000000000000D+1,-0.577350269189626D+0 &, 0.577350269189626D+0, 0.100000000000000D+1, 0.577350269189626D+0 &,-0.577350269189626D+0, 0.100000000000000D+1, 0.577350269189626D+0 &,-0.100000000000000D+1, 0.577350269189626D+0,-0.577350269189626D+0 &,-0.100000000000000D+1,-0.577350269189626D+0,-0.577350269189626D+0 &,-0.100000000000000D+1, 0.577350269189626D+0, 0.577350269189626D+0 &,-0.100000000000000D+1,-0.577350269189626D+0,0.577350269189626D+0/ &),(/3,4,6/)) ! xlocal20=reshape((/ &-0.774596669241483D+0, 0.774596669241483D+0,-0.100000000000000D+1 &, 0.000000000000000D+0, 0.774596669241483D+0,-0.100000000000000D+1 &, 0.774596669241483D+0, 0.774596669241483D+0,-0.100000000000000D+1 &,-0.774596669241483D+0, 0.000000000000000D+0,-0.100000000000000D+1 &, 0.000000000000000D+0, 0.000000000000000D+0,-0.100000000000000D+1 &, 0.774596669241483D+0, 0.000000000000000D+0,-0.100000000000000D+1 &,-0.774596669241483D+0,-0.774596669241483D+0,-0.100000000000000D+1 &, 0.000000000000000D+0,-0.774596669241483D+0,-0.100000000000000D+1 &, 0.774596669241483D+0,-0.774596669241483D+0,-0.100000000000000D+1 &,-0.774596669241483D+0,-0.774596669241483D+0, 0.100000000000000D+1 &, 0.000000000000000D+0,-0.774596669241483D+0, 0.100000000000000D+1 &, 0.774596669241483D+0,-0.774596669241483D+0, 0.100000000000000D+1 &,-0.774596669241483D+0, 0.000000000000000D+0, 0.100000000000000D+1 &, 0.000000000000000D+0, 0.000000000000000D+0, 0.100000000000000D+1 &, 0.774596669241483D+0, 0.000000000000000D+0, 0.100000000000000D+1 &,-0.774596669241483D+0, 0.774596669241483D+0, 0.100000000000000D+1 &, 0.000000000000000D+0, 0.774596669241483D+0, 0.100000000000000D+1 &, 0.774596669241483D+0, 0.774596669241483D+0, 0.100000000000000D+1 &,-0.774596669241483D+0,-0.100000000000000D+1,-0.774596669241483D+0 &, 0.000000000000000D+0,-0.100000000000000D+1,-0.774596669241483D+0 &, 0.774596669241483D+0,-0.100000000000000D+1,-0.774596669241483D+0 &,-0.774596669241483D+0,-0.100000000000000D+1, 0.000000000000000D+0 &, 0.000000000000000D+0,-0.100000000000000D+1, 0.000000000000000D+0 &, 0.774596669241483D+0,-0.100000000000000D+1, 0.000000000000000D+0 &,-0.774596669241483D+0,-0.100000000000000D+1, 0.774596669241483D+0 &, 0.000000000000000D+0,-0.100000000000000D+1, 0.774596669241483D+0 &, 0.774596669241483D+0,-0.100000000000000D+1, 0.774596669241483D+0 &, 0.100000000000000D+1,-0.774596669241483D+0,-0.774596669241483D+0 &, 0.100000000000000D+1, 0.000000000000000D+0,-0.774596669241483D+0 &, 0.100000000000000D+1, 0.774596669241483D+0,-0.774596669241483D+0 &, 0.100000000000000D+1,-0.774596669241483D+0, 0.000000000000000D+0 &, 0.100000000000000D+1, 0.000000000000000D+0, 0.000000000000000D+0 &, 0.100000000000000D+1, 0.774596669241483D+0, 0.000000000000000D+0 &, 0.100000000000000D+1,-0.774596669241483D+0, 0.774596669241483D+0 &, 0.100000000000000D+1, 0.000000000000000D+0, 0.774596669241483D+0 &, 0.100000000000000D+1, 0.774596669241483D+0, 0.774596669241483D+0 &, 0.774596669241483D+0, 0.100000000000000D+1,-0.774596669241483D+0 &, 0.000000000000000D+0, 0.100000000000000D+1,-0.774596669241483D+0 &,-0.774596669241483D+0, 0.100000000000000D+1,-0.774596669241483D+0 &, 0.774596669241483D+0, 0.100000000000000D+1, 0.000000000000000D+0 &, 0.000000000000000D+0, 0.100000000000000D+1, 0.000000000000000D+0 &,-0.774596669241483D+0, 0.100000000000000D+1, 0.000000000000000D+0 &, 0.774596669241483D+0, 0.100000000000000D+1, 0.774596669241483D+0 &, 0.000000000000000D+0, 0.100000000000000D+1, 0.774596669241483D+0 &,-0.774596669241483D+0, 0.100000000000000D+1, 0.774596669241483D+0 &,-0.100000000000000D+1, 0.774596669241483D+0,-0.774596669241483D+0 &,-0.100000000000000D+1, 0.000000000000000D+0,-0.774596669241483D+0 &,-0.100000000000000D+1,-0.774596669241483D+0,-0.774596669241483D+0 &,-0.100000000000000D+1, 0.774596669241483D+0, 0.000000000000000D+0 &,-0.100000000000000D+1, 0.000000000000000D+0, 0.000000000000000D+0 &,-0.100000000000000D+1,-0.774596669241483D+0, 0.000000000000000D+0 &,-0.100000000000000D+1, 0.774596669241483D+0, 0.774596669241483D+0 &,-0.100000000000000D+1, 0.000000000000000D+0, 0.774596669241483D+0 &,-0.100000000000000D+1,-0.774596669241483D+0,0.774596669241483D+0/ &),(/3,9,6/)) ! xlocal4=reshape((/ & 0.333333333333333D+0, 0.333333333333333D+0, 0.000000000000000D+0 &, 0.333333333333333D+0, 0.000000000000000D+0, 0.333333333333333D+0 &, 0.333333333333334D+0, 0.333333333333333D+0, 0.333333333333333D+0 &, 0.000000000000000D+0, 0.333333333333333D+0,0.333333333333333D+0/ &),(/3,1,4/)) ! xlocal10=reshape((/ & 0.166666666666667D+0, 0.166666666666667D+0, 0.000000000000000D+0 &, 0.166666666666667D+0, 0.666666666666667D+0, 0.000000000000000D+0 &, 0.666666666666667D+0, 0.166666666666667D+0, 0.000000000000000D+0 &, 0.166666666666667D+0, 0.000000000000000D+0, 0.166666666666667D+0 &, 0.666666666666667D+0, 0.000000000000000D+0, 0.166666666666667D+0 &, 0.166666666666667D+0, 0.000000000000000D+0, 0.666666666666667D+0 &, 0.666666666666666D+0, 0.166666666666667D+0, 0.166666666666667D+0 &, 0.166666666666666D+0, 0.666666666666667D+0, 0.166666666666667D+0 &, 0.166666666666666D+0, 0.166666666666667D+0, 0.666666666666667D+0 &, 0.000000000000000D+0, 0.166666666666667D+0, 0.166666666666667D+0 &, 0.000000000000000D+0, 0.166666666666667D+0, 0.666666666666667D+0 &, 0.000000000000000D+0, 0.666666666666667D+0,0.166666666666667D+0/ &),(/3,3,4/)) ! xlocal6=reshape((/ & 0.333333333333333D+0, 0.333333333333333D+0,-0.100000000000000D+1 &, 0.333333333333333D+0, 0.333333333333333D+0, 0.100000000000000D+1 &, 0.500000000000000D+0, 0.000000000000000D+0, 0.000000000000000D+0 &, 0.500000000000000D+0, 0.500000000000000D+0, 0.000000000000000D+0 &, 0.000000000000000D+0, 0.500000000000000D+0,0.000000000000000D+0/ &),(/3,1,5/)) ! xlocal15=reshape((/ & 0.166666666666667D+0, 0.166666666666667D+0,-0.100000000000000D+1 &, 0.166666666666667D+0, 0.666666666666667D+0,-0.100000000000000D+1 &, 0.666666666666667D+0, 0.166666666666667D+0,-0.100000000000000D+1 &, 0.d0,0.d0,0.d0 &, 0.166666666666667D+0, 0.166666666666667D+0, 0.100000000000000D+1 &, 0.666666666666667D+0, 0.166666666666667D+0, 0.100000000000000D+1 &, 0.166666666666667D+0, 0.666666666666667D+0, 0.100000000000000D+1 &, 0.d0,0.d0,0.d0 &, 0.211324865405187D+0, 0.000000000000000D+0,-0.577350269189626D+0 &, 0.788675134594813D+0, 0.000000000000000D+0,-0.577350269189626D+0 &, 0.211324865405187D+0, 0.000000000000000D+0, 0.577350269189626D+0 &, 0.788675134594813D+0, 0.000000000000000D+0, 0.577350269189626D+0 &, 0.788675134594813D+0, 0.211324865405187D+0,-0.577350269189626D+0 &, 0.211324865405187D+0, 0.788675134594813D+0,-0.577350269189626D+0 &, 0.788675134594813D+0, 0.211324865405187D+0, 0.577350269189626D+0 &, 0.211324865405187D+0, 0.788675134594813D+0, 0.577350269189626D+0 &, 0.000000000000000D+0, 0.211324865405187D+0, 0.577350269189626D+0 &, 0.000000000000000D+0, 0.788675134594813D+0, 0.577350269189626D+0 &, 0.000000000000000D+0, 0.211324865405187D+0,-0.577350269189626D+0 &, 0.000000000000000D+0,0.788675134594813D+0,-0.577350269189626D+0/ &),(/3,4,5/)) !
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.8p2/src/xlocal.f
10
9640
! ! 3D local of the gauss points within the faces of ! the elements ! ! xlocal8r: C3D8R element ! xlocal8: C3D8 and C3D20R element ! xlocal20: C3D20 element ! xlocal4: C3D4 element ! xlocal10: C3D10 element ! xlocal6: C3D6 element ! xlocal15: C3D15 element ! xlocal8r=reshape((/ & 0.000000000000000D+0, 0.000000000000000D+0,-0.100000000000000D+1 &, 0.000000000000000D+0, 0.000000000000000D+0, 0.100000000000000D+1 &, 0.000000000000000D+0,-0.100000000000000D+1, 0.000000000000000D+0 &, 0.100000000000000D+1, 0.000000000000000D+0, 0.000000000000000D+0 &, 0.000000000000000D+0, 0.100000000000000D+1, 0.000000000000000D+0 &,-0.100000000000000D+1, 0.000000000000000D+0,0.000000000000000D+0/ &),(/3,1,6/)) ! xlocal8=reshape((/ &-0.577350269189626D+0, 0.577350269189626D+0,-0.100000000000000D+1 &, 0.577350269189626D+0, 0.577350269189626D+0,-0.100000000000000D+1 &,-0.577350269189626D+0,-0.577350269189626D+0,-0.100000000000000D+1 &, 0.577350269189626D+0,-0.577350269189626D+0,-0.100000000000000D+1 &,-0.577350269189626D+0,-0.577350269189626D+0, 0.100000000000000D+1 &, 0.577350269189626D+0,-0.577350269189626D+0, 0.100000000000000D+1 &,-0.577350269189626D+0, 0.577350269189626D+0, 0.100000000000000D+1 &, 0.577350269189626D+0, 0.577350269189626D+0, 0.100000000000000D+1 &,-0.577350269189626D+0,-0.100000000000000D+1,-0.577350269189626D+0 &, 0.577350269189626D+0,-0.100000000000000D+1,-0.577350269189626D+0 &,-0.577350269189626D+0,-0.100000000000000D+1, 0.577350269189626D+0 &, 0.577350269189626D+0,-0.100000000000000D+1, 0.577350269189626D+0 &, 0.100000000000000D+1,-0.577350269189626D+0,-0.577350269189626D+0 &, 0.100000000000000D+1, 0.577350269189626D+0,-0.577350269189626D+0 &, 0.100000000000000D+1,-0.577350269189626D+0, 0.577350269189626D+0 &, 0.100000000000000D+1, 0.577350269189626D+0, 0.577350269189626D+0 &, 0.577350269189626D+0, 0.100000000000000D+1,-0.577350269189626D+0 &,-0.577350269189626D+0, 0.100000000000000D+1,-0.577350269189626D+0 &, 0.577350269189626D+0, 0.100000000000000D+1, 0.577350269189626D+0 &,-0.577350269189626D+0, 0.100000000000000D+1, 0.577350269189626D+0 &,-0.100000000000000D+1, 0.577350269189626D+0,-0.577350269189626D+0 &,-0.100000000000000D+1,-0.577350269189626D+0,-0.577350269189626D+0 &,-0.100000000000000D+1, 0.577350269189626D+0, 0.577350269189626D+0 &,-0.100000000000000D+1,-0.577350269189626D+0,0.577350269189626D+0/ &),(/3,4,6/)) ! xlocal20=reshape((/ &-0.774596669241483D+0, 0.774596669241483D+0,-0.100000000000000D+1 &, 0.000000000000000D+0, 0.774596669241483D+0,-0.100000000000000D+1 &, 0.774596669241483D+0, 0.774596669241483D+0,-0.100000000000000D+1 &,-0.774596669241483D+0, 0.000000000000000D+0,-0.100000000000000D+1 &, 0.000000000000000D+0, 0.000000000000000D+0,-0.100000000000000D+1 &, 0.774596669241483D+0, 0.000000000000000D+0,-0.100000000000000D+1 &,-0.774596669241483D+0,-0.774596669241483D+0,-0.100000000000000D+1 &, 0.000000000000000D+0,-0.774596669241483D+0,-0.100000000000000D+1 &, 0.774596669241483D+0,-0.774596669241483D+0,-0.100000000000000D+1 &,-0.774596669241483D+0,-0.774596669241483D+0, 0.100000000000000D+1 &, 0.000000000000000D+0,-0.774596669241483D+0, 0.100000000000000D+1 &, 0.774596669241483D+0,-0.774596669241483D+0, 0.100000000000000D+1 &,-0.774596669241483D+0, 0.000000000000000D+0, 0.100000000000000D+1 &, 0.000000000000000D+0, 0.000000000000000D+0, 0.100000000000000D+1 &, 0.774596669241483D+0, 0.000000000000000D+0, 0.100000000000000D+1 &,-0.774596669241483D+0, 0.774596669241483D+0, 0.100000000000000D+1 &, 0.000000000000000D+0, 0.774596669241483D+0, 0.100000000000000D+1 &, 0.774596669241483D+0, 0.774596669241483D+0, 0.100000000000000D+1 &,-0.774596669241483D+0,-0.100000000000000D+1,-0.774596669241483D+0 &, 0.000000000000000D+0,-0.100000000000000D+1,-0.774596669241483D+0 &, 0.774596669241483D+0,-0.100000000000000D+1,-0.774596669241483D+0 &,-0.774596669241483D+0,-0.100000000000000D+1, 0.000000000000000D+0 &, 0.000000000000000D+0,-0.100000000000000D+1, 0.000000000000000D+0 &, 0.774596669241483D+0,-0.100000000000000D+1, 0.000000000000000D+0 &,-0.774596669241483D+0,-0.100000000000000D+1, 0.774596669241483D+0 &, 0.000000000000000D+0,-0.100000000000000D+1, 0.774596669241483D+0 &, 0.774596669241483D+0,-0.100000000000000D+1, 0.774596669241483D+0 &, 0.100000000000000D+1,-0.774596669241483D+0,-0.774596669241483D+0 &, 0.100000000000000D+1, 0.000000000000000D+0,-0.774596669241483D+0 &, 0.100000000000000D+1, 0.774596669241483D+0,-0.774596669241483D+0 &, 0.100000000000000D+1,-0.774596669241483D+0, 0.000000000000000D+0 &, 0.100000000000000D+1, 0.000000000000000D+0, 0.000000000000000D+0 &, 0.100000000000000D+1, 0.774596669241483D+0, 0.000000000000000D+0 &, 0.100000000000000D+1,-0.774596669241483D+0, 0.774596669241483D+0 &, 0.100000000000000D+1, 0.000000000000000D+0, 0.774596669241483D+0 &, 0.100000000000000D+1, 0.774596669241483D+0, 0.774596669241483D+0 &, 0.774596669241483D+0, 0.100000000000000D+1,-0.774596669241483D+0 &, 0.000000000000000D+0, 0.100000000000000D+1,-0.774596669241483D+0 &,-0.774596669241483D+0, 0.100000000000000D+1,-0.774596669241483D+0 &, 0.774596669241483D+0, 0.100000000000000D+1, 0.000000000000000D+0 &, 0.000000000000000D+0, 0.100000000000000D+1, 0.000000000000000D+0 &,-0.774596669241483D+0, 0.100000000000000D+1, 0.000000000000000D+0 &, 0.774596669241483D+0, 0.100000000000000D+1, 0.774596669241483D+0 &, 0.000000000000000D+0, 0.100000000000000D+1, 0.774596669241483D+0 &,-0.774596669241483D+0, 0.100000000000000D+1, 0.774596669241483D+0 &,-0.100000000000000D+1, 0.774596669241483D+0,-0.774596669241483D+0 &,-0.100000000000000D+1, 0.000000000000000D+0,-0.774596669241483D+0 &,-0.100000000000000D+1,-0.774596669241483D+0,-0.774596669241483D+0 &,-0.100000000000000D+1, 0.774596669241483D+0, 0.000000000000000D+0 &,-0.100000000000000D+1, 0.000000000000000D+0, 0.000000000000000D+0 &,-0.100000000000000D+1,-0.774596669241483D+0, 0.000000000000000D+0 &,-0.100000000000000D+1, 0.774596669241483D+0, 0.774596669241483D+0 &,-0.100000000000000D+1, 0.000000000000000D+0, 0.774596669241483D+0 &,-0.100000000000000D+1,-0.774596669241483D+0,0.774596669241483D+0/ &),(/3,9,6/)) ! xlocal4=reshape((/ & 0.333333333333333D+0, 0.333333333333333D+0, 0.000000000000000D+0 &, 0.333333333333333D+0, 0.000000000000000D+0, 0.333333333333333D+0 &, 0.333333333333334D+0, 0.333333333333333D+0, 0.333333333333333D+0 &, 0.000000000000000D+0, 0.333333333333333D+0,0.333333333333333D+0/ &),(/3,1,4/)) ! xlocal10=reshape((/ & 0.166666666666667D+0, 0.166666666666667D+0, 0.000000000000000D+0 &, 0.166666666666667D+0, 0.666666666666667D+0, 0.000000000000000D+0 &, 0.666666666666667D+0, 0.166666666666667D+0, 0.000000000000000D+0 &, 0.166666666666667D+0, 0.000000000000000D+0, 0.166666666666667D+0 &, 0.666666666666667D+0, 0.000000000000000D+0, 0.166666666666667D+0 &, 0.166666666666667D+0, 0.000000000000000D+0, 0.666666666666667D+0 &, 0.666666666666666D+0, 0.166666666666667D+0, 0.166666666666667D+0 &, 0.166666666666666D+0, 0.666666666666667D+0, 0.166666666666667D+0 &, 0.166666666666666D+0, 0.166666666666667D+0, 0.666666666666667D+0 &, 0.000000000000000D+0, 0.166666666666667D+0, 0.166666666666667D+0 &, 0.000000000000000D+0, 0.166666666666667D+0, 0.666666666666667D+0 &, 0.000000000000000D+0, 0.666666666666667D+0,0.166666666666667D+0/ &),(/3,3,4/)) ! xlocal6=reshape((/ & 0.333333333333333D+0, 0.333333333333333D+0,-0.100000000000000D+1 &, 0.333333333333333D+0, 0.333333333333333D+0, 0.100000000000000D+1 &, 0.500000000000000D+0, 0.000000000000000D+0, 0.000000000000000D+0 &, 0.500000000000000D+0, 0.500000000000000D+0, 0.000000000000000D+0 &, 0.000000000000000D+0, 0.500000000000000D+0,0.000000000000000D+0/ &),(/3,1,5/)) ! xlocal15=reshape((/ & 0.166666666666667D+0, 0.166666666666667D+0,-0.100000000000000D+1 &, 0.166666666666667D+0, 0.666666666666667D+0,-0.100000000000000D+1 &, 0.666666666666667D+0, 0.166666666666667D+0,-0.100000000000000D+1 &, 0.d0,0.d0,0.d0 &, 0.166666666666667D+0, 0.166666666666667D+0, 0.100000000000000D+1 &, 0.666666666666667D+0, 0.166666666666667D+0, 0.100000000000000D+1 &, 0.166666666666667D+0, 0.666666666666667D+0, 0.100000000000000D+1 &, 0.d0,0.d0,0.d0 &, 0.211324865405187D+0, 0.000000000000000D+0,-0.577350269189626D+0 &, 0.788675134594813D+0, 0.000000000000000D+0,-0.577350269189626D+0 &, 0.211324865405187D+0, 0.000000000000000D+0, 0.577350269189626D+0 &, 0.788675134594813D+0, 0.000000000000000D+0, 0.577350269189626D+0 &, 0.788675134594813D+0, 0.211324865405187D+0,-0.577350269189626D+0 &, 0.211324865405187D+0, 0.788675134594813D+0,-0.577350269189626D+0 &, 0.788675134594813D+0, 0.211324865405187D+0, 0.577350269189626D+0 &, 0.211324865405187D+0, 0.788675134594813D+0, 0.577350269189626D+0 &, 0.000000000000000D+0, 0.211324865405187D+0, 0.577350269189626D+0 &, 0.000000000000000D+0, 0.788675134594813D+0, 0.577350269189626D+0 &, 0.000000000000000D+0, 0.211324865405187D+0,-0.577350269189626D+0 &, 0.000000000000000D+0,0.788675134594813D+0,-0.577350269189626D+0/ &),(/3,4,5/)) !
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.11/src/xlocal.f
10
9640
! ! 3D local of the gauss points within the faces of ! the elements ! ! xlocal8r: C3D8R element ! xlocal8: C3D8 and C3D20R element ! xlocal20: C3D20 element ! xlocal4: C3D4 element ! xlocal10: C3D10 element ! xlocal6: C3D6 element ! xlocal15: C3D15 element ! xlocal8r=reshape((/ & 0.000000000000000D+0, 0.000000000000000D+0,-0.100000000000000D+1 &, 0.000000000000000D+0, 0.000000000000000D+0, 0.100000000000000D+1 &, 0.000000000000000D+0,-0.100000000000000D+1, 0.000000000000000D+0 &, 0.100000000000000D+1, 0.000000000000000D+0, 0.000000000000000D+0 &, 0.000000000000000D+0, 0.100000000000000D+1, 0.000000000000000D+0 &,-0.100000000000000D+1, 0.000000000000000D+0,0.000000000000000D+0/ &),(/3,1,6/)) ! xlocal8=reshape((/ &-0.577350269189626D+0, 0.577350269189626D+0,-0.100000000000000D+1 &, 0.577350269189626D+0, 0.577350269189626D+0,-0.100000000000000D+1 &,-0.577350269189626D+0,-0.577350269189626D+0,-0.100000000000000D+1 &, 0.577350269189626D+0,-0.577350269189626D+0,-0.100000000000000D+1 &,-0.577350269189626D+0,-0.577350269189626D+0, 0.100000000000000D+1 &, 0.577350269189626D+0,-0.577350269189626D+0, 0.100000000000000D+1 &,-0.577350269189626D+0, 0.577350269189626D+0, 0.100000000000000D+1 &, 0.577350269189626D+0, 0.577350269189626D+0, 0.100000000000000D+1 &,-0.577350269189626D+0,-0.100000000000000D+1,-0.577350269189626D+0 &, 0.577350269189626D+0,-0.100000000000000D+1,-0.577350269189626D+0 &,-0.577350269189626D+0,-0.100000000000000D+1, 0.577350269189626D+0 &, 0.577350269189626D+0,-0.100000000000000D+1, 0.577350269189626D+0 &, 0.100000000000000D+1,-0.577350269189626D+0,-0.577350269189626D+0 &, 0.100000000000000D+1, 0.577350269189626D+0,-0.577350269189626D+0 &, 0.100000000000000D+1,-0.577350269189626D+0, 0.577350269189626D+0 &, 0.100000000000000D+1, 0.577350269189626D+0, 0.577350269189626D+0 &, 0.577350269189626D+0, 0.100000000000000D+1,-0.577350269189626D+0 &,-0.577350269189626D+0, 0.100000000000000D+1,-0.577350269189626D+0 &, 0.577350269189626D+0, 0.100000000000000D+1, 0.577350269189626D+0 &,-0.577350269189626D+0, 0.100000000000000D+1, 0.577350269189626D+0 &,-0.100000000000000D+1, 0.577350269189626D+0,-0.577350269189626D+0 &,-0.100000000000000D+1,-0.577350269189626D+0,-0.577350269189626D+0 &,-0.100000000000000D+1, 0.577350269189626D+0, 0.577350269189626D+0 &,-0.100000000000000D+1,-0.577350269189626D+0,0.577350269189626D+0/ &),(/3,4,6/)) ! xlocal20=reshape((/ &-0.774596669241483D+0, 0.774596669241483D+0,-0.100000000000000D+1 &, 0.000000000000000D+0, 0.774596669241483D+0,-0.100000000000000D+1 &, 0.774596669241483D+0, 0.774596669241483D+0,-0.100000000000000D+1 &,-0.774596669241483D+0, 0.000000000000000D+0,-0.100000000000000D+1 &, 0.000000000000000D+0, 0.000000000000000D+0,-0.100000000000000D+1 &, 0.774596669241483D+0, 0.000000000000000D+0,-0.100000000000000D+1 &,-0.774596669241483D+0,-0.774596669241483D+0,-0.100000000000000D+1 &, 0.000000000000000D+0,-0.774596669241483D+0,-0.100000000000000D+1 &, 0.774596669241483D+0,-0.774596669241483D+0,-0.100000000000000D+1 &,-0.774596669241483D+0,-0.774596669241483D+0, 0.100000000000000D+1 &, 0.000000000000000D+0,-0.774596669241483D+0, 0.100000000000000D+1 &, 0.774596669241483D+0,-0.774596669241483D+0, 0.100000000000000D+1 &,-0.774596669241483D+0, 0.000000000000000D+0, 0.100000000000000D+1 &, 0.000000000000000D+0, 0.000000000000000D+0, 0.100000000000000D+1 &, 0.774596669241483D+0, 0.000000000000000D+0, 0.100000000000000D+1 &,-0.774596669241483D+0, 0.774596669241483D+0, 0.100000000000000D+1 &, 0.000000000000000D+0, 0.774596669241483D+0, 0.100000000000000D+1 &, 0.774596669241483D+0, 0.774596669241483D+0, 0.100000000000000D+1 &,-0.774596669241483D+0,-0.100000000000000D+1,-0.774596669241483D+0 &, 0.000000000000000D+0,-0.100000000000000D+1,-0.774596669241483D+0 &, 0.774596669241483D+0,-0.100000000000000D+1,-0.774596669241483D+0 &,-0.774596669241483D+0,-0.100000000000000D+1, 0.000000000000000D+0 &, 0.000000000000000D+0,-0.100000000000000D+1, 0.000000000000000D+0 &, 0.774596669241483D+0,-0.100000000000000D+1, 0.000000000000000D+0 &,-0.774596669241483D+0,-0.100000000000000D+1, 0.774596669241483D+0 &, 0.000000000000000D+0,-0.100000000000000D+1, 0.774596669241483D+0 &, 0.774596669241483D+0,-0.100000000000000D+1, 0.774596669241483D+0 &, 0.100000000000000D+1,-0.774596669241483D+0,-0.774596669241483D+0 &, 0.100000000000000D+1, 0.000000000000000D+0,-0.774596669241483D+0 &, 0.100000000000000D+1, 0.774596669241483D+0,-0.774596669241483D+0 &, 0.100000000000000D+1,-0.774596669241483D+0, 0.000000000000000D+0 &, 0.100000000000000D+1, 0.000000000000000D+0, 0.000000000000000D+0 &, 0.100000000000000D+1, 0.774596669241483D+0, 0.000000000000000D+0 &, 0.100000000000000D+1,-0.774596669241483D+0, 0.774596669241483D+0 &, 0.100000000000000D+1, 0.000000000000000D+0, 0.774596669241483D+0 &, 0.100000000000000D+1, 0.774596669241483D+0, 0.774596669241483D+0 &, 0.774596669241483D+0, 0.100000000000000D+1,-0.774596669241483D+0 &, 0.000000000000000D+0, 0.100000000000000D+1,-0.774596669241483D+0 &,-0.774596669241483D+0, 0.100000000000000D+1,-0.774596669241483D+0 &, 0.774596669241483D+0, 0.100000000000000D+1, 0.000000000000000D+0 &, 0.000000000000000D+0, 0.100000000000000D+1, 0.000000000000000D+0 &,-0.774596669241483D+0, 0.100000000000000D+1, 0.000000000000000D+0 &, 0.774596669241483D+0, 0.100000000000000D+1, 0.774596669241483D+0 &, 0.000000000000000D+0, 0.100000000000000D+1, 0.774596669241483D+0 &,-0.774596669241483D+0, 0.100000000000000D+1, 0.774596669241483D+0 &,-0.100000000000000D+1, 0.774596669241483D+0,-0.774596669241483D+0 &,-0.100000000000000D+1, 0.000000000000000D+0,-0.774596669241483D+0 &,-0.100000000000000D+1,-0.774596669241483D+0,-0.774596669241483D+0 &,-0.100000000000000D+1, 0.774596669241483D+0, 0.000000000000000D+0 &,-0.100000000000000D+1, 0.000000000000000D+0, 0.000000000000000D+0 &,-0.100000000000000D+1,-0.774596669241483D+0, 0.000000000000000D+0 &,-0.100000000000000D+1, 0.774596669241483D+0, 0.774596669241483D+0 &,-0.100000000000000D+1, 0.000000000000000D+0, 0.774596669241483D+0 &,-0.100000000000000D+1,-0.774596669241483D+0,0.774596669241483D+0/ &),(/3,9,6/)) ! xlocal4=reshape((/ & 0.333333333333333D+0, 0.333333333333333D+0, 0.000000000000000D+0 &, 0.333333333333333D+0, 0.000000000000000D+0, 0.333333333333333D+0 &, 0.333333333333334D+0, 0.333333333333333D+0, 0.333333333333333D+0 &, 0.000000000000000D+0, 0.333333333333333D+0,0.333333333333333D+0/ &),(/3,1,4/)) ! xlocal10=reshape((/ & 0.166666666666667D+0, 0.166666666666667D+0, 0.000000000000000D+0 &, 0.166666666666667D+0, 0.666666666666667D+0, 0.000000000000000D+0 &, 0.666666666666667D+0, 0.166666666666667D+0, 0.000000000000000D+0 &, 0.166666666666667D+0, 0.000000000000000D+0, 0.166666666666667D+0 &, 0.666666666666667D+0, 0.000000000000000D+0, 0.166666666666667D+0 &, 0.166666666666667D+0, 0.000000000000000D+0, 0.666666666666667D+0 &, 0.666666666666666D+0, 0.166666666666667D+0, 0.166666666666667D+0 &, 0.166666666666666D+0, 0.666666666666667D+0, 0.166666666666667D+0 &, 0.166666666666666D+0, 0.166666666666667D+0, 0.666666666666667D+0 &, 0.000000000000000D+0, 0.166666666666667D+0, 0.166666666666667D+0 &, 0.000000000000000D+0, 0.166666666666667D+0, 0.666666666666667D+0 &, 0.000000000000000D+0, 0.666666666666667D+0,0.166666666666667D+0/ &),(/3,3,4/)) ! xlocal6=reshape((/ & 0.333333333333333D+0, 0.333333333333333D+0,-0.100000000000000D+1 &, 0.333333333333333D+0, 0.333333333333333D+0, 0.100000000000000D+1 &, 0.500000000000000D+0, 0.000000000000000D+0, 0.000000000000000D+0 &, 0.500000000000000D+0, 0.500000000000000D+0, 0.000000000000000D+0 &, 0.000000000000000D+0, 0.500000000000000D+0,0.000000000000000D+0/ &),(/3,1,5/)) ! xlocal15=reshape((/ & 0.166666666666667D+0, 0.166666666666667D+0,-0.100000000000000D+1 &, 0.166666666666667D+0, 0.666666666666667D+0,-0.100000000000000D+1 &, 0.666666666666667D+0, 0.166666666666667D+0,-0.100000000000000D+1 &, 0.d0,0.d0,0.d0 &, 0.166666666666667D+0, 0.166666666666667D+0, 0.100000000000000D+1 &, 0.666666666666667D+0, 0.166666666666667D+0, 0.100000000000000D+1 &, 0.166666666666667D+0, 0.666666666666667D+0, 0.100000000000000D+1 &, 0.d0,0.d0,0.d0 &, 0.211324865405187D+0, 0.000000000000000D+0,-0.577350269189626D+0 &, 0.788675134594813D+0, 0.000000000000000D+0,-0.577350269189626D+0 &, 0.211324865405187D+0, 0.000000000000000D+0, 0.577350269189626D+0 &, 0.788675134594813D+0, 0.000000000000000D+0, 0.577350269189626D+0 &, 0.788675134594813D+0, 0.211324865405187D+0,-0.577350269189626D+0 &, 0.211324865405187D+0, 0.788675134594813D+0,-0.577350269189626D+0 &, 0.788675134594813D+0, 0.211324865405187D+0, 0.577350269189626D+0 &, 0.211324865405187D+0, 0.788675134594813D+0, 0.577350269189626D+0 &, 0.000000000000000D+0, 0.211324865405187D+0, 0.577350269189626D+0 &, 0.000000000000000D+0, 0.788675134594813D+0, 0.577350269189626D+0 &, 0.000000000000000D+0, 0.211324865405187D+0,-0.577350269189626D+0 &, 0.000000000000000D+0,0.788675134594813D+0,-0.577350269189626D+0/ &),(/3,4,5/)) !
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.16/src/fixnode.f
1
2050
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2019 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine fixnode(nobject,nk,set,nset,istartset,iendset, & ialset,iobject,nodedesiinv,dgdxglob,objectset) ! ! determination of the fixed nodes for the sensitivity analysis ! implicit none ! character*81 objectset(4,*),set(*) ! integer nk,nobject,nset,istartset(*),iendset(*),ialset(*), & iobject,nodedesiinv(*),i,j,node ! real*8 dgdxglob(2,nk,nobject) ! ! determining the set of fixed nodes ! do i=1,nset if(objectset(3,iobject).eq.set(i)) exit enddo ! if(i.le.nset) then ! do j=istartset(i),iendset(i) if(ialset(j).gt.0) then node=ialset(j) if(nodedesiinv(node).eq.1) then dgdxglob(1,node,iobject)=1.0d0 dgdxglob(2,node,iobject)=1.0d0 endif else node=ialset(j-2) do node=node-ialset(j) if(node.ge.ialset(j-1)) exit if(nodedesiinv(node).eq.1) then dgdxglob(1,node,iobject)=1.0d0 dgdxglob(2,node,iobject)=1.0d0 endif enddo endif enddo endif ! return end
gpl-2.0
grlee77/scipy
scipy/integrate/quadpack/dqc25f.f
6
13255
subroutine dqc25f(f,a,b,omega,integr,nrmom,maxp1,ksave,result, * abserr,neval,resabs,resasc,momcom,chebmo) c***begin prologue dqc25f c***date written 810101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a2 c***keywords integration rules for functions with cos or sin c factor, clenshaw-curtis, gauss-kronrod c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute the integral i=integral of f(x) over (a,b) c where w(x) = cos(omega*x) or w(x)=sin(omega*x) and to c compute j = integral of abs(f) over (a,b). for small value c of omega or small intervals (a,b) the 15-point gauss-kronro c rule is used. otherwise a generalized clenshaw-curtis c method is used. c***description c c integration rules for functions with cos or sin factor c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x). the actual name for f needs to c be declared e x t e r n a l in the calling program. c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration c c omega - double precision c parameter in the weight function c c integr - integer c indicates which weight function is to be used c integr = 1 w(x) = cos(omega*x) c integr = 2 w(x) = sin(omega*x) c c nrmom - integer c the length of interval (a,b) is equal to the length c of the original integration interval divided by c 2**nrmom (we suppose that the routine is used in an c adaptive integration process, otherwise set c nrmom = 0). nrmom must be zero at the first call. c c maxp1 - integer c gives an upper bound on the number of chebyshev c moments which can be stored, i.e. for the c intervals of lengths abs(bb-aa)*2**(-l), c l = 0,1,2, ..., maxp1-2. c c ksave - integer c key which is one when the moments for the c current interval have been computed c c on return c result - double precision c approximation to the integral i c c abserr - double precision c estimate of the modulus of the absolute c error, which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c resabs - double precision c approximation to the integral j c c resasc - double precision c approximation to the integral of abs(f-i/(b-a)) c c on entry and return c momcom - integer c for each interval length we need to compute the c chebyshev moments. momcom counts the number of c intervals for which these moments have already been c computed. if nrmom.lt.momcom or ksave = 1, the c chebyshev moments for the interval (a,b) have c already been computed and stored, otherwise we c compute them and we increase momcom. c c chebmo - double precision c array of dimension at least (maxp1,25) containing c the modified chebyshev moments for the first momcom c momcom interval lengths c c ...................................................................... c***references (none) c***routines called d1mach,dgtsl,dqcheb,dqk15w,dqwgtf c***end prologue dqc25f c double precision a,abserr,ac,an,an2,as,asap,ass,b,centr,chebmo, * cheb12,cheb24,conc,cons,cospar,d,dabs,dcos,dsin,dqwgtf,d1, * d1mach,d2,estc,ests,f,fval,hlgth,oflow,omega,parint,par2,par22, * p2,p3,p4,resabs,resasc,resc12,resc24,ress12,ress24,result, * sinpar,v,x integer i,iers,integr,isym,j,k,ksave,m,momcom,neval,maxp1, * noequ,noeq1,nrmom c dimension chebmo(maxp1,25),cheb12(13),cheb24(25),d(25),d1(25), * d2(25),fval(25),v(28),x(11) c external f,dqwgtf c c the vector x contains the values cos(k*pi/24) c k = 1, ...,11, to be used for the chebyshev expansion of f c data x(1) / 0.9914448613 7381041114 4557526928 563d0 / data x(2) / 0.9659258262 8906828674 9743199728 897d0 / data x(3) / 0.9238795325 1128675612 8183189396 788d0 / data x(4) / 0.8660254037 8443864676 3723170752 936d0 / data x(5) / 0.7933533402 9123516457 9776961501 299d0 / data x(6) / 0.7071067811 8654752440 0844362104 849d0 / data x(7) / 0.6087614290 0872063941 6097542898 164d0 / data x(8) / 0.5000000000 0000000000 0000000000 000d0 / data x(9) / 0.3826834323 6508977172 8459984030 399d0 / data x(10) / 0.2588190451 0252076234 8898837624 048d0 / data x(11) / 0.1305261922 2005159154 8406227895 489d0 / c c list of major variables c ----------------------- c c centr - mid point of the integration interval c hlgth - half-length of the integration interval c fval - value of the function f at the points c (b-a)*0.5*cos(k*pi/12) + (b+a)*0.5, k = 0, ..., 24 c cheb12 - coefficients of the chebyshev series expansion c of degree 12, for the function f, in the c interval (a,b) c cheb24 - coefficients of the chebyshev series expansion c of degree 24, for the function f, in the c interval (a,b) c resc12 - approximation to the integral of c cos(0.5*(b-a)*omega*x)*f(0.5*(b-a)*x+0.5*(b+a)) c over (-1,+1), using the chebyshev series c expansion of degree 12 c resc24 - approximation to the same integral, using the c chebyshev series expansion of degree 24 c ress12 - the analogue of resc12 for the sine c ress24 - the analogue of resc24 for the sine c c c machine dependent constant c -------------------------- c c oflow is the largest positive magnitude. c c***first executable statement dqc25f oflow = d1mach(2) c centr = 0.5d+00*(b+a) hlgth = 0.5d+00*(b-a) parint = omega*hlgth c c compute the integral using the 15-point gauss-kronrod c formula if the value of the parameter in the integrand c is small. c if(dabs(parint).gt.0.2d+01) go to 10 call dqk15w(f,dqwgtf,omega,p2,p3,p4,integr,a,b,result, * abserr,resabs,resasc) neval = 15 go to 170 c c compute the integral using the generalized clenshaw- c curtis method. c 10 conc = hlgth*dcos(centr*omega) cons = hlgth*dsin(centr*omega) resasc = oflow neval = 25 c c check whether the chebyshev moments for this interval c have already been computed. c if(nrmom.lt.momcom.or.ksave.eq.1) go to 120 c c compute a new set of chebyshev moments. c m = momcom+1 par2 = parint*parint par22 = par2+0.2d+01 sinpar = dsin(parint) cospar = dcos(parint) c c compute the chebyshev moments with respect to cosine. c v(1) = 0.2d+01*sinpar/parint v(2) = (0.8d+01*cospar+(par2+par2-0.8d+01)*sinpar/parint)/par2 v(3) = (0.32d+02*(par2-0.12d+02)*cospar+(0.2d+01* * ((par2-0.80d+02)*par2+0.192d+03)*sinpar)/parint)/(par2*par2) ac = 0.8d+01*cospar as = 0.24d+02*parint*sinpar if(dabs(parint).gt.0.24d+02) go to 30 c c compute the chebyshev moments as the solutions of a c boundary value problem with 1 initial value (v(3)) and 1 c end value (computed using an asymptotic formula). c noequ = 25 noeq1 = noequ-1 an = 0.6d+01 do 20 k = 1,noeq1 an2 = an*an d(k) = -0.2d+01*(an2-0.4d+01)*(par22-an2-an2) d2(k) = (an-0.1d+01)*(an-0.2d+01)*par2 d1(k+1) = (an+0.3d+01)*(an+0.4d+01)*par2 v(k+3) = as-(an2-0.4d+01)*ac an = an+0.2d+01 20 continue an2 = an*an d(noequ) = -0.2d+01*(an2-0.4d+01)*(par22-an2-an2) v(noequ+3) = as-(an2-0.4d+01)*ac v(4) = v(4)-0.56d+02*par2*v(3) ass = parint*sinpar asap = (((((0.210d+03*par2-0.1d+01)*cospar-(0.105d+03*par2 * -0.63d+02)*ass)/an2-(0.1d+01-0.15d+02*par2)*cospar * +0.15d+02*ass)/an2-cospar+0.3d+01*ass)/an2-cospar)/an2 v(noequ+3) = v(noequ+3)-0.2d+01*asap*par2*(an-0.1d+01)* * (an-0.2d+01) c c solve the tridiagonal system by means of gaussian c elimination with partial pivoting. c c*** call to dgtsl has been replaced by call to c*** lapack routine dgtsv c c call dgtsl(noequ,d1,d,d2,v(4),iers) call dgtsv(noequ,1,d1(2),d,d2,v(4),noequ,iers) go to 50 c c compute the chebyshev moments by means of forward c recursion. c 30 an = 0.4d+01 do 40 i = 4,13 an2 = an*an v(i) = ((an2-0.4d+01)*(0.2d+01*(par22-an2-an2)*v(i-1)-ac) * +as-par2*(an+0.1d+01)*(an+0.2d+01)*v(i-2))/ * (par2*(an-0.1d+01)*(an-0.2d+01)) an = an+0.2d+01 40 continue 50 do 60 j = 1,13 chebmo(m,2*j-1) = v(j) 60 continue c c compute the chebyshev moments with respect to sine. c v(1) = 0.2d+01*(sinpar-parint*cospar)/par2 v(2) = (0.18d+02-0.48d+02/par2)*sinpar/par2 * +(-0.2d+01+0.48d+02/par2)*cospar/parint ac = -0.24d+02*parint*cospar as = -0.8d+01*sinpar if(dabs(parint).gt.0.24d+02) go to 80 c c compute the chebyshev moments as the solutions of a boundary c value problem with 1 initial value (v(2)) and 1 end value c (computed using an asymptotic formula). c an = 0.5d+01 do 70 k = 1,noeq1 an2 = an*an d(k) = -0.2d+01*(an2-0.4d+01)*(par22-an2-an2) d2(k) = (an-0.1d+01)*(an-0.2d+01)*par2 d1(k+1) = (an+0.3d+01)*(an+0.4d+01)*par2 v(k+2) = ac+(an2-0.4d+01)*as an = an+0.2d+01 70 continue an2 = an*an d(noequ) = -0.2d+01*(an2-0.4d+01)*(par22-an2-an2) v(noequ+2) = ac+(an2-0.4d+01)*as v(3) = v(3)-0.42d+02*par2*v(2) ass = parint*cospar asap = (((((0.105d+03*par2-0.63d+02)*ass+(0.210d+03*par2 * -0.1d+01)*sinpar)/an2+(0.15d+02*par2-0.1d+01)*sinpar- * 0.15d+02*ass)/an2-0.3d+01*ass-sinpar)/an2-sinpar)/an2 v(noequ+2) = v(noequ+2)-0.2d+01*asap*par2*(an-0.1d+01) * *(an-0.2d+01) c c solve the tridiagonal system by means of gaussian c elimination with partial pivoting. c c*** call to dgtsl has been replaced by call to c*** lapack routine dgtsv c c call dgtsl(noequ,d1,d,d2,v(3),iers) call dgtsv(noequ,1,d1(2),d,d2,v(3),noequ,iers) go to 100 c c compute the chebyshev moments by means of forward recursion. c 80 an = 0.3d+01 do 90 i = 3,12 an2 = an*an v(i) = ((an2-0.4d+01)*(0.2d+01*(par22-an2-an2)*v(i-1)+as) * +ac-par2*(an+0.1d+01)*(an+0.2d+01)*v(i-2)) * /(par2*(an-0.1d+01)*(an-0.2d+01)) an = an+0.2d+01 90 continue 100 do 110 j = 1,12 chebmo(m,2*j) = v(j) 110 continue 120 if (nrmom.lt.momcom) m = nrmom+1 if (momcom.lt.(maxp1-1).and.nrmom.ge.momcom) momcom = momcom+1 c c compute the coefficients of the chebyshev expansions c of degrees 12 and 24 of the function f. c fval(1) = 0.5d+00*f(centr+hlgth) fval(13) = f(centr) fval(25) = 0.5d+00*f(centr-hlgth) do 130 i = 2,12 isym = 26-i fval(i) = f(hlgth*x(i-1)+centr) fval(isym) = f(centr-hlgth*x(i-1)) 130 continue call dqcheb(x,fval,cheb12,cheb24) c c compute the integral and error estimates. c resc12 = cheb12(13)*chebmo(m,13) ress12 = 0.0d+00 k = 11 do 140 j = 1,6 resc12 = resc12+cheb12(k)*chebmo(m,k) ress12 = ress12+cheb12(k+1)*chebmo(m,k+1) k = k-2 140 continue resc24 = cheb24(25)*chebmo(m,25) ress24 = 0.0d+00 resabs = dabs(cheb24(25)) k = 23 do 150 j = 1,12 resc24 = resc24+cheb24(k)*chebmo(m,k) ress24 = ress24+cheb24(k+1)*chebmo(m,k+1) resabs = resabs+dabs(cheb24(k))+dabs(cheb24(k+1)) k = k-2 150 continue estc = dabs(resc24-resc12) ests = dabs(ress24-ress12) resabs = resabs*dabs(hlgth) if(integr.eq.2) go to 160 result = conc*resc24-cons*ress24 abserr = dabs(conc*estc)+dabs(cons*ests) go to 170 160 result = conc*ress24+cons*resc24 abserr = dabs(conc*ests)+dabs(cons*estc) 170 return end
bsd-3-clause
techno/gcc-mist32
gcc/testsuite/gfortran.dg/edit_real_1.f90
137
2462
! { dg-do run } ! Check real value edit descriptors ! Also checks that rounding is performed correctly program edit_real_1 character(len=20) s character(len=20) x character(len=200) t parameter (x = "xxxxxxxxxxxxxxxxxxxx") ! W append a "z" onto each test to check the field is the correct width s = x ! G -> F format write (s, '(G10.3,A)') 12.36, "z" if (s .ne. " 12.4 z") call abort s = x ! G -> E format write (s, '(G10.3,A)') -0.0012346, "z" if (s .ne. "-0.123E-02z") call abort s = x ! Gw.eEe format write (s, '(G10.3e1,a)') 12.34, "z" if (s .ne. " 12.3 z") call abort ! E format with excessive precision write (t, '(E199.192,A)') 1.5, "z" if ((t(1:7) .ne. " 0.1500") .or. (t(194:200) .ne. "00E+01z")) call abort ! EN format s = x write (s, '(EN15.3,A)') 12873.6, "z" if (s .ne. " 12.874E+03z") call abort ! EN format, negative exponent s = x write (s, '(EN15.3,A)') 12.345e-6, "z" if (s .ne. " 12.345E-06z") call abort ! ES format s = x write (s, '(ES10.3,A)') 16.235, "z" if (s .ne. " 1.624E+01z") call abort ! F format, small number s = x write (s, '(F10.8,A)') 1.0e-20, "z" if (s .ne. "0.00000000z") call abort ! E format, very large number. ! Used to overflow with positive scale factor s = x write (s, '(1PE10.3,A)') huge(0d0), "z" ! The actual value is target specific, so just do a basic check if ((s(1:1) .eq. "*") .or. (s(7:7) .ne. "+") .or. & (s(11:11) .ne. "z")) call abort ! F format, round up with carry to most significant digit. s = x write (s, '(F10.3,A)') 0.9999, "z" if (s .ne. " 1.000z") call abort ! F format, round up with carry to most significant digit < 0.1. s = x write (s, '(F10.3,A)') 0.0099, "z" if (s .ne. " 0.010z") call abort ! E format, round up with carry to most significant digit. s = x write (s, '(E10.3,A)') 0.9999, "z" if (s .ne. " 0.100E+01z") call abort ! EN format, round up with carry to most significant digit. s = x write (s, '(EN15.3,A)') 999.9999, "z" if (s .ne. " 1.000E+03z") call abort ! E format, positive scale factor s = x write (s, '(2PE10.4,A)') 1.2345, "z" if (s .ne. '12.345E-01z') call abort ! E format, negative scale factor s = x write (s, '(-2PE10.4,A)') 1.250001, "z" if (s .ne. '0.0013E+03z') call abort ! E format, single digit precision s = x write (s, '(E10.1,A)') 1.1, "z" if (s .ne. ' 0.1E+01z') call abort end
gpl-2.0
epfl-cosmo/q-e
XSpectra/src/lr_sm1_psi.f90
6
12573
! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE sm1_psi( recalc, lda, n, m, psi, spsi) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !---------------------------------------------------------------------------- ! ! This routine applies the S^{-1} matrix to m wavefunctions psi ! and puts the results in spsi. ! Requires the products of psi with all beta functions ! in array becp(nkb,m) (calculated in h_psi or by ccalbec) ! input: ! recalc decides if the overlap of beta functions is recalculated or not. ! this is needed e.g. if ions are moved and the overlap changes accordingly ! lda leading dimension of arrays psi, spsi ! n true dimension of psi, spsi ! m number of states psi ! psi ! output: ! spsi S^{-1}*psi ! ! Original routine written by Ralph Gebauer ! Modified by Christos Gougoussis ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only USE uspp, ONLY : okvan, vkb, nkb, qq USE uspp_param, ONLY : upf, nh USE ldaU, ONLY : lda_plus_u USE ions_base, ONLY : nat, ntyp => nsp, ityp use becmod, only : calbec ! IMPLICIT NONE ! ! ... First the dummy variables ! LOGICAL :: recalc INTEGER :: lda, n, m COMPLEX(KIND=DP) :: psi(lda,m), spsi(lda,m) ! CALL start_clock( 'sm1' ) ! IF ( gamma_only ) THEN CALL sm1_psi_gamma() ELSE ! CALL sm1_psi_k() ! END IF ! CALL stop_clock( 'sm1' ) ! RETURN ! CONTAINS !----------------------------------------------------------------------- SUBROUTINE sm1_psi_gamma() !----------------------------------------------------------------------- ! USE becmod, ONLY : becp ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ibnd, ii ! counters real(KIND=DP), ALLOCATABLE :: ps(:,:) real(kind=dp), allocatable, save :: BB_(:,:) ! the product vkb and psi ! ! ... initialize spsi ! CALL zcopy( lda * m, psi, 1, spsi, 1 ) ! ! ... The product with the beta functions ! IF ( nkb == 0 .OR. .NOT. okvan ) RETURN ! if(.not.allocated(BB_)) then allocate(BB_(nkb,nkb)) recalc = .true. endif if(recalc) then call errore('sm1_psi','recalculating BB_ matrix',-1) call pw_gemm('Y',nkb,nkb,n,vkb,lda,vkb,lda,BB_,nkb) ALLOCATE( ps( nkb, nkb ) ) ps(:,:) = (0.d0) ijkb0 = 0 do nt=1,ntyp if (upf(nt)%tvanp) then do na=1,nat if(ityp(na).eq.nt) then do ii=1,nkb do jh=1,nh(nt) jkb=ijkb0 + jh do ih=1,nh(nt) ikb = ijkb0 + ih ps(ikb,ii) = ps(ikb,ii) + qq(ih,jh,nt)*BB_(jkb,ii) enddo enddo enddo ijkb0 = ijkb0+nh(nt) endif enddo else DO na = 1, nat IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt) END DO endif enddo do ii=1,nkb ps(ii,ii) = ps(ii,ii) + 1.d0 enddo call dinv_matrix(ps,nkb) BB_(:,:) = 0.d0 ijkb0 = 0 do nt=1,ntyp if (upf(nt)%tvanp) then do na=1,nat if(ityp(na).eq.nt) then do ii=1,nkb do jh=1,nh(nt) jkb=ijkb0 + jh do ih=1,nh(nt) ikb = ijkb0 + ih BB_(ii,jkb) = BB_(ii,jkb) - ps(ii,ikb)*qq(ih,jh,nt) enddo enddo enddo ijkb0 = ijkb0+nh(nt) endif enddo else DO na = 1, nat IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt) END DO endif enddo deallocate(ps) endif call pw_gemm('Y',nkb,m,n,vkb,lda,psi,lda,becp%r,nkb) ! ALLOCATE( ps( nkb, m ) ) ps(:,:) = 0.D0 ! do ibnd=1,m do jkb=1,nkb do ii=1,nkb ps(jkb,ibnd) = ps(jkb,ibnd)+BB_(jkb,ii)*becp%r(ii,ibnd) enddo enddo enddo ! do ibnd=1,m do ii=1,nkb call zaxpy(n,CMPLX(ps(ii,ibnd),0.0d0,dp),vkb(1,ii),1,spsi(1,ibnd),1) enddo enddo ! DEALLOCATE( ps ) ! RETURN ! END SUBROUTINE sm1_psi_gamma ! !----------------------------------------------------------------------- SUBROUTINE sm1_psi_k() !----------------------------------------------------------------------- ! ! ... k-points version ! USE becmod, ONLY : becp USE klist, only : xk USE mp, only : mp_sum ! CG USE mp_global, ONLY : intra_pool_comm ! CG ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ibnd, ii, ik1 ! counters complex(KIND=DP), ALLOCATABLE :: ps(:,:) complex(kind=dp), allocatable, save :: BB_(:,:) ! the product vkb and psi ! ! ... initialize spsi ! CALL zcopy( lda * m, psi, 1, spsi, 1 ) ! ! ... The product with the beta functions ! IF ( nkb == 0 .OR. .NOT. okvan ) RETURN ! if(.not.allocated(BB_)) then allocate(BB_(nkb,nkb)) recalc = .true. endif if(recalc) then call errore('sm1_psi','recalculating BB_ matrix',-1) ALLOCATE( ps( nkb, nkb ) ) call zgemm('C','N',nkb,nkb,n,(1.d0,0.d0),vkb,lda,vkb,lda,(0.d0,0.d0),BB_(1,1),nkb) !****** CALL reduce( 2 * nkb * nkb, BB_ ) CALL mp_sum( BB_, intra_pool_comm ) !CG ps(:,:) = (0.d0,0.d0) ijkb0 = 0 do nt=1,ntyp if (upf(nt)%tvanp) then do na=1,nat if(ityp(na).eq.nt) then do ii=1,nkb do jh=1,nh(nt) jkb=ijkb0 + jh do ih=1,nh(nt) ikb = ijkb0 + ih ps(ikb,ii) = ps(ikb,ii) + BB_(jkb,ii)*qq(ih,jh,nt) enddo enddo enddo ijkb0 = ijkb0+nh(nt) endif enddo else DO na = 1, nat IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt) END DO endif enddo do ii=1,nkb ps(ii,ii) = ps(ii,ii) + (1.d0,0.d0) enddo call zinv_matrix(ps,nkb) BB_(:,:) = (0.d0,0.d0) ijkb0 = 0 do nt=1,ntyp if (upf(nt)%tvanp) then do na=1,nat if(ityp(na).eq.nt) then do ii=1,nkb do jh=1,nh(nt) jkb=ijkb0 + jh do ih=1,nh(nt) ikb = ijkb0 + ih ! BB_(ii,jkb) = BB_(ii,jkb) - ps(ii,jkb)*qq(ih,jh,nt) ! this seems false BB_(ii,jkb) = BB_(ii,jkb) - ps(ii,ikb)*qq(ih,jh,nt) ! modified by CG enddo enddo enddo ijkb0 = ijkb0+nh(nt) endif enddo else DO na = 1, nat IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt) END DO endif enddo deallocate(ps) endif ! call calbec ( lda, vkb, psi, becp ) ! erreur ici ? call calbec ( n, vkb, psi, becp%k ) ! ALLOCATE( ps( nkb, m ) ) ps(:,:) = (0.d0,0.d0) ! do ibnd=1,m do jkb=1,nkb do ii=1,nkb ps(jkb,ibnd) = ps(jkb,ibnd)+BB_(jkb,ii)*becp%k(ii,ibnd) enddo enddo enddo ! ! CALL zgemm( 'N', 'N', n, m, nkb, (1.D0, 0.D0), vkb, & lda, ps, nkb, (1.D0, 0.D0), spsi, lda ) ! CALL zcopy( lda * m, psi, 1, spsi, 1 ) ! remove this !!! DEALLOCATE( ps ) ! RETURN ! END SUBROUTINE sm1_psi_k ! END subroutine sm1_psi ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! subroutine dinv_matrix(M,N) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! USE kinds, ONLY : DP implicit none integer :: N ! matrix dimension real(kind=dp), dimension(0:N-1,0:N-1) :: M ! MAtrix to be inverted real(kind=dp), dimension(:), allocatable :: work integer, dimension(:), allocatable :: ipiv integer :: i,lwork,info integer, save :: lworkfact data lworkfact /64/ lwork = lworkfact*N allocate(ipiv(0:N-1)) allocate(work(1:lwork)) ! Factorize Matrix M call dgetrf( N, N, M, N, ipiv, info ) if (info.ne.0) then call errore('dinv_matrix','error in dgetrf',info) endif ! Invert Matrix call dgetri( N, M, N, ipiv, work, lwork, info ) if (info.ne.0) then call errore('dinv_matrix','error in dgetri',info) else lworkfact = int(work(1)/N) endif deallocate(work) deallocate(ipiv) end subroutine dinv_matrix !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! subroutine zinv_matrix(M,N) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! USE kinds, ONLY : DP implicit none integer :: N ! matrix dimension complex(kind=dp), dimension(0:N-1,0:N-1) :: M ! MAtrix to be inverted complex(kind=dp), dimension(:), allocatable :: work integer, dimension(:), allocatable :: ipiv integer :: i,lwork,info integer, save :: lworkfact data lworkfact /64/ lwork = lworkfact*N allocate(ipiv(0:N-1)) allocate(work(1:lwork)) ! Factorize Matrix M call zgetrf( N, N, M, N, ipiv, info ) if (info.ne.0) then call errore('zinv_matrix','error in zgetrf',info) endif ! Invert Matrix call zgetri( N, M, N, ipiv, work, lwork, info ) if (info.ne.0) then call errore('zinv_matrix','error in zgetri',info) else lworkfact = int(work(1)/N) endif deallocate(work) deallocate(ipiv) end subroutine zinv_matrix ! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE pw_gemm( sum_over_nodes, na, nb, n, a, lda, b, ldb, c, ldc ) !---------------------------------------------------------------------------- ! ! ... matrix times matrix with summation index running on G-vectors or PWs ! ... c(ij)=real(a(ik)*b(kj)) using half G vectors or half PWs ! ! ccalbec( nkb, npwx, npw, nbnd, vkb, psi, bec ) => ! pw_gemm( 'Y', nkb, nbnd, npw, vkb, npwx, psi, npwx, bec, nkb ) ! ! USE kinds, ONLY : DP USE gvect, ONLY : gstart USE mp, only : mp_sum ! CG USE mp_global, ONLY : intra_pool_comm ! CG ! IMPLICIT NONE ! ! ... input ! CHARACTER(LEN=1) :: sum_over_nodes INTEGER :: na, nb, n, lda, ldb, ldc COMPLEX(DP) :: a(lda,na), b(ldb,nb) ! ! ... output ! REAL(DP) :: c(ldc,nb) ! ! IF ( na == 0 .OR. nb == 0 ) RETURN ! CALL start_clock( 'pw_gemm' ) ! IF ( nb == 1 ) THEN ! CALL dgemv( 'C', 2*n, na, 2.D0, a, 2*lda, b, 1, 0.D0, c, 1 ) ! IF ( gstart == 2 ) c(:,1) = c(:,1) - a(1,:) * b(1,1) ! ELSE ! CALL dgemm( 'C', 'N', na, nb, 2*n, 2.D0, a, 2*lda, b, 2*ldb, 0.D0, c, ldc ) ! IF ( gstart == 2 ) & CALL DGER( na, nb, -1.D0, a, 2*lda, b, 2*ldb, c, ldc ) ! END IF ! !******** IF ( sum_over_nodes == 'y' .OR. & !******** sum_over_nodes == 'Y' ) CALL reduce( ldc*nb, c ) IF ( sum_over_nodes == 'y' .OR. & sum_over_nodes == 'Y' ) CALL mp_sum( c, intra_pool_comm ) !CG ! CALL stop_clock( 'pw_gemm' ) ! RETURN ! END SUBROUTINE pw_gemm
gpl-2.0
techno/gcc-mist32
gcc/testsuite/gfortran.dg/entry_14.f90
136
1767
! { dg-do run } ! ! PR fortran/34137 ! ! Entry was previously not possible in a module. ! Checks also whether the different result combinations ! work properly. ! module m1 implicit none contains function func(a) implicit none integer :: a, func real :: ent func = a*4 return entry ent(a) ent = -a*2.0 return end function func end module m1 module m2 implicit none contains function func(a) implicit none integer :: a, func real :: func2 func = a*8 return entry ent(a) result(func2) func2 = -a*4.0 return end function func end module m2 module m3 implicit none contains function func(a) result(res) implicit none integer :: a, res real :: func2 res = a*12 return entry ent(a) result(func2) func2 = -a*6.0 return end function func end module m3 module m4 implicit none contains function func(a) result(res) implicit none integer :: a, res real :: ent res = a*16 return entry ent(a) ent = -a*8.0 return end function func end module m4 program main implicit none call test1() call test2() call test3() call test4() contains subroutine test1() use m1 implicit none if(func(3) /= 12) call abort() if(abs(ent(7) + 14.0) > tiny(1.0)) call abort() end subroutine test1 subroutine test2() use m2 implicit none if(func(9) /= 72) call abort() if(abs(ent(11) + 44.0) > tiny(1.0)) call abort() end subroutine test2 subroutine test3() use m3 implicit none if(func(13) /= 156) call abort() if(abs(ent(17) + 102.0) > tiny(1.0)) call abort() end subroutine test3 subroutine test4() use m4 implicit none if(func(23) /= 368) call abort() if(abs(ent(27) + 216.0) > tiny(1.0)) call abort() end subroutine test4 end program main
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.17/src/plane_eq.f
1
1891
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2020 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! ! Subroutine plane_eq.f ! ! Creates the plane equation from three known points. ! Gives the z-coordinate of the fourth point as an output. ! ! x1,y1,z1: The coordinates of the first point ! x2,y2,z2: The coordinates of the second point ! x3,y3,z3: The coordinates of the third point ! x0,y0: The x and y-coordinates for the fourth point ! output: The z-coordinate according to the x0 and y0 ! ! by: Jaro Hokkanen ! subroutine plane_eq(x1,y1,z1,x2,y2,z2,x3,y3,z3,x0,y0,output) ! implicit none ! real*8 x1,y1,z1,x2,y2,z2,x3,y3,z3,x0,y0,output, & a,b,c,d ! d=x1*y2*z3+y1*z2*x3+z1*x2*y3-x1*z2*y3-y1*x2*z3-z1*y2*x3 if(d.ne.0.d0) then a=1.d0/d*(y2*z3+y1*z2+z1*y3-z2*y3-y1*z3-z1*y2) endif if(d.ne.0.d0) then b=1.d0/d*(x1*z3+z2*x3+z1*x2-x1*z2-x2*z3-z1*x3) endif if(d.ne.0.d0) then c=1.d0/d*(x1*y2+y1*x3+x2*y3-x1*y3-y1*x2-y2*x3) endif if(d.ne.0.d0) then output=1.d0/c*(1.d0-a*x0-b*y0) else output=0.d0 endif return end
gpl-2.0
freedesktop-unofficial-mirror/gstreamer-sdk__gcc
gcc/testsuite/gfortran.dg/read_eof_all.f90
169
1987
! { dg-do run } ! PR43265 Followup patch for miscellaneous EOF conditions. ! Eaxamples from Tobius Burnus use iso_fortran_env character(len=2) :: str, str2(2) integer :: a, b, c, ios str = '' str2 = '' open(99,file='test.dat',access='stream',form='unformatted', status='replace') write(99) ' ' close(99) open(99,file='test.dat') read(99, '(T7,i2)') i close(99, status="delete") if (i /= 0) call abort read(str(1:0), '(T7,i1)') i if (i /= 0) call abort read(str,'(i2,/,i2)',end=111) a, b call abort !stop 'ERROR: Expected EOF error (1)' 111 continue read(str2,'(i2,/,i2)',end=112) a, b read(str2,'(i2,/,i2,/,i2)',end=113) a, b, c call abort !stop 'ERROR: Expected EOF error (2)' 112 call abort !stop 'ERROR: Unexpected EOF (3)' 113 continue read(str,'(i2,/,i2)',end=121,pad='no') a, b call abort !stop 'ERROR: Expected EOF error (1)' 121 continue read(str2(:),'(i2,/,i2)', end=122, pad='no') a, b goto 125 122 call abort !stop 'ERROR: Expected no EOF error (2)' 125 continue read(str2(:),'(i2,/,i2,/,i2)',end=123,pad='no') a, b, c call abort !stop 'ERROR: Expected EOF error (3)' 123 continue read(str(2:1),'(i2,/,i2)',end=131, pad='no') a, b call abort !stop 'ERROR: Expected EOF error (1)' 131 continue read(str2(:)(2:1),'(i2,/,i2)',end=132, pad='no') a, b call abort !stop 'ERROR: Expected EOF error (2)' 132 continue read(str2(:)(2:1),'(i2,/,i2,/,i2)',end=133,pad='no') a, b, c call abort !stop 'ERROR: Expected EOF error (3)' 133 continue read(str(2:1),'(i2,/,i2)',iostat=ios, pad='no') a, b if (ios /= IOSTAT_END) call abort !stop 'ERROR: expected iostat /= 0 (1)' read(str2(:)(2:1),'(i2,/,i2)',iostat=ios, pad='no') a, b if (ios /= IOSTAT_END) call abort !stop 'ERROR: expected iostat /= 0 (2)' read(str2(:)(2:1),'(i2,/,i2,/,i2)',iostat=ios,pad='no') a, b, c if (ios /= IOSTAT_END) call abort !stop 'ERROR: expected iostat /= 0 (2)' ! print *, "success" end
gpl-2.0
francescosalvadore/openpde
src/lib/openpde_field/openpde_field_block_FV_1D.f90
1
6924
!< Concrete class of field block for Finite Volume 1D methods. module openpde_field_block_FV_1D !< Concrete class of field block for Finite Volume 1D methods. use, intrinsic :: iso_fortran_env, only : stderr=>error_unit use openpde_kinds use openpde_mesh_FV_1D use openpde_mesh_block_FV_1D implicit none private public :: field_block_FV_1D type :: field_block_FV_1D !< Concrete class of field block for Finite Volume 1D methods. real(R_P), allocatable, dimension(:) :: val !< Block value. contains ! public methods procedure, pass(this) :: alloc !< Allocate block. procedure, pass(this) :: free !< Free dynamic memory. procedure, pass(this) :: init !< Initilize block. procedure, pass(this) :: output !< Output block data. ! public operators generic, public :: operator(+) => add !< Operator `+` overloading. generic, public :: operator(*) => mul, realmul, mulreal !< Operator `*` overloading. generic, public :: operator(-) => sub !< Operator `-` overloading. generic, public :: operator(/) => div !< Operator `-` overloading. generic, public :: assignment(=) => assign_block !< Assignment overloading. ! private methods procedure, pass(lhs), private :: add !< Add blocks. procedure, pass(lhs), private :: assign_block !< Assign blocks. procedure, pass(lhs), private :: mul !< Multiply blocks. procedure, pass(lhs), private :: mulreal !< Multiply block for real. procedure, pass(rhs), private :: realmul !< Multiply real for block. procedure, pass(lhs), private :: sub !< Subtract blocks. procedure, pass(lhs), private :: div !< Subtract blocks. endtype field_block_FV_1D contains ! public methods subroutine alloc(this, mesh_block, error) !< Allocate block. class(field_block_FV_1D), intent(inout) :: this !< The block. type(mesh_block_FV_1D), intent(in) :: mesh_block !< Mesh of the block. integer(I_P), intent(out), optional :: error !< Error status. call this%free allocate(this%val(1-mesh_block%ng:mesh_block%n+mesh_block%ng)) if (present(error)) error = 0 end subroutine alloc elemental subroutine free(this) !< Free dynamic memory. class(field_block_FV_1D), intent(inout) :: this !< The field. if (allocated(this%val)) deallocate(this%val) end subroutine free subroutine init(this, mesh_field, b, error) !< Initialize block. class(field_block_FV_1D), intent(inout) :: this !< The block. type(mesh_FV_1D), intent(in) :: mesh_field !< Mesh of the whole field. integer(I_P), intent(in) :: b !< Block index. integer(I_P), intent(out), optional :: error !< Error status. integer(I_P) :: offset !< Cells offset. integer(I_P) :: n !< Total number of Cells. integer(I_P) :: i !< Counter. offset = 0 ; if (b>1) offset = sum(mesh_field%blocks(1:b-1)%n, dim=1) n = sum(mesh_field%blocks%n, dim=1) call this%alloc(mesh_block=mesh_field%blocks(b), error=error) do i = 1, mesh_field%blocks(b)%n this%val(i) = sin((i+offset)*2._R_P*acos(-1._R_P)/n) enddo if (present(error)) error = 0 end subroutine init subroutine output(this, unit, mesh_block, error) !< Output block data. class(field_block_FV_1D), intent(in) :: this !< The block. integer(I_P), intent(in) :: unit !< Unit file. type(mesh_block_FV_1D), intent(in) :: mesh_block !< Mesh of the block. integer(I_P), intent(out), optional :: error !< Error status. integer(I_P) :: i !< Counter. do i=1, mesh_block%n write(unit, *) this%val(i) enddo if (present(error)) error = 0 end subroutine output ! private methods elemental function add(lhs, rhs) result(opr) !< Add blocks. class(field_block_FV_1D), intent(in) :: lhs !< Left hand side. type(field_block_FV_1D), intent(in) :: rhs !< Left hand side. type(field_block_FV_1D) :: opr !< Operator result. opr%val = lhs%val + rhs%val end function add elemental subroutine assign_block(lhs, rhs) !< Assign blocks. class(field_block_FV_1D), intent(inout) :: lhs !< Left hand side. type(field_block_FV_1D), intent(in) :: rhs !< Left hand side. lhs%val = rhs%val end subroutine assign_block elemental function mul(lhs, rhs) result(opr) !< Multiply blocks. class(field_block_FV_1D), intent(in) :: lhs !< Left hand side. type(field_block_FV_1D), intent(in) :: rhs !< Left hand side. type(field_block_FV_1D) :: opr !< Operator result. opr%val = lhs%val * rhs%val end function mul elemental function mulreal(lhs, rhs) result(opr) !< Multiply field for real. class(field_block_FV_1D), intent(in) :: lhs !< Left hand side. real(R_P), intent(in) :: rhs !< Right hand side. type(field_block_FV_1D) :: opr !< Operator result. opr%val = lhs%val * rhs end function mulreal elemental function realmul(lhs, rhs) result(opr) !< Multiply real for field. real(R_P), intent(in) :: lhs !< Left hand side. class(field_block_FV_1D), intent(in) :: rhs !< Right hand side. type(field_block_FV_1D) :: opr !< Operator result. opr%val = lhs * rhs%val end function realmul elemental function sub(lhs, rhs) result(opr) !< Subtract blocks. class(field_block_FV_1D), intent(in) :: lhs !< Left hand side. type(field_block_FV_1D), intent(in) :: rhs !< Left hand side. type(field_block_FV_1D) :: opr !< Operator result. opr%val = lhs%val - rhs%val end function sub elemental function div(lhs, rhs) result(opr) !< Subtract blocks. class(field_block_FV_1D), intent(in) :: lhs !< Left hand side. type(field_block_FV_1D), intent(in) :: rhs !< Left hand side. type(field_block_FV_1D) :: opr !< Operator result. opr%val = lhs%val / rhs%val end function div end module openpde_field_block_FV_1D
bsd-2-clause
prool/ccx_prool
CalculiX/ccx_2.16/src/calcvol.f
3
1558
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine calcvol(n1,n2,n3,n4,cotet,volume) ! ! calculates the volume of a tetrahedral element with nodes ! n1, n2, n3 and n4 ! implicit none ! integer n1,n2,n3,n4 ! real*8 cotet(3,*),s(3),volume ! s(1)=(cotet(2,n2)-cotet(2,n1))*(cotet(3,n3)-cotet(3,n1))- & (cotet(3,n2)-cotet(3,n1))*(cotet(2,n3)-cotet(2,n1)) s(2)=(cotet(3,n2)-cotet(3,n1))*(cotet(1,n3)-cotet(1,n1))- & (cotet(1,n2)-cotet(1,n1))*(cotet(3,n3)-cotet(3,n1)) s(3)=(cotet(1,n2)-cotet(1,n1))*(cotet(2,n3)-cotet(2,n1))- & (cotet(2,n2)-cotet(2,n1))*(cotet(1,n3)-cotet(1,n1)) volume=((cotet(1,n4)-cotet(1,n1))*s(1)+ & (cotet(2,n4)-cotet(2,n1))*s(2)+ & (cotet(3,n4)-cotet(3,n1))*s(3))/6.d0 ! return end
gpl-2.0
epfl-cosmo/q-e
PW/src/update_pot.f90
7
29070
! ! Copyright (C) 2001-2016 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ONE (1.D0,0.D0) #define ZERO (0.D0,0.D0) ! MODULE extrapolation ! ! ... wfc and rho extrapolation ! USE kinds, ONLY: dp ! REAL(dp) :: & alpha0, &! the mixing parameters for the extrapolation beta0 ! of the starting potential INTEGER :: & history, &! number of old steps available for potential updating pot_order = 0, &! type of potential updating ( see update_pot ) wfc_order = 0 ! type of wavefunctions updating ( see update_pot ) ! PRIVATE PUBLIC :: pot_order, wfc_order PUBLIC :: update_file, update_neb, update_pot, extrapolate_charge ! CONTAINS ! !---------------------------------------------------------------------------- SUBROUTINE update_file ( ) !---------------------------------------------------------------------------- ! ! ... Reads, updates and rewrites the file containing atomic positions at ! ... two previous steps, used by potential and wavefunction extrapolation ! ... Requires: number of atoms nat, current atomic positions tau ! ... Produces: length of history and tau at current and two previous steps ! ... written to file $prefix.update ! USE io_global, ONLY : ionode USE io_files, ONLY : iunupdate, seqopn USE ions_base, ONLY : nat, tau ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: tauold(:,:,:) LOGICAL :: exst ! IF ( ionode ) THEN ! ALLOCATE( tauold( 3, nat, 3 ) ) CALL seqopn( iunupdate, 'update', 'FORMATTED', exst ) IF ( .NOT. exst ) THEN ! ! ... file not present, start the procedure ! history = 1 tauold = 0.D0 ELSE READ( UNIT = iunupdate, FMT = * ) history READ( UNIT = iunupdate, FMT = * ) tauold REWIND( UNIT = iunupdate ) ! ! ... read and save the previous two steps ( three steps are saved ) ! tauold(:,:,3) = tauold(:,:,2) tauold(:,:,2) = tauold(:,:,1) tauold(:,:,1) = tau(:,:) ! ! ... history is updated (a new ionic step has been done) ! history = MIN( 3, ( history + 1 ) ) ! END IF ! ! ... history and positions are written on file, file is closed ! WRITE( UNIT = iunupdate, FMT = * ) history WRITE( UNIT = iunupdate, FMT = * ) tauold CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) DEALLOCATE( tauold ) ! END IF ! END SUBROUTINE update_file ! !---------------------------------------------------------------------------- SUBROUTINE update_neb ( ) !---------------------------------------------------------------------------- ! ! ... Potential and wavefunction extrapolation for NEB ! ... Prepares file with previous steps for usage by update_pot ! ... Must be merged soon with update_file for MD in PWscf ! USE io_global, ONLY : ionode, ionode_id USE io_files, ONLY : iunupdate, seqopn USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm USE ions_base, ONLY : nat, tau, nsp, ityp USE gvect, ONLY : ngm, g, eigts1, eigts2, eigts3 USE vlocal, ONLY : strf USE cell_base, ONLY : bg USE fft_base, ONLY : dfftp ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: tauold(:,:,:) LOGICAL :: exst ! ALLOCATE( tauold( 3, nat, 3 ) ) ! IF ( ionode ) THEN ! CALL seqopn( iunupdate, 'update', 'FORMATTED', exst ) IF ( exst ) THEN ! READ( UNIT = iunupdate, FMT = * ) history READ( UNIT = iunupdate, FMT = * ) tauold ! ELSE ! ! ... file not present: create one (update_pot needs it) ! history = 0 tauold = 0.D0 WRITE( UNIT = iunupdate, FMT = * ) history WRITE( UNIT = iunupdate, FMT = * ) tauold ! END IF ! CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) ! END IF ! CALL mp_bcast( history, ionode_id, intra_image_comm ) CALL mp_bcast( tauold, ionode_id, intra_image_comm ) ! IF ( history > 0 ) THEN ! ! ... potential and wavefunctions are extrapolated only if ! ... we are starting a new self-consistency ( scf on the ! ... previous image was achieved ) ! IF ( pot_order > 0 ) THEN ! ! ... structure factors of the old positions are computed ! ... (needed for the old atomic charge; update_pot will then ! ... overwrite them with structure factors at curret positions) ! CALL struc_fact( nat, tauold(:,:,1), nsp, ityp, ngm, g, bg, & dfftp%nr1, dfftp%nr2, dfftp%nr3, strf, & eigts1, eigts2, eigts3 ) ! END IF ! CALL update_pot() ! END IF ! IF ( ionode ) THEN ! ! ... save the previous two steps, for usage in next scf ! ... ( a total of three ionic steps is saved ) ! tauold(:,:,3) = tauold(:,:,2) tauold(:,:,2) = tauold(:,:,1) tauold(:,:,1) = tau(:,:) ! ! ... update history count (will be used at next step) ! history = MIN( 3, ( history + 1 ) ) ! ! ... update history file (must be deleted if scf conv. not reached) ! CALL seqopn( iunupdate, 'update', 'FORMATTED', exst ) ! WRITE( UNIT = iunupdate, FMT = * ) history WRITE( UNIT = iunupdate, FMT = * ) tauold ! CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) ! END IF ! DEALLOCATE ( tauold ) ! END SUBROUTINE update_neb !---------------------------------------------------------------------------- SUBROUTINE update_pot() !---------------------------------------------------------------------------- ! ! ... update the potential extrapolating the charge density and extrapolates ! ... the wave-functions ! ! ... charge density extrapolation : ! ! ... pot_order = 0 copy the old potential (nothing is done) ! ! ... pot_order = 1 subtract old atomic charge density and sum the new ! ... if dynamics is done the routine extrapolates also ! ... the difference between the the scf charge and the ! ... atomic one, ! ! ... pot_order = 2 first order extrapolation : ! ! ... rho(t+dt) = 2*rho(t) - rho(t-dt) ! ! ... pot_order = 3 second order extrapolation : ! ! ... rho(t+dt) = rho(t) + ! ... + alpha0*( rho(t) - rho(t-dt) ) ! ... + beta0* ( rho(t-dt) - rho(t-2*dt) ) ! ! ! ... wave-functions extrapolation : ! ! ... wfc_order = 0 nothing is done ! ! ... wfc_order = 2 first order extrapolation : ! ! ... |psi(t+dt)> = 2*|psi(t)> - |psi(t-dt)> ! ! ... wfc_order = 3 second order extrapolation : ! ! ... |psi(t+dt)> = |psi(t)> + ! ... + alpha0*( |psi(t)> - |psi(t-dt)> ) ! ... + beta0* ( |psi(t-dt)> - |psi(t-2*dt)> ) ! ! ! ... alpha0 and beta0 are calculated in "find_alpha_and_beta()" so that ! ... |tau'-tau(t+dt)| is minimum; ! ... tau' and tau(t+dt) are respectively the atomic positions at time ! ... t+dt and the extrapolated one: ! ! ... tau(t+dt) = tau(t) + alpha0*( tau(t) - tau(t-dt) ) ! ... + beta0*( tau(t-dt) -tau(t-2*dt) ) ! ! USE io_files, ONLY : prefix, iunupdate, tmp_dir, wfc_dir, nd_nmbr, seqopn USE io_global, ONLY : ionode, ionode_id USE cell_base, ONLY : bg USE ions_base, ONLY : nat, tau, nsp, ityp USE gvect, ONLY : ngm, g USE vlocal, ONLY : strf USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: tauold(:,:,:) INTEGER :: rho_extr, wfc_extr LOGICAL :: exists ! ! CALL start_clock( 'update_pot' ) ! ALLOCATE( tauold( 3, nat, 3 ) ) ! IF ( ionode ) THEN ! CALL seqopn( iunupdate, 'update', 'FORMATTED', exists ) ! IF ( exists ) THEN ! READ( UNIT = iunupdate, FMT = * ) history READ( UNIT = iunupdate, FMT = * ) tauold ! ! ... find the best coefficients for the extrapolation ! ... of the charge density and of the wavefunctions ! ... (see Arias et al. PRB 45, 1538 (1992) ) ! CALL find_alpha_and_beta( nat, tau, tauold, alpha0, beta0 ) ! CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) ! ELSE ! ! ... default values of extrapolation coefficients ! alpha0 = 1.D0 beta0 = 0.D0 history = 0 tauold = 0.0_dp ! CLOSE( UNIT = iunupdate, STATUS = 'DELETE' ) ! END IF ! END IF ! CALL mp_bcast( alpha0, ionode_id, intra_image_comm ) CALL mp_bcast( beta0, ionode_id, intra_image_comm ) CALL mp_bcast( history,ionode_id, intra_image_comm ) CALL mp_bcast( tauold, ionode_id, intra_image_comm ) ! IF ( wfc_order > 0 ) THEN ! ! ... determines the maximum effective order of the extrapolation on the ! ... basis of the files that are really available (for wavefunctions) ! IF ( ionode ) THEN ! wfc_extr = MIN( 1, history, wfc_order ) ! INQUIRE( FILE = TRIM( wfc_dir ) // & & TRIM( prefix ) // '.oldwfc' // nd_nmbr, EXIST = exists ) ! IF ( exists ) THEN ! wfc_extr = MIN( 2, history, wfc_order ) ! INQUIRE( FILE = TRIM( wfc_dir ) // & & TRIM( prefix ) // '.old2wfc' // nd_nmbr , EXIST = exists ) ! IF ( exists ) wfc_extr = MIN( 3, history, wfc_order ) ! END IF ! END IF ! CALL mp_bcast( wfc_extr, ionode_id, intra_image_comm ) ! ! ! ... save tau(t+dt), replace with tau(t) ! ... extrapolate_wfcs needs tau(t) to evaluate S(t) ! ... note that structure factors have not yet been updated ! tauold (:,:,2) = tau (:,:) tau (:,:) = tauold (:,:,1) ! CALL extrapolate_wfcs( wfc_extr ) ! ! ... restore tau(t+dt) ! tau (:,:) = tauold (:,:,2) ! END IF ! DEALLOCATE( tauold ) ! ! ... determines the maximum effective order of the extrapolation on the ! ... basis of the files that are really available (for the charge density) ! IF ( ionode ) THEN ! rho_extr = MIN( 1, history, pot_order ) ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old.dat', EXIST = exists ) ! IF ( .NOT. exists ) & ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old.xml', EXIST = exists ) ! IF ( exists ) THEN ! rho_extr = MIN( 2, history, pot_order ) ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old2.dat', EXIST = exists ) ! IF ( .NOT. exists ) & ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old2.xml', EXIST = exists ) ! IF ( exists ) rho_extr = MIN( 3, history, pot_order ) ! END IF ! END IF ! CALL mp_bcast( rho_extr, ionode_id, intra_image_comm ) ! CALL extrapolate_charge( rho_extr ) ! CALL stop_clock( 'update_pot' ) ! RETURN ! END SUBROUTINE update_pot ! !---------------------------------------------------------------------------- SUBROUTINE extrapolate_charge( rho_extr ) !---------------------------------------------------------------------------- ! USE constants, ONLY : eps32 USE io_global, ONLY : stdout USE cell_base, ONLY : omega, bg USE ions_base, ONLY : nat, tau, nsp, ityp USE fft_base, ONLY : dfftp, dffts USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : ngm, g, gg, gstart, nl, eigts1, eigts2, eigts3 USE lsda_mod, ONLY : lsda, nspin USE scf, ONLY : rho, rho_core, rhog_core, v USE ldaU, ONLY : eth USE wavefunctions_module, ONLY : psic USE ener, ONLY : ehart, etxc, vtxc, epaw USE extfield, ONLY : etotefield USE cellmd, ONLY : lmovecell, omega_old USE vlocal, ONLY : strf USE noncollin_module, ONLY : noncolin USE klist, ONLY : nelec USE io_rho_xml, ONLY : write_rho, read_rho USE paw_variables, ONLY : okpaw, ddd_paw USE paw_onecenter, ONLY : PAW_potential ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: rho_extr ! REAL(DP), ALLOCATABLE :: work(:,:), work1(:,:) ! work is the difference between rho and atomic rho at time t ! work1 is the same thing at time t-dt REAL(DP) :: charge ! INTEGER :: is ! IF ( rho_extr < 1 ) THEN ! ! ... calculate structure factors for the new positions ! IF ( lmovecell ) CALL scale_h() ! CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, & dfftp%nr1, dfftp%nr2, dfftp%nr3, strf, eigts1, eigts2, eigts3 ) ! ! ... new charge density from extrapolated wfcs ! IF ( rho_extr < 0 ) THEN ! CALL sum_band () ! WRITE( UNIT = stdout, FMT = '(5X, & & "charge density from extrapolated wavefunctions")' ) ELSE ! WRITE( UNIT = stdout, FMT = '(5X, & & "charge density from previous step")' ) ! END IF ! CALL set_rhoc() ! ELSE ! ALLOCATE( work( dfftp%nnr, 1 ) ) ! work = 0.D0 ! ! ... in the lsda case the magnetization will follow rigidly the density ! ... keeping fixed the value of zeta = mag / rho_tot. ! ... zeta is set here and put in rho%of_r(:,2) while rho%of_r(:,1) ! ... will contain the total valence charge ! IF ( lsda ) CALL rho2zeta( rho%of_r, rho_core, dfftp%nnr, nspin, 1 ) ! IF ( noncolin ) THEN ! DO is = 2, nspin ! WHERE( rho%of_r(:,1) > eps32 ) ! rho%of_r(:,is) = rho%of_r(:,is) / rho%of_r(:,1) ! ELSEWHERE ! rho%of_r(:,is) = 0.D0 ! END WHERE ! END DO ! END IF ! ! ... subtract the old atomic charge density ! CALL atomic_rho( work, 1 ) ! rho%of_r(:,1) = rho%of_r(:,1) - work(:,1) ! IF ( lmovecell ) rho%of_r(:,1) = rho%of_r(:,1) * omega_old ! ! ... extrapolate the difference between the atomic charge and ! ... the self-consistent one ! IF ( rho_extr == 1 ) THEN ! ! ... if rho_extr = 1 update the potential subtracting to the charge ! ... density the "old" atomic charge and summing the ! ... new one ! WRITE( UNIT = stdout, FMT = '(5X, & & "NEW-OLD atomic charge density approx. for the potential")' ) ! CALL write_rho( rho%of_r, 1, 'old' ) ! ELSE IF ( rho_extr == 2 ) THEN ! WRITE( UNIT = stdout, & FMT = '(5X,"first order charge density extrapolation")' ) ! ! ... oldrho -> work ! CALL read_rho( work, 1, 'old' ) ! ! ... rho%of_r -> oldrho ! ... work -> oldrho2 ! CALL write_rho( rho%of_r, 1, 'old' ) CALL write_rho( work, 1, 'old2' ) ! ! ... extrapolation ! rho%of_r(:,1) = 2.D0*rho%of_r(:,1) - work(:,1) ! ELSE IF ( rho_extr == 3 ) THEN ! WRITE( UNIT = stdout, & FMT = '(5X,"second order charge density extrapolation")' ) ! ALLOCATE( work1( dfftp%nnr, 1 ) ) ! work1 = 0.D0 ! ! ... oldrho2 -> work1 ! ... oldrho -> work ! CALL read_rho( work1, 1, 'old2' ) CALL read_rho( work, 1, 'old' ) ! ! ... rho%of_r -> oldrho ! ... work -> oldrho2 ! CALL write_rho( rho%of_r, 1, 'old' ) CALL write_rho( work, 1, 'old2' ) ! rho%of_r(:,1) = rho%of_r(:,1) + alpha0*( rho%of_r(:,1) - work(:,1) ) + & beta0*( work(:,1) - work1(:,1) ) ! DEALLOCATE( work1 ) ! END IF ! IF ( lmovecell ) rho%of_r(:,1) = rho%of_r(:,1) / omega ! ! ... calculate structure factors for the new positions ! IF ( lmovecell ) CALL scale_h() ! CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, & dfftp%nr1, dfftp%nr2, dfftp%nr3, strf, eigts1, eigts2, eigts3 ) ! CALL set_rhoc() ! ! ... add atomic charges in the new positions ! CALL atomic_rho( work, 1 ) ! rho%of_r(:,1) = rho%of_r(:,1) + work(:,1) ! ! ... reset up and down charge densities in the LSDA case ! IF ( lsda ) CALL rho2zeta( rho%of_r, rho_core, dfftp%nnr, nspin, -1 ) ! IF ( noncolin ) THEN ! DO is = 2, nspin ! WHERE( rho%of_r(:,1) > eps32 ) ! rho%of_r(:,is) = rho%of_r(:,is)*rho%of_r(:,1) ! ELSEWHERE ! rho%of_r(:,is) = 0.D0 ! END WHERE ! END DO ! END IF ! DEALLOCATE( work ) ! END IF ! ! ... bring extrapolated rho to G-space ! DO is = 1, nspin ! psic(:) = rho%of_r(:,is) ! CALL fwfft ('Dense', psic, dfftp) ! rho%of_g(:,is) = psic(nl(:)) ! END DO ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) IF (okpaw) CALL PAW_potential(rho%bec, ddd_PAW, epaw) ! IF ( ABS( charge - nelec ) / charge > 1.D-7 ) THEN ! WRITE( stdout, & '(5X,"extrapolated charge ",F10.5,", renormalised to ",F10.5)') & charge, nelec ! rho%of_r = rho%of_r / charge*nelec rho%of_g = rho%of_g / charge*nelec ! END IF ! RETURN ! END SUBROUTINE extrapolate_charge ! !----------------------------------------------------------------------- SUBROUTINE extrapolate_wfcs( wfc_extr ) !----------------------------------------------------------------------- ! ! ... This routine extrapolate the wfc's after a "parallel alignment" ! ... of the basis of the t-dt and t time steps, according to a recipe ! ... by Mead, Rev. Mod. Phys., vol 64, pag. 51 (1992), eqs. 3.20-3.29 ! USE io_global, ONLY : stdout USE klist, ONLY : nks, ngk, xk, igk_k USE lsda_mod, ONLY : lsda, current_spin, isk USE wvfct, ONLY : nbnd, npwx USE ions_base, ONLY : nat, tau USE io_files, ONLY : nwordwfc, iunwfc, iunoldwfc, & iunoldwfc2, diropn USE buffers, ONLY : get_buffer, save_buffer USE uspp, ONLY : nkb, vkb, okvan USE wavefunctions_module, ONLY : evc USE noncollin_module, ONLY : noncolin, npol USE control_flags, ONLY : gamma_only USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp, calbec USE mp_images, ONLY : intra_image_comm USE mp, ONLY : mp_barrier ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: wfc_extr ! INTEGER :: npw, ik, zero_ew, lwork, info ! do-loop variables ! counter on k-points ! number of zero 'eigenvalues' of the s_m matrix ! used by singular value decomposition (ZGESVD) ! flag returned by ZGESVD COMPLEX(DP), ALLOCATABLE :: sp_m(:,:), u_m(:,:), w_m(:,:), work(:) ! the overlap matrix s^+ (eq. 3.24) ! left unitary matrix in the SVD of sp_m ! right unitary matrix in the SVD of sp_m ! workspace for ZGESVD COMPLEX(DP), ALLOCATABLE :: evcold(:,:), aux(:,:) ! wavefunctions at previous iteration + workspace REAL(DP), ALLOCATABLE :: ew(:), rwork(:), rp_m(:,:) ! the eigenvalues of s_m ! workspace for ZGESVD ! real version of sp_m LOGICAL :: exst ! CALL mp_barrier( intra_image_comm ) ! debug ! IF ( wfc_extr == 1 ) THEN ! CALL diropn( iunoldwfc, 'oldwfc', 2*nwordwfc, exst ) ! DO ik = 1, nks ! ! ... "now" -> "old" ! IF ( nks > 1 ) CALL get_buffer( evc, nwordwfc, iunwfc, ik ) CALL davcio( evc, 2*nwordwfc, iunoldwfc, ik, +1 ) ! END DO ! CLOSE( UNIT = iunoldwfc, STATUS = 'KEEP' ) ! ELSE ! CALL diropn( iunoldwfc, 'oldwfc', 2*nwordwfc, exst ) IF ( wfc_extr > 2 .OR. wfc_order > 2 ) & CALL diropn( iunoldwfc2, 'old2wfc', 2*nwordwfc, exst ) ! IF ( wfc_extr == 2 ) THEN ! WRITE( stdout, '(/5X,"first order wave-functions extrapolation")' ) ! ELSE ! WRITE( stdout, '(/5X,"second order wave-functions extrapolation")' ) ! END IF ! ALLOCATE( evcold( npwx*npol, nbnd ), aux( npwx*npol, nbnd ) ) ALLOCATE( sp_m( nbnd, nbnd ), u_m( nbnd, nbnd ), w_m( nbnd, nbnd ), ew( nbnd ) ) CALL allocate_bec_type ( nkb, nbnd, becp ) ! IF( SIZE( aux ) /= SIZE( evc ) ) & CALL errore('extrapolate_wfcs ', ' aux wrong size ', ABS( SIZE( aux ) - SIZE( evc ) ) ) ! ! query workspace ! lwork = 5*nbnd ! ALLOCATE( rwork( lwork ) ) ALLOCATE( work( lwork ) ) lwork = -1 CALL ZGESVD( 'A', 'A', nbnd, nbnd, sp_m, nbnd, ew, u_m, & nbnd, w_m, nbnd, work, lwork, rwork, info ) ! lwork = INT(work( 1 )) + 1 ! IF( lwork > SIZE( work ) ) THEN DEALLOCATE( work ) ALLOCATE( work( lwork ) ) END IF ! zero_ew = 0 ! DO ik = 1, nks ! ! ... read wavefcts as (t-dt), replace with wavefcts at (t) ! CALL davcio( evcold, 2*nwordwfc, iunoldwfc, ik, -1 ) IF ( nks > 1 ) CALL get_buffer( evc, nwordwfc, iunwfc, ik ) CALL davcio( evc, 2*nwordwfc, iunoldwfc, ik, +1 ) ! npw = ngk (ik) IF ( okvan ) THEN ! ! ... Ultrasoft PP: calculate overlap matrix ! ... Required by s_psi: ! ... nonlocal pseudopotential projectors |beta>, <psi|beta> ! IF ( nkb > 0 ) CALL init_us_2( npw, igk_k(1,ik), xk(1,ik), vkb ) CALL calbec( npw, vkb, evc, becp ) ! CALL s_psi ( npwx, npw, nbnd, evc, aux ) ! ELSE ! ! ... Norm-Conserving PP: no overlap matrix ! aux = evc ! END IF ! ! ... construct s^+_m = <psi(t)|S|psi(t-dt)> ! IF ( gamma_only ) THEN ALLOCATE( rp_m ( nbnd, nbnd ) ) CALL calbec ( npw, aux, evcold, rp_m ) sp_m(:,:) = CMPLX(rp_m(:,:),0.0_DP,kind=DP) DEALLOCATE( rp_m ) ELSE IF ( noncolin) THEN CALL calbec ( npwx*npol, aux, evcold, sp_m ) ELSE CALL calbec ( npw, aux, evcold, sp_m ) END IF ! ! ... the unitary matrix [sp_m*s_m]^(-1/2)*sp_m (eq. 3.29) by means the ! ... singular value decomposition (SVD) of sp_m = u_m*diag(ew)*w_m ! ... becomes u_m * w_m ! CALL ZGESVD( 'A', 'A', nbnd, nbnd, sp_m, nbnd, ew, u_m, & nbnd, w_m, nbnd, work, lwork, rwork, info ) ! ! ... check on eigenvalues ! zero_ew = COUNT( ew(:) < 0.1D0 ) ! ! ... use sp_m to store u_m * w_m ! CALL ZGEMM( 'N', 'N', nbnd, nbnd, nbnd, ONE, & u_m, nbnd, w_m, nbnd, ZERO, sp_m, nbnd ) ! ! ... now use aux as workspace to calculate "aligned" wavefcts: ! ! ... aux_i = sum_j evcold_j*s_m_ji (eq.3.21) ! CALL ZGEMM( 'N', 'C', npw, nbnd, nbnd, ONE, & evcold, npwx, sp_m, nbnd, ZERO, aux, npwx ) ! ! ... alpha0 and beta0 are calculated in "update_pot" ! ... for first-order interpolation, alpha0=1, beta0=0 ! IF ( wfc_extr == 3 ) THEN evc = ( 1.0_dp + alpha0 ) * evc + ( beta0 - alpha0 ) * aux ELSE evc = 2.0_dp * evc - aux END IF ! IF ( wfc_order > 2 ) THEN ! ! ... second-order interpolation: ! ... read wavefcts at (t-2dt), save aligned wavefcts at (t-dt) ! IF ( wfc_extr == 3 ) & CALL davcio( evcold, 2*nwordwfc, iunoldwfc2, ik, -1 ) ! CALL davcio( aux, 2*nwordwfc, iunoldwfc2, ik, +1 ) ! IF ( wfc_extr ==3 ) THEN ! ! ... align wfcs at (t-2dt), add to interpolation formula ! CALL ZGEMM( 'N', 'C', npw, nbnd, nbnd, ONE, & evcold, npwx, sp_m, nbnd, ZERO, aux, npwx ) ! evc = evc - beta0 * aux ! END IF ! END IF ! ! ... save interpolated wavefunctions to file iunwfc ! IF ( nks > 1 ) CALL save_buffer( evc, nwordwfc, iunwfc, ik ) ! END DO ! IF ( zero_ew > 0 ) & WRITE( stdout, '( 5X,"Message from extrapolate_wfcs: ",/, & & 5X,"the matrix <psi(t-dt)|psi(t)> has ", & & I2," small (< 0.1) eigenvalues")' ) zero_ew ! DEALLOCATE( u_m, w_m, ew, aux, evcold, sp_m ) DEALLOCATE( work, rwork ) CALL deallocate_bec_type ( becp ) ! CLOSE( UNIT = iunoldwfc, STATUS = 'KEEP' ) IF ( wfc_extr > 2 .OR. wfc_order > 2 ) & CLOSE( UNIT = iunoldwfc2, STATUS = 'KEEP' ) ! END IF ! CALL mp_barrier( intra_image_comm ) ! debug ! RETURN ! END SUBROUTINE extrapolate_wfcs ! ! ... this routine is used also by compute_scf (NEB) and compute_fes_grads ! !---------------------------------------------------------------------------- SUBROUTINE find_alpha_and_beta( nat, tau, tauold, alpha0, beta0 ) !---------------------------------------------------------------------------- ! ! ... This routine finds the best coefficients alpha0 and beta0 so that ! ! ... | tau(t+dt) - tau' | is minimum, where ! ! ... tau' = tau(t) + alpha0 * ( tau(t) - tau(t-dt) ) ! ... + beta0 * ( tau(t-dt) -tau(t-2*dt) ) ! USE constants, ONLY : eps16 USE io_global, ONLY : stdout ! IMPLICIT NONE ! INTEGER :: nat, na, ipol REAL(DP) :: alpha0, beta0, tau(3,nat), tauold(3,nat,3) REAL(DP) :: a11, a12, a21, a22, b1, b2, c, det ! ! IF ( history <= 2 ) RETURN ! ! ... solution of the linear system ! a11 = 0.D0 a12 = 0.D0 a21 = 0.D0 a22 = 0.D0 b1 = 0.D0 b2 = 0.D0 c = 0.D0 ! DO na = 1, nat ! DO ipol = 1, 3 ! a11 = a11 + ( tauold(ipol,na,1) - tauold(ipol,na,2) )**2 ! a12 = a12 + ( tauold(ipol,na,1) - tauold(ipol,na,2) ) * & ( tauold(ipol,na,2) - tauold(ipol,na,3) ) ! a22 = a22 + ( tauold(ipol,na,2) - tauold(ipol,na,3) )**2 ! b1 = b1 - ( tauold(ipol,na,1) - tau(ipol,na) ) * & ( tauold(ipol,na,1) - tauold(ipol,na,2) ) ! b2 = b2 - ( tauold(ipol,na,1) - tau(ipol,na) ) * & ( tauold(ipol,na,2) - tauold(ipol,na,3) ) ! c = c + ( tauold(ipol,na,1) - tau(ipol,na) )**2 ! END DO ! END DO ! a21 = a12 ! det = a11 * a22 - a12 * a21 ! IF ( det < - eps16 ) THEN ! alpha0 = 0.D0 beta0 = 0.D0 ! WRITE( UNIT = stdout, & FMT = '(5X,"WARNING: in find_alpha_and_beta det = ",F10.6)' ) det ! END IF ! ! ... case det > 0: a well defined minimum exists ! IF ( det > eps16 ) THEN ! alpha0 = ( b1 * a22 - b2 * a12 ) / det beta0 = ( a11 * b2 - a21 * b1 ) / det ! ELSE ! ! ... case det = 0 : the two increments are linearly dependent, ! ... chose solution with alpha = b1 / a11 and beta = 0 ! ... ( discard oldest configuration ) ! alpha0 = 0.D0 beta0 = 0.D0 ! IF ( a11 /= 0.D0 ) alpha0 = b1 / a11 ! END IF ! RETURN ! END SUBROUTINE find_alpha_and_beta ! END MODULE extrapolation
gpl-2.0
prool/ccx_prool
ARPACK_i8/BLAS/zgbmv.f
25
10059
SUBROUTINE ZGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, $ BETA, Y, INCY ) * .. Scalar Arguments .. COMPLEX*16 ALPHA, BETA INTEGER INCX, INCY, KL, KU, LDA, M, N CHARACTER*1 TRANS * .. Array Arguments .. COMPLEX*16 A( LDA, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * ZGBMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or * * y := alpha*conjg( A' )*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n band matrix, with kl sub-diagonals and ku super-diagonals. * * Parameters * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * KL - INTEGER. * On entry, KL specifies the number of sub-diagonals of the * matrix A. KL must satisfy 0 .le. KL. * Unchanged on exit. * * KU - INTEGER. * On entry, KU specifies the number of super-diagonals of the * matrix A. KU must satisfy 0 .le. KU. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry, the leading ( kl + ku + 1 ) by n part of the * array A must contain the matrix of coefficients, supplied * column by column, with the leading diagonal of the matrix in * row ( ku + 1 ) of the array, the first super-diagonal * starting at position 2 in row ku, the first sub-diagonal * starting at position 1 in row ( ku + 2 ), and so on. * Elements in the array A that do not correspond to elements * in the band matrix (such as the top left ku by ku triangle) * are not referenced. * The following program segment will transfer a band matrix * from conventional full matrix storage to band storage: * * DO 20, J = 1, N * K = KU + 1 - J * DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) * A( K + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( kl + ku + 1 ). * Unchanged on exit. * * X - COMPLEX*16 array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX*16 array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry, the incremented array Y must contain the * vector y. On exit, Y is overwritten by the updated vector y. * * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. COMPLEX*16 ONE PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. Local Scalars .. COMPLEX*16 TEMP INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY, $ LENX, LENY LOGICAL NOCONJ * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC DCONJG, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 1 ELSE IF( M.LT.0 )THEN INFO = 2 ELSE IF( N.LT.0 )THEN INFO = 3 ELSE IF( KL.LT.0 )THEN INFO = 4 ELSE IF( KU.LT.0 )THEN INFO = 5 ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN INFO = 8 ELSE IF( INCX.EQ.0 )THEN INFO = 10 ELSE IF( INCY.EQ.0 )THEN INFO = 13 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'ZGBMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * NOCONJ = LSAME( TRANS, 'T' ) * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF( LSAME( TRANS, 'N' ) )THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( LENX - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( LENY - 1 )*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the band part of A. * * First form y := beta*y. * IF( BETA.NE.ONE )THEN IF( INCY.EQ.1 )THEN IF( BETA.EQ.ZERO )THEN DO 10, I = 1, LENY Y( I ) = ZERO 10 CONTINUE ELSE DO 20, I = 1, LENY Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO )THEN DO 30, I = 1, LENY Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40, I = 1, LENY Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) $ RETURN KUP1 = KU + 1 IF( LSAME( TRANS, 'N' ) )THEN * * Form y := alpha*A*x + y. * JX = KX IF( INCY.EQ.1 )THEN DO 60, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) K = KUP1 - J DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL ) Y( I ) = Y( I ) + TEMP*A( K + I, J ) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) IY = KY K = KUP1 - J DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL ) Y( IY ) = Y( IY ) + TEMP*A( K + I, J ) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX IF( J.GT.KU ) $ KY = KY + INCY 80 CONTINUE END IF ELSE * * Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. * JY = KY IF( INCX.EQ.1 )THEN DO 110, J = 1, N TEMP = ZERO K = KUP1 - J IF( NOCONJ )THEN DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL ) TEMP = TEMP + A( K + I, J )*X( I ) 90 CONTINUE ELSE DO 100, I = MAX( 1, J - KU ), MIN( M, J + KL ) TEMP = TEMP + DCONJG( A( K + I, J ) )*X( I ) 100 CONTINUE END IF Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 110 CONTINUE ELSE DO 140, J = 1, N TEMP = ZERO IX = KX K = KUP1 - J IF( NOCONJ )THEN DO 120, I = MAX( 1, J - KU ), MIN( M, J + KL ) TEMP = TEMP + A( K + I, J )*X( IX ) IX = IX + INCX 120 CONTINUE ELSE DO 130, I = MAX( 1, J - KU ), MIN( M, J + KL ) TEMP = TEMP + DCONJG( A( K + I, J ) )*X( IX ) IX = IX + INCX 130 CONTINUE END IF Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY IF( J.GT.KU ) $ KX = KX + INCX 140 CONTINUE END IF END IF * RETURN * * End of ZGBMV . * END
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.10/src/calccvfa.f
3
1489
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine calccvfa(nface,vfa,shcon,nshcon,ielmat,ntmat_, & mi,ielfa,cvfa,physcon) ! ! calculation of the secant heat capacity at constant pressure/volume ! at the face centers (incompressible media) ! implicit none ! integer nface,i,nshcon(2,*),imat,ntmat_,mi(*), & ielmat(mi(3),*),ielfa(4,*) ! real*8 t1l,vfa(0:5,*),cp,shcon(0:3,ntmat_,*),cvfa(*),physcon(*) ! do i=1,nface t1l=vfa(0,i) ! ! take the material of the first adjacent element ! imat=ielmat(1,ielfa(1,i)) call materialdata_cp_sec(imat,ntmat_,t1l,shcon,nshcon,cp, & physcon) cvfa(i)=cp enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.9/src/radiate.f
4
3292
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine radiate(e,sink,temp,kstep,kinc,time,noel,npt, & coords,jltyp,field,nfield,loadtype,node,area,vold,mi, & iemchange) ! ! user subroutine radiate ! ! ! INPUT: ! ! sink present sink temperature ! temp current temperature value ! kstep step number ! kinc increment number ! time(1) current step time ! time(2) current total time ! noel element number ! npt integration point number ! coords(1..3) global coordinates of the integration point ! jltyp loading face kode: ! 11 = face 1 ! 12 = face 2 ! 13 = face 3 ! 14 = face 4 ! 15 = face 5 ! 16 = face 6 ! field currently not used ! nfield currently not used (value = 1) ! loadtype load type label ! node currently not used ! area area covered by the integration point ! vold(0..4,1..nk) solution field in all nodes ! 0: temperature ! 1: displacement in global x-direction ! 2: displacement in global y-direction ! 3: displacement in global z-direction ! 4: static pressure ! mi(1) max # of integration points per element (max ! over all elements) ! mi(2) max degree of freedomm per node (max over all ! nodes) in fields like v(0:mi(2))... ! ! OUTPUT: ! ! e(1) magnitude of the emissivity ! e(2) not used; please do NOT assign any value ! sink sink temperature (need not be defined ! for cavity radiation) ! iemchange = 1 if the emissivity is changed during ! a step, else zero. ! implicit none ! character*20 loadtype ! integer kstep,kinc,noel,npt,jltyp,nfield,node,mi(*),iemchange ! real*8 e(2),sink,time(2),coords(3),temp,field(nfield),area, & vold(0:mi(2),*) ! intent(in) temp,kstep,kinc,time,noel,npt, & coords,jltyp,field,nfield,loadtype,node,area,vold,mi ! intent(out) e,iemchange ! intent(inout) sink ! e(1)=0.72d0 ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.8p2/src/shape3l.f
2
2019
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine shape3l(xi,xl,xsj,xs,shp,iflag) ! ! shape functions and derivatives for a 3-node quadratic ! isoparametric 1-D element. -1<=xi<=1 ! ! iflag=2: calculate the value of the shape functions, ! their derivatives w.r.t. the local coordinates ! and the Jacobian (size of tangent vector to the ! curved line) ! implicit none ! integer i,k,iflag ! real*8 shp(7,3),xs(3,7),xsi(2,3),xl(3,3),sh(3),xsj(3) ! real*8 xi ! ! shape functions and their glocal derivatives for an element ! described with two local parameters and three global ones. ! ! local derivatives of the shape functions: xi-derivative ! shp(1,1)=xi-0.5d0 shp(1,2)=-2.d0*xi shp(1,3)=xi+0.5d0 ! ! shape functions ! shp(4,1)=xi*(xi-1.d0)/2.d0 shp(4,2)=(1.d0-xi)*(1.d0+xi) shp(4,3)=xi*(xi+1.d0)/2.d0 ! ! computation of the local derivative of the global coordinates ! (xs) ! do i=1,3 xs(i,1)=0.d0 do k=1,3 xs(i,1)=xs(i,1)+xl(i,k)*shp(1,k) enddo enddo ! ! computation of the jacobian vector ! xsj(1)=dsqrt(xs(1,1)**2+xs(2,1)**2+xs(3,1)**2) ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.10/src/boundaryfs.f
4
8900
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine boundaryfs(inpc,textpart,set,istartset,iendset, & ialset,nset,nodeboun,ndirboun,xboun,nboun,nboun_,nk, & iamboun,amname,nam,ipompc,nodempc,coefmpc,nmpc,nmpc_, & mpcfree,trab,ntrans,ikboun,ilboun,ikmpc,ilmpc,nk_, & co,labmpc,typeboun,istat,n,iline,ipol, & inl,ipoinp,inp,nam_,namtot_,namta,amta,nmethod,iperturb, & ipoinpc,vold,mi,xload,sideload,nload,nelemload,lakon,kon, & ipkon,ne) ! ! reading the input deck: *BOUNDARYF ! ! (boundary conditions for CFD-calculations) ! implicit none ! logical user,fixed ! character*1 typeboun(*),type,inpc(*) character*8 lakon(*) character*20 labmpc(*),sideload(*) character*80 amname(*),amplitude character*81 set(*),elset character*132 textpart(16) ! integer istartset(*),iendset(*),ialset(*),nodeboun(*), & ndirboun(*),iface,nload,nelemload(2,*),kon(*),ipkon(*), & nset,nboun,nboun_,istat,n,i,j,k,l,ibounstart,ibounend, & key,nk,iamboun(*),nam,iamplitude,ipompc(*),nodempc(3,*), & nmpc,nmpc_,mpcfree,ikboun(*),ilboun(*),ikmpc(*), & ilmpc(*),ntrans,nk_,ipos,m,ne, & iline,ipol,inl,ipoinp(2,*),inp(3,*),nam_,namtot,namtot_, & namta(3,*),idelay,nmethod,iperturb,ipoinpc(0:*), & mi(*) ! real*8 xboun(*),bounval,coefmpc(*),trab(7,*),co(3,*),amta(2,*), & vold(0:mi(2),*),xload(2,*) ! type='F' iamplitude=0 idelay=0 user=.false. fixed=.false. ! do i=2,n if(textpart(i)(1:10).eq.'AMPLITUDE=') then read(textpart(i)(11:90),'(a80)') amplitude do j=nam,1,-1 if(amname(j).eq.amplitude) then iamplitude=j exit endif enddo if(j.eq.0) then write(*,*) & '*ERROR reading *BOUNDARYF: nonexistent amplitude' write(*,*) ' ' call inputerror(inpc,ipoinpc,iline, &"*BOUNDARYF%") call exit(201) endif iamplitude=j elseif(textpart(i)(1:10).eq.'TIMEDELAY=') THEN if(idelay.ne.0) then write(*,*)'*ERROR reading *BOUNDARYF: the parameter TIME' write(*,*) ' DELAY is used twice in the same' write(*,*) ' keyword; ' call inputerror(inpc,ipoinpc,iline, &"*BOUNDARYF%") call exit(201) else idelay=1 endif nam=nam+1 if(nam.gt.nam_) then write(*,*) '*ERROR reading *BOUNDARYF: increase nam_' call exit(201) endif amname(nam)=' & ' if(iamplitude.eq.0) then write(*,*)'*ERROR reading *BOUNDARYF: time delay must be' write(*,*) ' preceded by the amplitude parameter' call exit(201) endif namta(3,nam)=sign(iamplitude,namta(3,iamplitude)) iamplitude=nam if(nam.eq.1) then namtot=0 else namtot=namta(2,nam-1) endif namtot=namtot+1 if(namtot.gt.namtot_) then write(*,*) '*ERROR boundaries: increase namtot_' call exit(201) endif namta(1,nam)=namtot namta(2,nam)=namtot read(textpart(i)(11:30),'(f20.0)',iostat=istat) & amta(1,namtot) if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*BOUNDARYF%") elseif(textpart(i)(1:4).eq.'USER') then user=.true. else write(*,*) & '*WARNING reading *BOUNDARYF: parameter not recognized:' write(*,*) ' ', & textpart(i)(1:index(textpart(i),' ')-1) call inputwarning(inpc,ipoinpc,iline, &"*BOUNDARYF%") endif enddo ! if(user.and.(iamplitude.ne.0)) then write(*,*) '*WARNING: no amplitude definition is allowed' write(*,*) ' for temperatures defined by a' write(*,*) ' user routine' iamplitude=0 endif ! do call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) if((istat.lt.0).or.(key.eq.1)) return ! read(textpart(3)(1:10),'(i10)',iostat=istat) ibounstart if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*BOUNDARYF%") ! if(textpart(4)(1:1).eq.' ') then ibounend=ibounstart else read(textpart(4)(1:10),'(i10)',iostat=istat) ibounend if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*BOUNDARYF%") endif ! if(textpart(5)(1:1).eq.' ') then bounval=0.d0 else read(textpart(5)(1:20),'(f20.0)',iostat=istat) bounval if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*BOUNDARYF%") endif ! ! dummy boundary condition consisting of the first primes ! if(user) bounval=1.2357111317d0 ! read(textpart(1)(1:10),'(i10)',iostat=istat) l if(istat.eq.0) then if((l.gt.ne).or.(l.le.0)) then write(*,*) '*ERROR reading *BOUNDARYF:' write(*,*) ' element ',l,' is not defined' call exit(201) endif read(textpart(2)(2:2),'(i1)',iostat=istat) iface if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*BOUNDARYF%") l=10*l+iface call bounaddf(l,ibounstart,ibounend,bounval, & nodeboun,ndirboun,xboun,nboun,nboun_, & iamboun,iamplitude,nam,ipompc,nodempc, & coefmpc,nmpc,nmpc_,mpcfree,trab, & ntrans,ikboun,ilboun,ikmpc,ilmpc,co,nk,nk_,labmpc, & type,typeboun,nmethod,iperturb,vold,mi, & nelemload,sideload,xload,nload,lakon,ipkon,kon) else read(textpart(1)(1:80),'(a80)',iostat=istat) elset elset(81:81)=' ' ipos=index(elset,' ') elset(ipos:ipos)='E' do i=1,nset if(set(i).eq.elset) exit enddo if(i.gt.nset) then elset(ipos:ipos)=' ' write(*,*) '*ERROR reading *BOUNDARYF: surface ',elset write(*,*) ' has not yet been defined. ' call inputerror(inpc,ipoinpc,iline, &"*BOUNDARYF%") call exit(201) endif read(textpart(2)(2:2),'(i1)',iostat=istat) iface if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*BOUNDARYF%") do j=istartset(i),iendset(i) if(ialset(j).gt.0) then k=ialset(j) k=10*k+iface call bounaddf(k,ibounstart,ibounend,bounval, & nodeboun,ndirboun,xboun,nboun,nboun_, & iamboun,iamplitude,nam,ipompc,nodempc, & coefmpc,nmpc,nmpc_,mpcfree,trab, & ntrans,ikboun,ilboun,ikmpc,ilmpc,co,nk,nk_,labmpc, & type,typeboun,nmethod,iperturb,vold,mi, & nelemload,sideload,xload,nload,lakon,ipkon,kon) else m=ialset(j-2) do m=m-ialset(j) if(m.ge.ialset(j-1)) exit k=10*m+iface call bounaddf(k,ibounstart,ibounend,bounval, & nodeboun,ndirboun,xboun,nboun,nboun_, & iamboun,iamplitude,nam,ipompc,nodempc, & coefmpc,nmpc,nmpc_,mpcfree,trab, & ntrans,ikboun,ilboun,ikmpc,ilmpc,co,nk,nk_, & labmpc,type,typeboun,nmethod,iperturb, & vold,mi, & nelemload,sideload,xload,nload,lakon,ipkon,kon) enddo endif enddo endif enddo ! return end
gpl-2.0
epfl-cosmo/q-e
PHonon/Gamma/drhodv.f90
2
1551
! ! Copyright (C) 2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE drhodv(nu_i) !----------------------------------------------------------------------- ! ! calculate the electronic term <psi|dv|dpsi> of the dynamical matrix ! USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum USE klist, ONLY : wk !, nks USE wvfct, ONLY : nbnd, npw, npwx USE cgcom IMPLICIT NONE INTEGER :: nu_i ! INTEGER :: nu_j, ibnd, ik real(DP) :: dynel(nmodes), work(nbnd) ! CALL start_clock('drhodv') ! dynel(:) = 0.d0 ik = 1 ! do ik=1,nks ! !** calculate the dynamical matrix (<DeltaV*psi(ion)|\DeltaPsi(ion)>) ! DO nu_j = 1,nmodes ! ! DeltaV*psi(ion) for mode nu_j is recalculated ! CALL dvpsi_kb(ik,nu_j) ! ! this is the real part of <DeltaV*Psi(ion)|DeltaPsi(ion)> ! CALL pw_dot('N',npw,nbnd,dvpsi,npwx,dpsi ,npwx,work) DO ibnd = 1,nbnd dynel(nu_j) = dynel(nu_j) + 2.0d0*wk(ik)*work(ibnd) ENDDO ENDDO #ifdef __MPI CALL mp_sum( dynel, intra_pool_comm ) #endif ! ! NB this must be done only at the end of the calculation! ! DO nu_j = 1,nmodes dyn(nu_i,nu_j) = - (dyn(nu_i,nu_j)+dynel(nu_j)) ENDDO ! CALL stop_clock('drhodv') ! RETURN END SUBROUTINE drhodv
gpl-2.0
grlee77/scipy
scipy/special/cdflib/cdfbin.f
18
8616
SUBROUTINE cdfbin(which,p,q,s,xn,pr,ompr,status,bound) C********************************************************************** C C SUBROUTINE CDFBIN ( WHICH, P, Q, S, XN, PR, OMPR, STATUS, BOUND ) C Cumulative Distribution Function C BINomial distribution C C C Function C C C Calculates any one parameter of the binomial C distribution given values for the others. C C C Arguments C C C WHICH --> Integer indicating which of the next four argument C values is to be calculated from the others. C Legal range: 1..4 C iwhich = 1 : Calculate P and Q from S,XN,PR and OMPR C iwhich = 2 : Calculate S from P,Q,XN,PR and OMPR C iwhich = 3 : Calculate XN from P,Q,S,PR and OMPR C iwhich = 4 : Calculate PR and OMPR from P,Q,S and XN C INTEGER WHICH C C P <--> The cumulation from 0 to S of the binomial distribution. C (Probablility of S or fewer successes in XN trials each C with probability of success PR.) C Input range: [0,1]. C DOUBLE PRECISION P C C Q <--> 1-P. C Input range: [0, 1]. C P + Q = 1.0. C DOUBLE PRECISION Q C C S <--> The number of successes observed. C Input range: [0, XN] C Search range: [0, XN] C DOUBLE PRECISION S C C XN <--> The number of binomial trials. C Input range: (0, +infinity). C Search range: [1E-100, 1E100] C DOUBLE PRECISION XN C C PR <--> The probability of success in each binomial trial. C Input range: [0,1]. C Search range: [0,1] C DOUBLE PRECISION PR C C OMPR <--> 1-PR C Input range: [0,1]. C Search range: [0,1] C PR + OMPR = 1.0 C DOUBLE PRECISION OMPR C C STATUS <-- 0 if calculation completed correctly C -I if input parameter number I is out of range C 1 if answer appears to be lower than lowest C search bound C 2 if answer appears to be higher than greatest C search bound C 3 if P + Q .ne. 1 C 4 if PR + OMPR .ne. 1 C INTEGER STATUS C C BOUND <-- Undefined if STATUS is 0 C C Bound exceeded by parameter number I if STATUS C is negative. C C Lower search bound if STATUS is 1. C C Upper search bound if STATUS is 2. C C C Method C C C Formula 26.5.24 of Abramowitz and Stegun, Handbook of C Mathematical Functions (1966) is used to reduce the binomial C distribution to the cumulative incomplete beta distribution. C C Computation of other parameters involve a search for a value that C produces the desired value of P. The search relies on the C monotinicity of P with the other parameter. C C C********************************************************************** C .. Parameters .. DOUBLE PRECISION atol PARAMETER (atol=1.0D-50) DOUBLE PRECISION tol PARAMETER (tol=1.0D-8) DOUBLE PRECISION zero,inf PARAMETER (zero=1.0D-100,inf=1.0D100) DOUBLE PRECISION one PARAMETER (one=1.0D0) C .. C .. Scalar Arguments .. DOUBLE PRECISION bound,ompr,p,pr,q,s,xn INTEGER status,which C .. C .. Local Scalars .. DOUBLE PRECISION ccum,cum,fx,pq,prompr,xhi,xlo LOGICAL qhi,qleft,qporq C .. C .. External Functions .. DOUBLE PRECISION spmpar EXTERNAL spmpar C .. C .. External Subroutines .. EXTERNAL cumbin,dinvr,dstinv,dstzr,dzror C .. C .. Intrinsic Functions .. INTRINSIC abs C .. IF (.NOT. ((which.LT.1).OR. (which.GT.4))) GO TO 30 IF (.NOT. (which.LT.1)) GO TO 10 bound = 1.0D0 GO TO 20 10 bound = 4.0D0 20 status = -1 RETURN 30 IF (which.EQ.1) GO TO 70 IF (.NOT. ((p.LT.0.0D0).OR. (p.GT.1.0D0))) GO TO 60 IF (.NOT. (p.LT.0.0D0)) GO TO 40 bound = 0.0D0 GO TO 50 40 bound = 1.0D0 50 status = -2 RETURN 60 CONTINUE 70 IF (which.EQ.1) GO TO 110 IF (.NOT. ((q.LT.0.0D0).OR. (q.GT.1.0D0))) GO TO 100 IF (.NOT. (q.LT.0.0D0)) GO TO 80 bound = 0.0D0 GO TO 90 80 bound = 1.0D0 90 status = -3 RETURN 100 CONTINUE 110 IF (which.EQ.3) GO TO 130 IF (.NOT. (xn.LE.0.0D0)) GO TO 120 bound = 0.0D0 status = -5 RETURN 120 CONTINUE 130 IF (which.EQ.2) GO TO 170 IF (.NOT. ((s.LT.0.0D0).OR. ((which.NE.3).AND. + (s.GT.xn)))) GO TO 160 IF (.NOT. (s.LT.0.0D0)) GO TO 140 bound = 0.0D0 GO TO 150 140 bound = xn 150 status = -4 RETURN 160 CONTINUE 170 IF (which.EQ.4) GO TO 210 IF (.NOT. ((pr.LT.0.0D0).OR. (pr.GT.1.0D0))) GO TO 200 IF (.NOT. (pr.LT.0.0D0)) GO TO 180 bound = 0.0D0 GO TO 190 180 bound = 1.0D0 190 status = -6 RETURN 200 CONTINUE 210 IF (which.EQ.4) GO TO 250 IF (.NOT. ((ompr.LT.0.0D0).OR. (ompr.GT.1.0D0))) GO TO 240 IF (.NOT. (ompr.LT.0.0D0)) GO TO 220 bound = 0.0D0 GO TO 230 220 bound = 1.0D0 230 status = -7 RETURN 240 CONTINUE 250 IF (which.EQ.1) GO TO 290 pq = p + q IF (.NOT. (abs(((pq)-0.5D0)-0.5D0).GT. + (3.0D0*spmpar(1)))) GO TO 280 IF (.NOT. (pq.LT.0.0D0)) GO TO 260 bound = 0.0D0 GO TO 270 260 bound = 1.0D0 270 status = 3 RETURN 280 CONTINUE 290 IF (which.EQ.4) GO TO 330 prompr = pr + ompr IF (.NOT. (abs(((prompr)-0.5D0)-0.5D0).GT. + (3.0D0*spmpar(1)))) GO TO 320 IF (.NOT. (prompr.LT.0.0D0)) GO TO 300 bound = 0.0D0 GO TO 310 300 bound = 1.0D0 310 status = 4 RETURN 320 CONTINUE 330 IF (.NOT. (which.EQ.1)) qporq = p .LE. q IF ((1).EQ. (which)) THEN CALL cumbin(s,xn,pr,ompr,p,q) status = 0 ELSE IF ((2).EQ. (which)) THEN s = xn/2.0D0 CALL dstinv(0.0D0,xn,0.5D0,0.5D0,5.0D0,atol,tol) status = 0 CALL dinvr(status,s,fx,qleft,qhi) 340 IF (.NOT. (status.EQ.1)) GO TO 370 CALL cumbin(s,xn,pr,ompr,cum,ccum) IF (.NOT. (qporq)) GO TO 350 fx = cum - p GO TO 360 350 fx = ccum - q 360 CALL dinvr(status,s,fx,qleft,qhi) GO TO 340 370 IF (.NOT. (status.EQ.-1)) GO TO 400 IF (.NOT. (qleft)) GO TO 380 status = 1 bound = 0.0D0 GO TO 390 380 status = 2 bound = xn 390 CONTINUE 400 CONTINUE ELSE IF ((3).EQ. (which)) THEN xn = 5.0D0 CALL dstinv(zero,inf,0.5D0,0.5D0,5.0D0,atol,tol) status = 0 CALL dinvr(status,xn,fx,qleft,qhi) 410 IF (.NOT. (status.EQ.1)) GO TO 440 CALL cumbin(s,xn,pr,ompr,cum,ccum) IF (.NOT. (qporq)) GO TO 420 fx = cum - p GO TO 430 420 fx = ccum - q 430 CALL dinvr(status,xn,fx,qleft,qhi) GO TO 410 440 IF (.NOT. (status.EQ.-1)) GO TO 470 IF (.NOT. (qleft)) GO TO 450 status = 1 bound = zero GO TO 460 450 status = 2 bound = inf 460 CONTINUE 470 CONTINUE ELSE IF ((4).EQ. (which)) THEN CALL dstzr(0.0D0,1.0D0,atol,tol) IF (.NOT. (qporq)) GO TO 500 status = 0 CALL dzror(status,pr,fx,xlo,xhi,qleft,qhi) ompr = one - pr 480 IF (.NOT. (status.EQ.1)) GO TO 490 CALL cumbin(s,xn,pr,ompr,cum,ccum) fx = cum - p CALL dzror(status,pr,fx,xlo,xhi,qleft,qhi) ompr = one - pr GO TO 480 490 GO TO 530 500 status = 0 CALL dzror(status,ompr,fx,xlo,xhi,qleft,qhi) pr = one - ompr 510 IF (.NOT. (status.EQ.1)) GO TO 520 CALL cumbin(s,xn,pr,ompr,cum,ccum) fx = ccum - q CALL dzror(status,ompr,fx,xlo,xhi,qleft,qhi) pr = one - ompr GO TO 510 520 CONTINUE 530 IF (.NOT. (status.EQ.-1)) GO TO 560 IF (.NOT. (qleft)) GO TO 540 status = 1 bound = 0.0D0 GO TO 550 540 status = 2 bound = 1.0D0 550 CONTINUE 560 END IF RETURN END
bsd-3-clause
prool/ccx_prool
ARPACK_i8/EXAMPLES/NONSYM/sndrv1.f
3
16550
program sndrv1 c c c Example program to illustrate the idea of reverse communication c for a standard nonsymmetric eigenvalue problem. c c We implement example one of ex-nonsym.doc in DOCUMENTS directory c c\Example-1 c ... Suppose we want to solve A*x = lambda*x in regular mode, c where A is obtained from the standard central difference c discretization of the convection-diffusion operator c (Laplacian u) + rho*(du / dx) c on the unit square [0,1]x[0,1] with zero Dirichlet boundary c condition. c c ... OP = A and B = I. c c ... Assume "call av (nx,x,y)" computes y = A*x.c c c ... Use mode 1 of SNAUPD. c c\BeginLib c c\Routines called: c snaupd ARPACK reverse communication interface routine. c sneupd ARPACK routine that returns Ritz values and (optionally) c Ritz vectors. c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully. c saxpy Level 1 BLAS that computes y <- alpha*x+y. c snrm2 Level 1 BLAS that computes the norm of a vector. c av Matrix vector multiplication routine that computes A*x. c tv Matrix vector multiplication routine that computes T*x, c where T is a tridiagonal matrix. It is used in routine c av. c c\Author c Richard Lehoucq c Danny Sorensen c Chao Yang c Dept. of Computational & c Applied Mathematics c Rice University c Houston, Texas c c\SCCS Information: @(#) c FILE: ndrv1.F SID: 2.4 DATE OF SID: 4/22/96 RELEASE: 2 c c\Remarks c 1. None c c\EndLib c--------------------------------------------------------------------------- c c %-----------------------------% c | Define maximum dimensions | c | for all arrays. | c | MAXN: Maximum dimension | c | of the A allowed. | c | MAXNEV: Maximum NEV allowed | c | MAXNCV: Maximum NCV allowed | c %-----------------------------% c integer maxn, maxnev, maxncv, ldv parameter (maxn=256, maxnev=12, maxncv=30, ldv=maxn) c c %--------------% c | Local Arrays | c %--------------% c integer iparam(11), ipntr(14) logical select(maxncv) Real & ax(maxn), d(maxncv,3), resid(maxn), & v(ldv,maxncv), workd(3*maxn), & workev(3*maxncv), & workl(3*maxncv*maxncv+6*maxncv) c c %---------------% c | Local Scalars | c %---------------% c character bmat*1, which*2 integer ido, n, nx, nev, ncv, lworkl, info, j, & ierr, nconv, maxitr, ishfts, mode Real & tol, sigmar, sigmai logical first, rvec c c %------------% c | Parameters | c %------------% c Real & zero parameter (zero = 0.0E+0) c c %-----------------------------% c | BLAS & LAPACK routines used | c %-----------------------------% c Real & slapy2, snrm2 external slapy2, snrm2, saxpy c c %--------------------% c | Intrinsic function | c %--------------------% c intrinsic abs c c %-----------------------% c | Executable Statements | c %-----------------------% c c %--------------------------------------------------% c | The number NX is the number of interior points | c | in the discretization of the 2-dimensional | c | convection-diffusion operator on the unit | c | square with zero Dirichlet boundary condition. | c | The number N(=NX*NX) is the dimension of the | c | matrix. A standard eigenvalue problem is | c | solved (BMAT = 'I'). NEV is the number of | c | eigenvalues to be approximated. The user can | c | modify NX, NEV, NCV, WHICH to solve problems of | c | different sizes, and to get different parts of | c | the spectrum. However, The following | c | conditions must be satisfied: | c | N <= MAXN | c | NEV <= MAXNEV | c | NEV + 2 <= NCV <= MAXNCV | c %--------------------------------------------------% c nx = 10 n = nx*nx nev = 4 ncv = 20 if ( n .gt. maxn ) then print *, ' ERROR with _NDRV1: N is greater than MAXN ' go to 9000 else if ( nev .gt. maxnev ) then print *, ' ERROR with _NDRV1: NEV is greater than MAXNEV ' go to 9000 else if ( ncv .gt. maxncv ) then print *, ' ERROR with _NDRV1: NCV is greater than MAXNCV ' go to 9000 end if bmat = 'I' which = 'SM' c c %-----------------------------------------------------% c | The work array WORKL is used in SNAUPD as | c | workspace. Its dimension LWORKL is set as | c | illustrated below. The parameter TOL determines | c | the stopping criterion. If TOL<=0, machine | c | precision is used. The variable IDO is used for | c | reverse communication, and is initially set to 0. | c | Setting INFO=0 indicates that a random vector is | c | generated in SNAUPD to start the Arnoldi iteration. | c %-----------------------------------------------------% c lworkl = 3*ncv**2+6*ncv tol = zero ido = 0 info = 0 c c %---------------------------------------------------% c | This program uses exact shifts with respect to | c | the current Hessenberg matrix (IPARAM(1) = 1). | c | IPARAM(3) specifies the maximum number of Arnoldi | c | iterations allowed. Mode 1 of SNAUPD is used | c | (IPARAM(7) = 1). All these options can be changed | c | by the user. For details see the documentation in | c | SNAUPD. | c %---------------------------------------------------% c ishfts = 1 maxitr = 300 mode = 1 c iparam(1) = ishfts iparam(3) = maxitr iparam(7) = mode c c %-------------------------------------------% c | M A I N L O O P (Reverse communication) | c %-------------------------------------------% c 10 continue c c %---------------------------------------------% c | Repeatedly call the routine SNAUPD and take | c | actions indicated by parameter IDO until | c | either convergence is indicated or maxitr | c | has been exceeded. | c %---------------------------------------------% c call snaupd ( ido, bmat, n, which, nev, tol, resid, & ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, & info ) c if (ido .eq. -1 .or. ido .eq. 1) then c c %-------------------------------------------% c | Perform matrix vector multiplication | c | y <--- OP*x | c | The user should supply his/her own | c | matrix vector multiplication routine here | c | that takes workd(ipntr(1)) as the input | c | vector, and return the matrix vector | c | product to workd(ipntr(2)). | c %-------------------------------------------% c call av (nx, workd(ipntr(1)), workd(ipntr(2))) c c %-----------------------------------------% c | L O O P B A C K to call SNAUPD again. | c %-----------------------------------------% c go to 10 c end if c c %----------------------------------------% c | Either we have convergence or there is | c | an error. | c %----------------------------------------% c if ( info .lt. 0 ) then c c %--------------------------% c | Error message, check the | c | documentation in SNAUPD. | c %--------------------------% c print *, ' ' print *, ' Error with _naupd, info = ', info print *, ' Check the documentation of _naupd' print *, ' ' c else c c %-------------------------------------------% c | No fatal errors occurred. | c | Post-Process using SNEUPD. | c | | c | Computed eigenvalues may be extracted. | c | | c | Eigenvectors may also be computed now if | c | desired. (indicated by rvec = .true.) | c %-------------------------------------------% c rvec = .true. c call sneupd ( rvec, 'A', select, d, d(1,2), v, ldv, & sigmar, sigmai, workev, bmat, n, which, nev, tol, & resid, ncv, v, ldv, iparam, ipntr, workd, workl, & lworkl, ierr ) c c %-----------------------------------------------% c | The real part of the eigenvalue is returned | c | in the first column of the two dimensional | c | array D, and the imaginary part is returned | c | in the second column of D. The corresponding | c | eigenvectors are returned in the first NEV | c | columns of the two dimensional array V if | c | requested. Otherwise, an orthogonal basis | c | for the invariant subspace corresponding to | c | the eigenvalues in D is returned in V. | c %-----------------------------------------------% c if ( ierr .ne. 0) then c c %------------------------------------% c | Error condition: | c | Check the documentation of SNEUPD. | c %------------------------------------% c print *, ' ' print *, ' Error with _neupd, info = ', ierr print *, ' Check the documentation of _neupd. ' print *, ' ' c else c first = .true. nconv = iparam(5) do 20 j=1, nconv c c %---------------------------% c | Compute the residual norm | c | | c | || A*x - lambda*x || | c | | c | for the NCONV accurately | c | computed eigenvalues and | c | eigenvectors. (iparam(5) | c | indicates how many are | c | accurate to the requested | c | tolerance) | c %---------------------------% c if (d(j,2) .eq. zero) then c c %--------------------% c | Ritz value is real | c %--------------------% c call av(nx, v(1,j), ax) call saxpy(n, -d(j,1), v(1,j), 1, ax, 1) d(j,3) = snrm2(n, ax, 1) d(j,3) = d(j,3) / abs(d(j,1)) c else if (first) then c c %------------------------% c | Ritz value is complex. | c | Residual of one Ritz | c | value of the conjugate | c | pair is computed. | c %------------------------% c call av(nx, v(1,j), ax) call saxpy(n, -d(j,1), v(1,j), 1, ax, 1) call saxpy(n, d(j,2), v(1,j+1), 1, ax, 1) d(j,3) = snrm2(n, ax, 1) call av(nx, v(1,j+1), ax) call saxpy(n, -d(j,2), v(1,j), 1, ax, 1) call saxpy(n, -d(j,1), v(1,j+1), 1, ax, 1) d(j,3) = slapy2( d(j,3), snrm2(n, ax, 1) ) d(j,3) = d(j,3) / slapy2(d(j,1),d(j,2)) d(j+1,3) = d(j,3) first = .false. else first = .true. end if c 20 continue c c %-----------------------------% c | Display computed residuals. | c %-----------------------------% c call smout(6, nconv, 3, d, maxncv, -6, & 'Ritz values (Real,Imag) and relative residuals') end if c c %-------------------------------------------% c | Print additional convergence information. | c %-------------------------------------------% c if ( info .eq. 1) then print *, ' ' print *, ' Maximum number of iterations reached.' print *, ' ' else if ( info .eq. 3) then print *, ' ' print *, ' No shifts could be applied during implicit & Arnoldi update, try increasing NCV.' print *, ' ' end if c print *, ' ' print *, ' _NDRV1 ' print *, ' ====== ' print *, ' ' print *, ' Size of the matrix is ', n print *, ' The number of Ritz values requested is ', nev print *, ' The number of Arnoldi vectors generated', & ' (NCV) is ', ncv print *, ' What portion of the spectrum: ', which print *, ' The number of converged Ritz values is ', & nconv print *, ' The number of Implicit Arnoldi update', & ' iterations taken is ', iparam(3) print *, ' The number of OP*x is ', iparam(9) print *, ' The convergence criterion is ', tol print *, ' ' c end if c c %---------------------------% c | Done with program sndrv1. | c %---------------------------% c 9000 continue c end c c========================================================================== c c matrix vector subroutine c c The matrix used is the 2 dimensional convection-diffusion c operator discretized using central difference. c subroutine av (nx, v, w) integer nx, j, lo Real & v(nx*nx), w(nx*nx), one, h2 parameter (one = 1.0E+0) external saxpy c c Computes w <--- OP*v, where OP is the nx*nx by nx*nx block c tridiagonal matrix c c | T -I | c |-I T -I | c OP = | -I T | c | ... -I| c | -I T| c c derived from the standard central difference discretization c of the 2 dimensional convection-diffusion operator c (Laplacian u) + rho*(du/dx) on a unit square with zero boundary c condition. c c When rho*h/2 <= 1, the discrete convection-diffusion operator c has real eigenvalues. When rho*h/2 > 1, it has COMPLEX c eigenvalues. c c The subroutine TV is called to compute y<---T*x. c c h2 = one / real((nx+1)*(nx+1)) c call tv(nx,v(1),w(1)) call saxpy(nx, -one/h2, v(nx+1), 1, w(1), 1) c do 10 j = 2, nx-1 lo = (j-1)*nx call tv(nx, v(lo+1), w(lo+1)) call saxpy(nx, -one/h2, v(lo-nx+1), 1, w(lo+1), 1) call saxpy(nx, -one/h2, v(lo+nx+1), 1, w(lo+1), 1) 10 continue c lo = (nx-1)*nx call tv(nx, v(lo+1), w(lo+1)) call saxpy(nx, -one/h2, v(lo-nx+1), 1, w(lo+1), 1) c return end c========================================================================= subroutine tv (nx, x, y) c integer nx, j Real & x(nx), y(nx), h, h2, dd, dl, du c Real & one, zero, rho parameter (one = 1.0E+0, zero = 0.0E+0, & rho = 0.0E+0) c c Compute the matrix vector multiplication y<---T*x c where T is a nx by nx tridiagonal matrix with DD on the c diagonal, DL on the subdiagonal, and DU on the superdiagonal. c c When rho*h/2 <= 1, the discrete convection-diffusion operator c has real eigenvalues. When rho*h/2 > 1, it has COMPLEX c eigenvalues. c h = one / real(nx+1) h2 = h*h dd = 4.0E+0 / h2 dl = -one / h2 - 5.0E-1*rho / h du = -one / h2 + 5.0E-1*rho / h c y(1) = dd*x(1) + du*x(2) do 10 j = 2,nx-1 y(j) = dl*x(j-1) + dd*x(j) + du*x(j+1) 10 continue y(nx) = dl*x(nx-1) + dd*x(nx) return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.11/src/expansions.f
6
5146
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine expansions(inpc,textpart,alcon,nalcon, & alzero,nmat,ntmat_,irstrt,istep,istat,n,iline,ipol,inl,ipoinp, & inp,ipoinpc) ! ! reading the input deck: *EXPANSION ! implicit none ! character*1 inpc(*) character*132 textpart(16) ! integer nalcon(2,*),nmat,ntmat,ntmat_,istep,istat,n, & ipoinpc(0:*), & i,ityp,key,irstrt,iline,ipol,inl,ipoinp(2,*),inp(3,*) ! real*8 alcon(0:6,ntmat_,*),alzero(*) ! ntmat=0 alzero(nmat)=0.d0 ! if((istep.gt.0).and.(irstrt.ge.0)) then write(*,*) & '*ERROR reading *EXPANSION: *EXPANSION should be placed' write(*,*) ' before all step definitions' call exit(201) endif ! if(nmat.eq.0) then write(*,*) & '*ERROR reading *EXPANSION: *EXPANSION should be preceded' write(*,*) ' by a *MATERIAL card' call exit(201) endif ! ityp=1 ! do i=2,n if(textpart(i)(1:5).eq.'TYPE=') then if(textpart(i)(6:8).eq.'ISO') then ityp=1 elseif(textpart(i)(6:10).eq.'ORTHO') then ityp=3 elseif(textpart(i)(6:10).eq.'ANISO') then ityp=6 endif elseif(textpart(i)(1:5).eq.'ZERO=') then read(textpart(i)(6:25),'(f20.0)',iostat=istat) alzero(nmat) if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*EXPANSION%") else write(*,*) & '*WARNING reading *EXPANSION: parameter not recognized:' write(*,*) ' ', & textpart(i)(1:index(textpart(i),' ')-1) call inputwarning(inpc,ipoinpc,iline, &"*EXPANSION%") endif enddo ! nalcon(1,nmat)=ityp ! if(ityp.eq.1) then do call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) if((istat.lt.0).or.(key.eq.1)) return ntmat=ntmat+1 nalcon(2,nmat)=ntmat if(ntmat.gt.ntmat_) then write(*,*) '*ERROR reading *EXPANSION: increase ntmat_' call exit(201) endif do i=1,1 read(textpart(i)(1:20),'(f20.0)',iostat=istat) & alcon(i,ntmat,nmat) if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*EXPANSION%") enddo read(textpart(2)(1:20),'(f20.0)',iostat=istat) & alcon(0,ntmat,nmat) if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*EXPANSION%") enddo elseif(ityp.eq.3) then do call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) if((istat.lt.0).or.(key.eq.1)) return ntmat=ntmat+1 nalcon(2,nmat)=ntmat if(ntmat.gt.ntmat_) then write(*,*) '*ERROR reading *EXPANSION: increase ntmat_' call exit(201) endif do i=1,3 read(textpart(i)(1:20),'(f20.0)',iostat=istat) & alcon(i,ntmat,nmat) if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*EXPANSION%") enddo read(textpart(4)(1:20),'(f20.0)',iostat=istat) & alcon(0,ntmat,nmat) if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*EXPANSION%") enddo elseif(ityp.eq.6) then do call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) if((istat.lt.0).or.(key.eq.1)) return ntmat=ntmat+1 nalcon(2,nmat)=ntmat if(ntmat.gt.ntmat_) then write(*,*) '*ERROR reading *EXPANSION: increase ntmat_' call exit(201) endif do i=1,6 read(textpart(i)(1:20),'(f20.0)',iostat=istat) & alcon(i,ntmat,nmat) if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*EXPANSION%") enddo read(textpart(7)(1:20),'(f20.0)',iostat=istat) & alcon(0,ntmat,nmat) if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*EXPANSION%") enddo endif ! return end
gpl-2.0
alexfrolov/grappa
applications/NPB/MPI/LU/blts.f
5
9217
c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine blts ( ldmx, ldmy, ldmz, > nx, ny, nz, k, > omega, > v, > ldz, ldy, ldx, d, > ist, iend, jst, jend, > nx0, ny0, ipt, jpt) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c c compute the regular-sparse, block lower triangular solution: c c v <-- ( L-inv ) * v c c--------------------------------------------------------------------- implicit none c--------------------------------------------------------------------- c input parameters c--------------------------------------------------------------------- integer ldmx, ldmy, ldmz integer nx, ny, nz integer k double precision omega double precision v( 5, -1:ldmx+2, -1:ldmy+2, *), > ldz( 5, 5, ldmx, ldmy), > ldy( 5, 5, ldmx, ldmy), > ldx( 5, 5, ldmx, ldmy), > d( 5, 5, ldmx, ldmy) integer ist, iend integer jst, jend integer nx0, ny0 integer ipt, jpt include 'timing.h' c--------------------------------------------------------------------- c local variables c--------------------------------------------------------------------- integer i, j, m integer iex double precision tmp, tmp1 double precision tmat(5,5) c--------------------------------------------------------------------- c receive data from north and west c--------------------------------------------------------------------- if (timeron) call timer_start(t_lcomm) iex = 0 call exchange_1( v,k,iex ) if (timeron) call timer_stop(t_lcomm) if (timeron) call timer_start(t_blts) do j = jst, jend do i = ist, iend do m = 1, 5 v( m, i, j, k ) = v( m, i, j, k ) > - omega * ( ldz( m, 1, i, j ) * v( 1, i, j, k-1 ) > + ldz( m, 2, i, j ) * v( 2, i, j, k-1 ) > + ldz( m, 3, i, j ) * v( 3, i, j, k-1 ) > + ldz( m, 4, i, j ) * v( 4, i, j, k-1 ) > + ldz( m, 5, i, j ) * v( 5, i, j, k-1 ) ) end do end do end do do j=jst,jend do i = ist, iend do m = 1, 5 v( m, i, j, k ) = v( m, i, j, k ) > - omega * ( ldy( m, 1, i, j ) * v( 1, i, j-1, k ) > + ldx( m, 1, i, j ) * v( 1, i-1, j, k ) > + ldy( m, 2, i, j ) * v( 2, i, j-1, k ) > + ldx( m, 2, i, j ) * v( 2, i-1, j, k ) > + ldy( m, 3, i, j ) * v( 3, i, j-1, k ) > + ldx( m, 3, i, j ) * v( 3, i-1, j, k ) > + ldy( m, 4, i, j ) * v( 4, i, j-1, k ) > + ldx( m, 4, i, j ) * v( 4, i-1, j, k ) > + ldy( m, 5, i, j ) * v( 5, i, j-1, k ) > + ldx( m, 5, i, j ) * v( 5, i-1, j, k ) ) end do c--------------------------------------------------------------------- c diagonal block inversion c c forward elimination c--------------------------------------------------------------------- do m = 1, 5 tmat( m, 1 ) = d( m, 1, i, j ) tmat( m, 2 ) = d( m, 2, i, j ) tmat( m, 3 ) = d( m, 3, i, j ) tmat( m, 4 ) = d( m, 4, i, j ) tmat( m, 5 ) = d( m, 5, i, j ) end do tmp1 = 1.0d+00 / tmat( 1, 1 ) tmp = tmp1 * tmat( 2, 1 ) tmat( 2, 2 ) = tmat( 2, 2 ) > - tmp * tmat( 1, 2 ) tmat( 2, 3 ) = tmat( 2, 3 ) > - tmp * tmat( 1, 3 ) tmat( 2, 4 ) = tmat( 2, 4 ) > - tmp * tmat( 1, 4 ) tmat( 2, 5 ) = tmat( 2, 5 ) > - tmp * tmat( 1, 5 ) v( 2, i, j, k ) = v( 2, i, j, k ) > - v( 1, i, j, k ) * tmp tmp = tmp1 * tmat( 3, 1 ) tmat( 3, 2 ) = tmat( 3, 2 ) > - tmp * tmat( 1, 2 ) tmat( 3, 3 ) = tmat( 3, 3 ) > - tmp * tmat( 1, 3 ) tmat( 3, 4 ) = tmat( 3, 4 ) > - tmp * tmat( 1, 4 ) tmat( 3, 5 ) = tmat( 3, 5 ) > - tmp * tmat( 1, 5 ) v( 3, i, j, k ) = v( 3, i, j, k ) > - v( 1, i, j, k ) * tmp tmp = tmp1 * tmat( 4, 1 ) tmat( 4, 2 ) = tmat( 4, 2 ) > - tmp * tmat( 1, 2 ) tmat( 4, 3 ) = tmat( 4, 3 ) > - tmp * tmat( 1, 3 ) tmat( 4, 4 ) = tmat( 4, 4 ) > - tmp * tmat( 1, 4 ) tmat( 4, 5 ) = tmat( 4, 5 ) > - tmp * tmat( 1, 5 ) v( 4, i, j, k ) = v( 4, i, j, k ) > - v( 1, i, j, k ) * tmp tmp = tmp1 * tmat( 5, 1 ) tmat( 5, 2 ) = tmat( 5, 2 ) > - tmp * tmat( 1, 2 ) tmat( 5, 3 ) = tmat( 5, 3 ) > - tmp * tmat( 1, 3 ) tmat( 5, 4 ) = tmat( 5, 4 ) > - tmp * tmat( 1, 4 ) tmat( 5, 5 ) = tmat( 5, 5 ) > - tmp * tmat( 1, 5 ) v( 5, i, j, k ) = v( 5, i, j, k ) > - v( 1, i, j, k ) * tmp tmp1 = 1.0d+00 / tmat( 2, 2 ) tmp = tmp1 * tmat( 3, 2 ) tmat( 3, 3 ) = tmat( 3, 3 ) > - tmp * tmat( 2, 3 ) tmat( 3, 4 ) = tmat( 3, 4 ) > - tmp * tmat( 2, 4 ) tmat( 3, 5 ) = tmat( 3, 5 ) > - tmp * tmat( 2, 5 ) v( 3, i, j, k ) = v( 3, i, j, k ) > - v( 2, i, j, k ) * tmp tmp = tmp1 * tmat( 4, 2 ) tmat( 4, 3 ) = tmat( 4, 3 ) > - tmp * tmat( 2, 3 ) tmat( 4, 4 ) = tmat( 4, 4 ) > - tmp * tmat( 2, 4 ) tmat( 4, 5 ) = tmat( 4, 5 ) > - tmp * tmat( 2, 5 ) v( 4, i, j, k ) = v( 4, i, j, k ) > - v( 2, i, j, k ) * tmp tmp = tmp1 * tmat( 5, 2 ) tmat( 5, 3 ) = tmat( 5, 3 ) > - tmp * tmat( 2, 3 ) tmat( 5, 4 ) = tmat( 5, 4 ) > - tmp * tmat( 2, 4 ) tmat( 5, 5 ) = tmat( 5, 5 ) > - tmp * tmat( 2, 5 ) v( 5, i, j, k ) = v( 5, i, j, k ) > - v( 2, i, j, k ) * tmp tmp1 = 1.0d+00 / tmat( 3, 3 ) tmp = tmp1 * tmat( 4, 3 ) tmat( 4, 4 ) = tmat( 4, 4 ) > - tmp * tmat( 3, 4 ) tmat( 4, 5 ) = tmat( 4, 5 ) > - tmp * tmat( 3, 5 ) v( 4, i, j, k ) = v( 4, i, j, k ) > - v( 3, i, j, k ) * tmp tmp = tmp1 * tmat( 5, 3 ) tmat( 5, 4 ) = tmat( 5, 4 ) > - tmp * tmat( 3, 4 ) tmat( 5, 5 ) = tmat( 5, 5 ) > - tmp * tmat( 3, 5 ) v( 5, i, j, k ) = v( 5, i, j, k ) > - v( 3, i, j, k ) * tmp tmp1 = 1.0d+00 / tmat( 4, 4 ) tmp = tmp1 * tmat( 5, 4 ) tmat( 5, 5 ) = tmat( 5, 5 ) > - tmp * tmat( 4, 5 ) v( 5, i, j, k ) = v( 5, i, j, k ) > - v( 4, i, j, k ) * tmp c--------------------------------------------------------------------- c back substitution c--------------------------------------------------------------------- v( 5, i, j, k ) = v( 5, i, j, k ) > / tmat( 5, 5 ) v( 4, i, j, k ) = v( 4, i, j, k ) > - tmat( 4, 5 ) * v( 5, i, j, k ) v( 4, i, j, k ) = v( 4, i, j, k ) > / tmat( 4, 4 ) v( 3, i, j, k ) = v( 3, i, j, k ) > - tmat( 3, 4 ) * v( 4, i, j, k ) > - tmat( 3, 5 ) * v( 5, i, j, k ) v( 3, i, j, k ) = v( 3, i, j, k ) > / tmat( 3, 3 ) v( 2, i, j, k ) = v( 2, i, j, k ) > - tmat( 2, 3 ) * v( 3, i, j, k ) > - tmat( 2, 4 ) * v( 4, i, j, k ) > - tmat( 2, 5 ) * v( 5, i, j, k ) v( 2, i, j, k ) = v( 2, i, j, k ) > / tmat( 2, 2 ) v( 1, i, j, k ) = v( 1, i, j, k ) > - tmat( 1, 2 ) * v( 2, i, j, k ) > - tmat( 1, 3 ) * v( 3, i, j, k ) > - tmat( 1, 4 ) * v( 4, i, j, k ) > - tmat( 1, 5 ) * v( 5, i, j, k ) v( 1, i, j, k ) = v( 1, i, j, k ) > / tmat( 1, 1 ) enddo enddo if (timeron) call timer_stop(t_blts) c--------------------------------------------------------------------- c send data to east and south c--------------------------------------------------------------------- if (timeron) call timer_start(t_lcomm) iex = 2 call exchange_1( v,k,iex ) if (timeron) call timer_stop(t_lcomm) return end
bsd-3-clause
epfl-cosmo/q-e
PHonon/PH/phq_recover.f90
8
8504
! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine phq_recover !----------------------------------------------------------------------- ! ! This subroutine tests if a xml restart file exists with the ! information of where the code stopped and, if appropriate the ! partial dynamical matrix and the partial effective charges. ! if (rec_code>2) done_irr, comp_irr ! info on calculated irreps - overrides initialization in phq_setup. ! The xml file is in the ! directory _phprefix.phsave. The xml file contains ! where_rec a string with information of the point where the calculation ! stopped ! rec_code_read where_rec status description ! ! -1000 Nothing has been read. There is no recover file. ! -40 phq_setup Only the displacements u have been read from file ! -30 phq_init u and dyn(0) read from file ! -25 not active yet. Restart in solve_e_fpol ! -20 solve_e all previous. Stopped within solve_e. There ! should be a recover file. ! -10 solve_e2 epsilon and zstareu are available if requested. ! Stopped within solve_e2. There should be a ! recover file. ! 2 phescf all previous, raman tenson and elop tensor are ! available if required. ! 10 solve_linter all previous. Stopped within solve linter. ! There should be a recover file. ! 20 phqscf all previous dyn_rec(irr) and zstarue0(irr) are ! available. ! 30 dynmatrix all previous, dyn and zstarue are available. ! ! The logic of the phonon code recover is the following: ! The recover variable is read from input and never changed. If it is ! false it disables completely the recover. ! The control of the code is given by the arrays: ! comp_iq, done_iq : for each q point if it has to be calculated or ! if it is already available. These are calculated ! only once by check_initial_status or read from file ! by the same routine. ! comp_irr, done_irr : for each irreducible representation if it has ! to be calculated or if it is already calculated. ! The latter variables are valid only for the current ! q and are calculated in phq_setup and modified here ! if something is on the file. ! epsil, done_epsil, zeu, done_zeu, zue, done_zue, lraman, done_lraman, ! elop, done_elop ... control the electric field calculations. These are ! set by prepare_q, or read from file by phq_setup. ! ! The position where the code stopped is in the variable rec_code_read ! defined above. This variable allows to exit from a routine if the quantity ! calculated by this routine is already saved on file. ! It is the responsibility of the routine (not of the calling code) ! to known if it has to make the calculation or just exit because the ! value of rec_code_read is too high. ! ! if rec_code_read = (-25), -20, -10, 10 ! It is expected that an unformatted recover file exists. ! The following data are in the ! unformatted file and are read by ! routines solve_e (-20), solve_e2 (-10), solve_linter (10): ! iter, dr2, convt ! info on status of linear-response calculation for a given irrep. ! dvscfin ! self-consistent potential for current iteration and irrep ! if (okpaw) dbecsum ! the change of the D coefficients calculated so far. ! if (okvan) int1, int2, int3 ! arrays used with US potentials : int1 and int2 calculated in dvanqq, ! int3 calculatec in newdq (depends upon self-consistency) ! ! rec_code_read is valid only for the first q. For the following q ! it is reset to -1000 in clean_pw_ph. So the recover file allows to ! restart only the current q. However information on other q could ! be available in the directory phsave, so this routine reads the ! appropriate files and reset comp_irr and done_irr if appropriate. ! ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE ph_restart, ONLY : ph_readfile USE control_ph, ONLY : epsil, rec_code_read, all_done, where_rec,& zeu, done_epsil, done_zeu, ext_recover, recover, & zue, trans, current_iq, low_directory_check USE wvfct, ONLY : nbnd USE el_phon, ONLY : el_ph_mat, el_ph_mat_rec, done_elph, elph USE efield_mod, ONLY : zstarue0, zstarue0_rec USE partial, ONLY : comp_irr, done_irr USE modes, ONLY : nirr, npert USE ramanm, ONLY : lraman, elop, done_lraman, done_elop USE freq_ph, ONLY : fpol, done_fpol, done_iu, nfs USE grid_irr_iq, ONLY : comp_irr_iq USE dynmat, ONLY : dyn, dyn_rec USE qpoint, ONLY : nksq USE control_lr, ONLY : lgamma ! implicit none ! integer :: irr, ierr, ierr1, iu, npe, imode0 ! counter on representations ! error code logical :: exst character(len=256) :: filename ierr=0 IF (recover) THEN IF (lgamma) CALL ph_readfile('tensors', 0, 0, ierr1) IF (fpol.and.lgamma) THEN done_fpol=.TRUE. DO iu=1,nfs CALL ph_readfile('polarization', 0, iu, ierr1) done_fpol=done_fpol.AND.done_iu(iu) END DO ENDIF dyn = (0.0_DP, 0.0_DP ) done_irr=.FALSE. imode0=0 IF (elph) THEN el_ph_mat=(0.0_DP, 0.0_DP) done_elph=.FALSE. ENDIF DO irr=0, nirr IF (comp_irr_iq(irr,current_iq).OR..NOT.low_directory_check) THEN IF (trans.OR.elph) THEN CALL ph_readfile('data_dyn', current_iq, irr, ierr1) IF (ierr1 == 0) THEN dyn = dyn + dyn_rec IF (zue.and.irr>0) zstarue0 = zstarue0 + zstarue0_rec ENDIF END IF IF ( elph .and. irr > 0 ) THEN npe = npert(irr) ALLOCATE(el_ph_mat_rec(nbnd,nbnd,nksq,npe)) CALL ph_readfile('el_phon', current_iq, irr, ierr1) IF (ierr1 == 0) THEN el_ph_mat(:,:,:,imode0+1:imode0+npe) = & el_ph_mat(:,:,:,imode0+1:imode0+npe) + el_ph_mat_rec(:,:,:,:) ENDIF DEALLOCATE(el_ph_mat_rec) imode0=imode0 + npe END IF ENDIF ENDDO IF (rec_code_read==-40) THEN WRITE( stdout, '(/,4x," Modes are read from file ")') ELSEIF (rec_code_read==-25) THEN WRITE( stdout, '(/,4x," Restart in Polarization calculation")') ELSEIF (rec_code_read==-20) THEN WRITE( stdout, '(/,4x," Restart in Electric Field calculation")') ELSEIF (rec_code_read==-10) then WRITE( stdout, '(/,4x," Restart in Raman calculation")') ELSEIF (rec_code_read==2) THEN WRITE( stdout, '(/,4x," Restart after Electric Field calculation")') ELSEIF (rec_code_read==10.OR.rec_code_read==20) then WRITE( stdout, '(/,4x," Restart in Phonon calculation")') ELSEIF (rec_code_read==30) then WRITE( stdout, '(/,4x," Restart after Phonon calculation")') ELSE call errore ('phq_recover', 'wrong restart data file', -1) ierr=1 ENDIF ENDIF ! ext_recover = ext_recover .AND. ierr==0 ! ! The case in which everything has been already calculated and we just ! recollect all the results must be treated in a special way (it does ! not require any initialization). ! We check here if everything has been done ! all_done=.true. DO irr = 0, nirr IF ( comp_irr(irr) .AND. .NOT.done_irr(irr) ) all_done=.false. ENDDO IF (rec_code_read < 2) THEN IF (epsil.AND..NOT.done_epsil) all_done=.FALSE. IF (zeu.AND..NOT.done_zeu) all_done=.FALSE. IF (lraman.AND..NOT.done_lraman) all_done=.FALSE. IF (elop.AND..NOT.done_elop) all_done=.FALSE. IF (fpol.AND..NOT.done_fpol) all_done=.FALSE. END IF RETURN END SUBROUTINE phq_recover
gpl-2.0
jarn0ld/gnuradio
gr-filter/lib/gen_interpolator_taps/praxis.f
96
38958
C C Copyright 2002 Free Software Foundation, Inc. C C This file is part of GNU Radio C C GNU Radio is free software; you can redistribute it and/or modify C it under the terms of the GNU General Public License as published by C the Free Software Foundation; either version 3, or (at your option) C any later version. C C GNU Radio is distributed in the hope that it will be useful, C but WITHOUT ANY WARRANTY; without even the implied warranty of C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the C GNU General Public License for more details. C C You should have received a copy of the GNU General Public License C along with GNU Radio; see the file COPYING. If not, write to C the Free Software Foundation, Inc., 51 Franklin Street, C Boston, MA 02110-1301, USA. C DOUBLE PRECISION FUNCTION PRAX2(F,INITV,NDIM,OUT) DOUBLE PRECISION INITV(128),OUT(128), F INTEGER NDIM EXTERNAL F C DOUBLE PRECISION V,X,D,Q0,Q1,DMIN,EPSMCH,FX,H,QD0,QD1,QF1, * SMALL,T,XLDT,XM2,XM4,DSEED,SCBD C COMMON /CPRAX/ V(128,128),X(128),D(128),Q0(128),Q1(128), * DMIN,EPSMCH,FX,H,QD0,QD1,QF1,SMALL,T,XLDT,XM2,XM4,DSEED,SCBD, * N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH C N=NDIM do 10 I=1,N 10 X(I) = INITV(I) C call praset C -1 produces no diagnostic output jprint = -1 nfmax = 3000 C tighter tolerance T=1.0D-6 C call praxis(f) C do 30 I=1,N 30 OUT(I) = X(I) C prax2 = fx return end SUBROUTINE PRASET C C PRASET 1.0 JUNE 1995 C C SET INITIAL VALUES FOR SOME QUANTITIES USED IN SUBROUTINE PRAXIS. C THE USER CAN RESET THESE, IF DESIRED, C AFTER CALLING PRASET AND BEFORE CALLING PRAXIS. C C J. P. CHANDLER, COMPUTER SCIENCE DEPARTMENT, C OKLAHOMA STATE UNIVERSITY C C ON MANY MACHINES, SUBROUTINE PRAXIS WILL CAUSE UNDERFLOW AND/OR C DIVIDE CHECK WHEN COMPUTING EPSMCH**4 AND EPSMCH**(-4). C IN THAT CASE, SET EPSMCH=1.0D-9 (OR POSSIBLY EPSMCH=1.0D-8) C AFTER CALLING SUBROUTINE PRASET. C INTEGER N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH INTEGER J C DOUBLE PRECISION V,X,D,Q0,Q1,DMIN,EPSMCH,FX,H,QD0,QD1,QF1, * SMALL,T,XLDT,XM2,XM4,DSEED,SCBD DOUBLE PRECISION A,B,XMID,XPLUS,RZERO,UNITR,RTWO C COMMON /CPRAX/ V(128,128),X(128),D(128),Q0(128),Q1(128), * DMIN,EPSMCH,FX,H,QD0,QD1,QF1,SMALL,T,XLDT,XM2,XM4,DSEED,SCBD, * N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH C RZERO=0.0D0 UNITR=1.0D0 RTWO=2.0D0 C C NMAX IS THE DIMENSION OF THE ARRAYS V(*,*), X(*), D(*), C Q0(*), AND Q1(*). C NMAX=128 C C NFMAX IS THE MAXIMUM NUMBER OF FUNCTION EVALUATIONS PERMITTED. C NFMAX=100000 C C LP IS THE LOGICAL UNIT NUMBER FOR PRINTED OUTPUT. C LP=6 C C T IS A CONVERGENCE TOLERANCE USED IN SUBROUTINE PRAXIS. C T=1.0D-5 C C JPRINT CONTROLS PRINTED OUTPUT IN PRAXIS. C JPRINT=4 C C H IS AN ESTIMATE OF THE DISTANCE FROM THE INITIAL POINT C TO THE SOLUTION. C H=1.0D0 C C USE BISECTION TO COMPUTE THE VALUE OF EPSMCH, "MACHINE EPSILON". C EPSMCH IS THE SMALLEST FLOATING POINT (REAL OR DOUBLE PRECISION) C NUMBER WHICH, WHEN ADDED TO ONE, GIVES A RESULT GREATER THAN ONE. C A=RZERO B=UNITR 10 XMID=A+(B-A)/RTWO IF(XMID.LE.A .OR. XMID.GE.B) GO TO 20 XPLUS=UNITR+XMID IF(XPLUS.GT.UNITR) THEN B=XMID ELSE A=XMID ENDIF GO TO 10 C 20 EPSMCH=B C DO 30 J=1,NMAX X(J)=RZERO 30 CONTINUE C C JRANCH = 1 TO USE BRENT'S RANDOM, C JRANCH = 2 TO USE FUNCTION DRANDM. C JRANCH=1 C CALL RANINI(4.0D0) C C DSEED IS AN INITIAL SEED FOR DRANDM, C A SUBROUTINE THAT GENERATES PSEUDORANDOM NUMBERS C UNIFORMLY DISTRIBUTED ON (0,1). C DSEED=1234567.0D0 C C SCBD IS AN UPPER BOUND ON THE SCALE FACTORS IN PRAXIS. C IF THE AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF C POSSIBLE) THEN SET SCBD = 10, OTHERWISE 1. C SCBD=1.0D0 C C ILLCIN IS THE INITIAL VALUE OF ILLC, C THE FLAG THAT SIGNALS AN ILL-CONDITIONED PROBLEM. C IF THE PROBLEM IS KNOWN TO BE ILL-CONDITIONED SET ILLCIN=1, C OTHERWISE 0. C ILLCIN=0 C C KTM IS A CONVERGENCE SWITCH USED IN PRAXIS. C KTM+1 IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT C BEFORE THE ALGORITHM TERMINATES. C KTM=4 IS VERY CAUTIOUS. C USUALLY KTM=1 IS SATISFACTORY. C KTM=1 C RETURN C C END PRASET C END SUBROUTINE PRAXIS(F) C C PRAXIS 2.0 JUNE 1995 C C THE PRAXIS PACKAGE MINIMIZES THE FUNCTION F(X,N) OF N C VARIABLES X(1),...,X(N), USING THE PRINCIPAL AXIS METHOD. C F MUST BE A SMOOTH (CONTINUOUSLY DIFFERENTIABLE) FUNCTION. C C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES", C RICHARD P. BRENT, PRENTICE-HALL 1973 (ISBN 0-13-022335-2), C PAGES 156-167 C C TRANSLATED FROM ALGOL W TO A.N.S.I. 1966 STANDARD BASIC FORTRAN C BY ROSALEE TAYLOR AND SUE PINSKI, COMPUTER SCIENCE DEPARTMENT, C OKLAHOMA STATE UNIVERSITY (DECEMBER 1973). C C UPDATED TO A.N.S.I. STANDARD FORTRAN 77 BY J. P. CHANDLER C COMPUTER SCIENCE DEPARTMENT, OKLAHOMA STATE UNIVERSITY C C C SUBROUTINE PRAXIS CALLS SUBPROGRAMS C F, MINX, RANDOM (OR DRANDM), QUAD, MINFIT, SORT. C C SUBROUTINE QUAD CALLS MINX. C C SUBROUTINE MINX CALLS FLIN. C C SUBROUTINE FLIN CALLS F. C C C INPUT QUANTITIES (SET IN THE CALLING PROGRAM)... C C F FUNCTION F(X,N) TO BE MINIMIZED C C X(*) INITIAL GUESS OF MINIMUM C C N DIMENSION OF X (NOTE... N MUST BE .GE. 2) C C H MAXIMUM STEP SIZE C C T TOLERANCE C C EPSMCH MACHINE PRECISION C C JPRINT PRINT SWITCH C C C OUTPUT QUANTITIES... C C X(*) ESTIMATED POINT OF MINIMUM C C FX VALUE OF F AT X C C NL NUMBER OF LINEAR SEARCHES C C NF NUMBER OF FUNCTION EVALUATIONS C C V(*,*) EIGENVECTORS OF A C NEW DIRECTIONS C C D(*) EIGENVALUES OF A C NEW D C C Z(*) SCALE FACTORS C C C ON ENTRY X(*) HOLDS A GUESS. ON RETURN IT HOLDS THE ESTIMATED C POINT OF MINIMUM, WITH (HOPEFULLY) C ABS(ERROR) LESS THAN SQRT(EPSMCH)*ABS(X) + T, WHERE C EPSMCH IS THE MACHINE PRECISION, THE SMALLEST NUMBER SUCH THAT C (1 + EPSMCH) IS GREATER THAN 1. C C T IS A TOLERANCE. C C H IS THE MAXIMUM STEP SIZE, SET TO ABOUT THE MAXIMUM EXPECTED C DISTANCE FROM THE GUESS TO THE MINIMUM. IF H IS SET TOO C SMALL OR TOO LARGE THEN THE INITIAL RATE OF CONVERGENCE WILL C BE SLOW. C C THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS C AT THE BEGINNING OF THE SUBROUTINE. C C JPRINT CONTROLS THE PRINTING OF INTERMEDIATE RESULTS. C IT USES SUBROUTINES FLIN, MINX, QUAD, SORT, AND MINFIT. C IF JPRINT = 1, F IS PRINTED AFTER EVERY N+1 OR N+2 LINEAR C MINIMIZATIONS, AND FINAL X IS PRINTED, BUT INTERMEDIATE C X ONLY IF N IS LESS THAN OR EQUAL TO 4. C IF JPRINT = 2, EIGENVALUES OF A AND SCALE FACTORS ARE ALSO PRINTED. C IF JPRINT = 3, F AND X ARE PRINTED AFTER EVERY FEW LINEAR C MINIMIZATIONS. C IF JPRINT = 4, EIGENVECTORS ARE ALSO PRINTED. C IF JPRINT = 5, ADDITIONAL DEBUGGING INFORMATION IS ALSO PRINTED. C C RANDOM RETURNS A RANDOM NUMBER UNIFORMLY DISTRIBUTED IN (0, 1). C C THIS SUBROUTINE IS MACHINE-INDEPENDENT, APART FROM THE C SPECIFICATION OF EPSMCH. WE ASSUME THAT EPSMCH**(-4) DOES NOT C OVERFLOW (IF IT DOES THEN EPSMCH MUST BE INCREASED), AND THAT ON C FLOATING-POINT UNDERFLOW THE RESULT IS SET TO ZERO. C INTEGER N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH INTEGER ILLC,I,IK,IM,IMU,J,K,KL,KM1,KT,K2 C DOUBLE PRECISION V,X,D,Q0,Q1,DMIN,EPSMCH,FX,H,QD0,QD1,QF1, * SMALL,T,XLDT,XM2,XM4,DSEED,SCBD DOUBLE PRECISION F, Y,Z,E, DABS,DSQRT,ZABS,ZSQRT,DRANDM, * HUNDRD,HUNDTH,ONE,PT9,RHALF,TEN,TENTH,TWO,ZERO, * DF,DLDFAC,DN,F1,XF,XL,T2,RANVAL,ARG, * VLARGE,VSMALL,XLARGE,XLDS,FXVALU,F1VALU,S,SF,SL C EXTERNAL F C DIMENSION Y(128),Z(128),E(128) C COMMON /CPRAX/ V(128,128),X(128),D(128),Q0(128),Q1(128), * DMIN,EPSMCH,FX,H,QD0,QD1,QF1,SMALL,T,XLDT,XM2,XM4,DSEED,SCBD, * N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH C ZABS(ARG)=DABS(ARG) ZSQRT(ARG)=DSQRT(ARG) C C INITIALIZATION... C RHALF=0.5D0 ONE=1.0D0 TENTH=0.1D0 HUNDTH=0.01D0 HUNDRD=100.0D0 ZERO=0.0D0 PT9=0.9D0 TEN=10.0D0 TWO=2.0D0 C C MACHINE DEPENDENT NUMBERS... C C ON MANY COMPUTERS, VSMALL WILL UNDERFLOW, C AND COMPUTING XLARGE MAY CAUSE A DIVISION BY ZERO. C IN THAT CASE, EPSMCH SHOULD BE SET EQUAL TO 1.0D-9 C (OR POSSIBLY 1.0D-8) BEFORE CALLING PRAXIS. C SMALL=EPSMCH*EPSMCH VSMALL=SMALL*SMALL XLARGE=ONE/SMALL VLARGE=ONE/VSMALL XM2=ZSQRT(EPSMCH) XM4=ZSQRT(XM2) C C HEURISTIC NUMBERS... C C IF THE AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF C POSSIBLE) THEN SET SCBD = 10, OTHERWISE 1. C C IF THE PROBLEM IS KNOWN TO BE ILL-CONDITIONED SET ILLC = 1, C OTHERWISE 0. C C KTM+1 IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT C BEFORE THE ALGORITHM TERMINATES. C KTM=4 IS VERY CAUTIOUS. C USUALLY KTM=1 IS SATISFACTORY. C C BRENT RECOMMENDED THE FOLLOWING VALUES FOR MOST PROBLEMS... C C SCBD=1.0 C ILLC=0 C KTM=1 C C SCBD, ILLCIN, AND KTM ARE NOW IN COMMON. C THEY ARE INITIALIZED IN SUBROUTINE PRASET, C AND CAN BE RESET BY THE USER AFTER CALLING PRASET. C ILLC=ILLCIN C IF(ILLC.EQ.1) THEN DLDFAC=TENTH ELSE DLDFAC=HUNDTH ENDIF C KT=0 NL=0 NF=1 FX=F(X,N) QF1=FX T=SMALL+ZABS(T) T2=T DMIN=SMALL IF(H.LT.HUNDRD*T) H=HUNDRD*T XLDT=H C DO 20 I=1,N DO 10 J=1,N V(I,J)=ZERO 10 CONTINUE V(I,I)=ONE 20 CONTINUE C QD0=ZERO D(1)=ZERO C C Q0(*) AND Q1(*) ARE PREVIOUS X(*) POINTS, C INITIALIZED IN PRAXIS, USED IN FLIN, C AND CHANGED IN QUAD. C DO 30 I=1,N Q1(I)=X(I) C C Q0(*) WAS NOT INITIALIZED IN BRENT'S ALGOL PROCEDURE. C Q0(I)=X(I) 30 CONTINUE C IF(JPRINT.GT.0) THEN WRITE(LP,40)NL,NF,FX 40 FORMAT(/' NL =',I10,5X,'NF =',I10/5X,'FX =',1PG15.7) C IF(N.LE.4 .OR. JPRINT.GT.2) THEN WRITE(LP,50)(X(I),I=1,N) 50 FORMAT(/8X,'X'/(1X,1PG15.7,4G15.7)) ENDIF ENDIF C C MAIN LOOP... C LABEL L0... C 60 SF=D(1) S=ZERO D(1)=ZERO C C MINIMIZE ALONG THE FIRST DIRECTION. C IF(JPRINT.GE.5) WRITE(LP,70)D(1),S,FX 70 FORMAT(/' CALL NO. 1 TO MINX.'/ * 5X,'D(1) =',1PG15.7,5X,'S =',G15.7,5X,'FX =',G15.7) C FXVALU=FX CALL MINX(1,2,D(1),S,FXVALU,0,F) C IF(S.LE.ZERO) THEN DO 80 I=1,N V(I,1)=-V(I,1) 80 CONTINUE ENDIF C IF(SF.LE.PT9*D(1) .OR. PT9*SF.GE.D(1)) THEN C IF(N.GE.2) THEN DO 90 I=2,N D(I)=ZERO 90 CONTINUE ENDIF C ENDIF C IF(N.LT.2) GO TO 320 DO 310 K=2,N C DO 100 I=1,N Y(I)=X(I) 100 CONTINUE C SF=FX IF(KT.GT.0) ILLC=1 C C LABEL L1... C 110 KL=K DF=ZERO C IF(ILLC.EQ.1) THEN C C TAKE A RANDOM STEP TO GET OUT OF A RESOLUTION VALLEY. C C PRAXIS ASSUMES THAT RANDOM (OR DRANDM) RETURNS C A PSEUDORANDOM NUMBER UNIFORMLY DISTRIBUTED IN (0,1), C AND THAT ANY INITIALIZATION OF THE RANDOM NUMBER GENERATOR C HAS ALREADY BEEN DONE. C DO 130 I=1,N C IF(JRANCH.EQ.1) THEN CALL RANDOM(RANVAL) ELSE RANVAL=DRANDM(DSEED) ENDIF C S=(TENTH*XLDT+T2*TEN**KT)*(RANVAL-RHALF) Z(I)=S C DO 120 J=1,N X(J)=X(J)+S*V(J,I) 120 CONTINUE 130 CONTINUE C FX=F(X,N) NF=NF+1 C IF(JPRINT.GE.1) WRITE(LP,140)NF,SF,FX 140 FORMAT(/' ***** RANDOM STEP IN PRAXIS. NF =',I11/ * 5X,'SF =',1PG15.7,5X,'FX =',G15.7) ENDIF C IF(K.GT.N) GO TO 170 DO 160 K2=K,N SL=FX S=ZERO C C MINIMIZE ALONG NON-CONJUGATE DIRECTIONS. C IF(JPRINT.GE.5) WRITE(LP,150)K2,D(K2),S,FX 150 FORMAT(/' CALL NO. 2 TO MINX.'/ * 5X,'K2 =',I4,5X,'D(K2) =',1PG15.7,5X, * 'S =',G15.7/5X,'FX =',G15.7) C FXVALU=FX CALL MINX(K2,2,D(K2),S,FXVALU,0,F) C IF(ILLC.EQ.1) THEN S=D(K2)*(S+Z(K2))**2 ELSE S=SL-FX ENDIF C IF(DF.LT.S) THEN DF=S KL=K2 ENDIF 160 CONTINUE C 170 IF(ILLC.EQ.0 .AND. DF.LT.ZABS(HUNDRD*EPSMCH*FX)) THEN C C NO SUCCESS WITH ILLC=0, SO TRY ONCE WITH ILLC=1 . C ILLC=1 C C GO TO L1. C GO TO 110 ENDIF C IF(K.EQ.2 .AND. JPRINT.GT.1) THEN WRITE(LP,180)(D(I),I=1,N) 180 FORMAT(/' NEW D'/(1X,1PG15.7,4G15.7)) ENDIF C KM1=K-1 IF(KM1.LT.1) GO TO 210 DO 200 K2=1,KM1 C C MINIMIZE ALONG CONJUGATE DIRECTIONS. C IF(JPRINT.GE.5) WRITE(LP,190)K2,D(K2),S,FX 190 FORMAT(/' CALL NO. 3 TO MINX.'/ * 5X,'K2 =',I4,5X,'D(K2) =',1PG15.7,5X, * 'S =',G15.7/5X,'FX =',G15.7) C S=ZERO FXVALU=FX CALL MINX(K2,2,D(K2),S,FXVALU,0,F) 200 CONTINUE C 210 F1=FX FX=SF C XLDS=ZERO DO 220 I=1,N SL=X(I) X(I)=Y(I) SL=SL-Y(I) Y(I)=SL XLDS=XLDS+SL*SL 220 CONTINUE C XLDS=ZSQRT(XLDS) IF(XLDS.GT.SMALL) THEN C C THROW AWAY THE DIRECTION KL AND MINIMIZE ALONG C THE NEW CONJUGATE DIRECTION. C IK=KL-1 IF(K.GT.IK) GO TO 250 DO 240 IM=K,IK I=IK-IM+K C DO 230 J=1,N V(J,I+1)=V(J,I) 230 CONTINUE C D(I+1)=D(I) 240 CONTINUE C 250 D(K)=ZERO C DO 260 I=1,N V(I,K)=Y(I)/XLDS 260 CONTINUE C IF(JPRINT.GE.5) WRITE(LP,270)K,D(K),XLDS,F1 270 FORMAT(/' CALL NO. 4 TO MINX.'/ * 5X,'K =',I4,5X,'D(K) =',1PG15.7,5X, * 'XLDS =',G15.7/5X,'F1 =',G15.7) C F1VALU=F1 CALL MINX(K,4,D(K),XLDS,F1VALU,1,F) C IF(XLDS.LE.ZERO) THEN XLDS=-XLDS C DO 280 I=1,N V(I,K)=-V(I,K) 280 CONTINUE ENDIF ENDIF C XLDT=DLDFAC*XLDT IF(XLDT.LT.XLDS) XLDT=XLDS C IF(JPRINT.GT.0) THEN WRITE(LP,40)NL,NF,FX IF(N.LE.4 .OR. JPRINT.GT.2) THEN WRITE(LP,50)(X(I),I=1,N) ENDIF ENDIF C T2=ZERO DO 290 I=1,N T2=T2+X(I)**2 290 CONTINUE T2=XM2*ZSQRT(T2)+T C C SEE IF THE STEP LENGTH EXCEEDS HALF THE TOLERANCE. C IF(XLDT.GT.RHALF*T2) THEN KT=0 ELSE KT=KT+1 ENDIF C C IF(...) GO TO L2 C IF(KT.GT.KTM) GO TO 550 C IF(NF.GE.NFMAX) THEN WRITE(LP,300)NFMAX 300 FORMAT(/' IN PRAXIS, NF REACHED THE LIMIT NFMAX =',I11/ * 5X,'THIS IS AN ABNORMAL TERMINATION.'/ * 5X,'THE FUNCTION HAS NOT BEEN MINIMIZED AND', * ' THE RESULTING X(*) VECTOR SHOULD NOT BE USED.') GO TO 550 ENDIF C 310 CONTINUE C C TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE STUCK IN A CURVED VALLEY. C 320 CALL QUAD(F) C DN=ZERO DO 330 I=1,N D(I)=ONE/ZSQRT(D(I)) IF(DN.LT.D(I)) DN=D(I) 330 CONTINUE C IF(JPRINT.GT.3) THEN C WRITE(LP,340) 340 FORMAT(/' NEW DIRECTIONS') C DO 360 I=1,N WRITE(LP,350)I,(V(I,J),J=1,N) 350 FORMAT(1X,I5,4X,1PG15.7,4G15.7/(10X,5G15.7)) 360 CONTINUE ENDIF C DO 380 J=1,N C S=D(J)/DN DO 370 I=1,N V(I,J)=S*V(I,J) 370 CONTINUE 380 CONTINUE C IF(SCBD.GT.ONE) THEN C C SCALE THE AXES TO TRY TO REDUCE THE CONDITION NUMBER. C S=VLARGE DO 400 I=1,N C SL=ZERO DO 390 J=1,N SL=SL+V(I,J)**2 390 CONTINUE C Z(I)=ZSQRT(SL) IF(Z(I).LT.XM4) Z(I)=XM4 IF(S.GT.Z(I)) S=Z(I) 400 CONTINUE C DO 410 I=1,N SL=S/Z(I) Z(I)=ONE/SL C IF(Z(I).GT.SCBD) THEN SL=ONE/SCBD Z(I)=SCBD ENDIF C C IT APPEARS THAT THERE ARE TWO MISSING END; STATEMENTS C AT THIS POINT IN BRENT'S LISTING. C 410 CONTINUE ENDIF C C TRANSPOSE V FOR MINFIT. C IF(N.LT.2) GO TO 440 DO 430 I=2,N C IMU=I-1 DO 420 J=1,IMU S=V(I,J) V(I,J)=V(J,I) V(J,I)=S 420 CONTINUE 430 CONTINUE C C FIND THE SINGULAR VALUE DECOMPOSITION OF V. C THIS GIVES THE EIGENVALUES AND PRINCIPAL AXES C OF THE APPROXIMATING QUADRATIC FORM C WITHOUT SQUARING THE CONDITION NUMBER. C 440 CALL MINFIT(N,EPSMCH,VSMALL,V,D,E,NMAX,LP) C IF(SCBD.GT.ONE) THEN C C UNSCALING... C DO 460 I=1,N C S=Z(I) DO 450 J=1,N V(I,J)=S*V(I,J) 450 CONTINUE 460 CONTINUE C DO 490 I=1,N C S=ZERO DO 470 J=1,N S=S+V(J,I)**2 470 CONTINUE S=ZSQRT(S) C D(I)=S*D(I) C S=ONE/S DO 480 J=1,N V(J,I)=S*V(J,I) 480 CONTINUE 490 CONTINUE ENDIF C DO 500 I=1,N C IF(DN*D(I).GT.XLARGE) THEN D(I)=VSMALL ELSE IF(DN*D(I).LT.SMALL) THEN D(I)=VLARGE ELSE D(I)=ONE/(DN*D(I))**2 ENDIF 500 CONTINUE C C SORT THE NEW EIGENVALUES AND EIGENVECTORS. C CALL SORT C DMIN=D(N) IF(DMIN.LT.SMALL) DMIN=SMALL C IF(XM2*D(1).GT.DMIN) THEN ILLC=1 ELSE ILLC=0 ENDIF C IF(JPRINT.GT.1 .AND. SCBD.GT.ONE) THEN WRITE(LP,510)(Z(I),I=1,N) 510 FORMAT(/' SCALE FACTORS'/(1X,1PG15.7,4G15.7)) ENDIF C IF(JPRINT.GT.1) THEN WRITE(LP,520)(D(I),I=1,N) 520 FORMAT(/' EIGENVALUES OF A'/(1X,1PG15.7,4G15.7)) ENDIF C IF(JPRINT.GT.3) THEN C WRITE(LP,530) 530 FORMAT(/' EIGENVECTORS OF A') C DO 540 I=1,N WRITE(LP,350)I,(V(I,J),J=1,N) 540 CONTINUE ENDIF C C GO BACK TO THE MAIN LOOP. C GO TO L0 C C HANDLE THE CASE N .EQ. 1 IN AN AD HOC WAY. C (BRENT DID NOT PROVIDE FOR THIS CASE.) C IF(N.GE.2) GO TO 60 C C LABEL L2... C 550 IF(JPRINT.GT.0) THEN WRITE(LP,560)(X(I),I=1,N) 560 FORMAT(//7X,'X'/(1X,1PG15.7,4G15.7)) ENDIF C FX=F(X,N) C IF(JPRINT.GE.0) WRITE(LP,570)FX,NL,NF 570 FORMAT(/' EXIT PRAXIS. FX =',1PG25.17,5X,'NL =',I8, * 5X,'NF =',I9) C RETURN C C END PRAXIS C END SUBROUTINE QUAD(F) C C THIS SUBROUTINE LOOKS FOR THE MINIMUM ALONG C A CURVE DEFINED BY Q0, Q1, AND X. C C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES", C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGE 161 C C SUBROUTINE QUAD IS CALLED BY SUBROUTINE PRAXIS. C INTEGER N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH INTEGER I C DOUBLE PRECISION V,X,D,Q0,Q1,DMIN,EPSMCH,FX,H,QD0,QD1,QF1, * SMALL,T,XLDT,XM2,XM4,DSEED,SCBD DOUBLE PRECISION F, DSQRT,ZSQRT,ARG, * ONE,QA,QB,QC,S,TWO,XL,ZERO,QF1VAL C EXTERNAL F C COMMON /CPRAX/ V(128,128),X(128),D(128),Q0(128),Q1(128), * DMIN,EPSMCH,FX,H,QD0,QD1,QF1,SMALL,T,XLDT,XM2,XM4,DSEED,SCBD, * N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH C ZSQRT(ARG)=DSQRT(ARG) C ZERO=0.0D0 ONE=1.0D0 C S=FX FX=QF1 QF1=S QD1=ZERO C DO 10 I=1,N S=X(I) XL=Q1(I) X(I)=XL Q1(I)=S QD1=QD1+(S-XL)**2 10 CONTINUE C QD1=ZSQRT(QD1) XL=QD1 S=ZERO C IF(QD0.GT.ZERO .AND. QD1.GT.ZERO .AND. NL.GE.3*N*N) THEN C IF(JPRINT.GE.1) WRITE(LP,20)NF,QD0,QD1,FX,QF1 20 FORMAT(/' ***** CALL MINX FROM QUAD. NF =',I11/ * 5X,'QD0 =',1PG15.7,5X,'QD1 =',G15.7/ * 5X,'FX =',G15.7,5X,'QF1 =',G15.7) C QF1VAL=QF1 CALL MINX(0,2,S,XL,QF1VAL,1,F) QA=XL*(XL-QD1)/(QD0*(QD0+QD1)) QB=(XL+QD0)*(QD1-XL)/(QD0*QD1) QC=XL*(XL+QD0)/(QD1*(QD0+QD1)) ELSE FX=QF1 QA=ZERO QB=ZERO QC=ONE ENDIF C QD0=QD1 C DO 30 I=1,N S=Q0(I) Q0(I)=X(I) X(I)=QA*S+QB*X(I)+QC*Q1(I) 30 CONTINUE C RETURN C C END QUAD C END SUBROUTINE MINX(J,NITS,D2,X1,F1,IFK,F) C C SUBROUTINE MINX MINIMIZES F FROM X IN THE DIRECTION V(*,J) C UNLESS J IS LESS THAN 1, WHEN A QUADRATIC SEARCH IS DONE IN C THE PLANE DEFINED BY Q0, Q1, AND X. C C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES", C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGES 159-160 C C SUBROUTINE MINX IS CALLED BY SUBROUTINES PRAXIS AND QUAD. C C D2 AND X1 RETURN RESULTS. C J, NITS, F1 AND IFK ARE VALUE PARAMETERS THAT RETURN NOTHING. C DO NOT SEND A COMMON VARIABLE TO MINX FOR PARAMETER F1. C C C D2 IS AN APPROXIMATION TO HALF OF C THE SECOND DERIVATIVE OF F (OR ZERO). C C X1 IS AN ESTIMATE OF DISTANCE TO MINIMUM, C RETURNED AS THE DISTANCE FOUND. C C IF IFK = 1 THEN F1 IS FLIN(X1), OTHERWISE X1 AND F1 ARE C IGNORED ON ENTRY UNLESS FINAL FX IS GREATER THAN F1. C C NITS CONTROLS THE NUMBER OF TIMES AN ATTEMPT IS MADE TO C HALVE THE INTERVAL. C EXTERNAL F C INTEGER N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH INTEGER IFK,J,NITS, I,IDZ,K C DOUBLE PRECISION V,X,D,Q0,Q1,DMIN,EPSMCH,FX,H,QD0,QD1,QF1, * SMALL,T,XLDT,XM2,XM4,DSEED,SCBD DOUBLE PRECISION D2,X1, * DABS,DSQRT,ZABS,ZSQRT,ARG, * HUNDTH,RHALF,TWO,ZERO, * DENOM,D1,FM,F0,F1,F2,S,SF1,SX1,T2,XM,X2 C COMMON /CPRAX/ V(128,128),X(128),D(128),Q0(128),Q1(128), * DMIN,EPSMCH,FX,H,QD0,QD1,QF1,SMALL,T,XLDT,XM2,XM4,DSEED,SCBD, * N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH C ZSQRT(ARG)=DSQRT(ARG) ZABS(ARG)=DABS(ARG) C HUNDTH=0.01D0 ZERO=0.0D0 TWO=2.0D0 RHALF=0.5D0 C SF1=F1 SX1=X1 K=0 XM=ZERO FM=FX F0=FX C IF(D2.LT.EPSMCH) THEN IDZ=1 ELSE IDZ=0 ENDIF C C FIND THE STEP SIZE. C S=ZERO DO 10 I=1,N S=S+X(I)**2 10 CONTINUE S=ZSQRT(S) C IF(IDZ.EQ.1) THEN DENOM=DMIN ELSE DENOM=D2 ENDIF C T2=XM4*ZSQRT(ZABS(FX)/DENOM+S*XLDT)+XM2*XLDT S=XM4*S+T IF(IDZ.EQ.1 .AND. T2.GT.S) T2=S IF(T2.LT.SMALL) T2=SMALL IF(T2.GT.HUNDTH*H) T2=HUNDTH*H C IF(IFK.EQ.1 .AND. F1.LE.FM) THEN XM=X1 FM=F1 ENDIF C IF(IFK.EQ.0 .OR. ZABS(X1).LT.T2) THEN C IF(X1.GE.ZERO) THEN X1=T2 ELSE X1=-T2 ENDIF C CALL FLIN(X1,J,F,F1) ENDIF C IF(F1.LT.FM) THEN XM=X1 FM=F1 ENDIF C C LABEL L0... C 20 IF(IDZ.EQ.1) THEN C C EVALUATE FLIN AT ANOTHER POINT, C AND ESTIMATE THE SECOND DERIVATIVE. C IF(F0.LT.F1) THEN X2=-X1 ELSE X2=TWO*X1 ENDIF C CALL FLIN(X2,J,F,F2) C IF(F2.LE.FM) THEN XM=X2 FM=F2 ENDIF C D2=(X2*(F1-F0)-X1*(F2-F0))/(X1*X2*(X1-X2)) C IF(JPRINT.GE.5) WRITE(LP,30)X1,X2,F0,F1,F2,D2 30 FORMAT(/' COMPUTE D2 IN SUBROUTINE MINX.'/ * 5X,'X1 =',1PG15.7,5X,'X2 =',G15.7/ * 5X,'F0 =',G15.7,5X,'F1 =',G15.7,5X,'F2 =',G15.7/ * 5X,'D2 =',G15.7) ENDIF C C ESTIMATE THE FIRST DERIVATIVE AT 0. C D1=(F1-F0)/X1-X1*D2 IDZ=1 C C PREDICT THE MINIMUM. C IF(D2.LE.SMALL) THEN C IF(D1.LT.ZERO) THEN X2=H ELSE X2=-H ENDIF C ELSE X2=-RHALF*D1/D2 ENDIF C IF(ZABS(X2).GT.H) THEN C IF(X2.GT.ZERO) THEN X2=H ELSE X2=-H ENDIF ENDIF C C EVALUATE F AT THE PREDICTED MINIMUM. C LABEL L1... C 40 CALL FLIN(X2,J,F,F2) C IF(K.LT.NITS .AND. F2.GT.F0) THEN C C NO SUCCESS, SO TRY AGAIN. C K=K+1 C C IF(...) GO TO L0 C IF(F0.LT.F1 .AND. X1*X2.GT.ZERO) GO TO 20 X2=X2/TWO C C GO TO L1 C GO TO 40 C ENDIF C C INCREMENT THE ONE-DIMENSIONAL SEARCH COUNTER. C NL=NL+1 C IF(F2.GT.FM) THEN X2=XM ELSE FM=F2 ENDIF C C GET A NEW ESTIMATE OF THE SECOND DERIVATIVE. C IF(ZABS(X2*(X2-X1)).GT.SMALL) THEN D2=(X2*(F1-F0)-X1*(FM-F0))/(X1*X2*(X1-X2)) C IF(JPRINT.GE.5) WRITE(LP,50)X1,X2,F0,FM,F1,D2 50 FORMAT(/' RECOMPUTE D2 IN SUBROUTINE MINX.'/ * 5X,'X1 =',1PG15.7,5X,'X2 =',G15.7/ * 5X,'F0 =',G15.7,5X,'FM =',G15.7,5X,'F1 =',G15.7/ * 5X,'D2 =',G15.7) C ELSE IF(K.GT.0) THEN D2=ZERO C IF(JPRINT.GE.5) WRITE(LP,60) 60 FORMAT(/' SET D2=0 IN SUBROUTINE MINX.') ELSE D2=D2 ENDIF C IF(D2.LE.SMALL) THEN D2=SMALL C IF(JPRINT.GE.5) WRITE(LP,70)D2 70 FORMAT(/' SET D2=SMALL=',1PG15.7,' IN SUBROUTINE MINX.') ENDIF C IF(JPRINT.GE.5) WRITE(LP,80)X1,X2,FX,FM,SF1 80 FORMAT(/' SUBROUTINE MINX. X1 =',1PG15.7,5X,'X2 =',G15.7/ * 5X,'FX =',G15.7,5X,'FM =',G15.7,5X,'SF1 =',G15.7) C X1=X2 FX=FM IF(SF1.LT.FX) THEN FX=SF1 X1=SX1 ENDIF C C UPDATE X FOR A LINEAR SEARCH BUT NOT FOR A PARABOLIC SEARCH. C IF(J.GT.0) THEN C DO 90 I=1,N X(I)=X(I)+X1*V(I,J) 90 CONTINUE ENDIF C IF(JPRINT.GE.5) WRITE(LP,100)D2,X1,F1,FX 100 FORMAT(/' LEAVE SUBROUTINE MINX.'/ * 5X,'D2 =',1PG15.7,5X,'X1 =',G15.7,5X,'F1 =',G15.7/ * 5X,'FX =',G15.7) C RETURN C C END MINX C END SUBROUTINE FLIN(XL,J,F,FLN) C C FLIN IS A FUNCTION OF ONE VARIABLE XL WHICH IS MINIMIZED BY C SUBROUTINE MINX. C C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES", C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGES 159-160 C C SUBROUTINE FLIN IS CALLED BY SUBROUTINE MINX. C INTEGER N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH INTEGER J, I C DOUBLE PRECISION V,X,D,Q0,Q1,DMIN,EPSMCH,FX,H,QD0,QD1,QF1, * SMALL,T,XLDT,XM2,XM4,DSEED,SCBD DOUBLE PRECISION XL,F,FLN, TT, QA,QB,QC C DIMENSION TT(128) C COMMON /CPRAX/ V(128,128),X(128),D(128),Q0(128),Q1(128), * DMIN,EPSMCH,FX,H,QD0,QD1,QF1,SMALL,T,XLDT,XM2,XM4,DSEED,SCBD, * N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH C IF(J.GT.0) THEN C C LINEAR SEARCH... C DO 10 I=1,N TT(I)=X(I)+XL*V(I,J) 10 CONTINUE C ELSE C C SEARCH ALONG A PARABOLIC SPACE CURVE. C QA=XL*(XL-QD1)/(QD0*(QD0+QD1)) QB=(XL+QD0)*(QD1-XL)/(QD0*QD1) QC=XL*(XL+QD0)/(QD1*(QD0+QD1)) C DO 20 I=1,N TT(I)=QA*Q0(I)+QB*X(I)+QC*Q1(I) 20 CONTINUE ENDIF C C INCREMENT FUNCTION EVALUATION COUNTER. C NF=NF+1 FLN=F(TT,N) C RETURN C C END FLIN C END SUBROUTINE MINFIT(N,EPS,TOL,AB,Q,E,NMAX,LP) C C AN IMPROVED VERSION OF MINFIT, RESTRICTED TO M=N, P=0. C SEE GOLUB AND REINSCH (1970). C C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES", C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGES 156-158 C C G. H. GOLUB AND C. REINSCH, C "SINGULAR VALUE DECOMPOSITION AND LEAST SQUARES SOLUTIONS', C NUMERISCHE MATHEMATIK 14 (1970) PAGES 403-420 C C THE SINGULAR VALUES OF THE ARRAY AB ARE RETURNED IN Q, C AND AB IS OVERWRITTEN WITH THE ORTHOGONAL MATRIX V SUCH THAT C U.DIAG(Q)=AB.V, WHERE U IS ANOTHER ORTHOGONAL MATRIX. C C SUBROUTINE MINFIT IS CALLED BY SUBROUTINE PRAXIS. C INTEGER N,NMAX,LP, * I,II,J,JTHIRT,K,KK,KT,L,LL2,LPI,L2 C DOUBLE PRECISION EPS,TOL,AB,Q,E, * DABS,DSQRT,ZABS,ZSQRT,ARG, * C,DENOM,F,G,H,ONE,X,Y,Z,ZERO,S,TWO C DIMENSION AB(NMAX,N),Q(N),E(N) C ZABS(ARG)=DABS(ARG) ZSQRT(ARG)=DSQRT(ARG) C JTHIRT=30 C ZERO=0.0D0 ONE=1.0D0 TWO=2.0D0 C C HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM... C X=ZERO G=ZERO C DO 140 I=1,N E(I)=G S=ZERO L=I+1 C DO 10 J=I,N S=S+AB(J,I)**2 10 CONTINUE C IF(S.LT.TOL) THEN G=ZERO ELSE F=AB(I,I) C IF(F.LT.ZERO) THEN G=ZSQRT(S) ELSE G=-ZSQRT(S) ENDIF C H=F*G-S AB(I,I)=F-G C IF(L.GT.N) GO TO 60 DO 50 J=L,N C F=ZERO IF(I.GT.N) GO TO 30 DO 20 K=I,N F=F+AB(K,I)*AB(K,J) 20 CONTINUE 30 F=F/H C IF(I.GT.N) GO TO 50 DO 40 K=I,N AB(K,J)=AB(K,J)+F*AB(K,I) 40 CONTINUE 50 CONTINUE ENDIF C 60 Q(I)=G S=ZERO C IF(I.LE.N) THEN C IF(L.GT.N) GO TO 80 DO 70 J=L,N S=S+AB(I,J)**2 70 CONTINUE ENDIF C 80 IF(S.LT.TOL) THEN G=ZERO ELSE F=AB(I,I+1) C IF(F.LT.ZERO) THEN G=ZSQRT(S) ELSE G=-ZSQRT(S) ENDIF C H=F*G-S AB(I,I+1)=F-G IF(L.GT.N) GO TO 130 DO 90 J=L,N E(J)=AB(I,J)/H 90 CONTINUE C DO 120 J=L,N C S=ZERO DO 100 K=L,N S=S+AB(J,K)*AB(I,K) 100 CONTINUE C DO 110 K=L,N AB(J,K)=AB(J,K)+S*E(K) 110 CONTINUE 120 CONTINUE ENDIF C 130 Y=ZABS(Q(I))+ZABS(E(I)) C IF(Y.GT.X) X=Y 140 CONTINUE C C ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS... C DO 210 II=1,N I=N-II+1 C IF(G.NE.ZERO) THEN H=AB(I,I+1)*G C IF(L.GT.N) GO TO 200 DO 150 J=L,N AB(J,I)=AB(I,J)/H 150 CONTINUE C DO 180 J=L,N C S=ZERO DO 160 K=L,N S=S+AB(I,K)*AB(K,J) 160 CONTINUE C DO 170 K=L,N AB(K,J)=AB(K,J)+S*AB(K,I) 170 CONTINUE 180 CONTINUE ENDIF C IF(L.GT.N) GO TO 200 DO 190 J=L,N AB(J,I)=ZERO AB(I,J)=ZERO 190 CONTINUE C 200 AB(I,I)=ONE G=E(I) L=I 210 CONTINUE C C DIAGONALIZATION OF THE BIDIAGONAL FORM... C EPS=EPS*X DO 330 KK=1,N K=N-KK+1 KT=0 C C LABEL TESTFSPLITTING... C 220 KT=KT+1 C IF(KT.GT.JTHIRT) THEN E(K)=ZERO WRITE(LP,230) 230 FORMAT(' QR FAILED.') ENDIF C DO 240 LL2=1,K L2=K-LL2+1 L=L2 C C IF(...) GO TO TESTFCONVERGENCE C IF(ZABS(E(L)).LE.EPS) GO TO 270 C C IF(...) GO TO CANCELLATION C IF(ZABS(Q(L-1)).LE.EPS) GO TO 250 240 CONTINUE C C CANCELLATION OF E(L) IF L IS GREATER THAN 1... C LABEL CANCELLATION... C 250 C=ZERO S=ONE IF(L.GT.K) GO TO 270 DO 260 I=L,K F=S*E(I) E(I)=C*E(I) C C IF(...) GO TO TESTFCONVERGENCE C IF(ZABS(F).LE.EPS) GO TO 270 G=Q(I) C IF(ZABS(F).LT.ZABS(G)) THEN H=ZABS(G)*ZSQRT(ONE+(F/G)**2) ELSE IF(F.NE.ZERO) THEN H=ZABS(F)*ZSQRT(ONE+(G/F)**2) ELSE H=ZERO ENDIF C Q(I)=H C IF(H.EQ.ZERO) THEN H=ONE G=ONE ENDIF C C THE ABOVE REPLACES Q(I) AND H BY SQUARE ROOT OF (G*G+F*F) C WHICH MAY GIVE INCORRECT RESULTS IF THE SQUARES UNDERFLOW OR IF C F = G = 0 . C C=G/H S=-F/H 260 CONTINUE C C LABEL TESTFCONVERGENCE... C 270 Z=Q(K) C C IF(...) GO TO CONVERGENCE C IF(L.EQ.K) GO TO 310 C C SHIFT FROM BOTTOM 2*2 MINOR. C X=Q(L) Y=Q(K-1) G=E(K-1) H=E(K) F=((Y-Z)*(Y+Z)+(G-H)*(G+H))/(TWO*H*Y) G=ZSQRT(F*F+ONE) C IF(F.LT.ZERO) THEN DENOM=F-G ELSE DENOM=F+G ENDIF C F=((X-Z)*(X+Z)+H*(Y/DENOM-H))/X C C NEXT QR TRANSFORMATION... C S=ONE C=ONE LPI=L+1 IF(LPI.GT.K) GO TO 300 DO 290 I=LPI,K G=E(I) Y=Q(I) H=S*G G=G*C C IF(ZABS(F).LT.ZABS(H)) THEN Z=ZABS(H)*ZSQRT(ONE+(F/H)**2) ELSE IF(F.NE.ZERO) THEN Z=ZABS(F)*ZSQRT(ONE+(H/F)**2) ELSE Z=ZERO ENDIF C E(I-1)=Z C IF(Z.EQ.ZERO) THEN F=ONE Z=ONE ENDIF C C=F/Z S=H/Z F=X*C+G*S G=-X*S+G*C H=Y*S Y=Y*C C DO 280 J=1,N X=AB(J,I-1) Z=AB(J,I) AB(J,I-1)=X*C+Z*S AB(J,I)=-X*S+Z*C 280 CONTINUE C IF(ZABS(F).LT.ZABS(H)) THEN Z=ZABS(H)*ZSQRT(ONE+(F/H)**2) ELSE IF(F.NE.ZERO) THEN Z=ZABS(F)*ZSQRT(ONE+(H/F)**2) ELSE Z=ZERO ENDIF C Q(I-1)=Z C IF(Z.EQ.ZERO) THEN F=ONE Z=ONE ENDIF C C=F/Z S=H/Z F=C*G+S*Y X=-S*G+C*Y 290 CONTINUE C 300 E(L)=ZERO E(K)=F Q(K)=X C C GO TO TESTFSPLITTING C GO TO 220 C C LABEL CONVERGENCE... C 310 IF(Z.LT.ZERO) THEN C C Q(K) IS MADE NON-NEGATIVE. C Q(K)=-Z DO 320 J=1,N AB(J,K)=-AB(J,K) 320 CONTINUE ENDIF 330 CONTINUE C RETURN C C END MINFIT C END SUBROUTINE SORT C C THIS SUBROUTINE SORTS THE ELEMENTS OF D C AND THE CORRESPONDING COLUMNS OF V INTO DESCENDING ORDER. C C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES", C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGES 158-159 C INTEGER N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH INTEGER I,IPI,J,K,NMI C DOUBLE PRECISION V,X,D,Q0,Q1,DMIN,EPSMCH,FX,H,QD0,QD1,QF1, * SMALL,T,XLDT,XM2,XM4,DSEED,SCBD DOUBLE PRECISION S C COMMON /CPRAX/ V(128,128),X(128),D(128),Q0(128),Q1(128), * DMIN,EPSMCH,FX,H,QD0,QD1,QF1,SMALL,T,XLDT,XM2,XM4,DSEED,SCBD, * N,NL,NF,LP,JPRINT,NMAX,ILLCIN,KTM,NFMAX,JRANCH C NMI=N-1 IF(NMI.LT.1) GO TO 50 DO 40 I=1,NMI K=I S=D(I) IPI=I+1 IF(IPI.GT.N) GO TO 20 C DO 10 J=IPI,N C IF(D(J).GT.S) THEN K=J S=D(J) ENDIF 10 CONTINUE C 20 IF(K.GT.I) THEN D(K)=D(I) D(I)=S C DO 30 J=1,N S=V(J,I) V(J,I)=V(J,K) V(J,K)=S 30 CONTINUE ENDIF 40 CONTINUE C 50 RETURN C C END SORT C END SUBROUTINE RANINI(RVALUE) C C SUBROUTINE RANINI PERFORMS INITIALIZATION FOR SUBROUTINE RANDOM. C C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES", C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGES 163-164 C INTEGER JRAN2,I C DOUBLE PRECISION RVALUE,R,RAN3,DMOD,DABS,RAN1 C COMMON /COMRAN/ RAN3(127),RAN1,JRAN2 C R=DMOD(DABS(RVALUE),8190.0D0)+1 JRAN2=127 C 10 IF(JRAN2.GT.0) THEN JRAN2=JRAN2-1 RAN1=-2.0D0**55 C DO 20 I=1,7 R=DMOD(1756.0D0*R,8191.0D0) RAN1=(RAN1+(R-DMOD(R,32.0D0))/32.0D0)/256.0D0 20 CONTINUE C RAN3(JRAN2+1)=RAN1 GO TO 10 ENDIF C RETURN C C END RANINI C END SUBROUTINE RANDOM(RANVAL) C C SUBROUTINE RANDOM RETURNS A DOUBLE PRECISION PSEUDORANDOM NUMBER C UNIFORMLY DISTRIBUTED IN (0,1) (INCLUDING 0 BUT NOT 1). C C "ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES", C RICHARD P. BRENT, PRENTICE-HALL 1973, PAGES 163-164 C C BEFORE THE FIRST CALL TO RANDOM, THE USER MUST C CALL RANINI(R) ONCE (ONLY) WITH R A DOUBLE PRECISION NUMBER C EQUAL TO ANY INTEGER VALUE. C BRENT (PAGE 166) USED THE EQUIVALENT OF C CALL RANINI(4.0D0) . C C THE ALGORITHM USED IN SUBROUTINE RANDOM RETURNS X(N)/2**56, C WHERE X(N) = X(N-1) + X(N-127) (MOD 2**56) . C SINCE (1 + X + X**127) IS PRIMITIVE (MOD 2), C THE PERIOD IS AT LEAST (2**127 - 1), WHICH EXCEEDS 10**38. C C SEE "SEMINUMERICAL ALGORITHMS", VOLUME 2 OF C "THE ART OF COMPUTER PROGRAMMING" BY DONALD E. KNUTH, C ADDISON-WESLEY 1969, PAGES 26, 34, AND 464. C C X(N) IS STORED IN DOUBLE PRECISION AS RAN3 = X(N)/2**56 - 1/2, C AND ALL DOUBLE PRECISION ARITHMETIC IS EXACT. C INTEGER JRAN2 C DOUBLE PRECISION RANVAL,RAN3,RAN1 C COMMON /COMRAN/ RAN3(127),RAN1,JRAN2 C IF(JRAN2.EQ.0) THEN JRAN2=126 ELSE JRAN2=JRAN2-1 ENDIF C RAN1=RAN1+RAN3(JRAN2+1) IF(RAN1.LT.0.0D0) THEN RAN1=RAN1+0.5D0 ELSE RAN1=RAN1-0.5D0 ENDIF C RAN3(JRAN2+1)=RAN1 RANVAL=RAN1+0.5D0 C RETURN C C END RANDOM C END DOUBLE PRECISION FUNCTION DRANDM(DL) C C SIMPLE PORTABLE PSEUDORANDOM NUMBER GENERATOR. C C DRANDM RETURNS FUNCTION VALUES THAT ARE PSEUDORANDOM C NUMBERS UNIFORMLY DISTRIBUTED ON THE INTERVAL (0,1). C C 'NUMERICAL MATHEMATICS AND COMPUTING' BY WARD CHENEY AND C DAVID KINCAID, BROOKS/COLE PUBLISHING COMPANY C (FIRST EDITION, 1980), PAGE 203 C C AT THE BEGINNING OF EXECUTION, OR WHENEVER A NEW SEQUENCE IS C TO BE INITIATED, SET DL EQUAL TO AN INTEGER VALUE BETWEEN C 1.0D0 AND 2147483646.0D0, INCLUSIVE. DO THIS ONLY ONCE. C THEREAFTER, DO NOT SET OR ALTER DL IN ANY WAY. C FUNCTION DRANDM WILL MODIFY DL FOR ITS OWN PURPOSES. C C DRANDM USES A MULTIPLICATIVE CONGRUENTIAL METHOD. C THE NUMBERS GENERATED BY DRANDM SUFFER FROM THE PARALLEL C PLANES DEFECT DISCOVERED BY G. MARSAGLIA, AND SHOULD NOT BE C USED WHEN HIGH-QUALITY RANDOMNESS IS REQUIRED. IN THAT C CASE, USE A "SHUFFLING" METHOD. C DOUBLE PRECISION DL,DMOD C 10 DL=DMOD(16807.0D0*DL,2147483647.0D0) DRANDM=DL/2147483647.0D0 IF(DRANDM.LE.0.0D0 .OR. DRANDM.GE.1.0D0) GO TO 10 RETURN END
gpl-3.0
techno/gcc-mist32
libgfortran/generated/_dim_r10.F90
47
1458
! Copyright (C) 2002-2015 Free Software Foundation, Inc. ! Contributed by Paul Brook <paul@nowt.org> ! !This file is part of the GNU Fortran 95 runtime library (libgfortran). ! !GNU libgfortran is free software; you can redistribute it and/or !modify it under the terms of the GNU General Public !License as published by the Free Software Foundation; either !version 3 of the License, or (at your option) any later version. !GNU libgfortran is distributed in the hope that it will be useful, !but WITHOUT ANY WARRANTY; without even the implied warranty of !MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !GNU General Public License for more details. ! !Under Section 7 of GPL version 3, you are granted additional !permissions described in the GCC Runtime Library Exception, version !3.1, as published by the Free Software Foundation. ! !You should have received a copy of the GNU General Public License and !a copy of the GCC Runtime Library Exception along with this program; !see the files COPYING3 and COPYING.RUNTIME respectively. If not, see !<http://www.gnu.org/licenses/>. ! !This file is machine generated. #include "config.h" #include "kinds.inc" #include "c99_protos.inc" #if defined (HAVE_GFC_REAL_10) elemental function _gfortran_specific__dim_r10 (p1, p2) real (kind=10), intent (in) :: p1, p2 real (kind=10) :: _gfortran_specific__dim_r10 _gfortran_specific__dim_r10 = dim (p1, p2) end function #endif
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.17/src/map3dtolayer.f
1
6412
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2020 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine map3dtolayer(yn,ipkon,kon,lakon,nfield, & ne,co,ielmat,mi) ! ! interpolates 3d field nodal values to nodal values in the ! layers of composite materials ! implicit none ! character*8 lakon(*) ! integer ipkon(*),kon(*),ne,nfield,i,j,k,l,mi(*),nelem, & ielmat(mi(3),*),nlayer,iflag,nbot20(8),nmid20(8),ntop20(8), & nbot15(6),nmid15(6),ntop15(6),ibot,itop,nope,nopes,nopeexp, & indexe,konl(20),imid,node,nodebot,nodetop ! real*8 yn(nfield,*),shp(4,20),xsj(3),co(3,*),xl(3,20), & xi,et,ze,dd,dt,xi20(8),et20(8),xi15(6),et15(6) ! ! ! data iflag /1/ ! data nbot20 /1,2,3,4,9,10,11,12/ data nmid20 /17,18,19,20,0,0,0,0/ data ntop20 /5,6,7,8,13,14,15,16/ ! data nbot15 /1,2,3,7,8,9/ data nmid15 /13,14,15,0,0,0/ data ntop15 /4,5,6,10,11,12/ ! data xi20 /-1.d0,1.d0,1.d0,-1.d0,0.d0,1.d0,0.d0,-1.d0/ data et20 /-1.d0,-1.d0,1.d0,1.d0,-1.d0,0.d0,1.d0,0.d0/ ! data xi15 /0.d0,1.d0,0.d0,0.5d0,0.5d0,0.d0/ data et15 /0.d0,0.d0,1.d0,0.d0,0.5d0,0.5d0/ ! include "gauss.f" ! do nelem=1,ne if(lakon(nelem)(7:8).eq.'LC') then ! ! composite materials ! ! determining the number of layers ! nlayer=0 do k=1,mi(3) if(ielmat(k,nelem).ne.0) then nlayer=nlayer+1 endif enddo ! indexe=ipkon(nelem) ! if(lakon(nelem)(4:5).eq.'20') then nope=20 nopes=8 nopeexp=28 elseif(lakon(nelem)(4:5).eq.'15') then nope=15 nopes=6 nopeexp=21 endif ! do i=1,nope konl(i)=kon(indexe+i) do j=1,3 xl(j,i)=co(j,konl(i)) enddo enddo ! do i=1,nopes if(lakon(nelem)(4:5).eq.'20') then ibot=nbot20(i) imid=nmid20(i) itop=ntop20(i) xi=xi20(i) et=et20(i) else ibot=nbot15(i) imid=nmid15(i) itop=ntop15(i) xi=xi15(i) et=et15(i) endif ! nodebot=konl(ibot) nodetop=konl(itop) dd=sqrt((co(1,nodebot)-co(1,nodetop))**2+ & (co(2,nodebot)-co(2,nodetop))**2+ & (co(3,nodebot)-co(3,nodetop))**2) do j=0,nlayer-1 ! ! bottom node ! node=kon(indexe+nopeexp+j*nope+ibot) dt=sqrt((co(1,nodebot)-co(1,node))**2+ & (co(2,nodebot)-co(2,node))**2+ & (co(3,nodebot)-co(3,node))**2) ze=2.d0*dt/dd-1.d0 c write(*,*) 'map3dtolayer',node,xi,et,ze ! ! determining the value of the shape functions ! if(lakon(nelem)(4:5).eq.'20') then call shape20h(xi,et,ze,xl,xsj,shp,iflag) elseif(lakon(nelem)(4:5).eq.'15') then call shape15w(xi,et,ze,xl,xsj,shp,iflag) endif ! do k=1,nfield yn(k,node)=0.d0 do l=1,nope yn(k,node)=yn(k,node)+ & shp(4,l)*yn(k,konl(l)) c write(*,*) 'xi',xi,et,ze,node c write(*,*) l,shp(4,l),yn(k,konl(l)) enddo enddo ! ! top node ! node=kon(indexe+nopeexp+j*nope+itop) dt=sqrt((co(1,nodebot)-co(1,node))**2+ & (co(2,nodebot)-co(2,node))**2+ & (co(3,nodebot)-co(3,node))**2) ze=2.d0*dt/dd-1.d0 c write(*,*) 'map3dtolayer',node,xi,et,ze ! ! determining the value of the shape functions ! if(lakon(nelem)(4:5).eq.'20') then call shape20h(xi,et,ze,xl,xsj,shp,iflag) elseif(lakon(nelem)(4:5).eq.'15') then call shape15w(xi,et,ze,xl,xsj,shp,iflag) endif ! do k=1,nfield yn(k,node)=0.d0 do l=1,nope yn(k,node)=yn(k,node)+ & shp(4,l)*yn(k,konl(l)) enddo enddo ! ! middle node, if any ! if(i.gt.nopes/2) cycle ! node=kon(indexe+nopeexp+j*nope+imid) dt=sqrt((co(1,nodebot)-co(1,node))**2+ & (co(2,nodebot)-co(2,node))**2+ & (co(3,nodebot)-co(3,node))**2) ze=2.d0*dt/dd-1.d0 c write(*,*) 'map3dtolayer',node,xi,et,ze ! ! determining the value of the shape functions ! if(lakon(nelem)(4:5).eq.'20') then call shape20h(xi,et,ze,xl,xsj,shp,iflag) elseif(lakon(nelem)(4:5).eq.'15') then call shape15w(xi,et,ze,xl,xsj,shp,iflag) endif ! do k=1,nfield yn(k,node)=0.d0 do l=1,nope yn(k,node)=yn(k,node)+ & shp(4,l)*yn(k,konl(l)) enddo enddo enddo enddo endif enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/inversewavspd.f
1
4035
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2007 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine inversewavspd(xi,et,c,rho,a) ! ! Calculates the propagation wave speed in a material, up to its 21 ! constants. Subroutine for calcmatwavsps.f ! Based on the procedure in: ! C. Lane. The Development of a 2D Ultrasonic Array Inspection ! for Single Crystal Turbine Blades. ! Switzerland: Springer International Publishing, 2014. ! ! CARLO MONJARAZ TEC (CMT) ! ! INPUT: ! ! xi,et: values within a square domain between -1 and 1. ! correlate in a unique way with 0<=phi<=pi and ! -pi<=theta<=pi ! ! elas: c(3,3,3,3) - The elasticity vector ! ! rho: double - Density of the material ! ! ! OUTPUT: ! ! a: inverse of the wave speed ! implicit none ! integer i,j,k,l,ier,matz,ndim ! real*8 c(3,3,3,3),rho,xn(3),cm(3,3,3),a,xi,et, & cmm(3,3),dd,al(3),alz(3,3),fv1(3),fv2(3), & theta,phi,pi,p3(3),v(3), & speed ! intent(in) xi,et,c,rho ! intent(inout) a ! pi=4.d0*datan(1.d0) ! theta=xi*pi phi=(et+1.d0)*pi/2.d0 ! do l=1,3 v(l)=0. do k=1,3 cmm(k,l)=0. do j=1,3 cm(j,l,k)=0. enddo enddo enddo ! xn(1)=dcos(theta)*dsin(phi) xn(2)=dsin(theta)*dsin(phi) xn(3)=dcos(phi) ! ! c ------------ PER EAcH DIREcTION find wave speed----------------------- ! do l=1,3 do k=1,3 do i=1,3 do j=1,3 cm(l,k,i)=cm(l,k,i)+c(l,k,j,i)*xn(j) enddo enddo enddo enddo ! do k=1,3 do i=1,3 do l=1,3 cmm(k,i)=cmm(k,i)+cm(l,k,i)*xn(l) enddo enddo enddo ! ndim=3 matz=1 ier=0 ! ! ---------reset vars for EIGvALUES ! do j=1,3 al(j)=0. fv1(j)=0. fv2(j)=0. do i=1,3 alz(j,i)=0. enddo enddo ! call rs(ndim,ndim,cmm,al,matz,alz,fv1,fv2,ier) ! ! ------normalizing eigenvectors to P vectors---------- ! dd=dsqrt(alz(1,3)**2+alz(2,3)**2+alz(3,3)**2) p3(1)=alz(1,3)/dd p3(2)=alz(2,3)/dd p3(3)=alz(3,3)/dd ! do l=1,3 do k=1,3 cmm(k,l)=0. do j=1,3 cm(j,l,k)=0. enddo enddo enddo ! do l=1,3 do j=1,3 do i=1,3 do k=1,3 cm(l,j,i)=cm(l,j,i)+c(l,k,j,i)*xn(k); enddo enddo enddo enddo ! do l=1,3 do j=1,3 do i=1,3 cmm(l,j)=cmm(l,j)+cm(l,j,i)*p3(i); enddo enddo enddo ! do j=1,3 do l=1,3 v(j)=v(j)+cmm(l,j)*p3(l) enddo enddo ! dd=dsqrt(v(1)**2+v(2)**2+v(3)**2) speed=dd/dsqrt(rho*al(3)) c speed=dsqrt(dd/rho) ! ! inverse wave speed ! a=1.d0/speed ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.16/src/objectives.f
1
15240
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2019 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine objectives(inpc,textpart,istep,istat,n,iline,ipol,inl, & ipoinp,inp,ipoinpc,nener,nobject,objectset,objective_flag, & set,nset,ntie,tieset,ier) ! ! reading the input deck: *OBJECTIVE ! ! criteria: DISPLACEMENT ! X-DISP ! Y-DISP ! Z-DISP ! EIGENFREQUENCY ! GREEN ! MASS ! STRAIN ENERGY ! STRESS ! implicit none ! logical objective_flag ! character*1 inpc(*) character*132 textpart(16) character*81 objectset(4,*),set(*),tieset(3,*) ! integer istep,istat,n,key,i,iline,ipol,inl,ipoinp(2,*),nset, & inp(3,*),ipoinpc(0:*),nener,nobject,k,ipos,nconst,icoordinate, & ntie,ier ! real*8 rho,stress ! ! initialization ! rho=0.d0 stress=0.d0 icoordinate=0 ! ! check whether the design variables are the coordinates ! do i=1,ntie if(tieset(1,i)(81:81).eq.'D') then if(tieset(1,i)(1:10).eq.'COORDINATE') then icoordinate=1 exit elseif(tieset(1,i)(1:11).eq.'ORIENTATION') then exit endif endif enddo ! if(objective_flag) then write(*,*) '*ERROR reading *OBJECTIVE' write(*,*) ' no more than one *OBJECTIVE keyword' write(*,*) ' is allowed per *SENSITIVITY step' ier=1 return endif ! if(istep.lt.1) then write(*,*) '*ERROR reading *OBJECTIVE: *OBJECTIVE can &only be used within a SENSITIVITY STEP' ier=1 return endif ! ! check if constraints are already defined ! nconst=0 if(nobject.gt.0) then nconst=nobject nobject=0 endif ! ! check if it is a minimization or maximization problem ! if(textpart(2)(1:7).eq.'TARGET=') then if(textpart(1)(8:10).eq.'MIN') then objectset(2,1)(17:19)='MIN' elseif(textpart(2)(8:10).eq.'MAX') then objectset(2,1)(17:19)='MAX' else write(*,*) & '*WARNING optimization TARGET not known.' write(*,*) & ' Minimization problem assumed as default.' objectset(2,1)(17:19)='MIN' endif else write(*,*) & '*WARNING optimization TARGET not specified.' write(*,*) & ' Minimization problem assumed as default.' objectset(2,1)(17:19)='MIN' endif ! ! reading the objectives ! call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) ! do if(textpart(1)(1:12).eq.'DISPLACEMENT') then nobject=nobject+1 objectset(1,nobject)(1:12)='DISPLACEMENT' do k=13,20 objectset(1,nobject)(k:k)=' ' enddo if(n.ge.2) then read(textpart(2)(1:80),'(a80)',iostat=istat) & objectset(3,nobject)(1:80) objectset(3,nobject)(81:81)=' ' ipos=index(objectset(3,nobject),' ') if(ipos.ne.1) then objectset(3,nobject)(ipos:ipos)='N' ! ! check the existence of the set ! do i=1,nset if(set(i).eq.objectset(3,nobject)) exit enddo if(i.gt.nset) then objectset(3,nobject)(ipos:ipos)=' ' write(*,*) '*ERROR reading *OBJECTIVE: node set ', & objectset(3,nobject) write(*,*) ' has not yet been defined. ' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif endif endif elseif(textpart(1)(1:6).eq.'X-DISP') then nobject=nobject+1 objectset(1,nobject)(1:6)='X-DISP' do k=7,20 objectset(1,nobject)(k:k)=' ' enddo if(n.ge.2) then read(textpart(2)(1:80),'(a80)',iostat=istat) & objectset(3,nobject)(1:80) objectset(3,nobject)(81:81)=' ' ipos=index(objectset(3,nobject),' ') if(ipos.ne.1) then objectset(3,nobject)(ipos:ipos)='N' ! ! check the existence of the set ! do i=1,nset if(set(i).eq.objectset(3,nobject)) exit enddo if(i.gt.nset) then objectset(3,nobject)(ipos:ipos)=' ' write(*,*) '*ERROR reading *OBJECTIVE: node set ', & objectset(3,nobject) write(*,*) ' has not yet been defined. ' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif endif endif elseif(textpart(1)(1:6).eq.'Y-DISP') then nobject=nobject+1 objectset(1,nobject)(1:6)='Y-DISP' do k=7,20 objectset(1,nobject)(k:k)=' ' enddo if(n.ge.2) then read(textpart(2)(1:80),'(a80)',iostat=istat) & objectset(3,nobject)(1:80) objectset(3,nobject)(81:81)=' ' ipos=index(objectset(3,nobject),' ') if(ipos.ne.1) then objectset(3,nobject)(ipos:ipos)='N' ! ! check the existence of the set ! do i=1,nset if(set(i).eq.objectset(3,nobject)) exit enddo if(i.gt.nset) then objectset(3,nobject)(ipos:ipos)=' ' write(*,*) '*ERROR reading *OBJECTIVE: node set ', & objectset(3,nobject) write(*,*) ' has not yet been defined. ' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif endif endif elseif(textpart(1)(1:6).eq.'Z-DISP') then nobject=nobject+1 objectset(1,nobject)(1:6)='Z-DISP' do k=7,20 objectset(1,nobject)(k:k)=' ' enddo if(n.ge.2) then read(textpart(2)(1:80),'(a80)',iostat=istat) & objectset(3,nobject)(1:80) objectset(3,nobject)(81:81)=' ' ipos=index(objectset(3,nobject),' ') if(ipos.ne.1) then objectset(3,nobject)(ipos:ipos)='N' ! ! check the existence of the set ! do i=1,nset if(set(i).eq.objectset(3,nobject)) exit enddo if(i.gt.nset) then objectset(3,nobject)(ipos:ipos)=' ' write(*,*) '*ERROR reading *OBJECTIVE: node set ', & objectset(3,nobject) write(*,*) ' has not yet been defined. ' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif endif endif elseif(textpart(1)(1:14).eq.'EIGENFREQUENCY') then nobject=nobject+1 objectset(1,nobject)(1:14)='EIGENFREQUENCY' do k=15,20 objectset(1,nobject)(k:k)=' ' enddo elseif(textpart(1)(1:5).eq.'GREEN') then nobject=nobject+1 objectset(1,nobject)(1:5)='GREEN' do k=6,20 objectset(1,nobject)(k:k)=' ' enddo elseif(textpart(1)(1:4).eq.'MASS') then nobject=nobject+1 objectset(1,nobject)(1:4)='MASS' do k=5,20 objectset(1,nobject)(k:k)=' ' enddo if(n.ge.2) then read(textpart(2)(1:80),'(a80)',iostat=istat) & objectset(3,nobject)(1:80) objectset(3,nobject)(81:81)=' ' ipos=index(objectset(3,nobject),' ') if(ipos.ne.1) then objectset(3,nobject)(ipos:ipos)='E' ! ! check the existence of the set ! do i=1,nset if(set(i).eq.objectset(3,nobject)) exit enddo if(i.gt.nset) then objectset(3,nobject)(ipos:ipos)=' ' write(*,*) & '*ERROR reading *OBJECTIVE: element set ', & objectset(3,nobject) write(*,*) ' has not yet been defined. ' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif endif endif elseif(textpart(1)(1:12).eq.'STRAINENERGY') then nobject=nobject+1 objectset(1,nobject)(1:12)='STRAINENERGY' do k=13,20 objectset(1,nobject)(k:k)=' ' enddo if(n.ge.2) then read(textpart(2)(1:80),'(a80)',iostat=istat) & objectset(3,nobject)(1:80) objectset(3,nobject)(81:81)=' ' ipos=index(objectset(3,nobject),' ') if(ipos.ne.1) then objectset(3,nobject)(ipos:ipos)='E' ! ! check the existence of the set ! do i=1,nset if(set(i).eq.objectset(3,nobject)) exit enddo if(i.gt.nset) then objectset(3,nobject)(ipos:ipos)=' ' write(*,*) & '*ERROR reading *OBJECTIVE: element set ', & objectset(3,nobject) write(*,*) ' has not yet been defined. ' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif endif endif nener=1 elseif(textpart(1)(1:6).eq.'STRESS') then nobject=nobject+1 objectset(1,nobject)(1:6)='STRESS' do k=7,20 objectset(1,nobject)(k:k)=' ' enddo if(n.ge.2) then read(textpart(2)(1:80),'(a80)',iostat=istat) & objectset(3,nobject)(1:80) objectset(3,nobject)(81:81)=' ' ipos=index(objectset(3,nobject),' ') if(ipos.ne.1) then objectset(3,nobject)(ipos:ipos)='N' ! ! check the existence of the set ! do i=1,nset if(set(i).eq.objectset(3,nobject)) exit enddo if(i.gt.nset) then objectset(3,nobject)(ipos:ipos)=' ' write(*,*) '*ERROR reading *OBJECTIVE: node set ', & objectset(3,nobject) write(*,*) ' has not yet been defined. ' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif endif endif ! ! rho for the Kreisselmeier-Steinhauser function ! if(n.ge.3) then read(textpart(3)(1:20),'(f20.0)',iostat=istat) rho if(istat.gt.0) then call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif objectset(2,nobject)(41:60)=textpart(3)(1:20) endif ! if(icoordinate.eq.1) then if(rho.lt.1.d0) then write(*,*) '*ERROR reading *OBJECTIVE' write(*,*) ' first Kreisselmeier-Steinhauser' write(*,*) ' parameter rho cannot be less' write(*,*) ' than 1' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif endif ! ! the target stress for the Kreisselmeier-Steinhauser function ! if(n.ge.4) then read(textpart(4)(1:20),'(f20.0)',iostat=istat) stress if(istat.gt.0) then call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif objectset(2,nobject)(61:80)=textpart(4)(1:20) endif ! if(stress.le.0.d0) then if(icoordinate.eq.1) then write(*,*) '*ERROR reading *OBJECTIVE' write(*,*) ' the target stress in the' write(*,*) ' Kreisselmeier-Steinhauser function' write(*,*) ' must be strictly positive' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif endif else write(*,*) '*ERROR reading *OBJECTIVE' write(*,*) ' objective function not known' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif ! call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) if((istat.lt.0).or.(key.eq.1)) exit ! ! if constraints are defined only one objective function is allowed ! if((nconst.gt.0).and.(nobject.gt.1)) then write(*,*) '*ERROR reading *OBJECTIVE' write(*,*) ' in the case constraints are defined,' write(*,*) ' the definition of only 1 objective' write(*,*) ' is allowed' call inputerror(inpc,ipoinpc,iline, & "*OBJECTIVE%",ier) return endif enddo ! ! In the case constraints are already defined, the actual number of ! nobjects is restored ! if(nconst.gt.0) then nobject=nconst endif ! return end
gpl-2.0
techno/gcc-mist32
libgomp/testsuite/libgomp.fortran/simd7.f90
102
9430
! { dg-do run } ! { dg-additional-options "-msse2" { target sse2_runtime } } ! { dg-additional-options "-mavx" { target avx_runtime } } subroutine foo (d, e, f, g, m, n) integer :: i, j, b(2:9), c(3:n), d(:), e(2:n), f(2:,3:), n integer, allocatable :: g(:), h(:), k, m logical :: l l = .false. allocate (h(2:7)) i = 4; j = 4; b = 7; c = 8; d = 9; e = 10; f = 11; g = 12; h = 13; k = 14; m = 15 !$omp simd linear(b)linear(c:2)linear(d:3)linear(e:4)linear(f:5)linear(g:6) & !$omp & linear(h:7)linear(k:8)linear(m:9) reduction(.or.:l) do i = 0, 63 l = l .or. .not.allocated (g) .or. .not.allocated (h) l = l .or. .not.allocated (k) .or. .not.allocated (m) l = l .or. any (b /= 7 + i) .or. any (c /= 8 + 2 * i) l = l .or. any (d /= 9 + 3 * i) .or. any (e /= 10 + 4 * i) l = l .or. any (f /= 11 + 5 * i) .or. any (g /= 12 + 6 * i) l = l .or. any (h /= 13 + 7 * i) .or. (k /= 14 + 8 * i) l = l .or. (m /= 15 + 9 * i) l = l .or. (lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9) l = l .or. (lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n) l = l .or. (lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17) l = l .or. (lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n) l = l .or. (lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3) l = l .or. (lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5) l = l .or. (lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10) l = l .or. (lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7) b = b + 1; c = c + 2; d = d + 3; e = e + 4; f = f + 5; g = g + 6 h = h + 7; k = k + 8; m = m + 9 end do if (l .or. i /= 64) call abort if (any (b /= 7 + 64) .or. any (c /= 8 + 2 * 64)) call abort if (any (d /= 9 + 3 * 64) .or. any (e /= 10 + 4 * 64)) call abort if (any (f /= 11 + 5 * 64) .or. any (g /= 12 + 6 * 64)) call abort if (any (h /= 13 + 7 * 64) .or. (k /= 14 + 8 * 64)) call abort if (m /= 15 + 9 * 64) call abort if ((lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9)) call abort if ((lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n)) call abort if ((lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17)) call abort if ((lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n)) call abort if ((lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3)) call abort if ((lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5)) call abort if ((lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10)) call abort if ((lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7)) call abort i = 4; j = 4; b = 7; c = 8; d = 9; e = 10; f = 11; g = 12; h = 13; k = 14; m = 15 !$omp simd linear(b)linear(c:2)linear(d:3)linear(e:4)linear(f:5)linear(g:6) & !$omp & linear(h:7)linear(k:8)linear(m:9) reduction(.or.:l) collapse(2) do i = 0, 7 do j = 0, 7 l = l .or. .not.allocated (g) .or. .not.allocated (h) l = l .or. .not.allocated (k) .or. .not.allocated (m) l = l .or. any (b /= 7 + (8 * i + j)) .or. any (c /= 8 + 2 * (8 * i + j)) l = l .or. any (d /= 9 + 3 * (8 * i + j)) .or. any (e /= 10 + 4 * (8 * i + j)) l = l .or. any (f /= 11 + 5 * (8 * i + j)) .or. any (g /= 12 + 6 * (8 * i + j)) l = l .or. any (h /= 13 + 7 * (8 * i + j)) .or. (k /= 14 + 8 * (8 * i + j)) l = l .or. (m /= 15 + 9 * (8 * i + j)) l = l .or. (lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9) l = l .or. (lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n) l = l .or. (lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17) l = l .or. (lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n) l = l .or. (lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3) l = l .or. (lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5) l = l .or. (lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10) l = l .or. (lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7) b = b + 1; c = c + 2; d = d + 3; e = e + 4; f = f + 5; g = g + 6 h = h + 7; k = k + 8; m = m + 9 end do end do if (l .or. i /= 8 .or. j /= 8) call abort if (any (b /= 7 + 64) .or. any (c /= 8 + 2 * 64)) call abort if (any (d /= 9 + 3 * 64) .or. any (e /= 10 + 4 * 64)) call abort if (any (f /= 11 + 5 * 64) .or. any (g /= 12 + 6 * 64)) call abort if (any (h /= 13 + 7 * 64) .or. (k /= 14 + 8 * 64)) call abort if (m /= 15 + 9 * 64) call abort if ((lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9)) call abort if ((lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n)) call abort if ((lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17)) call abort if ((lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n)) call abort if ((lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3)) call abort if ((lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5)) call abort if ((lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10)) call abort if ((lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7)) call abort i = 4; j = 4; b = 7; c = 8; d = 9; e = 10; f = 11; g = 12; h = 13; k = 14; m = 15 !$omp parallel do simd linear(b)linear(c:2)linear(d:3)linear(e:4)linear(f:5) & !$omp & linear(g:6)linear(h:7)linear(k:8)linear(m:9) reduction(.or.:l) do i = 0, 63 l = l .or. .not.allocated (g) .or. .not.allocated (h) l = l .or. .not.allocated (k) .or. .not.allocated (m) l = l .or. any (b /= 7 + i) .or. any (c /= 8 + 2 * i) l = l .or. any (d /= 9 + 3 * i) .or. any (e /= 10 + 4 * i) l = l .or. any (f /= 11 + 5 * i) .or. any (g /= 12 + 6 * i) l = l .or. any (h /= 13 + 7 * i) .or. (k /= 14 + 8 * i) l = l .or. (m /= 15 + 9 * i) l = l .or. (lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9) l = l .or. (lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n) l = l .or. (lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17) l = l .or. (lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n) l = l .or. (lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3) l = l .or. (lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5) l = l .or. (lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10) l = l .or. (lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7) b = b + 1; c = c + 2; d = d + 3; e = e + 4; f = f + 5; g = g + 6 h = h + 7; k = k + 8; m = m + 9 end do if (l .or. i /= 64) call abort if (any (b /= 7 + 64) .or. any (c /= 8 + 2 * 64)) call abort if (any (d /= 9 + 3 * 64) .or. any (e /= 10 + 4 * 64)) call abort if (any (f /= 11 + 5 * 64) .or. any (g /= 12 + 6 * 64)) call abort if (any (h /= 13 + 7 * 64) .or. (k /= 14 + 8 * 64)) call abort if (m /= 15 + 9 * 64) call abort if ((lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9)) call abort if ((lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n)) call abort if ((lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17)) call abort if ((lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n)) call abort if ((lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3)) call abort if ((lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5)) call abort if ((lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10)) call abort if ((lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7)) call abort i = 4; j = 4; b = 7; c = 8; d = 9; e = 10; f = 11; g = 12; h = 13; k = 14; m = 15 !$omp parallel do simd linear(b)linear(c:2)linear(d:3)linear(e:4)linear(f:5) & !$omp & linear(g:6)linear(h:7)linear(k:8)linear(m:9) reduction(.or.:l) collapse(2) do i = 0, 7 do j = 0, 7 l = l .or. .not.allocated (g) .or. .not.allocated (h) l = l .or. .not.allocated (k) .or. .not.allocated (m) l = l .or. any (b /= 7 + (8 * i + j)) .or. any (c /= 8 + 2 * (8 * i + j)) l = l .or. any (d /= 9 + 3 * (8 * i + j)) .or. any (e /= 10 + 4 * (8 * i + j)) l = l .or. any (f /= 11 + 5 * (8 * i + j)) .or. any (g /= 12 + 6 * (8 * i + j)) l = l .or. any (h /= 13 + 7 * (8 * i + j)) .or. (k /= 14 + 8 * (8 * i + j)) l = l .or. (m /= 15 + 9 * (8 * i + j)) l = l .or. (lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9) l = l .or. (lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n) l = l .or. (lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17) l = l .or. (lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n) l = l .or. (lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3) l = l .or. (lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5) l = l .or. (lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10) l = l .or. (lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7) b = b + 1; c = c + 2; d = d + 3; e = e + 4; f = f + 5; g = g + 6 h = h + 7; k = k + 8; m = m + 9 end do end do if (l .or. i /= 8 .or. j /= 8) call abort if (any (b /= 7 + 64) .or. any (c /= 8 + 2 * 64)) call abort if (any (d /= 9 + 3 * 64) .or. any (e /= 10 + 4 * 64)) call abort if (any (f /= 11 + 5 * 64) .or. any (g /= 12 + 6 * 64)) call abort if (any (h /= 13 + 7 * 64) .or. (k /= 14 + 8 * 64)) call abort if (m /= 15 + 9 * 64) call abort if ((lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9)) call abort if ((lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n)) call abort if ((lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17)) call abort if ((lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n)) call abort if ((lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3)) call abort if ((lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5)) call abort if ((lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10)) call abort if ((lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7)) call abort end subroutine interface subroutine foo (d, e, f, g, m, n) integer :: d(:), e(2:n), f(2:,3:), n integer, allocatable :: g(:), m end subroutine end interface integer, parameter :: n = 8 integer :: d(2:18), e(3:n+1), f(5:6,7:9) integer, allocatable :: g(:), m allocate (g(7:10)) call foo (d, e, f, g, m, n) end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.8p2/src/biotsavart.f
6
4807
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine biotsavart(ipkon,kon,lakon,ne,co,qfx,h0,mi,nka,nkb) ! implicit none ! ! calculates the magnetic intensity due to currents in the phi- ! domain of an electromagnetic calculation ! character*8 lakon(*) ! integer ipkon(*),kon(*),ne,i,nka,nkb,mint3d,konl(26), & j,k,indexe,kk,iflag,mi(*),nope,l ! real*8 co(3,*),qfx(3,mi(1),*),h0(3,*),xl(3,26),r(3),c2, & con(3),pgauss(3),c1,xi,et,ze,xsj,shp(4,20),weight ! include "gauss.f" ! c1=1.d0/(16.d0*datan(1.d0)) iflag=2 ! do j=nka,nkb ! do k=1,3 con(k)=co(k,j) enddo ! do i=1,ne if(ipkon(i).lt.0) cycle ! ! currents are supposed to be modeled by shell elements ! only ! if(lakon(i)(7:7).ne.'L') cycle ! if(lakon(i)(4:5).eq.'8R') then mint3d=1 nope=8 elseif(lakon(i)(4:4).eq.'8') then mint3d=8 nope=8 elseif(lakon(i)(4:6).eq.'20R') then mint3d=8 nope=20 elseif(lakon(i)(4:4).eq.'2') then mint3d=27 nope=20 elseif(lakon(i)(4:5).eq.'15') then mint3d=9 nope=15 elseif(lakon(i)(4:4).eq.'6') then mint3d=2 nope=6 endif ! indexe=ipkon(i) ! do l=1,nope konl(l)=kon(indexe+l) do k=1,3 xl(k,l)=co(k,konl(l)) enddo enddo ! do kk=1,mint3d ! if(lakon(i)(4:5).eq.'8R') then xi=gauss3d1(1,kk) et=gauss3d1(2,kk) ze=gauss3d1(3,kk) weight=weight3d1(kk) elseif((lakon(i)(4:4).eq.'8').or. & (lakon(i)(4:6).eq.'20R')) & then xi=gauss3d2(1,kk) et=gauss3d2(2,kk) ze=gauss3d2(3,kk) weight=weight3d2(kk) elseif(lakon(i)(4:4).eq.'2') then xi=gauss3d3(1,kk) et=gauss3d3(2,kk) ze=gauss3d3(3,kk) weight=weight3d3(kk) elseif(lakon(i)(4:5).eq.'15') then xi=gauss3d8(1,kk) et=gauss3d8(2,kk) ze=gauss3d8(3,kk) weight=weight3d8(kk) elseif(lakon(i)(4:4).eq.'6') then xi=gauss3d7(1,kk) et=gauss3d7(2,kk) ze=gauss3d7(3,kk) weight=weight3d7(kk) endif ! ! shape functions ! if(nope.eq.20) then call shape20h(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.8) then call shape8h(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.15) then call shape15w(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.6) then call shape6w(xi,et,ze,xl,xsj,shp,iflag) endif ! ! coordinates of the gauss point ! do k=1,3 pgauss(k)=0.d0 do l=1,nope pgauss(k)=pgauss(k)+shp(4,l)*xl(k,l) enddo enddo ! ! distance from node to gauss point ! do k=1,3 r(k)=con(k)-pgauss(k) enddo c2=weight*xsj/((r(1)*r(1)+r(2)*r(2)+r(3)*r(3))**(1.5d0)) ! h0(1,j)=h0(1,j)+c2* & (qfx(2,kk,i)*r(3)-qfx(3,kk,i)*r(2)) h0(2,j)=h0(2,j)+c2* & (qfx(3,kk,i)*r(1)-qfx(1,kk,i)*r(3)) h0(3,j)=h0(3,j)+c2* & (qfx(1,kk,i)*r(2)-qfx(2,kk,i)*r(1)) enddo enddo ! do k=1,3 h0(k,j)=h0(k,j)*c1 enddo enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/biotsavart.f
6
4807
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine biotsavart(ipkon,kon,lakon,ne,co,qfx,h0,mi,nka,nkb) ! implicit none ! ! calculates the magnetic intensity due to currents in the phi- ! domain of an electromagnetic calculation ! character*8 lakon(*) ! integer ipkon(*),kon(*),ne,i,nka,nkb,mint3d,konl(26), & j,k,indexe,kk,iflag,mi(*),nope,l ! real*8 co(3,*),qfx(3,mi(1),*),h0(3,*),xl(3,26),r(3),c2, & con(3),pgauss(3),c1,xi,et,ze,xsj,shp(4,20),weight ! include "gauss.f" ! c1=1.d0/(16.d0*datan(1.d0)) iflag=2 ! do j=nka,nkb ! do k=1,3 con(k)=co(k,j) enddo ! do i=1,ne if(ipkon(i).lt.0) cycle ! ! currents are supposed to be modeled by shell elements ! only ! if(lakon(i)(7:7).ne.'L') cycle ! if(lakon(i)(4:5).eq.'8R') then mint3d=1 nope=8 elseif(lakon(i)(4:4).eq.'8') then mint3d=8 nope=8 elseif(lakon(i)(4:6).eq.'20R') then mint3d=8 nope=20 elseif(lakon(i)(4:4).eq.'2') then mint3d=27 nope=20 elseif(lakon(i)(4:5).eq.'15') then mint3d=9 nope=15 elseif(lakon(i)(4:4).eq.'6') then mint3d=2 nope=6 endif ! indexe=ipkon(i) ! do l=1,nope konl(l)=kon(indexe+l) do k=1,3 xl(k,l)=co(k,konl(l)) enddo enddo ! do kk=1,mint3d ! if(lakon(i)(4:5).eq.'8R') then xi=gauss3d1(1,kk) et=gauss3d1(2,kk) ze=gauss3d1(3,kk) weight=weight3d1(kk) elseif((lakon(i)(4:4).eq.'8').or. & (lakon(i)(4:6).eq.'20R')) & then xi=gauss3d2(1,kk) et=gauss3d2(2,kk) ze=gauss3d2(3,kk) weight=weight3d2(kk) elseif(lakon(i)(4:4).eq.'2') then xi=gauss3d3(1,kk) et=gauss3d3(2,kk) ze=gauss3d3(3,kk) weight=weight3d3(kk) elseif(lakon(i)(4:5).eq.'15') then xi=gauss3d8(1,kk) et=gauss3d8(2,kk) ze=gauss3d8(3,kk) weight=weight3d8(kk) elseif(lakon(i)(4:4).eq.'6') then xi=gauss3d7(1,kk) et=gauss3d7(2,kk) ze=gauss3d7(3,kk) weight=weight3d7(kk) endif ! ! shape functions ! if(nope.eq.20) then call shape20h(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.8) then call shape8h(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.15) then call shape15w(xi,et,ze,xl,xsj,shp,iflag) elseif(nope.eq.6) then call shape6w(xi,et,ze,xl,xsj,shp,iflag) endif ! ! coordinates of the gauss point ! do k=1,3 pgauss(k)=0.d0 do l=1,nope pgauss(k)=pgauss(k)+shp(4,l)*xl(k,l) enddo enddo ! ! distance from node to gauss point ! do k=1,3 r(k)=con(k)-pgauss(k) enddo c2=weight*xsj/((r(1)*r(1)+r(2)*r(2)+r(3)*r(3))**(1.5d0)) ! h0(1,j)=h0(1,j)+c2* & (qfx(2,kk,i)*r(3)-qfx(3,kk,i)*r(2)) h0(2,j)=h0(2,j)+c2* & (qfx(3,kk,i)*r(1)-qfx(1,kk,i)*r(3)) h0(3,j)=h0(3,j)+c2* & (qfx(1,kk,i)*r(2)-qfx(2,kk,i)*r(1)) enddo enddo ! do k=1,3 h0(k,j)=h0(k,j)*c1 enddo enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/massflow_percent.f
1
4745
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine massflow_percent(node1,node2,nodem,nelem,lakon,kon, & ipkon,nactdog,identity,ielprop,prop,iflag,v,xflow,f, & nodef,idirf,df,cp,r,physcon,dvi,numf,set,shcon, & nshcon,rhcon,nrhcon,ntmat_,co,vold,mi,ttime,time,iaxial) ! ! partial massflow element ! ! author: Yannick Muller ! implicit none ! logical identity character*8 lakon(*) character*81 set(*) ! integer nelem,nactdog(0:3,*),node1,node2,nodem,numf, & ielprop(*),nodef(*),idirf(*),index,iflag, & inv,ipkon(*),kon(*),number,kgas,iaxial, & nodea,nodeb,mi(*),i,itype,nodemup, & nrhcon(*),ntmat_,nshcon(*) ! real*8 prop(*),v(0:mi(2),*),xflow,f,df(*),kappa,R,a,d,xl, & p1,p2,T1,physcon(*),pi,xflow_oil,T2,co(3,*),vold(0:mi(2),*), & xflow_sum,percent_xflow,cp,dvi,pt1,pt2,Tt1,Tt2,ttime,time, & shcon(0:3,ntmat_,*),rhcon(0:1,ntmat_,*) ! pi=4.d0*datan(1.d0) index=ielprop(nelem) ! if(iflag.eq.0) then identity=.true. ! if(nactdog(2,node1).ne.0)then identity=.false. elseif(nactdog(2,node2).ne.0)then identity=.false. elseif(nactdog(1,nodem).ne.0)then identity=.false. endif ! elseif(iflag.eq.1)then ! percent_xflow=prop(index+1) xflow_sum=0 ! do i=2,10 if(nint(prop(index+i)).ne.0) then nodemup=kon(ipkon(nint(prop(index+i)))+2) if(v(1,nodemup).gt.0)then xflow_sum=xflow_sum+v(1,nodemup)*iaxial endif endif enddo ! if(xflow_sum.eq.0d0) then xflow_sum=0.001d0 endif ! xflow=xflow_sum*percent_xflow ! elseif((iflag.eq.2).or.(iflag.eq.3))then ! percent_xflow=prop(index+1) xflow_sum=0 do i=2,10 if(nint(prop(index+i)).ne.0) then nodemup=kon(ipkon(nint(prop(index+i)))+2) if(v(1,nodemup).gt.0)then xflow_sum=xflow_sum+v(1,nodemup)*iaxial endif endif enddo if(xflow_sum.eq.0.d0) then xflow_sum=1E-5 endif ! inv=1 ! pt1=v(2,node1) pt2=v(2,node2) xflow=v(1,nodem)*iaxial Tt1=v(0,node1)-physcon(1) Tt2=v(0,node2)-physcon(1) ! nodef(1)=node1 nodef(2)=node1 nodef(3)=nodem nodef(4)=node2 ! idirf(1)=2 idirf(2)=0 idirf(3)=1 idirf(4)=2 ! if(iflag.eq.2) then numf=4 ! f=xflow/xflow_sum-percent_xflow ! df(1)=0 df(2)=0 df(3)=1/xflow_sum df(4)=0 ! ! output ! elseif(iflag.eq.3)then ! xflow_oil=0 ! write(1,*) '' write(1,55) ' from node ',node1, & ' to node ', node2,' : air massflow rate = ' & ,inv*xflow, & ', oil massflow rate = ',xflow_oil 55 format(1X,A,I6,A,I6,A,e11.4,A,A,e11.4,A) ! write(1,56)' Inlet node ',node1,' : Tt1 = ',Tt1, & ' , Ts1 = ',Tt1,' , Pt1 = ',Pt1 ! write(1,*)' Element ',nelem,lakon(nelem) write(1,57)' Massflow upstream = ',xflow_sum, & ' [kg/s]' write(1,58)' Massflow fraction = ', percent_xflow write(1,56)' Outlet node ',node2,': Tt2=',Tt2, & ', Ts2=',Tt2,', Pt2=',Pt2 ! endif endif ! 56 format(1X,A,I6,A,e11.4,A,e11.4,A,e11.4,A) 57 format(1X,A,e11.4,A) 58 format(1X,A,e11.4) ! xflow=xflow/iaxial df(3)=df(3)*iaxial ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.17/src/near3d_se.f
1
6384
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2020 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine near3d_se(xo,yo,zo,x,y,z,nx,ny,nz,xp,yp,zp,n, & ir,r,nr,radius) ! ! determines the nodes out of n within a radius r of ! the point with coordinates (xp,yp,zp); ! ! ! INPUT: ! ! xo x-coordinates of cloud of nodes ! yo y-coordinates of cloud of nodes ! zo z-coordinates of cloud of nodes ! x xo ordered in increasing order ! (can be done in the calling program ! with dsort) ! y yo ordered in increasing order ! z zo ordered in increasing order ! nx permutations of x-ordering ! ny permutations of y-ordering ! nz permutations of z-ordering ! xp x-coordinate of point of interest ! yp y-coordinate of point of interest ! zp z-coordinate of point of interest ! n number of nodes in cloud ! radius radius ! ! OUTPUT: ! ! ir numbers of the nodes within the given radius ! r distance square of the nodes within the given ! radius ! nr number of nodes within the given radius ! implicit none ! integer n,nx(n),ny(n),nz(n),ir(n+6),nr,nrprev,irnew, & i,j,k,m,id,idx,idy,idz,node ! real*8 x(n),y(n),z(n),xo(n),yo(n),zo(n),xp,yp,zp,r(n+6), & xr,yr,zr,c(8),dd,xw,xe,ys,yn,zb,zt,radius, & radius2 ! radius2=radius*radius nrprev=0 ! ! identify position of xp, yp and zp ! call ident(x,xp,n,idx) call ident(y,yp,n,idy) call ident(z,zp,n,idz) ! ! initialization of the maximal distance in each direction ! xw=0.d0 xe=0.d0 ys=0.d0 yn=0.d0 zb=0.d0 zt=0.d0 ! i=1 ! do ! nr=nrprev ! ! westp ! id=idx+1-i if(id.gt.0) then node=nx(id) xw=xo(node)-xp yr=yo(node)-yp zr=zo(node)-zp dd=xw*xw+yr*yr+zr*zr if(dd.lt.radius2) then nr=nr+1 ir(nr)=node endif else xw=1.d30 endif ! ! east ! id=idx+i if(id.le.n) then node=nx(id) xe=xo(node)-xp yr=yo(node)-yp zr=zo(node)-zp dd=xe*xe+yr*yr+zr*zr if(dd.lt.radius2) then nr=nr+1 ir(nr)=node endif else xe=1.d30 endif ! ! south ! id=idy+1-i if(id.gt.0) then node=ny(id) xr=xo(node)-xp ys=yo(node)-yp zr=zo(node)-zp dd=xr*xr+ys*ys+zr*zr if(dd.lt.radius2) then nr=nr+1 ir(nr)=node endif else ys=1.d30 endif ! ! north ! id=idy+i if(id.le.n) then node=ny(id) xr=xo(node)-xp yn=yo(node)-yp zr=zo(node)-zp dd=xr*xr+yn*yn+zr*zr if(dd.lt.radius2) then nr=nr+1 ir(nr)=node endif else yn=1.d30 endif ! ! bottom ! id=idz+1-i if(id.gt.0) then node=nz(id) xr=xo(node)-xp yr=yo(node)-yp zb=zo(node)-zp dd=xr*xr+yr*yr+zb*zb if(dd.lt.radius2) then nr=nr+1 ir(nr)=node endif else zb=1.d30 endif ! ! top ! id=idz+i if(id.le.n) then node=nz(id) xr=xo(node)-xp yr=yo(node)-yp zt=zo(node)-zp dd=xr*xr+yr*yr+zt*zt if(dd.lt.radius2) then nr=nr+1 ir(nr)=node endif else zt=1.d30 endif ! ! check for new entries ! if(nr.gt.nrprev) then m=nrprev do j=nrprev+1,nr irnew=ir(j) call nident(ir,irnew,m,id) if(id.eq.0) then m=m+1 do k=m,2,-1 ir(k)=ir(k-1) enddo ir(1)=irnew elseif(ir(id).ne.irnew) then m=m+1 do k=m,id+2,-1 ir(k)=ir(k-1) enddo ir(id+1)=irnew endif enddo nrprev=m endif ! i=i+1 ! ! check the corners of the box ! c(1)=xe*xe+yn*yn+zb*zb if(c(1).lt.radius2) cycle c(2)=xw*xw+yn*yn+zb*zb if(c(2).lt.radius2) cycle c(3)=xw*xw+ys*ys+zb*zb if(c(3).lt.radius2) cycle c(4)=xe*xe+ys*ys+zb*zb if(c(4).lt.radius2) cycle c(5)=xe*xe+yn*yn+zt*zt if(c(5).lt.radius2) cycle c(6)=xw*xw+yn*yn+zt*zt if(c(6).lt.radius2) cycle c(7)=xw*xw+ys*ys+zt*zt if(c(7).lt.radius2) cycle c(8)=xe*xe+ys*ys+zt*zt if(c(8).lt.radius2) cycle ! ! no new entries possible: finished ! nr=nrprev do j=1,nr node=ir(j) xr=xo(node)-xp yr=yo(node)-yp zr=zo(node)-zp r(j)=xr*xr+yr*yr+zr*zr enddo exit ! enddo ! return end
gpl-2.0
epfl-cosmo/q-e
PP/src/local_dos1d.f90
8
7523
! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- SUBROUTINE local_dos1d (ik, kband, plan) !-------------------------------------------------------------------- ! ! calculates |psi|^2 for band kband at point ik ! USE kinds, ONLY: dp USE cell_base, ONLY: omega USE ions_base, ONLY: nat, ntyp=>nsp, ityp USE fft_base, ONLY: dffts, dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvecs, ONLY : nls, doublegrid USE lsda_mod, ONLY: current_spin USE uspp, ONLY: becsum, indv, nhtol, nhtoj USE uspp_param, ONLY: upf, nh, nhm USE wvfct, ONLY: npwx, wg USE klist, ONLY: ngk, igk_k USE noncollin_module, ONLY: noncolin, npol USE spin_orb, ONLY: lspinorb, fcoef USE wavefunctions_module, ONLY: evc, psic, psic_nc USE becmod, ONLY: bec_type, becp IMPLICIT NONE ! ! input variables ! INTEGER :: ik, kband ! input: the k point ! input: the band real(DP) :: plan (dfftp%nr3) ! output: the planar average of this state ! ! Additional local variables for Ultrasoft PP's ! INTEGER :: npw, ikb, jkb, ijkb0, ih, jh, na, ijh, ipol, np ! counter on beta functions ! counter on beta functions ! auxiliary variable for ijkb0 ! counter on solid beta functions ! counter on solid beta functions ! counter on atoms ! counter on composite beta functions ! the pseudopotential ! ! And here the local variables ! INTEGER :: ir, ig, ibnd, is1, is2, kkb, kh ! counter on 3D r points ! counter on spin polarizations ! counter on g vectors ! counter on bands real(DP) :: w1 ! the weight of one k point real(DP), ALLOCATABLE :: aux (:) ! auxiliary for rho COMPLEX(DP), ALLOCATABLE :: prho (:), be1(:,:), be2(:,:) ! complex charge for fft ALLOCATE (prho(dfftp%nnr)) ALLOCATE (aux(dfftp%nnr)) IF (lspinorb) THEN ALLOCATE(be1(nhm,2)) ALLOCATE(be2(nhm,2)) ENDIF aux(:) = 0.d0 becsum(:,:,:) = 0.d0 npw = ngk(ik) wg (kband, ik) = 1.d0 ! ! ! First compute the square modulus of the state kband,ik on the smooth ! mesh ! IF (noncolin) THEN psic_nc = (0.d0,0.d0) DO ig = 1, npw psic_nc (nls (igk_k (ig,ik) ), 1 ) = evc (ig , kband) psic_nc (nls (igk_k (ig,ik) ), 2 ) = evc (ig+npwx, kband) ENDDO DO ipol=1,npol CALL invfft ('Wave', psic_nc(:,ipol), dffts) ENDDO w1 = wg (kband, ik) / omega DO ipol=1,npol DO ir = 1, dffts%nnr aux(ir) = aux(ir) + w1 * ( dble(psic_nc(ir,ipol))**2 + & aimag(psic_nc(ir,ipol))**2 ) ENDDO ENDDO ELSE psic(1:dffts%nnr) = (0.d0,0.d0) DO ig = 1, npw psic (nls (igk_k (ig,ik) ) ) = evc (ig, kband) ENDDO CALL invfft ('Wave', psic, dffts) w1 = wg (kband, ik) / omega DO ir = 1, dffts%nnr aux(ir) = aux(ir) + w1 * (dble(psic(ir))**2 + aimag(psic(ir))**2) ENDDO ENDIF ! ! If we have a US pseudopotential we compute here the becsum term ! ibnd = kband w1 = wg (ibnd, ik) ijkb0 = 0 DO np = 1, ntyp IF (upf(np)%tvanp) THEN DO na = 1, nat IF (ityp (na) == np) THEN IF (noncolin) THEN IF (upf(np)%has_so) THEN be1=(0.d0,0.d0) be2=(0.d0,0.d0) DO ih = 1, nh(np) ikb = ijkb0 + ih DO kh = 1, nh(np) IF ((nhtol(kh,np)==nhtol(ih,np)).and. & (nhtoj(kh,np)==nhtoj(ih,np)).and. & (indv(kh,np)==indv(ih,np))) THEN kkb=ijkb0 + kh DO is1=1,2 DO is2=1,2 be1(ih,is1)=be1(ih,is1)+ & fcoef(ih,kh,is1,is2,np)* & becp%nc(kkb,is2,ibnd) be2(ih,is1)=be2(ih,is1)+ & fcoef(kh,ih,is2,is1,np)* & conjg(becp%nc(kkb,is2,ibnd)) ENDDO ENDDO ENDIF ENDDO ENDDO ENDIF ENDIF ijh = 1 DO ih = 1, nh (np) ikb = ijkb0 + ih IF (noncolin) THEN IF (upf(np)%has_so) THEN becsum(ijh,na,1)=becsum(ijh,na,1)+ w1* & (be1(ih,1)*be2(ih,1)+be1(ih,2)*be2(ih,2)) ELSE DO ipol=1,npol becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * & dble( conjg(becp%nc(ikb,ipol,ibnd)) * & becp%nc(ikb,ipol,ibnd) ) ENDDO ENDIF ELSE becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * & dble( conjg(becp%k(ikb,ibnd)) * becp%k(ikb,ibnd) ) ENDIF ijh = ijh + 1 DO jh = ih + 1, nh (np) jkb = ijkb0 + jh IF (noncolin) THEN IF (upf(np)%has_so) THEN becsum(ijh,na,1)=becsum(ijh,na,1) & + w1*((be1(jh,1)*be2(ih,1)+ & be1(jh,2)*be2(ih,2))+ & (be1(ih,1)*be2(jh,1)+ & be1(ih,2)*be2(jh,2)) ) ELSE DO ipol=1,npol becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * 2.d0 * & dble( conjg(becp%nc(ikb,ipol,ibnd)) & * becp%nc(jkb,ipol,ibnd) ) ENDDO ENDIF ELSE becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * 2.d0 * & dble( conjg(becp%k(ikb,ibnd)) * becp%k(jkb,ibnd) ) ENDIF ijh = ijh + 1 ENDDO ENDDO ijkb0 = ijkb0 + nh (np) ENDIF ENDDO ELSE DO na = 1, nat IF (ityp (na) ==np) ijkb0 = ijkb0 + nh (np) ENDDO ENDIF ENDDO ! ! Interpolate on the thick mesh and pass to reciprocal space ! IF (doublegrid) THEN CALL interpolate (aux, aux, 1) ENDIF DO ir = 1, dfftp%nnr prho (ir) = cmplx(aux (ir), 0.d0,kind=DP) ENDDO CALL fwfft ('Dense', prho, dfftp) ! ! Here we add the US contribution to the charge for the atoms which n ! it. Or compute the planar average in the NC case. ! CALL addusdens1d (plan, prho) ! DEALLOCATE (aux) DEALLOCATE (prho) IF (lspinorb) THEN DEALLOCATE(be1) DEALLOCATE(be2) ENDIF ! RETURN END SUBROUTINE local_dos1d
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/convert2slapcol.f
1
1342
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! ! y=A*x for real sparse symmetric matrices ! ! storage of the matrix: ! au: first lower triangle ! ad: diagonal terms ! subroutine convert2slapcol(au,ad,jq,nzs,nef,aua) ! implicit none ! integer jq(*),nzs,nef,i,j,k real*8 au(*),ad(*),aua(*) ! ! converting the CalculiX format into the SLAP column format ! k=nzs+nef ! do i=nef,1,-1 do j=jq(i+1)-1,jq(i),-1 aua(k)=au(j) k=k-1 enddo aua(k)=ad(i) k=k-1 enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.15/src/isortiid.f
10
8748
! ! SLATEC: public domain ! *deck isort subroutine isortiid (ix,iy,dy,n,kflag) ! ! modified to make the same interchanges in an integer (iy) ! and double (dy) array! ! C***BEGIN PROLOGUE ISORT C***PURPOSE Sort an array and optionally make the same interchanges in C an auxiliary array. The array may be sorted in increasing C or decreasing order. A slightly modified QUICKSORT C algorithm is used. C***LIBRARY SLATEC C***CATEGORY N6A2A C***TYPE INTEGER (SSORT-S, DSORT-D, ISORT-I) C***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING C***AUTHOR Jones, R. E., (SNLA) C Kahaner, D. K., (NBS) C Wisniewski, J. A., (SNLA) C***DESCRIPTION C C ISORT sorts array IX and optionally makes the same interchanges in C array IY. The array IX may be sorted in increasing order or C decreasing order. A slightly modified quicksort algorithm is used. C C Description of Parameters C IX - integer array of values to be sorted C IY - integer array to be (optionally) carried along C N - number of values in integer array IX to be sorted C KFLAG - control parameter C = 2 means sort IX in increasing order and carry IY along. C = 1 means sort IX in increasing order (ignoring IY) C = -1 means sort IX in decreasing order (ignoring IY) C = -2 means sort IX in decreasing order and carry IY along. C C***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm C for sorting with minimal storage, Communications of C the ACM, 12, 3 (1969), pp. 185-187. C***ROUTINES CALLED XERMSG C***REVISION HISTORY (YYMMDD) C 761118 DATE WRITTEN C 810801 Modified by David K. Kahaner. C 890531 Changed all specific intrinsics to generic. (WRB) C 890831 Modified array declarations. (WRB) C 891009 Removed unreferenced statement labels. (WRB) C 891009 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) C 901012 Declared all variables; changed X,Y to IX,IY. (M. McClain) C 920501 Reformatted the REFERENCES section. (DWL, WRB) C 920519 Clarified error messages. (DWL) C 920801 Declarations section rebuilt and code restructured to use C IF-THEN-ELSE-ENDIF. (RWC, WRB) ! 100411 changed the dimension of IL and IU from 21 to 31. ! ! field IL and IU have the dimension 31. This is log2 of the largest ! array size to be sorted. If arrays larger than 2**31 in length have ! to be sorted, this dimension has to be modified accordingly ! C***END PROLOGUE ISORT ! implicit none C .. Scalar Arguments .. integer kflag, n C .. Array Arguments .. integer ix(*) real*8 dy(*) integer iy(*) C .. Local Scalars .. real r integer i, ij, j, k, kk, l, m, nn, t, tt real*8 tty,ty integer uuy,uy C .. Local Arrays .. integer il(31), iu(31) C .. External Subroutines .. ! EXTERNAL XERMSG C .. Intrinsic Functions .. intrinsic abs, int C***FIRST EXECUTABLE STATEMENT ISORT nn = n if (nn .lt. 1) then ! CALL XERMSG ('SLATEC', 'ISORT', ! + 'The number of values to be sorted is not positive.', 1, 1) return endif C kk = abs(kflag) if (kk.ne.1 .and. kk.ne.2) then ! CALL XERMSG ('SLATEC', 'ISORT', ! + 'The sort control parameter, K, is not 2, 1, -1, or -2.', 2, ! + 1) return endif C C Alter array IX to get decreasing order if needed C if (kflag .le. -1) then do 10 i=1,nn ix(i) = -ix(i) 10 continue endif C if (kk .eq. 2) go to 100 C C Sort IX only C m = 1 i = 1 j = nn r = 0.375e0 C 20 if (i .eq. j) go to 60 if (r .le. 0.5898437e0) then r = r+3.90625e-2 else r = r-0.21875e0 endif C 30 k = i C C Select a central element of the array and save it in location T C ij = i + int((j-i)*r) t = ix(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) endif l = j C C If last element of array is less than than T, interchange with T C if (ix(j) .lt. t) then ix(ij) = ix(j) ix(j) = t t = ix(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) endif endif C C Find an element in the second half of the array which is smaller C than T C 40 l = l-1 if (ix(l) .gt. t) go to 40 C C Find an element in the first half of the array which is greater C than T C 50 k = k+1 if (ix(k) .lt. t) go to 50 C C Interchange these elements C if (k .le. l) then tt = ix(l) ix(l) = ix(k) ix(k) = tt go to 40 endif C C Save upper and lower subscripts of the array yet to be sorted C if (l-i .gt. j-k) then il(m) = i iu(m) = l i = k m = m+1 else il(m) = k iu(m) = j j = l m = m+1 endif go to 70 C C Begin again on another portion of the unsorted array C 60 m = m-1 if (m .eq. 0) go to 190 i = il(m) j = iu(m) C 70 if (j-i .ge. 1) go to 30 if (i .eq. 1) go to 20 i = i-1 C 80 i = i+1 if (i .eq. j) go to 60 t = ix(i+1) if (ix(i) .le. t) go to 80 k = i C 90 ix(k+1) = ix(k) k = k-1 if (t .lt. ix(k)) go to 90 ix(k+1) = t go to 80 C C Sort IX and carry IY along C 100 m = 1 i = 1 j = nn r = 0.375e0 C 110 if (i .eq. j) go to 150 if (r .le. 0.5898437e0) then r = r+3.90625e-2 else r = r-0.21875e0 endif C 120 k = i C C Select a central element of the array and save it in location T C ij = i + int((j-i)*r) t = ix(ij) ty = dy(ij) uy = iy(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) dy(ij) = dy(i) iy(ij) = iy(i) dy(i) = ty iy(i) = uy ty = dy(ij) uy = iy(ij) endif l = j C C If last element of array is less than T, interchange with T C if (ix(j) .lt. t) then ix(ij) = ix(j) ix(j) = t t = ix(ij) dy(ij) = dy(j) iy(ij) = iy(j) dy(j) = ty iy(j) = uy ty = dy(ij) uy = iy(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) dy(ij) = dy(i) iy(ij) = iy(i) dy(i) = ty iy(i) = uy ty = dy(ij) uy = iy(ij) endif endif C C Find an element in the second half of the array which is smaller C than T C 130 l = l-1 if (ix(l) .gt. t) go to 130 C C Find an element in the first half of the array which is greater C than T C 140 k = k+1 if (ix(k) .lt. t) go to 140 C C Interchange these elements C if (k .le. l) then tt = ix(l) ix(l) = ix(k) ix(k) = tt tty = dy(l) uuy = iy(l) dy(l) = dy(k) iy(l) = iy(k) dy(k) = tty iy(k) = uuy go to 130 endif C C Save upper and lower subscripts of the array yet to be sorted C if (l-i .gt. j-k) then il(m) = i iu(m) = l i = k m = m+1 else il(m) = k iu(m) = j j = l m = m+1 endif go to 160 C C Begin again on another portion of the unsorted array C 150 m = m-1 if (m .eq. 0) go to 190 i = il(m) j = iu(m) C 160 if (j-i .ge. 1) go to 120 if (i .eq. 1) go to 110 i = i-1 C 170 i = i+1 if (i .eq. j) go to 150 t = ix(i+1) ty = dy(i+1) uy = iy(i+1) if (ix(i) .le. t) go to 170 k = i C 180 ix(k+1) = ix(k) dy(k+1) = dy(k) iy(k+1) = iy(k) k = k-1 if (t .lt. ix(k)) go to 180 ix(k+1) = t dy(k+1) = ty iy(k+1) = uy go to 170 C C Clean up C 190 if (kflag .le. -1) then do 200 i=1,nn ix(i) = -ix(i) 200 continue endif return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/isortiid.f
10
8748
! ! SLATEC: public domain ! *deck isort subroutine isortiid (ix,iy,dy,n,kflag) ! ! modified to make the same interchanges in an integer (iy) ! and double (dy) array! ! C***BEGIN PROLOGUE ISORT C***PURPOSE Sort an array and optionally make the same interchanges in C an auxiliary array. The array may be sorted in increasing C or decreasing order. A slightly modified QUICKSORT C algorithm is used. C***LIBRARY SLATEC C***CATEGORY N6A2A C***TYPE INTEGER (SSORT-S, DSORT-D, ISORT-I) C***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING C***AUTHOR Jones, R. E., (SNLA) C Kahaner, D. K., (NBS) C Wisniewski, J. A., (SNLA) C***DESCRIPTION C C ISORT sorts array IX and optionally makes the same interchanges in C array IY. The array IX may be sorted in increasing order or C decreasing order. A slightly modified quicksort algorithm is used. C C Description of Parameters C IX - integer array of values to be sorted C IY - integer array to be (optionally) carried along C N - number of values in integer array IX to be sorted C KFLAG - control parameter C = 2 means sort IX in increasing order and carry IY along. C = 1 means sort IX in increasing order (ignoring IY) C = -1 means sort IX in decreasing order (ignoring IY) C = -2 means sort IX in decreasing order and carry IY along. C C***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm C for sorting with minimal storage, Communications of C the ACM, 12, 3 (1969), pp. 185-187. C***ROUTINES CALLED XERMSG C***REVISION HISTORY (YYMMDD) C 761118 DATE WRITTEN C 810801 Modified by David K. Kahaner. C 890531 Changed all specific intrinsics to generic. (WRB) C 890831 Modified array declarations. (WRB) C 891009 Removed unreferenced statement labels. (WRB) C 891009 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) C 901012 Declared all variables; changed X,Y to IX,IY. (M. McClain) C 920501 Reformatted the REFERENCES section. (DWL, WRB) C 920519 Clarified error messages. (DWL) C 920801 Declarations section rebuilt and code restructured to use C IF-THEN-ELSE-ENDIF. (RWC, WRB) ! 100411 changed the dimension of IL and IU from 21 to 31. ! ! field IL and IU have the dimension 31. This is log2 of the largest ! array size to be sorted. If arrays larger than 2**31 in length have ! to be sorted, this dimension has to be modified accordingly ! C***END PROLOGUE ISORT ! implicit none C .. Scalar Arguments .. integer kflag, n C .. Array Arguments .. integer ix(*) real*8 dy(*) integer iy(*) C .. Local Scalars .. real r integer i, ij, j, k, kk, l, m, nn, t, tt real*8 tty,ty integer uuy,uy C .. Local Arrays .. integer il(31), iu(31) C .. External Subroutines .. ! EXTERNAL XERMSG C .. Intrinsic Functions .. intrinsic abs, int C***FIRST EXECUTABLE STATEMENT ISORT nn = n if (nn .lt. 1) then ! CALL XERMSG ('SLATEC', 'ISORT', ! + 'The number of values to be sorted is not positive.', 1, 1) return endif C kk = abs(kflag) if (kk.ne.1 .and. kk.ne.2) then ! CALL XERMSG ('SLATEC', 'ISORT', ! + 'The sort control parameter, K, is not 2, 1, -1, or -2.', 2, ! + 1) return endif C C Alter array IX to get decreasing order if needed C if (kflag .le. -1) then do 10 i=1,nn ix(i) = -ix(i) 10 continue endif C if (kk .eq. 2) go to 100 C C Sort IX only C m = 1 i = 1 j = nn r = 0.375e0 C 20 if (i .eq. j) go to 60 if (r .le. 0.5898437e0) then r = r+3.90625e-2 else r = r-0.21875e0 endif C 30 k = i C C Select a central element of the array and save it in location T C ij = i + int((j-i)*r) t = ix(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) endif l = j C C If last element of array is less than than T, interchange with T C if (ix(j) .lt. t) then ix(ij) = ix(j) ix(j) = t t = ix(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) endif endif C C Find an element in the second half of the array which is smaller C than T C 40 l = l-1 if (ix(l) .gt. t) go to 40 C C Find an element in the first half of the array which is greater C than T C 50 k = k+1 if (ix(k) .lt. t) go to 50 C C Interchange these elements C if (k .le. l) then tt = ix(l) ix(l) = ix(k) ix(k) = tt go to 40 endif C C Save upper and lower subscripts of the array yet to be sorted C if (l-i .gt. j-k) then il(m) = i iu(m) = l i = k m = m+1 else il(m) = k iu(m) = j j = l m = m+1 endif go to 70 C C Begin again on another portion of the unsorted array C 60 m = m-1 if (m .eq. 0) go to 190 i = il(m) j = iu(m) C 70 if (j-i .ge. 1) go to 30 if (i .eq. 1) go to 20 i = i-1 C 80 i = i+1 if (i .eq. j) go to 60 t = ix(i+1) if (ix(i) .le. t) go to 80 k = i C 90 ix(k+1) = ix(k) k = k-1 if (t .lt. ix(k)) go to 90 ix(k+1) = t go to 80 C C Sort IX and carry IY along C 100 m = 1 i = 1 j = nn r = 0.375e0 C 110 if (i .eq. j) go to 150 if (r .le. 0.5898437e0) then r = r+3.90625e-2 else r = r-0.21875e0 endif C 120 k = i C C Select a central element of the array and save it in location T C ij = i + int((j-i)*r) t = ix(ij) ty = dy(ij) uy = iy(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) dy(ij) = dy(i) iy(ij) = iy(i) dy(i) = ty iy(i) = uy ty = dy(ij) uy = iy(ij) endif l = j C C If last element of array is less than T, interchange with T C if (ix(j) .lt. t) then ix(ij) = ix(j) ix(j) = t t = ix(ij) dy(ij) = dy(j) iy(ij) = iy(j) dy(j) = ty iy(j) = uy ty = dy(ij) uy = iy(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) dy(ij) = dy(i) iy(ij) = iy(i) dy(i) = ty iy(i) = uy ty = dy(ij) uy = iy(ij) endif endif C C Find an element in the second half of the array which is smaller C than T C 130 l = l-1 if (ix(l) .gt. t) go to 130 C C Find an element in the first half of the array which is greater C than T C 140 k = k+1 if (ix(k) .lt. t) go to 140 C C Interchange these elements C if (k .le. l) then tt = ix(l) ix(l) = ix(k) ix(k) = tt tty = dy(l) uuy = iy(l) dy(l) = dy(k) iy(l) = iy(k) dy(k) = tty iy(k) = uuy go to 130 endif C C Save upper and lower subscripts of the array yet to be sorted C if (l-i .gt. j-k) then il(m) = i iu(m) = l i = k m = m+1 else il(m) = k iu(m) = j j = l m = m+1 endif go to 160 C C Begin again on another portion of the unsorted array C 150 m = m-1 if (m .eq. 0) go to 190 i = il(m) j = iu(m) C 160 if (j-i .ge. 1) go to 120 if (i .eq. 1) go to 110 i = i-1 C 170 i = i+1 if (i .eq. j) go to 150 t = ix(i+1) ty = dy(i+1) uy = iy(i+1) if (ix(i) .le. t) go to 170 k = i C 180 ix(k+1) = ix(k) dy(k+1) = dy(k) iy(k+1) = iy(k) k = k-1 if (t .lt. ix(k)) go to 180 ix(k+1) = t dy(k+1) = ty iy(k+1) = uy go to 170 C C Clean up C 190 if (kflag .le. -1) then do 200 i=1,nn ix(i) = -ix(i) 200 continue endif return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.16/src/isortiid.f
10
8748
! ! SLATEC: public domain ! *deck isort subroutine isortiid (ix,iy,dy,n,kflag) ! ! modified to make the same interchanges in an integer (iy) ! and double (dy) array! ! C***BEGIN PROLOGUE ISORT C***PURPOSE Sort an array and optionally make the same interchanges in C an auxiliary array. The array may be sorted in increasing C or decreasing order. A slightly modified QUICKSORT C algorithm is used. C***LIBRARY SLATEC C***CATEGORY N6A2A C***TYPE INTEGER (SSORT-S, DSORT-D, ISORT-I) C***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING C***AUTHOR Jones, R. E., (SNLA) C Kahaner, D. K., (NBS) C Wisniewski, J. A., (SNLA) C***DESCRIPTION C C ISORT sorts array IX and optionally makes the same interchanges in C array IY. The array IX may be sorted in increasing order or C decreasing order. A slightly modified quicksort algorithm is used. C C Description of Parameters C IX - integer array of values to be sorted C IY - integer array to be (optionally) carried along C N - number of values in integer array IX to be sorted C KFLAG - control parameter C = 2 means sort IX in increasing order and carry IY along. C = 1 means sort IX in increasing order (ignoring IY) C = -1 means sort IX in decreasing order (ignoring IY) C = -2 means sort IX in decreasing order and carry IY along. C C***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm C for sorting with minimal storage, Communications of C the ACM, 12, 3 (1969), pp. 185-187. C***ROUTINES CALLED XERMSG C***REVISION HISTORY (YYMMDD) C 761118 DATE WRITTEN C 810801 Modified by David K. Kahaner. C 890531 Changed all specific intrinsics to generic. (WRB) C 890831 Modified array declarations. (WRB) C 891009 Removed unreferenced statement labels. (WRB) C 891009 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) C 901012 Declared all variables; changed X,Y to IX,IY. (M. McClain) C 920501 Reformatted the REFERENCES section. (DWL, WRB) C 920519 Clarified error messages. (DWL) C 920801 Declarations section rebuilt and code restructured to use C IF-THEN-ELSE-ENDIF. (RWC, WRB) ! 100411 changed the dimension of IL and IU from 21 to 31. ! ! field IL and IU have the dimension 31. This is log2 of the largest ! array size to be sorted. If arrays larger than 2**31 in length have ! to be sorted, this dimension has to be modified accordingly ! C***END PROLOGUE ISORT ! implicit none C .. Scalar Arguments .. integer kflag, n C .. Array Arguments .. integer ix(*) real*8 dy(*) integer iy(*) C .. Local Scalars .. real r integer i, ij, j, k, kk, l, m, nn, t, tt real*8 tty,ty integer uuy,uy C .. Local Arrays .. integer il(31), iu(31) C .. External Subroutines .. ! EXTERNAL XERMSG C .. Intrinsic Functions .. intrinsic abs, int C***FIRST EXECUTABLE STATEMENT ISORT nn = n if (nn .lt. 1) then ! CALL XERMSG ('SLATEC', 'ISORT', ! + 'The number of values to be sorted is not positive.', 1, 1) return endif C kk = abs(kflag) if (kk.ne.1 .and. kk.ne.2) then ! CALL XERMSG ('SLATEC', 'ISORT', ! + 'The sort control parameter, K, is not 2, 1, -1, or -2.', 2, ! + 1) return endif C C Alter array IX to get decreasing order if needed C if (kflag .le. -1) then do 10 i=1,nn ix(i) = -ix(i) 10 continue endif C if (kk .eq. 2) go to 100 C C Sort IX only C m = 1 i = 1 j = nn r = 0.375e0 C 20 if (i .eq. j) go to 60 if (r .le. 0.5898437e0) then r = r+3.90625e-2 else r = r-0.21875e0 endif C 30 k = i C C Select a central element of the array and save it in location T C ij = i + int((j-i)*r) t = ix(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) endif l = j C C If last element of array is less than than T, interchange with T C if (ix(j) .lt. t) then ix(ij) = ix(j) ix(j) = t t = ix(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) endif endif C C Find an element in the second half of the array which is smaller C than T C 40 l = l-1 if (ix(l) .gt. t) go to 40 C C Find an element in the first half of the array which is greater C than T C 50 k = k+1 if (ix(k) .lt. t) go to 50 C C Interchange these elements C if (k .le. l) then tt = ix(l) ix(l) = ix(k) ix(k) = tt go to 40 endif C C Save upper and lower subscripts of the array yet to be sorted C if (l-i .gt. j-k) then il(m) = i iu(m) = l i = k m = m+1 else il(m) = k iu(m) = j j = l m = m+1 endif go to 70 C C Begin again on another portion of the unsorted array C 60 m = m-1 if (m .eq. 0) go to 190 i = il(m) j = iu(m) C 70 if (j-i .ge. 1) go to 30 if (i .eq. 1) go to 20 i = i-1 C 80 i = i+1 if (i .eq. j) go to 60 t = ix(i+1) if (ix(i) .le. t) go to 80 k = i C 90 ix(k+1) = ix(k) k = k-1 if (t .lt. ix(k)) go to 90 ix(k+1) = t go to 80 C C Sort IX and carry IY along C 100 m = 1 i = 1 j = nn r = 0.375e0 C 110 if (i .eq. j) go to 150 if (r .le. 0.5898437e0) then r = r+3.90625e-2 else r = r-0.21875e0 endif C 120 k = i C C Select a central element of the array and save it in location T C ij = i + int((j-i)*r) t = ix(ij) ty = dy(ij) uy = iy(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) dy(ij) = dy(i) iy(ij) = iy(i) dy(i) = ty iy(i) = uy ty = dy(ij) uy = iy(ij) endif l = j C C If last element of array is less than T, interchange with T C if (ix(j) .lt. t) then ix(ij) = ix(j) ix(j) = t t = ix(ij) dy(ij) = dy(j) iy(ij) = iy(j) dy(j) = ty iy(j) = uy ty = dy(ij) uy = iy(ij) C C If first element of array is greater than T, interchange with T C if (ix(i) .gt. t) then ix(ij) = ix(i) ix(i) = t t = ix(ij) dy(ij) = dy(i) iy(ij) = iy(i) dy(i) = ty iy(i) = uy ty = dy(ij) uy = iy(ij) endif endif C C Find an element in the second half of the array which is smaller C than T C 130 l = l-1 if (ix(l) .gt. t) go to 130 C C Find an element in the first half of the array which is greater C than T C 140 k = k+1 if (ix(k) .lt. t) go to 140 C C Interchange these elements C if (k .le. l) then tt = ix(l) ix(l) = ix(k) ix(k) = tt tty = dy(l) uuy = iy(l) dy(l) = dy(k) iy(l) = iy(k) dy(k) = tty iy(k) = uuy go to 130 endif C C Save upper and lower subscripts of the array yet to be sorted C if (l-i .gt. j-k) then il(m) = i iu(m) = l i = k m = m+1 else il(m) = k iu(m) = j j = l m = m+1 endif go to 160 C C Begin again on another portion of the unsorted array C 150 m = m-1 if (m .eq. 0) go to 190 i = il(m) j = iu(m) C 160 if (j-i .ge. 1) go to 120 if (i .eq. 1) go to 110 i = i-1 C 170 i = i+1 if (i .eq. j) go to 150 t = ix(i+1) ty = dy(i+1) uy = iy(i+1) if (ix(i) .le. t) go to 170 k = i C 180 ix(k+1) = ix(k) dy(k+1) = dy(k) iy(k+1) = iy(k) k = k-1 if (t .lt. ix(k)) go to 180 ix(k+1) = t dy(k+1) = ty iy(k+1) = uy go to 170 C C Clean up C 190 if (kflag .le. -1) then do 200 i=1,nn ix(i) = -ix(i) 200 continue endif return end
gpl-2.0
techno/gcc-mist32
libgfortran/generated/_log_r8.F90
47
1467
! Copyright (C) 2002-2015 Free Software Foundation, Inc. ! Contributed by Paul Brook <paul@nowt.org> ! !This file is part of the GNU Fortran 95 runtime library (libgfortran). ! !GNU libgfortran is free software; you can redistribute it and/or !modify it under the terms of the GNU General Public !License as published by the Free Software Foundation; either !version 3 of the License, or (at your option) any later version. !GNU libgfortran is distributed in the hope that it will be useful, !but WITHOUT ANY WARRANTY; without even the implied warranty of !MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !GNU General Public License for more details. ! !Under Section 7 of GPL version 3, you are granted additional !permissions described in the GCC Runtime Library Exception, version !3.1, as published by the Free Software Foundation. ! !You should have received a copy of the GNU General Public License and !a copy of the GCC Runtime Library Exception along with this program; !see the files COPYING3 and COPYING.RUNTIME respectively. If not, see !<http://www.gnu.org/licenses/>. ! !This file is machine generated. #include "config.h" #include "kinds.inc" #include "c99_protos.inc" #if defined (HAVE_GFC_REAL_8) #ifdef HAVE_LOG elemental function _gfortran_specific__log_r8 (parm) real (kind=8), intent (in) :: parm real (kind=8) :: _gfortran_specific__log_r8 _gfortran_specific__log_r8 = log (parm) end function #endif #endif
gpl-2.0
techno/gcc-mist32
gcc/testsuite/gfortran.dg/equiv_7.f90
174
3659
! { dg-do run } ! { dg-options "-std=gnu" } ! Tests the fix for PR29786, in which initialization of overlapping ! equivalence elements caused a compile error. ! ! Contributed by Bernhard Fischer <aldot@gcc.gnu.org> ! block data common /global/ ca (4) integer(4) ca, cb equivalence (cb, ca(3)) data (ca(i), i = 1, 2) /42,43/, ca(4) /44/ data cb /99/ end block data integer(4), parameter :: abcd = ichar ("a") + 256_4 * (ichar("b") + 256_4 * & (ichar ("c") + 256_4 * ichar ("d"))) logical(4), parameter :: bigendian = transfer (abcd, "wxyz") .eq. "abcd" call int4_int4 call real4_real4 call complex_real call check_block_data call derived_types ! Thanks to Tobias Burnus for this:) ! ! This came up in PR29786 comment #9 - Note the need to treat endianess ! Thanks Dominique d'Humieres:) ! if (bigendian) then if (d1mach_little (1) .ne. transfer ((/0_4, 1048576_4/), 1d0)) call abort () if (d1mach_little (2) .ne. transfer ((/-1_4,2146435071_4/), 1d0)) call abort () else if (d1mach_big (1) .ne. transfer ((/1048576_4, 0_4/), 1d0)) call abort () if (d1mach_big (2) .ne. transfer ((/2146435071_4,-1_4/), 1d0)) call abort () end if ! contains subroutine int4_int4 integer(4) a(4) integer(4) b equivalence (b,a(3)) data b/3/ data (a(i), i=1,2) /1,2/, a(4) /4/ if (any (a .ne. (/1, 2, 3, 4/))) call abort () end subroutine int4_int4 subroutine real4_real4 real(4) a(4) real(4) b equivalence (b,a(3)) data b/3.0_4/ data (a(i), i=1,2) /1.0_4, 2.0_4/, & a(4) /4.0_4/ if (sum (abs (a - & (/1.0_4, 2.0_4, 3.0_4, 4.0_4/))) > 1.0e-6) call abort () end subroutine real4_real4 subroutine complex_real complex(4) a(4) real(4) b(2) equivalence (b,a(3)) data b(1)/3.0_4/, b(2)/4.0_4/ data (a(i), i=1,2) /(0.0_4, 1.0_4),(2.0_4,0.0_4)/, & a(4) /(0.0_4,5.0_4)/ if (sum (abs (a - (/(0.0_4, 1.0_4),(2.0_4, 0.0_4), & (3.0_4, 4.0_4),(0.0_4, 5.0_4)/))) > 1.0e-6) call abort () end subroutine complex_real subroutine check_block_data common /global/ ca (4) equivalence (ca(3), cb) integer(4) ca if (any (ca .ne. (/42, 43, 99, 44/))) call abort () end subroutine check_block_data function d1mach_little(i) result(d1mach) implicit none double precision d1mach,dmach(5) integer i integer*4 large(4),small(4) equivalence ( dmach(1), small(1) ) equivalence ( dmach(2), large(1) ) data small(1),small(2) / 0, 1048576/ data large(1),large(2) /-1,2146435071/ d1mach = dmach(i) end function d1mach_little function d1mach_big(i) result(d1mach) implicit none double precision d1mach,dmach(5) integer i integer*4 large(4),small(4) equivalence ( dmach(1), small(1) ) equivalence ( dmach(2), large(1) ) data small(1),small(2) /1048576, 0/ data large(1),large(2) /2146435071,-1/ d1mach = dmach(i) end function d1mach_big subroutine derived_types TYPE T1 sequence character (3) :: chr integer :: i = 1 integer :: j END TYPE T1 TYPE T2 sequence character (3) :: chr = "wxy" integer :: i = 1 integer :: j = 4 END TYPE T2 TYPE(T1) :: a1 TYPE(T2) :: a2 EQUIVALENCE(a1,a2) ! { dg-warning="mixed|components" } if (a1%chr .ne. "wxy") call abort () if (a1%i .ne. 1) call abort () if (a1%j .ne. 4) call abort () end subroutine derived_types end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/uncouptempdisps.f
2
7283
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine uncouptempdisps(inpc,textpart, & nmethod,iperturb,isolver, & istep,istat,n,tinc,tper,tmin,tmax,idrct,ithermal,iline,ipol, & inl,ipoinp,inp,ipoinpc,alpha,ctrl,ttime,nener) ! ! reading the input deck: *UNCOUPLED TEMPERATURE-DISPLACEMENT ! ! isolver=0: SPOOLES ! 2: iterative solver with diagonal scaling ! 3: iterative solver with Cholesky preconditioning ! 4: sgi solver ! 5: TAUCS ! 7: pardiso ! implicit none ! logical timereset ! character*1 inpc(*) character*20 solver character*132 textpart(16) ! integer nmethod,iperturb,isolver,istep,istat,n,key,i,idrct, & ithermal,iline,ipol,inl,ipoinp(2,*),inp(3,*),ipoinpc(0:*), & nener ! real*8 tinc,tper,tmin,tmax,alpha,ctrl(*),ttime ! idrct=0 alpha=-0.05d0 tmin=0.d0 tmax=0.d0 nmethod=4 timereset=.false. ! if(iperturb.eq.0) then iperturb=2 elseif((iperturb.eq.1).and.(istep.gt.1)) then write(*,*) '*ERROR in couptempdisps: perturbation analysis is' write(*,*) ' not provided in a *HEAT TRANSFER step.' call exit(201) endif ! if(istep.lt.1) then write(*,*) '*ERROR in couptempdisps: *HEAT TRANSFER can only ' write(*,*) ' be used within a STEP' call exit(201) endif ! ! default solver ! solver=' ' if(isolver.eq.0) then solver(1:7)='SPOOLES' elseif(isolver.eq.2) then solver(1:16)='ITERATIVESCALING' elseif(isolver.eq.3) then solver(1:17)='ITERATIVECHOLESKY' elseif(isolver.eq.4) then solver(1:3)='SGI' elseif(isolver.eq.5) then solver(1:5)='TAUCS' elseif(isolver.eq.7) then solver(1:7)='PARDISO' endif ! do i=2,n if(textpart(i)(1:6).eq.'ALPHA=') then read(textpart(i)(7:26),'(f20.0)',iostat=istat) alpha if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*UNCOUPLED TEMPERATURE-DISPLACEMENT%") if(alpha.lt.-1.d0/3.d0) then write(*,*) '*WARNING in dynamics: alpha is smaller' write(*,*) ' than -1/3 and is reset to -1/3' alpha=-1.d0/3.d0 elseif(alpha.gt.0.d0) then write(*,*) '*WARNING in dynamics: alpha is greater' write(*,*) ' than 0 and is reset to 0' alpha=0.d0 endif elseif(textpart(i)(1:7).eq.'SOLVER=') then read(textpart(i)(8:27),'(a20)') solver elseif((textpart(i)(1:6).eq.'DIRECT').and. & (textpart(i)(1:9).ne.'DIRECT=NO')) then idrct=1 elseif(textpart(i)(1:11).eq.'STEADYSTATE') then nmethod=1 elseif(textpart(i)(1:7).eq.'DELTMX=') then read(textpart(i)(8:27),'(f20.0)',iostat=istat) ctrl(27) elseif(textpart(i)(1:9).eq.'TIMERESET') then timereset=.true. elseif(textpart(i)(1:17).eq.'TOTALTIMEATSTART=') then read(textpart(i)(18:37),'(f20.0)',iostat=istat) ttime else write(*,*) & '*WARNING in uncouptempdisps: parameter not recognized:' write(*,*) ' ', & textpart(i)(1:index(textpart(i),' ')-1) call inputwarning(inpc,ipoinpc,iline, &"*UNCOUPLED TEMPERATURE-DISPLACEMENT%") endif enddo if(nmethod.eq.1) ctrl(27)=1.d30 ! if((ithermal.eq.0).and.(nmethod.ne.1).and. & (nmethod.ne.2).and.(iperturb.ne.0)) then write(*,*) '*ERROR in couptempdisps: please define initial ' write(*,*) ' conditions for the temperature' call exit(201) else ithermal=4 endif ! if(solver(1:7).eq.'SPOOLES') then isolver=0 elseif(solver(1:16).eq.'ITERATIVESCALING') then isolver=2 elseif(solver(1:17).eq.'ITERATIVECHOLESKY') then isolver=3 elseif(solver(1:3).eq.'SGI') then isolver=4 elseif(solver(1:5).eq.'TAUCS') then isolver=5 elseif(solver(1:7).eq.'PARDISO') then isolver=7 else write(*,*) '*WARNING in couptempdisps: unknown solver;' write(*,*) ' the default solver is used' endif ! call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) if((istat.lt.0).or.(key.eq.1)) then if(iperturb.ge.2) then write(*,*) '*WARNING in couptempdisps: a nonlinear analysis &is requested' write(*,*) ' but no time increment nor step is speci &fied' write(*,*) ' the defaults (1,1) are used' tinc=1.d0 tper=1.d0 tmin=1.d-5 tmax=1.d+30 endif if(timereset)ttime=ttime-tper if(nmethod.eq.4) nener=1 return endif ! read(textpart(1)(1:20),'(f20.0)',iostat=istat) tinc if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*UNCOUPLED TEMPERATURE-DISPLACEMENT%") read(textpart(2)(1:20),'(f20.0)',iostat=istat) tper if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*UNCOUPLED TEMPERATURE-DISPLACEMENT%") read(textpart(3)(1:20),'(f20.0)',iostat=istat) tmin if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*UNCOUPLED TEMPERATURE-DISPLACEMENT%") read(textpart(4)(1:20),'(f20.0)',iostat=istat) tmax if(istat.gt.0) call inputerror(inpc,ipoinpc,iline, &"*UNCOUPLED TEMPERATURE-DISPLACEMENT%") ! if(tinc.le.0.d0) then write(*,*) '*ERROR in couptempdisps: initial increment size is &negative' endif if(tper.le.0.d0) then write(*,*) '*ERROR in couptempdisps: step size is negative' endif if(tinc.gt.tper) then write(*,*) '*ERROR in couptempdisps: initial increment size exc &eeds step size' endif ! if(idrct.ne.1) then c if(dabs(tmin).lt.1.d-10) then c tmin=min(tinc,1.d-5*tper) if(dabs(tmin).lt.1.d-6*tper) then tmin=min(tinc,1.d-6*tper) endif if(dabs(tmax).lt.1.d-10) then tmax=1.d+30 endif endif ! if(timereset)ttime=ttime-tper ! if(nmethod.eq.4) nener=1 ! call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.9/src/resultsprint.f
1
15189
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine resultsprint(co,nk,kon,ipkon,lakon,ne,v,stn,inum, & stx,ielorien,norien,orab,t1,ithermal,filab,een,iperturb,fn, & nactdof,iout,vold,nodeboun,ndirboun,nboun,nmethod,ttime,xstate, & epn,mi,nstate_,ener,enern,xstaten,eei,set,nset,istartset, & iendset,ialset,nprint,prlab,prset,qfx,qfn,trab,inotr,ntrans, & nelemload,nload,ikin,ielmat,thicke,eme,emn,rhcon,nrhcon,shcon, & nshcon,cocon,ncocon,ntmat_,sideload,icfd,inomat,pslavsurf, & islavact,cdn,mortar,islavnode,nslavnode,ntie,islavsurf,time, & ielprop,prop,veold,ne0,nmpc,ipompc,nodempc,labmpc,energyini, & energy) ! ! - stores the results in the .dat file, if requested ! - nodal quantities at the nodes ! - element quantities at the integration points ! - calculates the extrapolation of element quantities to ! the nodes (if requested for .frd output) ! - calculates 1d/2d results for 1d/2d elements by ! interpolation ! implicit none ! logical force,rfprint ! character*1 cflag character*6 prlab(*) character*8 lakon(*) character*20 sideload(*),labmpc(*) character*81 set(*),prset(*) character*87 filab(*) ! integer kon(*),inum(*),iperm(20),mi(*),ielorien(mi(3),*), & ipkon(*),icfdout,nactdof(0:mi(2),*),nodeboun(*),icompressible, & nelemload(2,*),ndirboun(*),ielmat(mi(3),*),nrhcon(*), & inotr(2,*),iorienloc,iflag,nload,mt,nk,ne,ithermal(2),i, & norien,iperturb(*),iout,nboun,nmethod,node,nshcon(*), & nfield,ndim,nstate_,nset,istartset(*),iendset(*),ialset(*), & nprint,ntrans,ikin,ncocon(2,*),ntmat_,icfd,inomat(*),mortar, & islavact(*),islavnode(*),nslavnode(*),ntie,islavsurf(2,*), & ielprop(*),ne0,index,nmpc,ipompc(*),nodempc(3,*) ! real*8 co(3,*),v(0:mi(2),*),stx(6,mi(1),*),stn(6,*),cdn(6,*), & qfx(3,mi(1),*),qfn(3,*),orab(7,*),fn(0:mi(2),*),pslavsurf(3,*), & t1(*),een(6,*),vold(0:mi(2),*),epn(*),thicke(mi(3),*),time, & ener(mi(1),*),enern(*),eei(6,mi(1),*),rhcon(0:1,ntmat_,*), & ttime,xstate(nstate_,mi(1),*),trab(7,*),xstaten(nstate_,*), & eme(6,mi(1),*),emn(6,*),shcon(0:3,ntmat_,*),cocon(0:6,ntmat_,*), & prop(*),veold(0:mi(2),*),energy(*),energyini(*) ! data iflag /3/ data iperm /5,6,7,8,1,2,3,4,13,14,15,16,9,10,11,12,17,18,19,20/ ! mt=mi(2)+1 ! ! no print requests ! if(iout.le.0) then ! ! 2d basic dof results (displacements, temperature) are ! calculated in each iteration, so that they are available ! in the user subroutines ! if(filab(1)(5:5).ne.' ') then nfield=mt call map3dto1d2d_v(v,ipkon,inum,kon,lakon,nfield,nk, & ne,nactdof) endif ! ! the total energy should not be calculated: ! - for non-dynamical calculations (nmethod!=4) ! - for modal dynamics (iperturb(1)<=1) ! - for thermal and thermomechanical calculations (ithermal(1)>1) ! - for electromagnetic calculations (mi(2)=5) ! if((nmethod.eq.4).and.(iperturb(1).gt.1).and. & (ithermal(1).le.1).and.(mi(2).ne.5)) then call calcenergy(ipkon,lakon,kon,co,ener,mi,ne,thicke, & ielmat,energyini,energy) endif ! return endif ! ! output in dat file (with *NODE PRINT or *EL PRINT) ! call printout(set,nset,istartset,iendset,ialset,nprint, & prlab,prset,v,t1,fn,ipkon,lakon,stx,eei,xstate,ener, & mi(1),nstate_,ithermal,co,kon,qfx,ttime,trab,inotr,ntrans, & orab,ielorien,norien,nk,ne,inum,filab,vold,ikin,ielmat,thicke, & eme,islavsurf,mortar,time,ielprop,prop,veold) ! icompressible=0 call printoutface(co,rhcon,nrhcon,ntmat_,vold,shcon,nshcon, & cocon,ncocon,icompressible,istartset,iendset,ipkon,lakon,kon, & ialset,prset,ttime,nset,set,nprint,prlab,ielmat,mi,time) ! ! interpolation in the original nodes of 1d and 2d elements ! this operation has to be performed in any case since ! the interpolated values may be needed as boundary conditions ! in the next step (e.g. the temperature in a heat transfer ! calculation as boundary condition in a subsequent static ! step) ! if(filab(1)(5:5).ne.' ') then nfield=mt cflag=filab(1)(5:5) force=.false. call map3dto1d2d(v,ipkon,inum,kon,lakon,nfield,nk, & ne,cflag,co,vold,force,mi) endif ! if((filab(2)(1:4).eq.'NT ').and.(ithermal(1).le.1)) then if(filab(2)(5:5).eq.'I') then nfield=1 cflag=filab(2)(5:5) force=.false. call map3dto1d2d(t1,ipkon,inum,kon,lakon,nfield,nk, & ne,cflag,co,vold,force,mi) endif endif ! ! check whether forces are requested in the frd-file. If so, but ! none are requested in the .dat file, and output=2d, ! map3dto1d2d has to be called ! if(filab(5)(1:2).eq.'RF') then if(filab(5)(5:5).eq.'I') then rfprint=.false. do i=1,nprint if(prlab(i)(1:2).eq.'RF') then rfprint=.true. exit endif enddo if(.not.rfprint) then nfield=mt cflag=' ' force=.true. call map3dto1d2d(fn,ipkon,inum,kon,lakon,nfield,nk, & ne,cflag,co,vold,force,mi) endif endif endif ! ! in this routine no 3d-fluid results are stored ! icfdout=0 ! ! for composites: ! interpolation of the displacements and temperatures ! from the expanded nodes to the layer nodes ! if(mi(3).gt.1) then if((filab(1)(1:3).eq.'U ').or. & ((filab(2)(1:4).eq.'NT ').and.(ithermal(1).gt.1))) then nfield=mt call map3dtolayer(v,ipkon,kon,lakon,nfield, & ne,co,ielmat,mi) endif if((filab(2)(1:4).eq.'NT ').and.(ithermal(1).le.1)) then nfield=1 call map3dtolayer(t1,ipkon,kon,lakon,nfield, & ne,co,ielmat,mi) endif endif ! ! determining the contact differential displacements and stresses ! in the contact nodes for output in frd format (only for face- ! to-face penalty; for node-to-face penalty these quantities are ! determined in the slave nodes and no extrapolation is necessary) ! ! This block must precede all calls to extrapolate, since the ! field inum from extrapolatecontact.f is not correct; by a ! subsequent call to extrapolate inum is corrected. ! if((filab(26)(1:4).eq.'CONT').or.(filab(46)(1:4).eq.'PCON')) then if(mortar.eq.1) then nfield=6 ndim=6 cflag=filab(3)(5:5) force=.false. call extrapolatecontact(stx,cdn,ipkon,inum,kon,lakon,nfield, & nk,ne,mi(1),ndim,co,cflag,vold,force,pslavsurf, & islavact,islavnode,nslavnode,ntie,islavsurf,ielprop,prop, & ielmat,ne0) endif endif ! ! determining the stresses in the nodes for output in frd format ! if((filab(3)(1:4).eq.'S ').or.(filab(18)(1:4).eq.'PHS ').or. & (filab(20)(1:4).eq.'MAXS').or. & (((filab(44)(1:4).eq.'EMFE').or.(filab(45)(1:4).eq.'EMFB')) & .and.(ithermal(1).ne.2))) then nfield=6 ndim=6 if((norien.gt.0).and.(filab(3)(6:6).eq.'L')) then iorienloc=1 else iorienloc=0 endif cflag=filab(3)(5:5) force=.false. ! call extrapolate(stx,stn,ipkon,inum,kon,lakon,nfield,nk, & ne,mi(1),ndim,orab,ielorien,co,iorienloc,cflag, & vold,force,ielmat,thicke,ielprop,prop) ! endif ! ! determining the total strains in the nodes for output in frd format ! if((filab(4)(1:4).eq.'E ').or.(filab(30)(1:4).eq.'MAXE')) then nfield=6 ndim=6 if((norien.gt.0).and.(filab(4)(6:6).eq.'L')) then iorienloc=1 else iorienloc=0 endif cflag=filab(4)(5:5) force=.false. call extrapolate(eei,een,ipkon,inum,kon,lakon,nfield,nk, & ne,mi(1),ndim,orab,ielorien,co,iorienloc,cflag, & vold,force,ielmat,thicke,ielprop,prop) endif ! ! determining the mechanical strains in the nodes for output in ! frd format ! if(filab(32)(1:4).eq.'ME ') then nfield=6 ndim=6 if((norien.gt.0).and.(filab(4)(6:6).eq.'L')) then iorienloc=1 else iorienloc=0 endif cflag=filab(4)(5:5) force=.false. call extrapolate(eme,emn,ipkon,inum,kon,lakon,nfield,nk, & ne,mi(1),ndim,orab,ielorien,co,iorienloc,cflag, & vold,force,ielmat,thicke,ielprop,prop) endif ! ! determining the plastic equivalent strain in the nodes ! for output in frd format ! if(filab(6)(1:4).eq.'PEEQ') then nfield=1 ndim=nstate_ iorienloc=0 cflag=filab(6)(5:5) force=.false. call extrapolate(xstate,epn,ipkon,inum,kon,lakon,nfield,nk, & ne,mi(1),ndim,orab,ielorien,co,iorienloc,cflag, & vold,force,ielmat,thicke,ielprop,prop) endif ! ! determining the total energy in the nodes ! for output in frd format ! if(filab(7)(1:4).eq.'ENER') then nfield=1 ndim=1 iorienloc=0 cflag=filab(7)(5:5) force=.false. call extrapolate(ener,enern,ipkon,inum,kon,lakon,nfield,nk, & ne,mi(1),ndim,orab,ielorien,co,iorienloc,cflag, & vold,force,ielmat,thicke,ielprop,prop) endif ! ! determining the internal state variables in the nodes ! for output in frd format ! if(filab(8)(1:4).eq.'SDV ') then nfield=nstate_ ndim=nstate_ if((norien.gt.0).and.(filab(9)(6:6).eq.'L')) then write(*,*) '*WARNING in results: SDV variables cannot' write(*,*) ' be stored in a local frame;' write(*,*) ' the global frame will be used' endif iorienloc=0 cflag=filab(8)(5:5) force=.false. call extrapolate(xstate,xstaten,ipkon,inum,kon,lakon,nfield,nk, & ne,mi(1),ndim,orab,ielorien,co,iorienloc,cflag, & vold,force,ielmat,thicke,ielprop,prop) endif ! ! determining the heat flux in the nodes for output in frd format ! if(((filab(9)(1:4).eq.'HFL ').and.(ithermal(1).gt.1)).or. & ((filab(42)(1:3).eq.'ECD').and.(ithermal(1).eq.2))) then nfield=3 ndim=3 if((norien.gt.0).and.(filab(9)(6:6).eq.'L')) then iorienloc=1 else iorienloc=0 endif cflag=filab(9)(5:5) force=.false. call extrapolate(qfx,qfn,ipkon,inum,kon,lakon,nfield,nk, & ne,mi(1),ndim,orab,ielorien,co,iorienloc,cflag, & vold,force,ielmat,thicke,ielprop,prop) endif ! ! if no element quantities requested in the nodes: calculate ! inum if nodal quantities are requested: used in subroutine frd ! to determine which nodes are active in the model ! if((filab(3)(1:4).ne.'S ').and.(filab(4)(1:4).ne.'E ').and. & (filab(6)(1:4).ne.'PEEQ').and.(filab(7)(1:4).ne.'ENER').and. & (filab(8)(1:4).ne.'SDV ').and.(filab(9)(1:4).ne.'HFL ').and. & (filab(42)(1:3).ne.'ECD').and.(filab(32)(1:4).ne.'ME ').and. & ((nmethod.ne.4).or.(iperturb(1).ge.2))) then ! nfield=0 ndim=0 iorienloc=0 cflag=filab(1)(5:5) call createinum(ipkon,inum,kon,lakon,nk,ne,cflag,nelemload, & nload,nodeboun,nboun,ndirboun,ithermal,co,vold,mi,ielmat) endif ! c if(ithermal(1).gt.1) then if(ithermal(2).gt.1) then ! ! next section is executed if at least one step is thermal ! or thermomechanical ! ! extrapolation for the network ! -interpolation for the total pressure and temperature ! in the middle nodes ! -extrapolation for the mass flow in the end nodes ! call networkextrapolate(v,ipkon,inum,kon,lakon,ne,mi) ! ! printing values for environmental film and ! pressure nodes (these nodes are considered to be network ! nodes) ! do i=1,nload if((sideload(i)(3:4).ne.'FC').and. & (sideload(i)(3:4).ne.'NP')) cycle node=nelemload(2,i) if(icfd.eq.1) then if(node.gt.0) then if(inomat(node).ne.0) cycle endif endif if((node.gt.0).and.(sideload(i)(1:1).ne.' ')) then if(inum(node).lt.0) cycle inum(node)=-1 endif enddo ! ! printing values radiation ! (these nodes are considered to be network nodes, unless ! they were already assigned to the structure) ! do i=1,nload if((sideload(i)(3:4).ne.'CR')) cycle node=nelemload(2,i) if(icfd.eq.1) then if(node.gt.0) then if(inomat(node).ne.0) cycle endif endif if((node.gt.0).and.(sideload(i)(1:1).ne.' ')) then if(inum(node).ne.0) cycle inum(node)=-1 endif enddo ! ! printing values for nodes belonging to network MPC's ! (these nodes are considered to be network nodes) ! do i=1,nmpc if(labmpc(i)(1:7).eq.'NETWORK') then index=ipompc(i) do node=nodempc(1,index) if(inum(node).ge.0) inum(node)=-1 index=nodempc(3,index) if(index.eq.0) exit enddo endif enddo ! ! printing values of prescribed boundary conditions (these ! nodes are considered to be network nodes) ! do i=1,nboun node=nodeboun(i) if(inum(node).ne.0) cycle if(icfd.eq.1) then if(inomat(node).ne.0) cycle endif if((cflag.ne.' ').and.(ndirboun(i).eq.3)) cycle inum(node)=-1 enddo endif ! return end
gpl-2.0
techno/gcc-mist32
gcc/testsuite/gfortran.dg/namelist_22.f90
166
1390
!{ dg-do run { target fd_truncate } } !{ dg-options "-std=legacy" } ! ! Tests filling arrays from a namelist read when object list is not complete. ! This is the same as namelist_21.f90 except using spaces as seperators instead ! of commas. Developed from a test case provided by Christoph Jacob. ! Contributed by Jerry DeLisle <jvdelisle@gcc.gnu.org>. program pr24794 implicit none integer, parameter :: maxop=15, iunit=7 character*8 namea(maxop), nameb(maxop) integer i, ier namelist/ccsopr/ namea,nameb namea="" nameb="" open (12, status="scratch", delim="apostrophe") write (12, '(a)') "&ccsopr" write (12, '(a)') " namea='spi01h' 'spi02o' 'spi03h' 'spi04o' 'spi05h'" write (12, '(a)') " 'spi07o' 'spi08h' 'spi09h'" write (12, '(a)') " nameb='spi01h' 'spi03h' 'spi05h' 'spi06h' 'spi08h'" write (12, '(a)') "&end" rewind (12) read (12, nml=ccsopr, iostat=ier) if (ier.ne.0) call abort() rewind (12) write(12,nml=ccsopr) rewind (12) read (12, nml=ccsopr, iostat=ier) if (ier.ne.0) call abort() if (namea(2).ne."spi02o ") call abort() if (namea(9).ne." ") call abort() if (namea(15).ne." ") call abort() if (nameb(1).ne."spi01h ") call abort() if (nameb(6).ne." ") call abort() if (nameb(15).ne." ") call abort() close (12) end program pr24794
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/addimdnodedof.f
2
2588
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine addimdnodedof(node,k,ikmpc,ilmpc,ipompc, & nodempc,nmpc,imdnode,nmdnode,imddof,nmddof,nactdof,mi, & imdmpc,nmdmpc,imdboun,nmdboun,ikboun,nboun,ilboun) ! ! node was kept by the user in a modal dynamics calculation; ! the present routine checks DOF k of node; if this DOF belongs ! to a MPC all independent nodes and DOF's of the MPC have to be kept ! implicit none ! integer node,k,idof,ikmpc(*),ilmpc(*),ipompc(*),nodempc(3,*), & nmpc,imdnode(*),nmdnode,imddof(*),nmddof,id,ist,index,jdof, & mi(*),nactdof(0:mi(2),*),imdmpc(*),nmdmpc,imdboun(*),nmdboun, & ikboun(*),nboun,ilboun(*) ! idof=nactdof(k,node) c write(*,*) 'addimdnodedof ',node,k,idof if(idof.le.0) then idof=(node-1)*8+k ! ! checking for mpc's ! call nident(ikmpc,idof,nmpc,id) if(id.gt.0) then if(ikmpc(id).eq.idof) then call addimd(imdmpc,nmdmpc,ilmpc(id)) id=ilmpc(id) ist=ipompc(id) index=nodempc(3,ist) if(index.ne.0) then do call addimd(imdnode,nmdnode,nodempc(1,index)) jdof=nactdof(nodempc(2,index),nodempc(1,index)) if(jdof.gt.0) call addimd(imddof,nmddof,jdof) index=nodempc(3,index) if(index.eq.0) exit enddo endif endif endif ! ! checking for spc's ! call nident(ikboun,idof,nboun,id) if(id.gt.0) then if(ikboun(id).eq.idof) then call addimd(imdboun,nmdboun,ilboun(id)) endif endif else call addimd(imddof,nmddof,idof) endif ! return end
gpl-2.0
LucHermitte/ITK
Modules/ThirdParty/VNL/src/vxl/v3p/netlib/blas/zgeru.f
46
4266
SUBROUTINE ZGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZGERU performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGERU ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of ZGERU . * END
apache-2.0
prool/ccx_prool
CalculiX/ccx_2.10/src/liquidchannel.f
4
45555
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine liquidchannel(node1,node2,nodem,nelem,lakon, & nactdog,identity,ielprop,prop,iflag,v,xflow,f, & nodef,idirf,df,rho,g,co,dvi,numf,mi,ipkon,kon) ! ! open channel for incompressible media ! ! SG: sluice gate ! SO: sluice opening ! WE: weir ! WO: weir opening ! DS: discontinuous slope ! DO: discontinuous slope opening ! : default channel mit linearly varying trapezoid cross ! section ! implicit none ! logical identity,bresse,jump character*8 lakon(*) ! integer nelem,nactdog(0:3,*),node1,node2,nodem,indexup,i, & ielprop(*),nodef(4),idirf(4),index,iflag,mi(*),nsol, & inv,numf,nodesg,nelemdown,nelemup,node0,kon(*),ipkon(*) ! real*8 prop(*),v(0:mi(2),*),xflow,f,df(4),b,d,c,p, & h1,h2,rho,dvi,friction,reynolds,dg,b1,b2, & g(3),dl,xks,z1,z2,co(3,*),xflow2,dyg3dbj,dyg4dbj, & s0,sqrts0,hk,form_fact,h1ns,h2ns,h0,dyg3deta,dyg4deta, & dh3dh1,dh4dh2,dh3dm,dh4dm,eta,dA3deta,dA4deta,bj, & theta,cth,tth,um1,um2,A1,A2,P1,P2,D1,D2,dA1dh1,dA2dh2, & dP1dh1,dP2dh2,dD1dh1,dD2dh2,h3,h4,dh3deta,xn1,xn2,xt1,xt2, & dh4deta,yg3,yg4,dyg3dh3,dyg4dh4,A3,A4,dA3dh3,dA4dh4, & dum1dh1,dum2dh2,c1,c2,dbds,dbjdeta,e0,e1,e2,e3, & dyg3dm,dyg4dm,dA3dm,dA4dm,dyg3dh1,dyg4dh2, & dA3dh1,dA4dh2,solreal(3),solimag(3),dist ! ! iflag=0: check whether all parameters in the element equation ! are known => equation is not needed ! iflag=1: calculation of the initial flux ! iflag=2: evaluate the element equation and all derivatives ! iflag=3: correct the channel depth in order to move a jump ! if (iflag.eq.0) then identity=.true. ! if(nactdog(2,node1).ne.0)then identity=.false. elseif(nactdog(2,node2).ne.0)then identity=.false. elseif(nactdog(1,nodem).ne.0)then identity=.false. endif ! elseif((iflag.eq.1).or.(iflag.eq.2))then ! index=ielprop(nelem) ! h1=v(2,node1) h2=v(2,node2) ! z1=-g(1)*co(1,node1)-g(2)*co(2,node1)-g(3)*co(3,node1) z2=-g(1)*co(1,node2)-g(2)*co(2,node2)-g(3)*co(3,node2) ! dg=dsqrt(g(1)*g(1)+g(2)*g(2)+g(3)*g(3)) ! if(iflag.eq.1) then ! ! in a first call of liquidchannel the flow is determined, ! in a second call the channel depth is calculated ! if(lakon(nelem)(6:7).eq.'SG') then ! ! sluice gate ! b=prop(index+1) s0=prop(index+2) if(s0.lt.-1.d0) then s0=dasin((z1-z2)/dl) endif sqrts0=dsqrt(1.d0-s0*s0) theta=0.d0 h2=prop(index+3) ! if(dabs(xflow).lt.1.d-30) then ! ! determine initial mass flow ! if(nactdog(2,node1).ne.0) then ! ! upstream level not known ! xflow=0.d0 else xflow=2.d0*dg*(rho*b*h2)**2*(h1-h2*sqrts0) if(xflow.lt.0.d0) then write(*,*)'*ERROR in liquidchannel: water level' write(*,*) ' upstream of sluice gate is ' write(*,*) ' smaller than downstream heigh &t' call exit(201) else xflow=dsqrt(xflow) endif endif else ! ! determine the downstream depth ! and the upstream depth if not defined as BC ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk if(h2.gt.hk) then ! ! for initial conditions ! if(nactdog(2,node1).ne.0) v(2,node1)=3.d0*hk/2.d0 v(2,node2)=hk else ! ! for initial conditions ! if(nactdog(2,node1).ne.0) v(2,node1)= & xflow**2/(2.d0*dg*(rho*b*h2)**2)+h2*sqrts0 v(2,node2)=h2 endif endif elseif(lakon(nelem)(6:7).eq.'WE') then ! ! weir ! b=prop(index+1) p=prop(index+2) c=prop(index+3) sqrts0=1.d0 theta=0.d0 ! if(dabs(xflow).lt.1.d-30) then ! ! determine initial mass flow ! if(nactdog(2,node1).ne.0) then ! ! upstream level unknown ! xflow=0.d0 else if(h1.le.p) then write(*,*) '*ERROR in liquidchannel' write(*,*) ' weir height exceeds' write(*,*) ' upstream level' call exit(201) endif xflow=rho*c*b*(h1-p)**(1.5d0) endif else ! ! determine the downstream depth ! and the upstream depth if not defined as BC ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk ! ! for initial conditions ! if(nactdog(2,node1).ne.0) v(2,node1)=p+3.d0*hk/2.d0 ! ! next value is used for downstream initial values ! v(2,node2)=hk endif ! elseif(lakon(nelem)(6:7).eq.'DS') then if(dabs(xflow).lt.1.d-30) then ! ! initial mass flow cannot be determined for this ! type of element ! xflow=0.d0 else ! ! determine the downstream depth ! b=prop(index+1) s0=prop(index+2) if(s0.lt.-1.d0) then s0=dasin((z1-z2)/dl) endif sqrts0=dsqrt(1.d0-s0*s0) theta=prop(index+4) ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk ! ! initial condition for fluid depth ! supercritical value ! v(2,node2)=hk/2.d0 endif ! endif else ! ! calculating f and its derivatives ! bresse=.false. jump=.false. ! xflow2=xflow*xflow ! ! element properties ! if((lakon(nelem)(6:7).eq.'SG').or. & (lakon(nelem)(6:7).eq.'SO').or. & (lakon(nelem)(6:7).eq.'WO').or. & (lakon(nelem)(6:7).eq.'RE').or. & (lakon(nelem)(6:7).eq.' ').or. & (lakon(nelem)(6:7).eq.'DS').or. & (lakon(nelem)(6:7).eq.'DO')) then b=prop(index+1) s0=prop(index+2) if(s0.lt.-1.d0) then s0=dasin((z1-z2)/dl) endif sqrts0=dsqrt(1.d0-s0*s0) if(lakon(nelem)(6:7).ne.'SG') then dl=prop(index+3) theta=prop(index+4) xks=prop(index+5) if(dl.le.0.d0) then dl=dsqrt((co(1,node2)-co(1,node1))**2+ & (co(2,node2)-co(2,node1))**2+ & (co(3,node2)-co(3,node1))**2) endif else theta=0.d0 endif elseif(lakon(nelem)(6:7).eq.'WE') then b=prop(index+1) p=prop(index+2) c=prop(index+3) sqrts0=1.d0 theta=0.d0 elseif((lakon(nelem)(6:7).eq.'CO').or. & (lakon(nelem)(6:7).eq.'EL')) then b1=prop(index+1) ! s0=prop(index+2) if(s0.lt.-1.d0) then s0=0.d0 endif sqrts0=dsqrt(1.d0-s0*s0) ! dl=prop(index+3) if(dl.le.0.d0) then dl=dsqrt((co(1,node2)-co(1,node1))**2+ & (co(2,node2)-co(2,node1))**2+ & (co(3,node2)-co(3,node1))**2) endif ! b2=prop(index+4) b=(b1+b2)/2.d0 theta=0.d0 xks=0.d0 elseif((lakon(nelem)(6:7).eq.'ST').or. & (lakon(nelem)(6:7).eq.'DR')) then b=prop(index+1) ! s0=prop(index+2) if(s0.lt.-1.d0) then s0=0.d0 endif sqrts0=dsqrt(1.d0-s0*s0) ! dl=prop(index+3) if(dl.le.0.d0) then dl=dsqrt((co(1,node2)-co(1,node1))**2+ & (co(2,node2)-co(2,node1))**2+ & (co(3,node2)-co(3,node1))**2) endif ! d=prop(index+4) b1=b b2=b theta=0.d0 xks=0.d0 endif ! if(xflow.ge.0.d0) then inv=1 else inv=-1 endif ! ! standard element equation: unknowns are the mass flow ! and the depth upstream and downstream ! numf=3 nodef(1)=node1 nodef(2)=nodem nodef(3)=node2 idirf(1)=2 idirf(2)=1 idirf(3)=2 ! if(lakon(nelem)(6:7).eq.'SG') then ! ! sluice gate ! 1-SG-2-SO-3 ! ! h2 cannot exceed HKmax ! h2=prop(index+3) call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk if(h2.gt.hk) h2=hk ! nelemdown=int(prop(index+5)) h3=v(2,kon(ipkon(nelemdown)+3)) call hns(b,theta,rho,dg,sqrts0,xflow,h2,h2ns) if(h3.lt.h2ns) then ! ! Q=f_SG(h1,h2): sluice gate equation between ! 1 and 2 ! ! next line for output only ! v(2,node2)=h2 c write(30,*) 'SG: sluice gate equation ' c write(30,*)'h1= ',h1,'h2= ',h2,'h3= ',h3,'h2ns= ',h2ns df(1)=2.d0*dg*(rho*b*h2)**2 df(2)=-2.d0*xflow f=df(1)*(h1-h2*sqrts0) df(3)=2.d0*f/h2-df(1)*sqrts0 f=f-xflow2 else ! ! fake equation ! c write(30,*) 'SG: fake equation ' c write(30,*)'h1= ',h1,'h2= ',h2,'h3= ',h3,'h2ns= ',h2ns numf=1 nodef(1)=nodem idirf(1)=3 f=prop(index+4)-0.5d0 df(1)=1.d0 endif elseif(lakon(nelem)(6:7).eq.'SO') then ! ! sluice opening (element streamdown of sluice gate) ! 0-SG-1-SO-2 ! nelemup=int(prop(index+6)) node0=kon(ipkon(nelemup)+1) h0=v(2,node0) h1=prop(ielprop(nelemup)+3) ! ! h1 cannot exceed HKmax ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk if(h1.gt.hk) h1=hk ! call hns(b,theta,rho,dg,sqrts0,xflow,h1,h1ns) if(h2.lt.h1ns) then ! ! bresse (frontwater) ! c write(30,*) 'SO: Bresse equation ' c write(30,*)'h0= ',h0,'h1= ',h1,'h2= ',h2,'h1ns= ',h1ns bresse=.true. else ! ! Q=f_SG(h0,h2): sluice gate equation between 0 and 2 ! (backwater) ! ! reset gate height ! h1=prop(ielprop(nelemup)+3) ! c write(30,*) 'SO: Sluice gate eqn. between 0 and 2 ' c write(30,*)'h0= ',h0,'h1= ',h1,'h2= ',h2,'h1ns= ',h1ns numf=4 nodef(4)=node0 idirf(4)=2 ! if(h2.gt.h1) then ! ! gate flow (water touches gate) ! section = b * h1 ! ! next line for output only ! v(2,node1)=h1 df(4)=2.d0*dg*(rho*b*h1)**2 df(3)=-df(4)*sqrts0 df(2)=-2.d0*xflow f=df(4)*(h0-h2*sqrts0) df(1)=2.d0*f/h1 else ! ! incomplete inflexion (water does not touch gate) ! section = b * h2 ! ! next line for output only ! v(2,node1)=h2 df(4)=2.d0*dg*(rho*b*h2)**2 df(3)=-df(4)*sqrts0 df(2)=-2.d0*xflow f=df(4)*(h0-h2*sqrts0) df(3)=df(3)+2.d0*f/h2 df(1)=0.d0 endif f=f-xflow2 endif elseif(lakon(nelem)(6:7).eq.'WE') then ! ! weir ! 1-WE-2-WO-3 ! nelemdown=int(prop(index+5)) h3=v(2,kon(ipkon(nelemdown)+3)) ! ! default depth for weir is hk ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk ! if(h3.lt.p+hk) then ! ! output only ! v(2,node2)=p+hk ! ! Q=f_WE(h1): weir equation ! c write(30,*) 'WE: weir equation ' c write(30,*)'h1= ',h1,'h2= ',h2,'h3= ',h3,'hk= ',hk f=rho*c*b*(h1-p)**(1.5d0) df(1)=3.d0*f/(2.d0*(h1-p)) f=f-xflow df(2)=-1.d0 df(3)=0.d0 else ! ! fake equation ! c write(30,*) 'WE: weir equation ' c write(30,*)'h1= ',h1,'h2= ',h2,'h3= ',h3,'hk= ',hk numf=1 nodef(1)=nodem idirf(1)=3 f=prop(index+4)-0.5d0 df(1)=1.d0 endif elseif(lakon(nelem)(6:7).eq.'WO') then ! ! weir opening (element streamdown of weir) ! 0-WE-1-WO-2 ! nelemup=int(prop(index+6)) node0=kon(ipkon(nelemup)+1) h0=v(2,node0) ! p=prop(ielprop(nelemup)+2) ! ! default depth for weir is hk ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk ! if(h2.lt.p+hk) then ! ! bresse between 1 and 2 ! h1=hk c write(30,*) 'WO: Bresse equation ' c write(30,*)'h0= ',h0,'h1= ',h1,'h2= ',h2,'hk= ',hk p=prop(ielprop(nelemup)+2) s0=dasin(p/dsqrt(dl**2+p**2)) c write(*,*) 's0=',p,dl,s0 sqrts0=dsqrt(1.d0-s0*s0) bresse=.true. else ! ! output only ! v(2,node1)=h2 ! ! bresse between 0 and 2 ! c write(30,*) 'WO: Bresse eqn. between 0 and 2 ' c write(30,*)'h0= ',h0,'h1= ',h1,'h2= ',h2,'hk= ',hk nodef(1)=node0 h1=h0 bresse=.true. endif elseif(lakon(nelem)(6:7).eq.'DS') then ! ! discontinuous slope ! 1-DS-2-DO-3 ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk ! if(h1.gt.hk) then nelemdown=int(prop(index+8)) h3=v(2,kon(ipkon(nelemdown)+3)) if(h3.le.hk) then ! ! upstream: backwater curve ! downstream: frontwater curve ! h2=hk bresse=.true. c write(30,*) 'DS: back/front bresse' c write(30,*)'h1= ',h1,'h2= ',h2,'h3= ',h3 ! ! for output purposes ! v(2,node2)=h2 else ! ! both curves are backwater curves ! fake equation ! c write(30,*) 'DS: back/back fake equation ' c write(30,*)'h1= ',h1,'h2= ',h2,'h3= ',h3 numf=1 nodef(1)=nodem idirf(1)=3 f=prop(index+7)-0.5d0 df(1)=1.d0 endif else ! ! both curves are frontwater curves ! fake equation ! c write(30,*) 'DS: front/front fake equation ' c write(30,*)'h1= ',h1,'h2= ',h2 nelemup=int(prop(index+6)) numf=1 nodef(1)=kon(ipkon(nelemup)+2) idirf(1)=3 f=prop(index+7)-0.5d0 df(1)=1.d0 endif elseif(lakon(nelem)(6:7).eq.'DO') then ! ! discontinuous slope opening ! (element streamdown of discontinuous slope) ! 0-DS-1-DO-2 ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk ! nelemup=int(prop(index+6)) node0=kon(ipkon(nelemup)+1) h0=v(2,node0) ! if(h0.gt.hk) then if(h2.le.hk) then ! ! upstream: backwater curve ! downstream: frontwater curve ! bresse between 1 and 2 ! h1=hk c write(30,*) 'DO: back/front bresse 1-2' c write(30,*)'h0= ',h0,'h1= ',h1,'h2= ',h2 bresse=.true. else ! ! both curves are backwater curves ! bresse between 0 and 2 ! c write(30,*) 'DO: back/back bresse 0-2' c write(30,*)'h0= ',h0,'h1= ',h1,'h2= ',h2 nodef(1)=node0 h1=h0 bresse=.true. ! ! output purposes ! v(2,node1)=(h0+h2)/2.d0 endif else ! ! both curves are frontwater curves ! bresse between 0 and 2 ! c write(30,*) 'DO: front/front bresse 0-2' c write(30,*)'h0= ',h0,'h1= ',h1,'h2= ',h2 nodef(1)=node0 h1=h0 bresse=.true. ! ! output purposes ! v(2,node1)=(h0+h2)/2.d0 endif elseif(lakon(nelem)(6:7).eq.'RE') then ! ! element upstream of a reservoir ! calculating the critical depth ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk if(h1.ge.hk) then ! ! backwater curve ! if(h2.lt.hk) h2=hk c write(30,*) 'RE: Bresse downstream equation ' c write(30,*) 'h1= ',h1,'h2= ',h2,'hk= ',hk bresse=.true. else ! ! frontwater curve ! call hns(b,theta,rho,dg,sqrts0,xflow,h1,h1ns) if(h2.le.h1ns) then c write(30,*) 'RE: fake equation ' c write(30,*) 'h1= ',h1,'h2= ',h2,'h1ns= ',h1ns ! ! fake equation ! nelemup=int(prop(index+6)) nodesg=kon(ipkon(nelemup)+2) numf=1 nodef(1)=nodesg idirf(1)=3 ! ! retrieving previous value of eta ! index=ielprop(nelemup) if(lakon(nelemup)(6:7).eq.'SG') then f=prop(index+4)-0.5d0 elseif(lakon(nelemup)(6:7).eq.'WE') then f=prop(index+4)-0.5d0 elseif(lakon(nelemup)(6:7).eq.'DS') then f=prop(index+7)-0.5d0 endif df(1)=1.d0 else c write(30,*) 'RE: Bresse downstream equation ' c write(30,*) 'h1= ',h1,'h2= ',h2,'h1ns= ',h1ns bresse=.true. endif endif elseif(lakon(nelem)(6:7).eq.'CO') then c write(30,*) 'CO: contraction ' c write(30,*)'h1= ',h1,'h2= ',h2 ! call hcrit(xflow,rho,b2,theta,dg,sqrts0,hk) v(3,node2)=hk ! if(inv.eq.-1) then if((h1.gt.hk).and.(h2.lt.hk)) then jump=.true. endif else if((h1.lt.hk).and.(h2.gt.hk)) then jump=.true. endif endif ! c write(*,*) 'CO ',jump ! if(.not.jump) then c1=rho*rho*dg c2=b1*b2*h1*h2 df(1)=b1*(2.d0*xflow2+c1*b1*b2*h2**3) df(3)=b2*(2.d0*xflow2+c1*b1*b1*h1**3) f=h1*df(1)-h2*df(3) df(1)=df(1)-3.d0*c1*c2*b1*h1 df(3)=3.d0*c1*c2*b1*h2-df(3) df(2)=4.d0*(b1*h1-b2*h2)*xflow endif elseif(lakon(nelem)(6:7).eq.'EL') then c write(30,*) 'EL: enlargement ' c write(30,*)'h1= ',h1,'h2= ',h2 ! call hcrit(xflow,rho,b2,theta,dg,sqrts0,hk) v(3,node2)=hk ! if(inv.eq.-1) then if((h1.gt.hk).and.(h2.lt.hk)) then jump=.true. endif else if((h1.lt.hk).and.(h2.gt.hk)) then jump=.true. endif endif ! c write(*,*) 'EL ',jump ! if(.not.jump) then c1=rho*rho*dg c2=b1*b2*h1*h2 df(1)=b1*(2.d0*xflow2+c1*b2*b2*h2**3) df(3)=b2*(2.d0*xflow2+c1*b1*b2*h1**3) f=h1*df(1)-h2*df(3) df(1)=df(1)-3.d0*c1*c2*b2*h1 df(3)=3.d0*c1*c2*b2*h2-df(3) df(2)=4.d0*(b1*h1-b2*h2)*xflow endif elseif(lakon(nelem)(6:7).eq.'DR') then c write(30,*) 'DR: drop ' c write(30,*)'h1= ',h1,'h2= ',h2 ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk ! if(inv.eq.-1) then if((h1.gt.hk).and.(h2.lt.hk)) then jump=.true. endif else if((h1.lt.hk).and.(h2.gt.hk)) then jump=.true. endif endif ! if(.not.jump) then c1=rho*rho*dg df(1)=2.d0*xflow2+c1*b*b*h2**3 df(3)=2.d0*xflow2+c1*b*b*h1*(h1+d)**2 f=h1*df(1)-h2*df(3) df(1)=df(1)-c1*b*b*h2*(3.d0*h1+d)*(h1+d) df(3)=3.d0*c1*b*b*h1*h2*h2-df(3) df(2)=4.d0*(h1-h2)*xflow endif elseif(lakon(nelem)(6:7).eq.'ST') then c write(30,*) 'ST: step ' c write(30,*)'h1= ',h1,'h2= ',h2 ! call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk ! if(inv.eq.-1) then if((h1.gt.hk).and.(h2.lt.hk)) then jump=.true. endif else if((h1.lt.hk).and.(h2.gt.hk)) then jump=.true. endif endif ! if(.not.jump) then c1=rho*rho*dg df(1)=2.d0*xflow2+c1*b*b*h2*(h2+d)**2 df(3)=2.d0*xflow2+c1*b*b*h1**3 f=h1*df(1)-h2*df(3) df(1)=df(1)-3.d0*c1*b*b*h1*h1*h2 df(3)=c1*b*b*h1*(3.d0*h2+d)*(h2+d)-df(3) df(2)=4.d0*(h1-h2)*xflow endif elseif(lakon(nelem)(6:7).eq.' ') then bresse=.true. c write(30,*) 'straight: Bresse equation ' c write(30,*) 'h1= ',h1,'h2= ',h2 endif ! ! bresse equation ! if((bresse).or.(jump)) then ! if(xks.gt.0.d0) then ! ! White-Coolebrook ! ! hydraulic diameter ! d=2.d0*(h1+h2) reynolds=4.d0*xflow/(b*dvi) form_fact=1.d0 call friction_coefficient(dl,d,xks,reynolds,form_fact, & friction) endif ! if(bresse) then call hcrit(xflow,rho,b,theta,dg,sqrts0,hk) v(3,node2)=hk if(inv.eq.-1) then if((h1.gt.hk).and.(h2.lt.hk)) then jump=.true. endif else if((h1.lt.hk).and.(h2.gt.hk)) then jump=.true. endif endif b1=b b2=b endif ! ! geometric data ! cth=dcos(theta) tth=dtan(theta) ! ! nonprismatic cross section ! if(lakon(nelem)(6:7).eq.' ') then dbds=prop(index+7) else dbds=0.d0 endif ! ! width at water surface ! dD1dh1=2.d0*tth dD2dh2=dD1dh1 D1=b1+h1*dD1dh1 D2=b2+dl*dbds+h2*dD2dh2 ! ! cross section ! A1=h1*(b1+h1*tth) A2=h2*(b2+dl*dbds+h2*tth) dA1dh1=D1 dA2dh2=D2 ! ! perimeter ! P1=b1+2.d0*h1/cth P2=b2+dl*dbds+2.d0*h2/cth dP1dh1=2.d0/cth dP2dh2=dP1dh1 ! ! factor for friction ! if(xks.gt.0.d0) then ! White-Coolebrook um1=friction/8.d0 um2=um1 dum1dh1=0.d0 dum2dh2=0.d0 else ! Manning um1=xks*xks*dg*(P1/A1)**(1.d0/3.d0) um2=xks*xks*dg*(P2/A2)**(1.d0/3.d0) dum1dh1=xks*xks*dg* & (P1**(-2.d0/3.d0)*dP1dh1*A1**(1.d0/3.d0)- & A1**(-2.d0/3.d0)*dA1dh1*P1**(1.d0/3.d0))/ & (3.d0*A1**(2.d0/3d0)) dum2dh2=xks*xks*dg* & (P2**(-2.d0/3.d0)*dP2dh2*A2**(1.d0/3.d0)- & A2**(-2.d0/3.d0)*dA2dh2*P2**(1.d0/3.d0))/ & (3.d0*A2**(2.d0/3d0)) endif ! ! constants ! c1=rho*rho*dg c2=c1*sqrts0 c1=c1*s0 ! ! hydraulic jump ! if(jump) then c write(30,*) c & 'liquidchannel: jump in element,hk ',nelem,hk nelemup=prop(index+6) indexup=ielprop(nelemup) if(lakon(nelemup)(6:7).eq.'SG') then eta=prop(indexup+4) prop(indexup+7)=nelem+0.5d0 elseif(lakon(nelemup)(6:7).eq.'WE') then eta=prop(indexup+4) prop(indexup+7)=nelem+0.5d0 elseif(lakon(nelemup)(6:7).eq.'DS') then eta=prop(indexup+7) prop(indexup+9)=nelem+0.5d0 endif ! ! determining h3, h4 and derivatives ! ! numerator ! xt1=c1*A1**3+(h1*dbds-um1*P1)*xflow2 xt2=c1*A2**3+(h2*dbds-um2*P2)*xflow2 ! ! denominator ! xn1=c2*A1**3-D1*xflow2 xn2=c2*A2**3-D2*xflow2 ! ! h3 and h4 ! h3=h1+dl*xt1/xn1*eta h4=h2-dl*xt2/xn2*(1.d0-eta) c write(30,*) c & 'liquidchannel: h3,h4,eta ',h3,h4,eta ! if(bresse) then ! ! width at jump ! bj=b+dbds*eta*dl ! ! cross sections and derivatives ! A3=h3*(bj+h3*tth) A4=h4*(bj+h4*tth) dA3dh3=bj+2.d0*h3*tth dA4dh4=bj+2.d0*h4*tth ! ! center of gravity and derivatives ! yg3=h3*(3.d0*bj+2.d0*h3*tth)/(6.d0*(bj+h3*tth)) yg4=h4*(3.d0*bj+2.d0*h4*tth)/(6.d0*(bj+h4*tth)) dyg3dh3=((3.d0*bj+4.d0*h3*tth)*(bj+tth) & -tth*h3*(3.d0*bj+2.d0*h3*tth))/ & (6.d0*(bj+h3*tth)**2) dyg4dh4=((3.d0*bj+4.d0*h4*tth)*(bj+tth) & -tth*h4*(3.d0*bj+2.d0*h4*tth))/ & (6.d0*(bj+h4*tth)**2) dyg3dbj=h3*h3*tth/(6.d0*(bj+h3*tth)**2) dyg4dbj=h4*h4*tth/(6.d0*(bj+h4*tth)**2) endif ! ! derivative of h3 w.r.t. h1 and of h4 w.r.t. h2 ! dh3dh1=1.d0+((3.d0*c1*A1*A1*dA1dh1 & +(dbds-dum1dh1*P1-um1*dP1dh1)*xflow2)*xn1 & -(3.d0*c2*A1*A1*dA1dh1-dD1dh1*xflow2)*xt1)/ & (xn1*xn1)*eta*dl dh4dh2=1.d0-((3.d0*c1*A2*A2*dA2dh2 & +(dbds-dum2dh2*P2-um2*dP2dh2)*xflow2)*xn2 & -(3.d0*c2*A2*A2*dA2dh2-dD2dh2*xflow2)*xt2)/ & (xn2*xn2)*(1.d0-eta)*dl ! if(bresse) then dA3dh1=dA3dh3*dh3dh1 dA4dh2=dA4dh4*dh4dh2 dyg3dh1=dyg3dh3*dh3dh1 dyg4dh2=dyg4dh4*dh4dh2 endif ! ! derivative of h3 and h4 w.r.t. the mass flow ! dh3dm=((dbds*h1-um1*P1)*xn1+D1*xt1)*2.d0*xflow/ & (xn1*xn1)*eta*dl dh4dm=-((dbds*h2-um2*P2)*xn2+D2*xt2)*2.d0*xflow/ & (xn2*xn2)*(1.d0-eta)*dl ! if(bresse) then dA3dm=dA3dh3*dh3dm dA4dm=dA4dh4*dh4dm dyg3dm=dyg3dh3*dh3dm dyg4dm=dyg4dh4*dh4dm endif ! ! derivative of h3 and h4 w.r.t. eta ! dh3deta=dl*xt1/xn1 dh4deta=dl*xt2/xn2 ! if(bresse) then dbjdeta=dbds*dl ! ! derivative of A3, A4, yg3 and yg4 w.r.t. eta ! dA3deta=dA3dh3*dh3deta+h3*dbjdeta dA4deta=dA4dh4*dh4deta+h4*dbjdeta dyg3deta=dyg3dh3*dh3deta+dyg3dbj*dbjdeta dyg4deta=dyg4dh4*dh4deta+dyg4dbj*dbjdeta endif ! numf=4 nodef(4)=kon(ipkon(nelemup)+2) idirf(4)=3 ! if(bresse) then f=A4*xflow2+c2*(A3*A3*A4*yg3-A3*A4*A4*yg4) & -A3*xflow2 df(1)=c2*(2.d0*A3*dA3dh1*A4*yg3+A3*A3*A4*dyg3dh1 & -dA3dh1*A4*A4*yg4)-dA3dh1*xflow2 df(2)=2.d0*xflow*(A4-A3)+ & (c2*(2.d0*A3*A4*yg3-A4*A4*yg4)-xflow2)*dA3dm+ & (c2*(A3*A3*yg3-2.d0*A3*A4*yg4)+xflow2)*dA4dm+ & c2*A3*A3*A4*dyg3dm-c2*A3*A4*A4*dyg4dm df(3)=c2*(A3*A3*dA4dh2*yg3-2.d0*A3*A4*dA4dh2*yg4 & -A3*A4*A4*dyg4dh2)+dA4dh2*xflow2 df(4)=dA4deta*xflow2+ & c2*(2.d0*A3*dA3deta*A4*yg3+A3*A3*dA4deta*yg3 & +A3*A3*A4*dyg3deta-dA3deta*A4*A4*yg4 & -A3*2.d0*A4*dA4deta*yg4-A3*A4*A4*dyg4deta) & -dA3deta*xflow2 elseif(lakon(nelem)(6:7).eq.'CO') then f=b2*h4*(2.d0*xflow2+c2*b1*b1*h3**3)- & b1*h3*(2.d0*xflow2+c2*b1*b2*h4**3) ! dfdh3 df(1)=3.d0*b2*h4*c2*b1*b1*h3*h3- & b1*(2.d0*xflow2+c2*b1*b2*h4**3) ! dfdh4 df(3)=b2*(2.d0*xflow2+c2*b1*b1*h3**3)- & 3.d0*b1*h3*c2*b1*b2*h4*h4 ! dfdm df(2)=4.d0*xflow*(b2*h4-b1*h3)+ & df(1)*dh3dm+df(3)*dh4dm ! dfdeta df(4)=df(1)*dh3deta+df(3)*dh4deta ! dfdh1 df(1)=df(1)*dh3dh1 ! dfdh2 df(3)=df(3)*dh4dh2 elseif(lakon(nelem)(6:7).eq.'EL') then f=b2*h4*(2.d0*xflow2+c2*b1*b2*h3**3)- & b1*h3*(2.d0*xflow2+c2*b2*b2*h4**3) ! dfdh3 df(1)=3.d0*b2*h4*c2*b1*b2*h3*h3- & b1*(2.d0*xflow2+c2*b2*b2*h4**3) ! dfdh4 df(3)=b2*(2.d0*xflow2+c2*b1*b2*h3**3)- & 3.d0*b1*h3*c2*b2*b2*h4*h4 ! dfdm df(2)=4.d0*xflow*(b2*h4-b1*h3)+ & df(1)*dh3dm+df(3)*dh4dm ! dfdeta df(4)=df(1)*dh3deta+df(3)*dh4deta ! dfdh1 df(1)=df(1)*dh3dh1 ! dfdh2 df(3)=df(3)*dh4dh2 elseif(lakon(nelem)(6:7).eq.'DR') then f=h4*(2.d0*xflow2+c2*b*b*h3*(h3+d)**2)- & h3*(2.d0*xflow2+c2*b*b*h4**3) ! dfdh3 df(1)=h4*c2*b*b*(3.d0*h3+d)*(h3+d)- & (2.d0*xflow2+c2*b*b*h4**3) ! dfdh4 df(3)=(2.d0*xflow2+c2*b*b*h3*(h3+d)**2)- & 3.d0*h3*c2*b*b*h4*h4 ! dfdm df(2)=4.d0*xflow*(h4-h3)+ & df(1)*dh3dm+df(3)*dh4dm ! dfdeta df(4)=df(1)*dh3deta+df(3)*dh4deta ! dfdh1 df(1)=df(1)*dh3dh1 ! dfdh2 df(3)=df(3)*dh4dh2 elseif(lakon(nelem)(6:7).eq.'ST') then f=h4*(2.d0*xflow2+c2*b*b*h3**3)- & h3*(2.d0*xflow2+c2*b*b*h4*(h4+d)**2) ! dfdh3 df(1)=3.d0*h4*c2*b*b*h3*h3- & (2.d0*xflow2+c2*b*b*h4*(h4+d)**2) ! dfdh4 df(3)=(2.d0*xflow2+c2*b*b*h3**3)- & h3*c2*b*b*(3.d0*h4+d)*(h4+d) ! dfdm df(2)=4.d0*xflow*(h4-h3)+ & df(1)*dh3dm+df(3)*dh4dm ! dfdeta df(4)=df(1)*dh3deta+df(3)*dh4deta ! dfdh1 df(1)=df(1)*dh3dh1 ! dfdh2 df(3)=df(3)*dh4dh2 endif else ! ! regular Bresse equation ! f=c2*(A1**3+A2**3)-xflow2*(D1+D2) df(1)=-f+(h2-h1)*(c2*dA1dh1*3.d0*A1*A1-xflow2*dD1dh1) & -dl*(c1*3.d0*A1*A1*dA1dh1 & -(dum1dh1*P1+um1*dP1dh1-dbds)*xflow2) df(2)=(-(h2-h1)*(D1+D2) & +dl*(um1*P1+um2*P2-(h1+h2)*dbds))*2.d0*xflow df(3)=f+(h2-h1)*(c2*dA2dh2*3.d0*A2*A2-xflow2*dD2dh2) & -dl*(c1*3.d0*A2*A2*dA2dh2 & -(dum2dh2*P2+um2*dP2dh2-dbds)*xflow2) f=(h2-h1)*f-dl*(c1*(A1**3+A2**3) & -(um1*P1+um2*P2-(h1+h2)*dbds)*xflow2) endif endif endif elseif(iflag.eq.3) then ! ! only if called from resultgas in case the element contains ! a hydraulic jump and eta<0 or eta>1. This means that the ! jump does not take place in the element itself. By adjusting ! h1 or h2 the jump is forced into a neighboring element ! index=ielprop(nelem) c write(30,*) 'iflag=3, nelem',nelem,lakon(nelem) ! h1=v(2,node1) h2=v(2,node2) ! z1=-g(1)*co(1,node1)-g(2)*co(2,node1)-g(3)*co(3,node1) z2=-g(1)*co(1,node2)-g(2)*co(2,node2)-g(3)*co(3,node2) ! dg=dsqrt(g(1)*g(1)+g(2)*g(2)+g(3)*g(3)) ! xflow2=xflow*xflow ! ! determine eta (present location of jump) ! nelemup=prop(index+6) indexup=ielprop(nelemup) if(lakon(nelemup)(6:7).eq.'SG') then eta=prop(indexup+4) prop(indexup+4)=0.5d0 prop(indexup+7)=0.5d0 elseif(lakon(nelemup)(6:7).eq.'WE') then eta=prop(indexup+4) prop(indexup+4)=0.5d0 prop(indexup+7)=0.5d0 elseif(lakon(nelemup)(6:7).eq.'DS') then eta=prop(indexup+7) prop(indexup+7)=0.5d0 prop(indexup+9)=0.5d0 endif ! ! element properties ! if((lakon(nelem)(6:7).eq.'SG').or. & (lakon(nelem)(6:7).eq.'SO').or. & (lakon(nelem)(6:7).eq.'RE').or. & (lakon(nelem)(6:7).eq.' ').or. & (lakon(nelem)(6:7).eq.'DS').or. & (lakon(nelem)(6:7).eq.'DO')) then b=prop(index+1) s0=prop(index+2) if(s0.lt.-1.d0) then s0=dasin((z1-z2)/dl) endif sqrts0=dsqrt(1.d0-s0*s0) if(lakon(nelem)(6:7).ne.'SG') then dl=prop(index+3) theta=prop(index+4) xks=prop(index+5) if(dl.le.0.d0) then dl=dsqrt((co(1,node2)-co(1,node1))**2+ & (co(2,node2)-co(2,node1))**2+ & (co(3,node2)-co(3,node1))**2) endif else theta=0.d0 endif elseif(lakon(nelem)(6:7).eq.'WE') then b=prop(index+1) p=prop(index+2) c=prop(index+3) elseif((lakon(nelem)(6:7).eq.'CO').or. & (lakon(nelem)(6:7).eq.'EL')) then b1=prop(index+1) s0=prop(index+2) if(s0.lt.-1.d0) then s0=dasin((z1-z2)/dl) endif sqrts0=dsqrt(1.d0-s0*s0) b2=prop(index+4) elseif((lakon(nelem)(6:7).eq.'DR').or. & (lakon(nelem)(6:7).eq.'ST'))then b=prop(index+1) s0=prop(index+2) if(s0.lt.-1.d0) then s0=dasin((z1-z2)/dl) endif sqrts0=dsqrt(1.d0-s0*s0) d=prop(index+4) endif ! ! contraction, enlargement, drop and step: ! adjust h1 or h2 by solving the appropriate ! momentum equation ! if((lakon(nelem)(6:7).eq.'CO').or. & (lakon(nelem)(6:7).eq.'EL').or. & (lakon(nelem)(6:7).eq.'DR').or. & (lakon(nelem)(6:7).eq.'ST'))then c2=rho*rho*dg*sqrts0 ! if(eta.gt.1.d0) then ! ! h1 is given, h2 is unknown ! if(lakon(nelem)(6:7).eq.'CO') then e3=b1*h1*c2*b1*b2 e0=2.d0*b1*h1*xflow2/e3 e1=-(2.d0*xflow2+c2*b1*b1*h1**3)*b2/e3 e2=0.d0 elseif(lakon(nelem)(6:7).eq.'EL') then e3=b1*h1*c2*b2*b2 e0=2.d0*b1*h1*xflow2/e3 e1=-(2.d0*xflow2+c2*b1*b2*h1**3)*b2/e3 e2=0.d0 elseif(lakon(nelem)(6:7).eq.'DR') then e3=h1*c2*b*b e0=h1*2.d0*xflow2/e3 e1=-(2.d0*xflow2+c2*b*b*h1*(h1+d)**2)/e3 e2=0.d0 elseif(lakon(nelem)(6:7).eq.'ST') then e3=h1*c2*b*b e0=h1*2.d0*xflow2/e3 e1=(h1*c2*b*b*d*d-(2.d0*xflow2+c2*b*b*h1**3))/e3 e2=h1*c2*b*b*2.d0*d/e3 endif ! ! solve the cubic equation ! call cubic(e0,e1,e2,solreal,solimag,nsol) ! ! determine the real solution closest to h1 ! dist=1.d30 do i=1,nsol if(dabs(solreal(i)-h1).lt.dist) then dist=dabs(solreal(i)-h1) h2=solreal(i) endif enddo if(nactdog(2,node2).ne.0) v(2,node2)=h2 elseif(eta.lt.0.d0) then ! ! h2 is given, h1 is unknown ! if(lakon(nelem)(6:7).eq.'CO') then e3=c2*b1*b1*b2*h2 e0=2.d0*xflow2*b2*h2/e3 e1=-b1*(2.d0*xflow2+c2*b1*b2*h2**3)/e3 e2=0.d0 elseif(lakon(nelem)(6:7).eq.'EL') then e3=c2*b1*b2*b2*h2 e0=2.d0*xflow2*b2*h2/e3 e1=-b1*(2.d0*xflow2+c2*b2*b2*h2**3)/e3 e2=0.d0 elseif(lakon(nelem)(6:7).eq.'DR') then e3=c2*b*b*h2 e0=2.d0*xflow2*h2/e3 e1=(c2*b*b*d*d*h2-(2.d0*xflow2+c2*b*b*h2**3))/e3 e2=c2*b*b*2.d0*d*h2/e3 elseif(lakon(nelem)(6:7).eq.'ST') then e3=c2*b*b*h2 e0=2.d0*xflow2*h2/e3 e1=-(2.d0*xflow2+c2*b*b*h2*(h2+d)**2)/e3 e2=0.d0 endif ! ! solve the cubic equation ! call cubic(e0,e1,e2,solreal,solimag,nsol) c write(30,*) 'check ',solreal(1)**3+e1*solreal(1)+e0 ! c write(30,*) 'nsol',nsol c write(30,*) 'solreal',(solreal(i),i=1,3) c write(30,*) 'solimag',(solimag(i),i=1,3) ! ! determine the real solution closest to h2 ! dist=1.d30 do i=1,nsol if(dabs(solreal(i)-h2).lt.dist) then dist=dabs(solreal(i)-h2) h1=solreal(i) endif enddo if(nactdog(2,node1).ne.0) v(2,node1)=h1 endif return endif ! if(xks.gt.0.d0) then ! ! White-Coolebrook ! ! hydraulic diameter ! d=2.d0*(h1+h2) reynolds=4.d0*xflow/(b*dvi) form_fact=1.d0 call friction_coefficient(dl,d,xks,reynolds,form_fact, & friction) endif ! ! geometric data ! cth=dcos(theta) tth=dtan(theta) ! ! nonprismatic cross section ! if(lakon(nelem)(6:7).eq.' ') then dbds=prop(index+7) else dbds=0.d0 endif ! ! width at water surface ! dD1dh1=2.d0*tth dD2dh2=dD1dh1 D1=b+h1*dD1dh1 D2=b+dl*dbds+h2*dD2dh2 ! ! cross section ! A1=h1*(b+h1*tth) A2=h2*(b+dl*dbds+h2*tth) ! ! perimeter ! P1=b+2.d0*h1/cth P2=b+dl*dbds+2.d0*h2/cth ! ! factor for friction ! if(xks.gt.0.d0) then ! White-Coolebrook um1=friction/8.d0 um2=um1 else ! Manning um1=xks*xks*dg*(P1/A1)**(1.d0/3.d0) um2=xks*xks*dg*(P2/A2)**(1.d0/3.d0) endif ! ! constants ! c1=rho*rho*dg c2=c1*sqrts0 c1=c1*s0 ! if(eta.gt.1.d0) then xt1=c1*A1**3+(h1*dbds-um1*P1)*xflow2 xn1=c2*A2**3-D2*xflow2 if(nactdog(2,node2).ne.0) v(2,node2)=h1+dl*xt1/xn1 c write(30,*) 'move jump: h1 h2,h2new ',h1,h2,v(2,node2) elseif(eta.lt.0.d0) then xt2=c1*A2**3+(h2*dbds-um2*P2)*xflow2 xn2=c2*A2**3-D2*xflow2 if(nactdog(2,node1).ne.0) & v(2,node1)=h2-dl*xt2/xn2 c write(30,*) 'move jump: h1 h1new h2 ',h1,v(2,node1),h2 endif endif ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.16/src/preprojectgrad.f
1
1926
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2019 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine preprojectgrad(vector,ndesi,nodedesi,dgdxglob,nactive, & nobject,nnlconst,ipoacti,nk,rhs,iconst,objectset,xtf) ! ! calculates the projected gradient ! implicit none ! character*81 objectset(4,*) ! integer ndesi,nodedesi(*),irow,icol,nactive,nobject,nnlconst, & ipoacti(*),nk,ipos,node,iconst,i ! real*8 dgdxglob(2,nk,nobject),vector(ndesi),rhs(*),scalar,dd, & len,xtf(*),brauch,nutz ! ! initialization of enlarged field dgdxglob and ! calculate the second part of xlambd ! do irow=1,nk dgdxglob(2,irow,nobject)=0.d0 dgdxglob(1,irow,nobject)=0.d0 enddo ! do icol=1,nactive if(icol.le.nnlconst) then do irow=1,ndesi ipos=ipoacti(icol) node=nodedesi(irow) xtf(icol)=xtf(icol)+dgdxglob(2,node,1) & *dgdxglob(2,node,ipos) enddo else ipos=ipoacti(icol) node=nodedesi(ipos) xtf(icol)=dgdxglob(2,node,1) endif enddo ! return end
gpl-2.0
alexfrolov/grappa
applications/NPB/MPI/LU/erhs.f
6
20815
c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine erhs c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c c compute the right hand side based on exact solution c c--------------------------------------------------------------------- implicit none include 'applu.incl' c--------------------------------------------------------------------- c local variables c--------------------------------------------------------------------- integer i, j, k, m integer iglob, jglob integer iex integer L1, L2 integer ist1, iend1 integer jst1, jend1 double precision dsspm double precision xi, eta, zeta double precision q double precision u21, u31, u41 double precision tmp double precision u21i, u31i, u41i, u51i double precision u21j, u31j, u41j, u51j double precision u21k, u31k, u41k, u51k double precision u21im1, u31im1, u41im1, u51im1 double precision u21jm1, u31jm1, u41jm1, u51jm1 double precision u21km1, u31km1, u41km1, u51km1 dsspm = dssp do k = 1, nz do j = 1, ny do i = 1, nx do m = 1, 5 frct( m, i, j, k ) = 0.0d+00 end do end do end do end do do k = 1, nz zeta = ( dble(k-1) ) / ( nz - 1 ) do j = 1, ny jglob = jpt + j eta = ( dble(jglob-1) ) / ( ny0 - 1 ) do i = 1, nx iglob = ipt + i xi = ( dble(iglob-1) ) / ( nx0 - 1 ) do m = 1, 5 rsd(m,i,j,k) = ce(m,1) > + ce(m,2) * xi > + ce(m,3) * eta > + ce(m,4) * zeta > + ce(m,5) * xi * xi > + ce(m,6) * eta * eta > + ce(m,7) * zeta * zeta > + ce(m,8) * xi * xi * xi > + ce(m,9) * eta * eta * eta > + ce(m,10) * zeta * zeta * zeta > + ce(m,11) * xi * xi * xi * xi > + ce(m,12) * eta * eta * eta * eta > + ce(m,13) * zeta * zeta * zeta * zeta end do end do end do end do c--------------------------------------------------------------------- c xi-direction flux differences c--------------------------------------------------------------------- c c iex = flag : iex = 0 north/south communication c : iex = 1 east/west communication c c--------------------------------------------------------------------- iex = 0 c--------------------------------------------------------------------- c communicate and receive/send two rows of data c--------------------------------------------------------------------- call exchange_3 (rsd,iex) L1 = 0 if (north.eq.-1) L1 = 1 L2 = nx + 1 if (south.eq.-1) L2 = nx ist1 = 1 iend1 = nx if (north.eq.-1) ist1 = 4 if (south.eq.-1) iend1 = nx - 3 do k = 2, nz - 1 do j = jst, jend do i = L1, L2 flux(1,i,j,k) = rsd(2,i,j,k) u21 = rsd(2,i,j,k) / rsd(1,i,j,k) q = 0.50d+00 * ( rsd(2,i,j,k) * rsd(2,i,j,k) > + rsd(3,i,j,k) * rsd(3,i,j,k) > + rsd(4,i,j,k) * rsd(4,i,j,k) ) > / rsd(1,i,j,k) flux(2,i,j,k) = rsd(2,i,j,k) * u21 + c2 * > ( rsd(5,i,j,k) - q ) flux(3,i,j,k) = rsd(3,i,j,k) * u21 flux(4,i,j,k) = rsd(4,i,j,k) * u21 flux(5,i,j,k) = ( c1 * rsd(5,i,j,k) - c2 * q ) * u21 end do end do end do do k = 2, nz - 1 do j = jst, jend do i = ist, iend do m = 1, 5 frct(m,i,j,k) = frct(m,i,j,k) > - tx2 * ( flux(m,i+1,j,k) - flux(m,i-1,j,k) ) end do end do do i = ist, L2 tmp = 1.0d+00 / rsd(1,i,j,k) u21i = tmp * rsd(2,i,j,k) u31i = tmp * rsd(3,i,j,k) u41i = tmp * rsd(4,i,j,k) u51i = tmp * rsd(5,i,j,k) tmp = 1.0d+00 / rsd(1,i-1,j,k) u21im1 = tmp * rsd(2,i-1,j,k) u31im1 = tmp * rsd(3,i-1,j,k) u41im1 = tmp * rsd(4,i-1,j,k) u51im1 = tmp * rsd(5,i-1,j,k) flux(2,i,j,k) = (4.0d+00/3.0d+00) * tx3 * > ( u21i - u21im1 ) flux(3,i,j,k) = tx3 * ( u31i - u31im1 ) flux(4,i,j,k) = tx3 * ( u41i - u41im1 ) flux(5,i,j,k) = 0.50d+00 * ( 1.0d+00 - c1*c5 ) > * tx3 * ( ( u21i **2 + u31i **2 + u41i **2 ) > - ( u21im1**2 + u31im1**2 + u41im1**2 ) ) > + (1.0d+00/6.0d+00) > * tx3 * ( u21i**2 - u21im1**2 ) > + c1 * c5 * tx3 * ( u51i - u51im1 ) end do do i = ist, iend frct(1,i,j,k) = frct(1,i,j,k) > + dx1 * tx1 * ( rsd(1,i-1,j,k) > - 2.0d+00 * rsd(1,i,j,k) > + rsd(1,i+1,j,k) ) frct(2,i,j,k) = frct(2,i,j,k) > + tx3 * c3 * c4 * ( flux(2,i+1,j,k) - flux(2,i,j,k) ) > + dx2 * tx1 * ( rsd(2,i-1,j,k) > - 2.0d+00 * rsd(2,i,j,k) > + rsd(2,i+1,j,k) ) frct(3,i,j,k) = frct(3,i,j,k) > + tx3 * c3 * c4 * ( flux(3,i+1,j,k) - flux(3,i,j,k) ) > + dx3 * tx1 * ( rsd(3,i-1,j,k) > - 2.0d+00 * rsd(3,i,j,k) > + rsd(3,i+1,j,k) ) frct(4,i,j,k) = frct(4,i,j,k) > + tx3 * c3 * c4 * ( flux(4,i+1,j,k) - flux(4,i,j,k) ) > + dx4 * tx1 * ( rsd(4,i-1,j,k) > - 2.0d+00 * rsd(4,i,j,k) > + rsd(4,i+1,j,k) ) frct(5,i,j,k) = frct(5,i,j,k) > + tx3 * c3 * c4 * ( flux(5,i+1,j,k) - flux(5,i,j,k) ) > + dx5 * tx1 * ( rsd(5,i-1,j,k) > - 2.0d+00 * rsd(5,i,j,k) > + rsd(5,i+1,j,k) ) end do c--------------------------------------------------------------------- c Fourth-order dissipation c--------------------------------------------------------------------- IF (north.eq.-1) then do m = 1, 5 frct(m,2,j,k) = frct(m,2,j,k) > - dsspm * ( + 5.0d+00 * rsd(m,2,j,k) > - 4.0d+00 * rsd(m,3,j,k) > + rsd(m,4,j,k) ) frct(m,3,j,k) = frct(m,3,j,k) > - dsspm * ( - 4.0d+00 * rsd(m,2,j,k) > + 6.0d+00 * rsd(m,3,j,k) > - 4.0d+00 * rsd(m,4,j,k) > + rsd(m,5,j,k) ) end do END IF do i = ist1,iend1 do m = 1, 5 frct(m,i,j,k) = frct(m,i,j,k) > - dsspm * ( rsd(m,i-2,j,k) > - 4.0d+00 * rsd(m,i-1,j,k) > + 6.0d+00 * rsd(m,i,j,k) > - 4.0d+00 * rsd(m,i+1,j,k) > + rsd(m,i+2,j,k) ) end do end do IF (south.eq.-1) then do m = 1, 5 frct(m,nx-2,j,k) = frct(m,nx-2,j,k) > - dsspm * ( rsd(m,nx-4,j,k) > - 4.0d+00 * rsd(m,nx-3,j,k) > + 6.0d+00 * rsd(m,nx-2,j,k) > - 4.0d+00 * rsd(m,nx-1,j,k) ) frct(m,nx-1,j,k) = frct(m,nx-1,j,k) > - dsspm * ( rsd(m,nx-3,j,k) > - 4.0d+00 * rsd(m,nx-2,j,k) > + 5.0d+00 * rsd(m,nx-1,j,k) ) end do END IF end do end do c--------------------------------------------------------------------- c eta-direction flux differences c--------------------------------------------------------------------- c c iex = flag : iex = 0 north/south communication c : iex = 1 east/west communication c c--------------------------------------------------------------------- iex = 1 c--------------------------------------------------------------------- c communicate and receive/send two rows of data c--------------------------------------------------------------------- call exchange_3 (rsd,iex) L1 = 0 if (west.eq.-1) L1 = 1 L2 = ny + 1 if (east.eq.-1) L2 = ny jst1 = 1 jend1 = ny if (west.eq.-1) jst1 = 4 if (east.eq.-1) jend1 = ny - 3 do k = 2, nz - 1 do j = L1, L2 do i = ist, iend flux(1,i,j,k) = rsd(3,i,j,k) u31 = rsd(3,i,j,k) / rsd(1,i,j,k) q = 0.50d+00 * ( rsd(2,i,j,k) * rsd(2,i,j,k) > + rsd(3,i,j,k) * rsd(3,i,j,k) > + rsd(4,i,j,k) * rsd(4,i,j,k) ) > / rsd(1,i,j,k) flux(2,i,j,k) = rsd(2,i,j,k) * u31 flux(3,i,j,k) = rsd(3,i,j,k) * u31 + c2 * > ( rsd(5,i,j,k) - q ) flux(4,i,j,k) = rsd(4,i,j,k) * u31 flux(5,i,j,k) = ( c1 * rsd(5,i,j,k) - c2 * q ) * u31 end do end do end do do k = 2, nz - 1 do i = ist, iend do j = jst, jend do m = 1, 5 frct(m,i,j,k) = frct(m,i,j,k) > - ty2 * ( flux(m,i,j+1,k) - flux(m,i,j-1,k) ) end do end do end do do j = jst, L2 do i = ist, iend tmp = 1.0d+00 / rsd(1,i,j,k) u21j = tmp * rsd(2,i,j,k) u31j = tmp * rsd(3,i,j,k) u41j = tmp * rsd(4,i,j,k) u51j = tmp * rsd(5,i,j,k) tmp = 1.0d+00 / rsd(1,i,j-1,k) u21jm1 = tmp * rsd(2,i,j-1,k) u31jm1 = tmp * rsd(3,i,j-1,k) u41jm1 = tmp * rsd(4,i,j-1,k) u51jm1 = tmp * rsd(5,i,j-1,k) flux(2,i,j,k) = ty3 * ( u21j - u21jm1 ) flux(3,i,j,k) = (4.0d+00/3.0d+00) * ty3 * > ( u31j - u31jm1 ) flux(4,i,j,k) = ty3 * ( u41j - u41jm1 ) flux(5,i,j,k) = 0.50d+00 * ( 1.0d+00 - c1*c5 ) > * ty3 * ( ( u21j **2 + u31j **2 + u41j **2 ) > - ( u21jm1**2 + u31jm1**2 + u41jm1**2 ) ) > + (1.0d+00/6.0d+00) > * ty3 * ( u31j**2 - u31jm1**2 ) > + c1 * c5 * ty3 * ( u51j - u51jm1 ) end do end do do j = jst, jend do i = ist, iend frct(1,i,j,k) = frct(1,i,j,k) > + dy1 * ty1 * ( rsd(1,i,j-1,k) > - 2.0d+00 * rsd(1,i,j,k) > + rsd(1,i,j+1,k) ) frct(2,i,j,k) = frct(2,i,j,k) > + ty3 * c3 * c4 * ( flux(2,i,j+1,k) - flux(2,i,j,k) ) > + dy2 * ty1 * ( rsd(2,i,j-1,k) > - 2.0d+00 * rsd(2,i,j,k) > + rsd(2,i,j+1,k) ) frct(3,i,j,k) = frct(3,i,j,k) > + ty3 * c3 * c4 * ( flux(3,i,j+1,k) - flux(3,i,j,k) ) > + dy3 * ty1 * ( rsd(3,i,j-1,k) > - 2.0d+00 * rsd(3,i,j,k) > + rsd(3,i,j+1,k) ) frct(4,i,j,k) = frct(4,i,j,k) > + ty3 * c3 * c4 * ( flux(4,i,j+1,k) - flux(4,i,j,k) ) > + dy4 * ty1 * ( rsd(4,i,j-1,k) > - 2.0d+00 * rsd(4,i,j,k) > + rsd(4,i,j+1,k) ) frct(5,i,j,k) = frct(5,i,j,k) > + ty3 * c3 * c4 * ( flux(5,i,j+1,k) - flux(5,i,j,k) ) > + dy5 * ty1 * ( rsd(5,i,j-1,k) > - 2.0d+00 * rsd(5,i,j,k) > + rsd(5,i,j+1,k) ) end do end do c--------------------------------------------------------------------- c fourth-order dissipation c--------------------------------------------------------------------- IF (west.eq.-1) then do i = ist, iend do m = 1, 5 frct(m,i,2,k) = frct(m,i,2,k) > - dsspm * ( + 5.0d+00 * rsd(m,i,2,k) > - 4.0d+00 * rsd(m,i,3,k) > + rsd(m,i,4,k) ) frct(m,i,3,k) = frct(m,i,3,k) > - dsspm * ( - 4.0d+00 * rsd(m,i,2,k) > + 6.0d+00 * rsd(m,i,3,k) > - 4.0d+00 * rsd(m,i,4,k) > + rsd(m,i,5,k) ) end do end do END IF do j = jst1, jend1 do i = ist, iend do m = 1, 5 frct(m,i,j,k) = frct(m,i,j,k) > - dsspm * ( rsd(m,i,j-2,k) > - 4.0d+00 * rsd(m,i,j-1,k) > + 6.0d+00 * rsd(m,i,j,k) > - 4.0d+00 * rsd(m,i,j+1,k) > + rsd(m,i,j+2,k) ) end do end do end do IF (east.eq.-1) then do i = ist, iend do m = 1, 5 frct(m,i,ny-2,k) = frct(m,i,ny-2,k) > - dsspm * ( rsd(m,i,ny-4,k) > - 4.0d+00 * rsd(m,i,ny-3,k) > + 6.0d+00 * rsd(m,i,ny-2,k) > - 4.0d+00 * rsd(m,i,ny-1,k) ) frct(m,i,ny-1,k) = frct(m,i,ny-1,k) > - dsspm * ( rsd(m,i,ny-3,k) > - 4.0d+00 * rsd(m,i,ny-2,k) > + 5.0d+00 * rsd(m,i,ny-1,k) ) end do end do END IF end do c--------------------------------------------------------------------- c zeta-direction flux differences c--------------------------------------------------------------------- do k = 1, nz do j = jst, jend do i = ist, iend flux(1,i,j,k) = rsd(4,i,j,k) u41 = rsd(4,i,j,k) / rsd(1,i,j,k) q = 0.50d+00 * ( rsd(2,i,j,k) * rsd(2,i,j,k) > + rsd(3,i,j,k) * rsd(3,i,j,k) > + rsd(4,i,j,k) * rsd(4,i,j,k) ) > / rsd(1,i,j,k) flux(2,i,j,k) = rsd(2,i,j,k) * u41 flux(3,i,j,k) = rsd(3,i,j,k) * u41 flux(4,i,j,k) = rsd(4,i,j,k) * u41 + c2 * > ( rsd(5,i,j,k) - q ) flux(5,i,j,k) = ( c1 * rsd(5,i,j,k) - c2 * q ) * u41 end do end do end do do k = 2, nz - 1 do j = jst, jend do i = ist, iend do m = 1, 5 frct(m,i,j,k) = frct(m,i,j,k) > - tz2 * ( flux(m,i,j,k+1) - flux(m,i,j,k-1) ) end do end do end do end do do k = 2, nz do j = jst, jend do i = ist, iend tmp = 1.0d+00 / rsd(1,i,j,k) u21k = tmp * rsd(2,i,j,k) u31k = tmp * rsd(3,i,j,k) u41k = tmp * rsd(4,i,j,k) u51k = tmp * rsd(5,i,j,k) tmp = 1.0d+00 / rsd(1,i,j,k-1) u21km1 = tmp * rsd(2,i,j,k-1) u31km1 = tmp * rsd(3,i,j,k-1) u41km1 = tmp * rsd(4,i,j,k-1) u51km1 = tmp * rsd(5,i,j,k-1) flux(2,i,j,k) = tz3 * ( u21k - u21km1 ) flux(3,i,j,k) = tz3 * ( u31k - u31km1 ) flux(4,i,j,k) = (4.0d+00/3.0d+00) * tz3 * ( u41k > - u41km1 ) flux(5,i,j,k) = 0.50d+00 * ( 1.0d+00 - c1*c5 ) > * tz3 * ( ( u21k **2 + u31k **2 + u41k **2 ) > - ( u21km1**2 + u31km1**2 + u41km1**2 ) ) > + (1.0d+00/6.0d+00) > * tz3 * ( u41k**2 - u41km1**2 ) > + c1 * c5 * tz3 * ( u51k - u51km1 ) end do end do end do do k = 2, nz - 1 do j = jst, jend do i = ist, iend frct(1,i,j,k) = frct(1,i,j,k) > + dz1 * tz1 * ( rsd(1,i,j,k+1) > - 2.0d+00 * rsd(1,i,j,k) > + rsd(1,i,j,k-1) ) frct(2,i,j,k) = frct(2,i,j,k) > + tz3 * c3 * c4 * ( flux(2,i,j,k+1) - flux(2,i,j,k) ) > + dz2 * tz1 * ( rsd(2,i,j,k+1) > - 2.0d+00 * rsd(2,i,j,k) > + rsd(2,i,j,k-1) ) frct(3,i,j,k) = frct(3,i,j,k) > + tz3 * c3 * c4 * ( flux(3,i,j,k+1) - flux(3,i,j,k) ) > + dz3 * tz1 * ( rsd(3,i,j,k+1) > - 2.0d+00 * rsd(3,i,j,k) > + rsd(3,i,j,k-1) ) frct(4,i,j,k) = frct(4,i,j,k) > + tz3 * c3 * c4 * ( flux(4,i,j,k+1) - flux(4,i,j,k) ) > + dz4 * tz1 * ( rsd(4,i,j,k+1) > - 2.0d+00 * rsd(4,i,j,k) > + rsd(4,i,j,k-1) ) frct(5,i,j,k) = frct(5,i,j,k) > + tz3 * c3 * c4 * ( flux(5,i,j,k+1) - flux(5,i,j,k) ) > + dz5 * tz1 * ( rsd(5,i,j,k+1) > - 2.0d+00 * rsd(5,i,j,k) > + rsd(5,i,j,k-1) ) end do end do end do c--------------------------------------------------------------------- c fourth-order dissipation c--------------------------------------------------------------------- do j = jst, jend do i = ist, iend do m = 1, 5 frct(m,i,j,2) = frct(m,i,j,2) > - dsspm * ( + 5.0d+00 * rsd(m,i,j,2) > - 4.0d+00 * rsd(m,i,j,3) > + rsd(m,i,j,4) ) frct(m,i,j,3) = frct(m,i,j,3) > - dsspm * (- 4.0d+00 * rsd(m,i,j,2) > + 6.0d+00 * rsd(m,i,j,3) > - 4.0d+00 * rsd(m,i,j,4) > + rsd(m,i,j,5) ) end do end do end do do k = 4, nz - 3 do j = jst, jend do i = ist, iend do m = 1, 5 frct(m,i,j,k) = frct(m,i,j,k) > - dsspm * ( rsd(m,i,j,k-2) > - 4.0d+00 * rsd(m,i,j,k-1) > + 6.0d+00 * rsd(m,i,j,k) > - 4.0d+00 * rsd(m,i,j,k+1) > + rsd(m,i,j,k+2) ) end do end do end do end do do j = jst, jend do i = ist, iend do m = 1, 5 frct(m,i,j,nz-2) = frct(m,i,j,nz-2) > - dsspm * ( rsd(m,i,j,nz-4) > - 4.0d+00 * rsd(m,i,j,nz-3) > + 6.0d+00 * rsd(m,i,j,nz-2) > - 4.0d+00 * rsd(m,i,j,nz-1) ) frct(m,i,j,nz-1) = frct(m,i,j,nz-1) > - dsspm * ( rsd(m,i,j,nz-3) > - 4.0d+00 * rsd(m,i,j,nz-2) > + 5.0d+00 * rsd(m,i,j,nz-1) ) end do end do end do return end
bsd-3-clause
freedesktop-unofficial-mirror/gstreamer-sdk__gcc
gcc/testsuite/gfortran.dg/minlocval_1.f90
164
6341
! { dg-do run } ! { dg-add-options ieee } ! { dg-skip-if "NaN not supported" { spu-*-* } { "*" } { "" } } real :: a(3), nan, minf, pinf real, allocatable :: c(:) logical :: l logical :: l2(3) nan = 0.0 minf = 0.0 pinf = 0.0 nan = 0.0/nan minf = -1.0/minf pinf = 1.0/pinf allocate (c(3)) a(:) = nan if (minloc (a, dim = 1).ne.1) call abort if (.not.isnan(minval (a, dim = 1))) call abort a(:) = pinf if (minloc (a, dim = 1).ne.1) call abort if (minval (a, dim = 1).ne.pinf) call abort a(1:2) = nan if (minloc (a, dim = 1).ne.3) call abort if (minval (a, dim = 1).ne.pinf) call abort a(2) = 1.0 if (minloc (a, dim = 1).ne.2) call abort if (minval (a, dim = 1).ne.1) call abort a(2) = minf if (minloc (a, dim = 1).ne.2) call abort if (minval (a, dim = 1).ne.minf) call abort c(:) = nan if (minloc (c, dim = 1).ne.1) call abort if (.not.isnan(minval (c, dim = 1))) call abort c(:) = pinf if (minloc (c, dim = 1).ne.1) call abort if (minval (c, dim = 1).ne.pinf) call abort c(1:2) = nan if (minloc (c, dim = 1).ne.3) call abort if (minval (c, dim = 1).ne.pinf) call abort c(2) = 1.0 if (minloc (c, dim = 1).ne.2) call abort if (minval (c, dim = 1).ne.1) call abort c(2) = minf if (minloc (c, dim = 1).ne.2) call abort if (minval (c, dim = 1).ne.minf) call abort l = .false. l2(:) = .false. a(:) = nan if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort a(:) = pinf if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort a(1:2) = nan if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort a(2) = 1.0 if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort a(2) = minf if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort c(:) = nan if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort c(:) = pinf if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort c(1:2) = nan if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort c(2) = 1.0 if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort c(2) = minf if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort l = .true. l2(:) = .true. a(:) = nan if (minloc (a, dim = 1, mask = l).ne.1) call abort if (.not.isnan(minval (a, dim = 1, mask = l))) call abort if (minloc (a, dim = 1, mask = l2).ne.1) call abort if (.not.isnan(minval (a, dim = 1, mask = l2))) call abort a(:) = pinf if (minloc (a, dim = 1, mask = l).ne.1) call abort if (minval (a, dim = 1, mask = l).ne.pinf) call abort if (minloc (a, dim = 1, mask = l2).ne.1) call abort if (minval (a, dim = 1, mask = l2).ne.pinf) call abort a(1:2) = nan if (minloc (a, dim = 1, mask = l).ne.3) call abort if (minval (a, dim = 1, mask = l).ne.pinf) call abort if (minloc (a, dim = 1, mask = l2).ne.3) call abort if (minval (a, dim = 1, mask = l2).ne.pinf) call abort a(2) = 1.0 if (minloc (a, dim = 1, mask = l).ne.2) call abort if (minval (a, dim = 1, mask = l).ne.1) call abort if (minloc (a, dim = 1, mask = l2).ne.2) call abort if (minval (a, dim = 1, mask = l2).ne.1) call abort a(2) = minf if (minloc (a, dim = 1, mask = l).ne.2) call abort if (minval (a, dim = 1, mask = l).ne.minf) call abort if (minloc (a, dim = 1, mask = l2).ne.2) call abort if (minval (a, dim = 1, mask = l2).ne.minf) call abort c(:) = nan if (minloc (c, dim = 1, mask = l).ne.1) call abort if (.not.isnan(minval (c, dim = 1, mask = l))) call abort if (minloc (c, dim = 1, mask = l2).ne.1) call abort if (.not.isnan(minval (c, dim = 1, mask = l2))) call abort c(:) = pinf if (minloc (c, dim = 1, mask = l).ne.1) call abort if (minval (c, dim = 1, mask = l).ne.pinf) call abort if (minloc (c, dim = 1, mask = l2).ne.1) call abort if (minval (c, dim = 1, mask = l2).ne.pinf) call abort c(1:2) = nan if (minloc (c, dim = 1, mask = l).ne.3) call abort if (minval (c, dim = 1, mask = l).ne.pinf) call abort if (minloc (c, dim = 1, mask = l2).ne.3) call abort if (minval (c, dim = 1, mask = l2).ne.pinf) call abort c(2) = 1.0 if (minloc (c, dim = 1, mask = l).ne.2) call abort if (minval (c, dim = 1, mask = l).ne.1) call abort if (minloc (c, dim = 1, mask = l2).ne.2) call abort if (minval (c, dim = 1, mask = l2).ne.1) call abort c(2) = minf if (minloc (c, dim = 1, mask = l).ne.2) call abort if (minval (c, dim = 1, mask = l).ne.minf) call abort if (minloc (c, dim = 1, mask = l2).ne.2) call abort if (minval (c, dim = 1, mask = l2).ne.minf) call abort deallocate (c) allocate (c(-2:-3)) if (minloc (c, dim = 1).ne.0) call abort if (minval (c, dim = 1).ne.huge(pinf)) call abort end
gpl-2.0
techno/gcc-mist32
gcc/testsuite/gfortran.dg/minlocval_1.f90
164
6341
! { dg-do run } ! { dg-add-options ieee } ! { dg-skip-if "NaN not supported" { spu-*-* } { "*" } { "" } } real :: a(3), nan, minf, pinf real, allocatable :: c(:) logical :: l logical :: l2(3) nan = 0.0 minf = 0.0 pinf = 0.0 nan = 0.0/nan minf = -1.0/minf pinf = 1.0/pinf allocate (c(3)) a(:) = nan if (minloc (a, dim = 1).ne.1) call abort if (.not.isnan(minval (a, dim = 1))) call abort a(:) = pinf if (minloc (a, dim = 1).ne.1) call abort if (minval (a, dim = 1).ne.pinf) call abort a(1:2) = nan if (minloc (a, dim = 1).ne.3) call abort if (minval (a, dim = 1).ne.pinf) call abort a(2) = 1.0 if (minloc (a, dim = 1).ne.2) call abort if (minval (a, dim = 1).ne.1) call abort a(2) = minf if (minloc (a, dim = 1).ne.2) call abort if (minval (a, dim = 1).ne.minf) call abort c(:) = nan if (minloc (c, dim = 1).ne.1) call abort if (.not.isnan(minval (c, dim = 1))) call abort c(:) = pinf if (minloc (c, dim = 1).ne.1) call abort if (minval (c, dim = 1).ne.pinf) call abort c(1:2) = nan if (minloc (c, dim = 1).ne.3) call abort if (minval (c, dim = 1).ne.pinf) call abort c(2) = 1.0 if (minloc (c, dim = 1).ne.2) call abort if (minval (c, dim = 1).ne.1) call abort c(2) = minf if (minloc (c, dim = 1).ne.2) call abort if (minval (c, dim = 1).ne.minf) call abort l = .false. l2(:) = .false. a(:) = nan if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort a(:) = pinf if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort a(1:2) = nan if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort a(2) = 1.0 if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort a(2) = minf if (minloc (a, dim = 1, mask = l).ne.0) call abort if (minval (a, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (a, dim = 1, mask = l2).ne.0) call abort if (minval (a, dim = 1, mask = l2).ne.huge(pinf)) call abort c(:) = nan if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort c(:) = pinf if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort c(1:2) = nan if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort c(2) = 1.0 if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort c(2) = minf if (minloc (c, dim = 1, mask = l).ne.0) call abort if (minval (c, dim = 1, mask = l).ne.huge(pinf)) call abort if (minloc (c, dim = 1, mask = l2).ne.0) call abort if (minval (c, dim = 1, mask = l2).ne.huge(pinf)) call abort l = .true. l2(:) = .true. a(:) = nan if (minloc (a, dim = 1, mask = l).ne.1) call abort if (.not.isnan(minval (a, dim = 1, mask = l))) call abort if (minloc (a, dim = 1, mask = l2).ne.1) call abort if (.not.isnan(minval (a, dim = 1, mask = l2))) call abort a(:) = pinf if (minloc (a, dim = 1, mask = l).ne.1) call abort if (minval (a, dim = 1, mask = l).ne.pinf) call abort if (minloc (a, dim = 1, mask = l2).ne.1) call abort if (minval (a, dim = 1, mask = l2).ne.pinf) call abort a(1:2) = nan if (minloc (a, dim = 1, mask = l).ne.3) call abort if (minval (a, dim = 1, mask = l).ne.pinf) call abort if (minloc (a, dim = 1, mask = l2).ne.3) call abort if (minval (a, dim = 1, mask = l2).ne.pinf) call abort a(2) = 1.0 if (minloc (a, dim = 1, mask = l).ne.2) call abort if (minval (a, dim = 1, mask = l).ne.1) call abort if (minloc (a, dim = 1, mask = l2).ne.2) call abort if (minval (a, dim = 1, mask = l2).ne.1) call abort a(2) = minf if (minloc (a, dim = 1, mask = l).ne.2) call abort if (minval (a, dim = 1, mask = l).ne.minf) call abort if (minloc (a, dim = 1, mask = l2).ne.2) call abort if (minval (a, dim = 1, mask = l2).ne.minf) call abort c(:) = nan if (minloc (c, dim = 1, mask = l).ne.1) call abort if (.not.isnan(minval (c, dim = 1, mask = l))) call abort if (minloc (c, dim = 1, mask = l2).ne.1) call abort if (.not.isnan(minval (c, dim = 1, mask = l2))) call abort c(:) = pinf if (minloc (c, dim = 1, mask = l).ne.1) call abort if (minval (c, dim = 1, mask = l).ne.pinf) call abort if (minloc (c, dim = 1, mask = l2).ne.1) call abort if (minval (c, dim = 1, mask = l2).ne.pinf) call abort c(1:2) = nan if (minloc (c, dim = 1, mask = l).ne.3) call abort if (minval (c, dim = 1, mask = l).ne.pinf) call abort if (minloc (c, dim = 1, mask = l2).ne.3) call abort if (minval (c, dim = 1, mask = l2).ne.pinf) call abort c(2) = 1.0 if (minloc (c, dim = 1, mask = l).ne.2) call abort if (minval (c, dim = 1, mask = l).ne.1) call abort if (minloc (c, dim = 1, mask = l2).ne.2) call abort if (minval (c, dim = 1, mask = l2).ne.1) call abort c(2) = minf if (minloc (c, dim = 1, mask = l).ne.2) call abort if (minval (c, dim = 1, mask = l).ne.minf) call abort if (minloc (c, dim = 1, mask = l2).ne.2) call abort if (minval (c, dim = 1, mask = l2).ne.minf) call abort deallocate (c) allocate (c(-2:-3)) if (minloc (c, dim = 1).ne.0) call abort if (minval (c, dim = 1).ne.huge(pinf)) call abort end
gpl-2.0
LucHermitte/ITK
Modules/ThirdParty/Netlib/src/netlib/slatec/dgamr.f
48
1343
*DECK DGAMR DOUBLE PRECISION FUNCTION DGAMR (X) C***BEGIN PROLOGUE DGAMR C***PURPOSE Compute the reciprocal of the Gamma function. C***LIBRARY SLATEC (FNLIB) C***CATEGORY C7A C***TYPE DOUBLE PRECISION (GAMR-S, DGAMR-D, CGAMR-C) C***KEYWORDS FNLIB, RECIPROCAL GAMMA FUNCTION, SPECIAL FUNCTIONS C***AUTHOR Fullerton, W., (LANL) C***DESCRIPTION C C DGAMR(X) calculates the double precision reciprocal of the C complete Gamma function for double precision argument X. C C***REFERENCES (NONE) C***ROUTINES CALLED DGAMMA, DLGAMS, XERCLR, XGETF, XSETF C***REVISION HISTORY (YYMMDD) C 770701 DATE WRITTEN C 890531 Changed all specific intrinsics to generic. (WRB) C 890531 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900727 Added EXTERNAL statement. (WRB) C***END PROLOGUE DGAMR DOUBLE PRECISION X, ALNGX, SGNGX, DGAMMA EXTERNAL DGAMMA C***FIRST EXECUTABLE STATEMENT DGAMR DGAMR = 0.0D0 IF (X.LE.0.0D0 .AND. AINT(X).EQ.X) RETURN C CALL XGETF (IROLD) CALL XSETF (1) IF (ABS(X).GT.10.0D0) GO TO 10 DGAMR = 1.0D0/DGAMMA(X) CALL XERCLR CALL XSETF (IROLD) RETURN C 10 CALL DLGAMS (X, ALNGX, SGNGX) CALL XERCLR CALL XSETF (IROLD) DGAMR = SGNGX * EXP(-ALNGX) RETURN C END
apache-2.0
freedesktop-unofficial-mirror/gstreamer-sdk__gcc
gcc/testsuite/gfortran.dg/c_ptr_tests_14.f90
30
1423
! { dg-do run } ! { dg-options "-fdump-tree-original" } ! ! PR fortran/41298 ! ! Check that c_null_ptr default initializer is really applied module m use iso_c_binding type, public :: fgsl_file type(c_ptr) :: gsl_file = c_null_ptr type(c_funptr) :: gsl_func = c_null_funptr type(c_ptr) :: NIptr type(c_funptr) :: NIfunptr end type fgsl_file contains subroutine sub(aaa,bbb) type(fgsl_file), intent(out) :: aaa type(fgsl_file), intent(inout) :: bbb end subroutine subroutine proc() bind(C) end subroutine proc end module m program test use m implicit none type(fgsl_file) :: file, noreinit integer, target :: tgt call sub(file, noreinit) if(c_associated(file%gsl_file)) call abort() if(c_associated(file%gsl_func)) call abort() file%gsl_file = c_loc(tgt) file%gsl_func = c_funloc(proc) call sub(file, noreinit) if(c_associated(file%gsl_file)) call abort() if(c_associated(file%gsl_func)) call abort() end program test ! { dg-final { scan-tree-dump-times "gsl_file = 0B" 1 "original" } } ! { dg-final { scan-tree-dump-times "gsl_func = 0B" 1 "original" } } ! { dg-final { scan-tree-dump-times "NIptr = 0B" 0 "original" } } ! { dg-final { scan-tree-dump-times "NIfunptr = 0B" 0 "original" } } ! { dg-final { scan-tree-dump-times "bbb =" 0 "original" } } ! { dg-final { cleanup-tree-dump "original" } } ! { dg-final { cleanup-modules "m" } }
gpl-2.0
freedesktop-unofficial-mirror/gstreamer-sdk__gcc
gcc/testsuite/gfortran.dg/where_operator_assign_2.f90
52
3388
! { dg-do compile } ! Tests the fix for PR30407, in which operator assignments did not work ! in WHERE blocks or simple WHERE statements. ! ! Contributed by Paul Thomas <pault@gcc.gnu.org> !****************************************************************************** module global type :: a integer :: b integer :: c end type a interface assignment(=) module procedure a_to_a end interface interface operator(.ne.) module procedure a_ne_a end interface type(a) :: x(4), y(4), z(4), u(4, 4) logical :: l1(4), t = .true., f= .false. contains !****************************************************************************** elemental subroutine a_to_a (m, n) type(a), intent(in) :: n type(a), intent(out) :: m m%b = n%b + 1 m%c = n%c end subroutine a_to_a !****************************************************************************** elemental logical function a_ne_a (m, n) type(a), intent(in) :: n type(a), intent(in) :: m a_ne_a = (m%b .ne. n%b) .or. (m%c .ne. n%c) end function a_ne_a !****************************************************************************** elemental function foo (m) type(a) :: foo type(a), intent(in) :: m foo%b = 0 foo%c = m%c end function foo end module global !****************************************************************************** program test use global x = (/a (0, 1),a (0, 2),a (0, 3),a (0, 4)/) y = x z = x l1 = (/t, f, f, t/) call test_where_1 if (any (y .ne. (/a (2, 1),a (2, 2),a (2, 3),a (2, 4)/))) call abort () call test_where_2 if (any (y .ne. (/a (1, 0),a (2, 2),a (2, 3),a (1, 0)/))) call abort () if (any (z .ne. (/a (3, 4),a (1, 0),a (1, 0),a (3, 1)/))) call abort () call test_where_3 if (any (y .ne. (/a (1, 0),a (1, 2),a (1, 3),a (1, 0)/))) call abort () y = x call test_where_forall_1 if (any (u(4, :) .ne. (/a (1, 4),a (2, 2),a (2, 3),a (1, 4)/))) call abort () l1 = (/t, f, t, f/) call test_where_4 if (any (x .ne. (/a (1, 1),a (2, 1),a (1, 3),a (2, 3)/))) call abort () contains !****************************************************************************** subroutine test_where_1 ! Test a simple WHERE where (l1) y = x end subroutine test_where_1 !****************************************************************************** subroutine test_where_2 ! Test a WHERE blocks where (l1) y = a (0, 0) z = z(4:1:-1) elsewhere y = x z = a (0, 0) end where end subroutine test_where_2 !****************************************************************************** subroutine test_where_3 ! Test a simple WHERE with a function assignment where (.not. l1) y = foo (x) end subroutine test_where_3 !****************************************************************************** subroutine test_where_forall_1 ! Test a WHERE in a FORALL block forall (i = 1:4) where (.not. l1) u(i, :) = x elsewhere u(i, :) = a(0, i) endwhere end forall end subroutine test_where_forall_1 !****************************************************************************** subroutine test_where_4 ! Test a WHERE assignment with dependencies where (l1(1:3)) x(2:4) = x(1:3) endwhere end subroutine test_where_4 end program test ! { dg-final { cleanup-modules "global" } }
gpl-2.0
techno/gcc-mist32
libgfortran/generated/_sinh_r4.F90
47
1473
! Copyright (C) 2002-2015 Free Software Foundation, Inc. ! Contributed by Paul Brook <paul@nowt.org> ! !This file is part of the GNU Fortran 95 runtime library (libgfortran). ! !GNU libgfortran is free software; you can redistribute it and/or !modify it under the terms of the GNU General Public !License as published by the Free Software Foundation; either !version 3 of the License, or (at your option) any later version. !GNU libgfortran is distributed in the hope that it will be useful, !but WITHOUT ANY WARRANTY; without even the implied warranty of !MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !GNU General Public License for more details. ! !Under Section 7 of GPL version 3, you are granted additional !permissions described in the GCC Runtime Library Exception, version !3.1, as published by the Free Software Foundation. ! !You should have received a copy of the GNU General Public License and !a copy of the GCC Runtime Library Exception along with this program; !see the files COPYING3 and COPYING.RUNTIME respectively. If not, see !<http://www.gnu.org/licenses/>. ! !This file is machine generated. #include "config.h" #include "kinds.inc" #include "c99_protos.inc" #if defined (HAVE_GFC_REAL_4) #ifdef HAVE_SINHF elemental function _gfortran_specific__sinh_r4 (parm) real (kind=4), intent (in) :: parm real (kind=4) :: _gfortran_specific__sinh_r4 _gfortran_specific__sinh_r4 = sinh (parm) end function #endif #endif
gpl-2.0
epfl-cosmo/q-e
GWW/gww/para_gww.f90
12
3927
! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE para_gww !this modules contains arrays indicating if the !processor should perform the task SAVE LOGICAL, ALLOCATABLE :: is_my_time(:) !for 2n+1 times and frequencies LOGICAL :: is_my_last!for extra 0 time calculation LOGICAL, ALLOCATABLE :: is_my_pola(:) !for 0 to n calculations LOGICAL, ALLOCATABLE :: is_my_state(:)!for KS states considered 1 to n_max LOGICAL, ALLOCATABLE :: is_my_state_range(:)!for KS states considered i_min to i_max CONTAINS subroutine free_memory_para_gww implicit none if(allocated(is_my_time)) deallocate(is_my_time) if(allocated(is_my_pola)) deallocate(is_my_pola) if(allocated(is_my_state)) deallocate(is_my_state) if(allocated(is_my_state_range)) deallocate(is_my_state_range) return end subroutine free_memory_para_gww SUBROUTINE setup_para_gww(ntimes,nstates, i_min, i_max) !this subroutine initialize the para variables for the gww !calculation, parallelization is achieved on imaginary times !and frequencies USE mp_world, ONLY : mpime, nproc USE io_global, ONLY : stdout implicit none INTEGER, INTENT(in) :: ntimes!number of time samples INTEGER, INTENT(in) :: nstates!max number of states INTEGER, INTENT(in) :: i_min!lowest state for which the self-energy is calculated INTEGER, INTENT(in) :: i_max!upper state for which the self-energy is calculated INTEGER :: ndelta, it, ip, iqq !allocates arrays allocate(is_my_time(-ntimes:ntimes)) allocate(is_my_pola(0:ntimes)) allocate(is_my_state(nstates)) allocate(is_my_state_range(i_min:i_max)) is_my_time(:)=.false. is_my_pola(:)=.false. is_my_state(:)=.false. is_my_state_range(:)=.false. ndelta=(2*ntimes+1)/nproc if(ndelta*nproc < (2*ntimes+1)) ndelta=ndelta+1 iqq=-ntimes do ip=0,nproc-1 do it=1,ndelta if(iqq <= ntimes.and.(mpime==ip)) then is_my_time(iqq)=.true. endif if(it==1.and.(mpime==ip)) write(stdout,*) 'min', iqq, ip,it,ndelta if(it==ndelta.and.(mpime==ip)) write(stdout,*) 'max', iqq, ip,it,ndelta iqq=iqq+1 enddo enddo if((mpime+1)==nproc) then is_my_last=.true. else is_my_last=.false. endif ndelta=(ntimes+1)/nproc if(ndelta*nproc < (ntimes+1)) ndelta=ndelta+1 iqq=0 do ip=0,nproc-1 do it=1,ndelta if(iqq <= ntimes.and.(mpime==ip)) then is_my_pola(iqq)=.true. endif if(it==1.and.(mpime==ip)) write(stdout,*) 'min pola', iqq if(it==ndelta.and.(mpime==ip)) write(stdout,*) 'max pola', iqq iqq=iqq+1 enddo enddo ndelta=(nstates)/nproc if(ndelta*nproc < nstates) ndelta=ndelta+1 iqq=1 do ip=0,nproc-1 do it=1,ndelta if(iqq <= nstates.and.(mpime==ip)) then is_my_state(iqq)=.true. endif if(it==1.and.(mpime==ip)) write(stdout,*) 'min state', iqq if(it==ndelta.and.(mpime==ip)) write(stdout,*) 'max state', iqq iqq=iqq+1 enddo enddo ndelta=(i_max-i_min+1)/nproc if(ndelta*nproc < (i_max-i_min+1)) ndelta=ndelta+1 iqq=1 do ip=0,nproc-1 do it=1,ndelta if(iqq <= (i_max-i_min+1).and.(mpime==ip)) then is_my_state_range(iqq+i_min-1)=.true. endif if(it==1.and.(mpime==ip)) write(stdout,*) 'min state range', iqq +i_min-1 if(it==ndelta.and.(mpime==ip)) write(stdout,*) 'max state range', iqq+i_min-1 iqq=iqq+1 enddo enddo return END SUBROUTINE setup_para_gww END MODULE para_gww
gpl-2.0
prool/ccx_prool
ARPACK_i8/LAPACK/dlartg.f
12
3969
SUBROUTINE DLARTG( F, G, CS, SN, R ) * * -- LAPACK auxiliary routine (version 2.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * September 30, 1994 * * .. Scalar Arguments .. DOUBLE PRECISION CS, F, G, R, SN * .. * * Purpose * ======= * * DLARTG generate a plane rotation so that * * [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1. * [ -SN CS ] [ G ] [ 0 ] * * This is a slower, more accurate version of the BLAS1 routine DROTG, * with the following other differences: * F and G are unchanged on return. * If G=0, then CS=1 and SN=0. * If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any * floating point operations (saves work in DBDSQR when * there are zeros on the diagonal). * * If F exceeds G in magnitude, CS will be positive. * * Arguments * ========= * * F (input) DOUBLE PRECISION * The first component of vector to be rotated. * * G (input) DOUBLE PRECISION * The second component of vector to be rotated. * * CS (output) DOUBLE PRECISION * The cosine of the rotation. * * SN (output) DOUBLE PRECISION * The sine of the rotation. * * R (output) DOUBLE PRECISION * The nonzero component of the rotated vector. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D0 ) DOUBLE PRECISION TWO PARAMETER ( TWO = 2.0D0 ) * .. * .. Local Scalars .. LOGICAL FIRST INTEGER COUNT, I DOUBLE PRECISION EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, INT, LOG, MAX, SQRT * .. * .. Save statement .. SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 * .. * .. Data statements .. DATA FIRST / .TRUE. / * .. * .. Executable Statements .. * IF( FIRST ) THEN FIRST = .FALSE. SAFMIN = DLAMCH( 'S' ) EPS = DLAMCH( 'E' ) SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) / $ LOG( DLAMCH( 'B' ) ) / TWO ) SAFMX2 = ONE / SAFMN2 END IF IF( G.EQ.ZERO ) THEN CS = ONE SN = ZERO R = F ELSE IF( F.EQ.ZERO ) THEN CS = ZERO SN = ONE R = G ELSE F1 = F G1 = G SCALE = MAX( ABS( F1 ), ABS( G1 ) ) IF( SCALE.GE.SAFMX2 ) THEN COUNT = 0 10 CONTINUE COUNT = COUNT + 1 F1 = F1*SAFMN2 G1 = G1*SAFMN2 SCALE = MAX( ABS( F1 ), ABS( G1 ) ) IF( SCALE.GE.SAFMX2 ) $ GO TO 10 R = SQRT( F1**2+G1**2 ) CS = F1 / R SN = G1 / R DO 20 I = 1, COUNT R = R*SAFMX2 20 CONTINUE ELSE IF( SCALE.LE.SAFMN2 ) THEN COUNT = 0 30 CONTINUE COUNT = COUNT + 1 F1 = F1*SAFMX2 G1 = G1*SAFMX2 SCALE = MAX( ABS( F1 ), ABS( G1 ) ) IF( SCALE.LE.SAFMN2 ) $ GO TO 30 R = SQRT( F1**2+G1**2 ) CS = F1 / R SN = G1 / R DO 40 I = 1, COUNT R = R*SAFMN2 40 CONTINUE ELSE R = SQRT( F1**2+G1**2 ) CS = F1 / R SN = G1 / R END IF IF( ABS( F ).GT.ABS( G ) .AND. CS.LT.ZERO ) THEN CS = -CS SN = -SN R = -R END IF END IF RETURN * * End of DLARTG * END
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.10/src/rcavi.f
4
2496
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine rcavi(node1,node2,nodem,nelem,lakon,kon,ipkon, & nactdog,identity,ielprop,prop,iflag,v,xflow,f, & nodef,idirf,df,cp,R,physcon,dvi,numf,set,mi,iaxial) ! ! rotating cavity element ! ! author: Yannick Muller ! implicit none ! logical identity character*8 lakon(*) character*81 set(*) ! integer nelem,nactdog(0:3,*),node1,node2,nodem,numf, & ielprop(*),nodef(4),idirf(4),index,iflag,mi(*), & inv,ipkon(*),kon(*),kgas,nelem_in,nelem_out,iaxial, & element0,node10,node20,node11,node21,node12,node22,node_cav, & node_main,node_main2,node_in1,node_out1,node_in2,node_out2 ! real*8 prop(*),v(0:mi(2),*),xflow,f,df(4),kappa,R,a,d, & p1,p2,T1,T2,Aeff,C1,C2,C3,cd,cp,physcon(3),p2p1,km1,dvi, & kp1,kdkm1,tdkp1,km1dk,x,y,ca1,cb1,ca2,cb2,dT1,alambda, & reynolds,pi,xflow_oil,s,Tcav,pcav,pmin,pmax, & Tref,Alpha1, Alpha2, Alpha3, GF,kf,MRTAP_ref_ein, & MRTAP_ref_aus, m_ref_ein, m_ref_aus,maus_zu_mref, & mein_zu_mref, A_aus, A_ein, A_ges,m_aus, m_ein, m_sperr ! pi=4.d0*datan(1.d0) if (iflag.eq.0) then identity=.true. ! if(nactdog(2,node1).ne.0)then identity=.false. elseif(nactdog(2,node2).ne.0)then identity=.false. elseif(nactdog(1,nodem).ne.0)then identity=.false. endif ! elseif (iflag.eq.1) then ! p1=v(2,node1) call rcavi_cp_lt(xflow) call rcavi_cp_nt(xflow) elseif (iflag.eq.2) then ! elseif (iflag.eq.3) then ! endif return end
gpl-2.0
epfl-cosmo/q-e
atomic/src/dvex.f90
16
1906
!-------------------------------------------------------------------- subroutine dvex(nu,dvy) !-------------------------------------------------------------------- ! USE kinds, ONLY: DP USE constants, ONLY: e2 USE ld1inc, ONLY: nwf, psi, ll, oc, sl3, nspin, isw, grid use radial_grids, only: ndmx, hartree implicit none ! ! I/O variables ! integer :: nu real (DP) :: dvy(ndmx) ! ! local variables ! integer :: i, mu, l0, l1, l2, l3 real (DP) :: wrk(ndmx), wrk1(ndmx) real (DP) :: fac, sss, ocs, doc, half ! do i=1,grid%mesh dvy(i)=0.0d0 end do l1 = ll(nu) half = 2.d0 * l1 + 1.d0 do mu=1,nwf ! ! only wfc with the same spin contribute to exchange term ! if (isw(mu) /= isw(nu) ) cycle ocs = oc(mu) * (0.5d0 * nspin) ! write (*,*) mu, oc(mu), ocs if ( mu == nu ) then doc = 0.d0 if( (l1 /= 0) .and. (ocs > 0.d0) ) then i = int(ocs) doc = (i*(2.d0*ocs-i-1.d0)/(half-1.d0) - ocs*ocs/half) * half/ocs end if ocs = ocs + doc ! if (doc /= 0.d0) write (*,*) "DOC ",nu, doc end if ! l2 = ll(mu) l0=abs(l1-l2) do i=1,grid%mesh wrk(i) = psi(i,1,mu)*psi(i,1,nu) end do do l3=l0,l1+l2 sss = sl3(l1,l2,l3) ! write (*,*) l1,l2,l3,sss if (abs(sss).gt.1.0d-10) then call hartree(l3,l1+l2+2,grid%mesh,grid,wrk,wrk1) fac =-e2*ocs*sss/2.0d0 do i=1,grid%mesh dvy(i)= dvy(i) + fac*wrk1(i)*psi(i,1,mu) end do end if end do !- spurious hartree part if (mu == nu ) then call hartree(0,2,grid%mesh,grid,wrk,wrk1) fac = doc*e2 do i=1,grid%mesh dvy(i)= dvy(i) + fac*wrk1(i)*psi(i,1,mu) end do end if end do return end subroutine dvex
gpl-2.0
LucHermitte/ITK
Modules/ThirdParty/VNL/src/vxl/v3p/netlib/eispack/balbak.f
41
2307
subroutine balbak(nm,n,low,igh,scale,m,z) c integer i,j,k,m,n,ii,nm,igh,low double precision scale(n),z(nm,m) double precision s c c this subroutine is a translation of the algol procedure balbak, c num. math. 13, 293-304(1969) by parlett and reinsch. c handbook for auto. comp., vol.ii-linear algebra, 315-326(1971). c c this subroutine forms the eigenvectors of a real general c matrix by back transforming those of the corresponding c balanced matrix determined by balanc. c c on input c c nm must be set to the row dimension of two-dimensional c array parameters as declared in the calling program c dimension statement. c c n is the order of the matrix. c c low and igh are integers determined by balanc. c c scale contains information determining the permutations c and scaling factors used by balanc. c c m is the number of columns of z to be back transformed. c c z contains the real and imaginary parts of the eigen- c vectors to be back transformed in its first m columns. c c on output c c z contains the real and imaginary parts of the c transformed eigenvectors in its first m columns. c c questions and comments should be directed to burton s. garbow, c mathematics and computer science div, argonne national laboratory c c this version dated august 1983. c c ------------------------------------------------------------------ c if (m .eq. 0) go to 200 if (igh .eq. low) go to 120 c do 110 i = low, igh s = scale(i) c .......... left hand eigenvectors are back transformed c if the foregoing statement is replaced by c s=1.0d0/scale(i). .......... do 100 j = 1, m 100 z(i,j) = z(i,j) * s c 110 continue c ......... for i=low-1 step -1 until 1, c igh+1 step 1 until n do -- .......... 120 do 140 ii = 1, n i = ii if (i .ge. low .and. i .le. igh) go to 140 if (i .lt. low) i = low - ii k = scale(i) if (k .eq. i) go to 140 c do 130 j = 1, m s = z(i,j) z(i,j) = z(k,j) z(k,j) = s 130 continue c 140 continue c 200 return end
apache-2.0
techno/gcc-mist32
libgomp/testsuite/libgomp.fortran/examples-4/e.50.4.f90
74
1424
! { dg-do run } module e_50_4_mod contains subroutine init (v1, v2, N) integer :: i, N real, pointer, dimension(:) :: v1, v2 do i = 1, N v1(i) = i + 2.0 v2(i) = i - 3.0 end do end subroutine subroutine check (p, N) integer :: i, N real, parameter :: EPS = 0.00001 real, pointer, dimension(:) :: p do i = 1, N diff = p(i) - (i + 2.0) * (i - 3.0) if (diff > EPS .or. -diff > EPS) call abort end do end subroutine subroutine vec_mult_1 (p, v1, v2, N) integer :: i, N real, pointer, dimension(:) :: p, v1, v2 !$omp target map(to: v1(1:N), v2(:N)) map(from: p(1:N)) !$omp parallel do do i = 1, N p(i) = v1(i) * v2(i) end do !$omp end target end subroutine subroutine vec_mult_2 (p, v1, v2, N) real, dimension(*) :: p, v1, v2 integer :: i, N !$omp target map(to: v1(1:N), v2(:N)) map(from: p(1:N)) !$omp parallel do do i = 1, N p(i) = v1(i) * v2(i) end do !$omp end target end subroutine end module program e_50_4 use e_50_4_mod, only : init, check, vec_mult_1, vec_mult_2 real, pointer, dimension(:) :: p1, p2, v1, v2 integer :: n n = 1000 allocate (p1(n), p2(n), v1(n), v2(n)) call init (v1, v2, n) call vec_mult_1 (p1, v1, v2, n) call vec_mult_2 (p2, v1, v2, n) call check (p1, N) call check (p2, N) deallocate (p1, p2, v1, v2) end program
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.10/src/nidentll.f
6
1352
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! ! this routine is identical to ident except that x and px are ! integer*8 ! ! identifies the position id of px in an ordered array ! x of integers; ! ! id is such that x(id).le.px and x(id+1).gt.px ! subroutine nidentll(x,px,n,id) implicit none integer n,id,n2,m integer*8 x,px dimension x(n) id=0 if(n.eq.0) return n2=n+1 do m=(n2+id)/2 if(px.ge.x(m)) then id=m else n2=m endif if((n2-id).eq.1) return enddo end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.9/src/nidentll.f
6
1352
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! ! this routine is identical to ident except that x and px are ! integer*8 ! ! identifies the position id of px in an ordered array ! x of integers; ! ! id is such that x(id).le.px and x(id+1).gt.px ! subroutine nidentll(x,px,n,id) implicit none integer n,id,n2,m integer*8 x,px dimension x(n) id=0 if(n.eq.0) return n2=n+1 do m=(n2+id)/2 if(px.ge.x(m)) then id=m else n2=m endif if((n2-id).eq.1) return enddo end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.16/src/extfacepernode.f
1
2264
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2019 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine extfacepernode(iponoelfa,inoelfa,lakonfa,ipkonfa, & konfa,nsurfs,inoelsize) ! implicit none ! character*8 lakonfa(*) ! integer iponoelfa(*),inoelfa(3,*),ipkonfa(*),konfa(*),i,j,nsurfs, & inoelfree,nope,indexe,node,inoelsize ! intent(in) lakonfa,ipkonfa,konfa,nsurfs ! intent(inout) iponoelfa,inoelfa,inoelsize ! ! lists which external faces correspond to a given node i ! iponoelfa(i) points to an entry j in field inoelfa where: ! inoelfa(1,j): face number as catalogued in fields konfa, lakonfa ! inoelfa(2,j): local node number in the topology description ! inoelfa(3,j): pointer to the next face to which i belongs, or, if ! none is left: zero ! inoelfree=1 do i=1,nsurfs if(ipkonfa(i).lt.0) cycle if(lakonfa(i)(2:2).eq.'8') then nope=8 elseif(lakonfa(i)(2:2).eq.'4') then nope=4 elseif(lakonfa(i)(2:2).eq.'6') then nope=6 elseif(lakonfa(i)(2:2).eq.'3') then nope=3 endif indexe=ipkonfa(i) do j=1,nope node=konfa(indexe+j) inoelfa(1,inoelfree)=i inoelfa(2,inoelfree)=j inoelfa(3,inoelfree)=iponoelfa(node) iponoelfa(node)=inoelfree inoelfree=inoelfree+1 enddo enddo ! ! size of field inoelfa ! inoelsize=inoelfree-1 ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.17/src/umat.f
2
2859
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2020 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine umat(stress,statev,ddsdde,sse,spd,scd, & rpl,ddsddt,drplde,drpldt, & stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname, & ndi,nshr,ntens,nstatv,props,nprops,coords,drot,pnewdt, & celent,dfgrd0,dfgrd1,noel,npt,layer,kspt,kstep,kinc) ! ! here, an ABAQUS umat routine can be inserted ! ! note that reals should be double precision (REAL*8) ! implicit none ! character*80 cmname ! integer ndi,nshr,ntens,nstatv,nprops,noel,npt,layer,kspt, & kstep,kinc ! real*8 stress(ntens),statev(nstatv), & ddsdde(ntens,ntens),ddsddt(ntens),drplde(ntens), & stran(ntens),dstran(ntens),time(2),celent, & props(nprops),coords(3),drot(3,3),dfgrd0(3,3),dfgrd1(3,3), & sse,spd,scd,rpl,drpldt,dtime,temp,dtemp,predef,dpred, & pnewdt ! ! START EXAMPLE LINEAR ELASTIC MATERIAL ! integer i,j real*8 e,un,al,um,am1,am2 ! c write(*,*) 'noel,npt ',noel,npt c write(*,*) 'stress ',(stress(i),i=1,6) c write(*,*) 'stran ',(stran(i),i=1,6) c write(*,*) 'dstran ',(dstran(i),i=1,6) c write(*,*) 'drot ',((drot(i,j),i=1,3),j=1,3) e=props(1) un=props(2) al=un*e/(1.d0+un)/(1.d0-2.d0*un) um=e/2.d0/(1.d0+un) am1=al+2.d0*um am2=um ! ! stress ! stress(1)=stress(1)+am1*dstran(1)+al*(dstran(2)+dstran(3)) stress(2)=stress(2)+am1*dstran(2)+al*(dstran(1)+dstran(3)) stress(3)=stress(3)+am1*dstran(3)+al*(dstran(1)+dstran(2)) stress(4)=stress(4)+am2*dstran(4) stress(5)=stress(5)+am2*dstran(5) stress(6)=stress(6)+am2*dstran(6) ! ! stiffness ! do i=1,6 do j=1,6 ddsdde(i,j)=0.d0 enddo enddo ddsdde(1,1)=al+2.d0*um ddsdde(1,2)=al ddsdde(2,1)=al ddsdde(2,2)=al+2.d0*um ddsdde(1,3)=al ddsdde(3,1)=al ddsdde(2,3)=al ddsdde(3,2)=al ddsdde(3,3)=al+2.d0*um ddsdde(4,4)=um ddsdde(5,5)=um ddsdde(6,6)=um ! ! END EXAMPLE LINEAR ELASTIC MATERIAL ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.8p2/src/noanalysiss.f
6
1573
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine noanalysiss(inpc,textpart,nmethod,iperturb,istep, & istat,n,iline,ipol,inl,ipoinp,inp,ipoinpc,tper) ! ! reading the input deck: *NO ANALYSIS ! implicit none ! character*1 inpc(*) character*132 textpart(16) ! integer nmethod,iperturb,istep,istat,n,key,iline,ipol,inl, & ipoinp(2,*),inp(3,*),ipoinpc(0:*) ! real*8 tper ! if(istep.lt.1) then write(*,*)'*ERROR in noanalysis: *NO ANALYSIS can only be used' write(*,*) ' within a STEP' call exit(201) endif ! write(*,*) '*WARNING: no analysis option was chosen' ! nmethod=0 iperturb=0 tper=1.d0 ! call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/noanalysiss.f
6
1573
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine noanalysiss(inpc,textpart,nmethod,iperturb,istep, & istat,n,iline,ipol,inl,ipoinp,inp,ipoinpc,tper) ! ! reading the input deck: *NO ANALYSIS ! implicit none ! character*1 inpc(*) character*132 textpart(16) ! integer nmethod,iperturb,istep,istat,n,key,iline,ipol,inl, & ipoinp(2,*),inp(3,*),ipoinpc(0:*) ! real*8 tper ! if(istep.lt.1) then write(*,*)'*ERROR in noanalysis: *NO ANALYSIS can only be used' write(*,*) ' within a STEP' call exit(201) endif ! write(*,*) '*WARNING: no analysis option was chosen' ! nmethod=0 iperturb=0 tper=1.d0 ! call getnewline(inpc,textpart,istat,n,key,iline,ipol,inl, & ipoinp,inp,ipoinpc) ! return end
gpl-2.0
sally-xiyue/pycles
RRTMG/sw/modules/rrsw_ncpar.f90
19
3966
module rrsw_ncpar use parkind ,only : im => kind_im, rb => kind_rb implicit none save real(kind=rb), parameter :: cpdair = 1003.5 ! Specific heat capacity of dry air ! at constant pressure at 273 K ! (J kg-1 K-1) integer(kind=im), dimension(50) :: status integer(kind=im) :: i integer(kind=im), parameter :: keylower = 9, & keyupper = 5, & Tdiff = 5, & ps = 59, & plower = 13, & pupper = 47, & Tself = 10, & Tforeignlower = 3, & Tforeignupper = 2, & pforeign = 4, & T = 19, & band = 14, & GPoint = 16, & GPointSet = 2 integer(kind=im), parameter :: maxAbsorberNameLength = 5, & Absorber = 12, & maxKeySpeciesNameLength = 3, & maxKeySpeciesNames = 2 character(len = maxAbsorberNameLength), dimension(Absorber), parameter :: & AbsorberNames = (/ & 'N2 ', & 'CCL4 ', & 'CFC11', & 'CFC12', & 'CFC22', & 'H2O ', & 'CO2 ', & 'O3 ', & 'N2O ', & 'CO ', & 'CH4 ', & 'O2 ' /) character(len = maxKeySpeciesNameLength), dimension(band,maxKeySpeciesNames), parameter :: & KeySpeciesNamesLower = RESHAPE( SOURCE = (/ 'H2O', 'H2O', 'H2O', 'H2O', 'H2O', 'H2O', 'H2O', & 'H2O', 'H2O', 'H2O', ' ', 'O3 ', 'O3 ', 'H2O', & 'CH4', 'CO2', 'CH4', 'CO2', ' ', 'CO2', 'O2 ', & ' ', 'O2 ', ' ', ' ', ' ', 'O2 ', ' ' /), & SHAPE = (/ band, maxKeySpeciesNames /) ) character(len = maxKeySpeciesNameLength), dimension(band,maxKeySpeciesNames), parameter :: & KeySpeciesNamesUpper = RESHAPE( SOURCE = (/ 'CH4', 'H2O', 'CH4', 'CO2', 'H2O', 'H2O', 'O2 ', & ' ', 'O2 ', ' ', ' ', 'O3 ', 'O3 ', 'CO2', & ' ', 'CO2', ' ', ' ', ' ', 'CO2', ' ', & ' ', ' ', ' ', ' ', ' ', 'O2 ', ' ' /), & SHAPE = (/ band, maxKeySpeciesNames /) ) integer(kind=im), dimension(band) :: BandNums = (/ 16, 17, 18, 19, 20, 21, 22, & 23, 24, 25, 26, 27, 28, 29 /) real(kind=rb), dimension(keylower) :: KeySpeciesLower = (/ 1.0, 0.125, 0.25, 0.375, & 0.50, 0.625, 0.75, 0.875, 1.0 /) real(kind=rb), dimension(keyupper) :: KeySpeciesUpper = (/ 0.0, 0.25, 0.50, 0.75, 1.0 /) real(kind=rb), dimension(Tdiff) :: TempDiffs = (/ -30, -15, 0, 15, 30 /) real(kind=rb), dimension(Tself) :: TempSelf = (/ 245.6,252.8,260.0,267.2,274.4, & 281.6,288.8,296.0,303.2,310.4 /) real(kind=rb), dimension(Tforeignlower) :: TempForeignlower = (/ 296, 260, 224 /) real(kind=rb), dimension(Tforeignupper) :: TempForeignupper = (/ 224, 260 /) real(kind=rb), dimension(pforeign) :: PressForeign = (/ 970, 475, 219, 3 /) real(kind=rb), dimension(T) :: Temp = (/188.0, 195.2, 202.4, 209.6, 216.8, 224.0, & 231.2, 238.4, 245.6, 252.8, 260.0, 267.2, & 274.4, 281.6, 288.8, 296.0, 303.2, 310.4, 317.6 /) contains subroutine getAbsorberIndex(AbsorberName,AbsorberIndex) character(len = *), intent(in) :: AbsorberName integer(kind=im), intent(out) :: AbsorberIndex integer(kind=im) :: m AbsorberIndex = -1 do m = 1, Absorber if (trim(AbsorberNames(m)) == trim(AbsorberName)) then AbsorberIndex = m end if end do if (AbsorberIndex == -1) then print*, "Absorber name index lookup failed." end if end subroutine getAbsorberIndex end module rrsw_ncpar
gpl-3.0
prool/ccx_prool
CalculiX/ccx_2.11/src/mafillpbc.f
3
1789
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! subroutine mafillpbc(nef,au,ad,jq,irow, & b,iatleastonepressurebc,nzs) ! ! filling the lhs and rhs to calculate p ! implicit none ! integer i,nef,irow(*),jq(*),iatleastonepressurebc,nzs ! real*8 ad(*),au(*),b(*) ! ! at least one pressure bc is needed. If none is applied, ! the last dof is set to 0 ! ! a pressure bc is only recognized if not all velocity degrees of ! freedom are prescribed on the same face ! c write(*,*) 'mafillpbc', iatleastonepressurebc if(iatleastonepressurebc.eq.0) then ad(nef)=1.d0 b(nef)=0.d0 do i=2,nef if(jq(i)-1>0) then if(irow(jq(i)-1).eq.nef) then au(jq(i)-1)=0.d0 endif endif enddo endif ! c do i=1,nzs c write(*,*) 'mafillp irow,au',i,au(i) c enddo c do i=1,nef c write(*,*) 'mafillp ad b',i,ad(i),b(i) c enddo ! return end
gpl-2.0
prool/ccx_prool
CalculiX/ccx_2.12/src/pk_cdi_r.f
6
1261
! ! CalculiX - A 3-dimensional finite element program ! Copyright (C) 1998-2015 Guido Dhondt ! ! This program is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation(version 2); ! ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! ! cd inncompressible fro thin orifices with corner radiusing (eq 5) ! ! author: Yannick Muller ! subroutine pk_cdi_r (rqd,reynolds,beta,cdi_r) ! implicit none ! real*8 rqd,reynolds,beta,cdi_r,frqd,cdi_se,cdi_noz ! call pk_cdi_noz(reynolds,cdi_noz) call pk_cdi_se(reynolds,beta,cdi_se) frqd=0.008d0+0.992d0*exp(-5.5d0*rqd-3.5d0*rqd**2.d0) ! cdi_r=cdi_noz-frqd*(cdi_noz-cdi_se) ! return end
gpl-2.0
prool/ccx_prool
ARPACK/LAPACK/dlaexc.f
7
10799
SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK, $ INFO ) * * -- LAPACK auxiliary routine (version 2.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. LOGICAL WANTQ INTEGER INFO, J1, LDQ, LDT, N, N1, N2 * .. * .. Array Arguments .. DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WORK( * ) * .. * * Purpose * ======= * * DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in * an upper quasi-triangular matrix T by an orthogonal similarity * transformation. * * T must be in Schur canonical form, that is, block upper triangular * with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block * has its diagonal elemnts equal and its off-diagonal elements of * opposite sign. * * Arguments * ========= * * WANTQ (input) LOGICAL * = .TRUE. : accumulate the transformation in the matrix Q; * = .FALSE.: do not accumulate the transformation. * * N (input) INTEGER * The order of the matrix T. N >= 0. * * T (input/output) DOUBLE PRECISION array, dimension (LDT,N) * On entry, the upper quasi-triangular matrix T, in Schur * canonical form. * On exit, the updated matrix T, again in Schur canonical form. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= max(1,N). * * Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) * On entry, if WANTQ is .TRUE., the orthogonal matrix Q. * On exit, if WANTQ is .TRUE., the updated matrix Q. * If WANTQ is .FALSE., Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. * LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N. * * J1 (input) INTEGER * The index of the first row of the first block T11. * * N1 (input) INTEGER * The order of the first block T11. N1 = 0, 1 or 2. * * N2 (input) INTEGER * The order of the second block T22. N2 = 0, 1 or 2. * * WORK (workspace) DOUBLE PRECISION array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * = 1: the transformed matrix T would be too far from Schur * form; the blocks are not swapped and T and Q are * unchanged. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) DOUBLE PRECISION TEN PARAMETER ( TEN = 1.0D+1 ) INTEGER LDD, LDX PARAMETER ( LDD = 4, LDX = 2 ) * .. * .. Local Scalars .. INTEGER IERR, J2, J3, J4, K, ND DOUBLE PRECISION CS, DNORM, EPS, SCALE, SMLNUM, SN, T11, T22, $ T33, TAU, TAU1, TAU2, TEMP, THRESH, WI1, WI2, $ WR1, WR2, XNORM * .. * .. Local Arrays .. DOUBLE PRECISION D( LDD, 4 ), U( 3 ), U1( 3 ), U2( 3 ), $ X( LDX, 2 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DLACPY, DLANV2, DLARFG, DLARFX, DLARTG, DLASY2, $ DROT * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Executable Statements .. * INFO = 0 * * Quick return if possible * IF( N.EQ.0 .OR. N1.EQ.0 .OR. N2.EQ.0 ) $ RETURN IF( J1+N1.GT.N ) $ RETURN * J2 = J1 + 1 J3 = J1 + 2 J4 = J1 + 3 * IF( N1.EQ.1 .AND. N2.EQ.1 ) THEN * * Swap two 1-by-1 blocks. * T11 = T( J1, J1 ) T22 = T( J2, J2 ) * * Determine the transformation to perform the interchange. * CALL DLARTG( T( J1, J2 ), T22-T11, CS, SN, TEMP ) * * Apply transformation to the matrix T. * IF( J3.LE.N ) $ CALL DROT( N-J1-1, T( J1, J3 ), LDT, T( J2, J3 ), LDT, CS, $ SN ) CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN ) * T( J1, J1 ) = T22 T( J2, J2 ) = T11 * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN ) END IF * ELSE * * Swapping involves at least one 2-by-2 block. * * Copy the diagonal block of order N1+N2 to the local array D * and compute its norm. * ND = N1 + N2 CALL DLACPY( 'Full', ND, ND, T( J1, J1 ), LDT, D, LDD ) DNORM = DLANGE( 'Max', ND, ND, D, LDD, WORK ) * * Compute machine-dependent threshold for test for accepting * swap. * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) / EPS THRESH = MAX( TEN*EPS*DNORM, SMLNUM ) * * Solve T11*X - X*T22 = scale*T12 for X. * CALL DLASY2( .FALSE., .FALSE., -1, N1, N2, D, LDD, $ D( N1+1, N1+1 ), LDD, D( 1, N1+1 ), LDD, SCALE, X, $ LDX, XNORM, IERR ) * * Swap the adjacent diagonal blocks. * K = N1 + N1 + N2 - 3 GO TO ( 10, 20, 30 )K * 10 CONTINUE * * N1 = 1, N2 = 2: generate elementary reflector H so that: * * ( scale, X11, X12 ) H = ( 0, 0, * ) * U( 1 ) = SCALE U( 2 ) = X( 1, 1 ) U( 3 ) = X( 1, 2 ) CALL DLARFG( 3, U( 3 ), U, 1, TAU ) U( 3 ) = ONE T11 = T( J1, J1 ) * * Perform swap provisionally on diagonal block in D. * CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK ) CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK ) * * Test whether to reject swap. * IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 3, $ 3 )-T11 ) ).GT.THRESH )GO TO 50 * * Accept swap: apply transformation to the entire matrix T. * CALL DLARFX( 'L', 3, N-J1+1, U, TAU, T( J1, J1 ), LDT, WORK ) CALL DLARFX( 'R', J2, 3, U, TAU, T( 1, J1 ), LDT, WORK ) * T( J3, J1 ) = ZERO T( J3, J2 ) = ZERO T( J3, J3 ) = T11 * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK ) END IF GO TO 40 * 20 CONTINUE * * N1 = 2, N2 = 1: generate elementary reflector H so that: * * H ( -X11 ) = ( * ) * ( -X21 ) = ( 0 ) * ( scale ) = ( 0 ) * U( 1 ) = -X( 1, 1 ) U( 2 ) = -X( 2, 1 ) U( 3 ) = SCALE CALL DLARFG( 3, U( 1 ), U( 2 ), 1, TAU ) U( 1 ) = ONE T33 = T( J3, J3 ) * * Perform swap provisionally on diagonal block in D. * CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK ) CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK ) * * Test whether to reject swap. * IF( MAX( ABS( D( 2, 1 ) ), ABS( D( 3, 1 ) ), ABS( D( 1, $ 1 )-T33 ) ).GT.THRESH )GO TO 50 * * Accept swap: apply transformation to the entire matrix T. * CALL DLARFX( 'R', J3, 3, U, TAU, T( 1, J1 ), LDT, WORK ) CALL DLARFX( 'L', 3, N-J1, U, TAU, T( J1, J2 ), LDT, WORK ) * T( J1, J1 ) = T33 T( J2, J1 ) = ZERO T( J3, J1 ) = ZERO * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK ) END IF GO TO 40 * 30 CONTINUE * * N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so * that: * * H(2) H(1) ( -X11 -X12 ) = ( * * ) * ( -X21 -X22 ) ( 0 * ) * ( scale 0 ) ( 0 0 ) * ( 0 scale ) ( 0 0 ) * U1( 1 ) = -X( 1, 1 ) U1( 2 ) = -X( 2, 1 ) U1( 3 ) = SCALE CALL DLARFG( 3, U1( 1 ), U1( 2 ), 1, TAU1 ) U1( 1 ) = ONE * TEMP = -TAU1*( X( 1, 2 )+U1( 2 )*X( 2, 2 ) ) U2( 1 ) = -TEMP*U1( 2 ) - X( 2, 2 ) U2( 2 ) = -TEMP*U1( 3 ) U2( 3 ) = SCALE CALL DLARFG( 3, U2( 1 ), U2( 2 ), 1, TAU2 ) U2( 1 ) = ONE * * Perform swap provisionally on diagonal block in D. * CALL DLARFX( 'L', 3, 4, U1, TAU1, D, LDD, WORK ) CALL DLARFX( 'R', 4, 3, U1, TAU1, D, LDD, WORK ) CALL DLARFX( 'L', 3, 4, U2, TAU2, D( 2, 1 ), LDD, WORK ) CALL DLARFX( 'R', 4, 3, U2, TAU2, D( 1, 2 ), LDD, WORK ) * * Test whether to reject swap. * IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 4, 1 ) ), $ ABS( D( 4, 2 ) ) ).GT.THRESH )GO TO 50 * * Accept swap: apply transformation to the entire matrix T. * CALL DLARFX( 'L', 3, N-J1+1, U1, TAU1, T( J1, J1 ), LDT, WORK ) CALL DLARFX( 'R', J4, 3, U1, TAU1, T( 1, J1 ), LDT, WORK ) CALL DLARFX( 'L', 3, N-J1+1, U2, TAU2, T( J2, J1 ), LDT, WORK ) CALL DLARFX( 'R', J4, 3, U2, TAU2, T( 1, J2 ), LDT, WORK ) * T( J3, J1 ) = ZERO T( J3, J2 ) = ZERO T( J4, J1 ) = ZERO T( J4, J2 ) = ZERO * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL DLARFX( 'R', N, 3, U1, TAU1, Q( 1, J1 ), LDQ, WORK ) CALL DLARFX( 'R', N, 3, U2, TAU2, Q( 1, J2 ), LDQ, WORK ) END IF * 40 CONTINUE * IF( N2.EQ.2 ) THEN * * Standardize new 2-by-2 block T11 * CALL DLANV2( T( J1, J1 ), T( J1, J2 ), T( J2, J1 ), $ T( J2, J2 ), WR1, WI1, WR2, WI2, CS, SN ) CALL DROT( N-J1-1, T( J1, J1+2 ), LDT, T( J2, J1+2 ), LDT, $ CS, SN ) CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN ) IF( WANTQ ) $ CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN ) END IF * IF( N1.EQ.2 ) THEN * * Standardize new 2-by-2 block T22 * J3 = J1 + N2 J4 = J3 + 1 CALL DLANV2( T( J3, J3 ), T( J3, J4 ), T( J4, J3 ), $ T( J4, J4 ), WR1, WI1, WR2, WI2, CS, SN ) IF( J3+2.LE.N ) $ CALL DROT( N-J3-1, T( J3, J3+2 ), LDT, T( J4, J3+2 ), $ LDT, CS, SN ) CALL DROT( J3-1, T( 1, J3 ), 1, T( 1, J4 ), 1, CS, SN ) IF( WANTQ ) $ CALL DROT( N, Q( 1, J3 ), 1, Q( 1, J4 ), 1, CS, SN ) END IF * END IF RETURN * * Exit with INFO = 1 if swap was rejected. * 50 CONTINUE INFO = 1 RETURN * * End of DLAEXC * END
gpl-2.0