system
HF staff
commited on
Commit
0697540
1 Parent(s): a7709cf

Update files from the datasets library (from 1.8.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.8.0

Files changed (3) hide show
  1. README.md +22 -3
  2. dataset_infos.json +1 -1
  3. squad_v1_pt.py +6 -0
README.md CHANGED
@@ -1,4 +1,23 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  paperswithcode_id: null
3
  ---
4
 
@@ -93,9 +112,9 @@ The data fields are the same among all splits.
93
 
94
  ### Data Splits
95
 
96
- | name |train|validation|
97
- |-------|----:|---------:|
98
- |default|87599| 10570|
99
 
100
  ## Dataset Creation
101
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - crowdsourced
6
+ languages:
7
+ - pt
8
+ licenses:
9
+ - mit
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - question-answering
18
+ task_ids:
19
+ - extractive-qa
20
+ - open-domain-qa
21
  paperswithcode_id: null
22
  ---
23
 
112
 
113
  ### Data Splits
114
 
115
+ | name | train | validation |
116
+ | ------- | ----: | ---------: |
117
+ | default | 87599 | 10570 |
118
 
119
  ## Dataset Creation
120
 
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"default": {"description": "Portuguese translation of the SQuAD dataset. The translation was performed automatically using the Google Cloud API.\n", "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n", "homepage": "https://github.com/nunorc/squad-v1.1-pt", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "squad_v1_pt", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 85432513, "num_examples": 87599, "dataset_name": "squad_v1_pt"}, "validation": {"name": "validation", "num_bytes": 11284704, "num_examples": 10570, "dataset_name": "squad_v1_pt"}}, "download_checksums": {"https://github.com/nunorc/squad-v1.1-pt/raw/master/train-v1.1-pt.json": {"num_bytes": 34143290, "checksum": "3ffd847d1a210836f5d3c5b6ee3d93dbc873eece463738820158dc721b67ed2f"}, "https://github.com/nunorc/squad-v1.1-pt/raw/master/dev-v1.1-pt.json": {"num_bytes": 5389305, "checksum": "cc27ce3bba8b06056bdd1c042944beb9cc926f21f53b47f21760989be9aa90cf"}}, "download_size": 39532595, "dataset_size": 96717217, "size_in_bytes": 136249812}}
1
+ {"default": {"description": "Portuguese translation of the SQuAD dataset. The translation was performed automatically using the Google Cloud API.\n", "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n", "homepage": "https://github.com/nunorc/squad-v1.1-pt", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "squad_v1_pt", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 85323237, "num_examples": 87599, "dataset_name": "squad_v1_pt"}, "validation": {"name": "validation", "num_bytes": 11265474, "num_examples": 10570, "dataset_name": "squad_v1_pt"}}, "download_checksums": {"https://github.com/nunorc/squad-v1.1-pt/raw/master/train-v1.1-pt.json": {"num_bytes": 34143290, "checksum": "3ffd847d1a210836f5d3c5b6ee3d93dbc873eece463738820158dc721b67ed2f"}, "https://github.com/nunorc/squad-v1.1-pt/raw/master/dev-v1.1-pt.json": {"num_bytes": 5389305, "checksum": "cc27ce3bba8b06056bdd1c042944beb9cc926f21f53b47f21760989be9aa90cf"}}, "download_size": 39532595, "post_processing_size": null, "dataset_size": 96588711, "size_in_bytes": 136121306}}
squad_v1_pt.py CHANGED
@@ -4,6 +4,7 @@
4
  import json
5
 
6
  import datasets
 
7
 
8
 
9
  # TODO(squad_v1_pt): BibTeX citation
@@ -67,6 +68,11 @@ class SquadV1Pt(datasets.GeneratorBasedBuilder):
67
  # Homepage of the dataset for documentation
68
  homepage="https://github.com/nunorc/squad-v1.1-pt",
69
  citation=_CITATION,
 
 
 
 
 
70
  )
71
 
72
  def _split_generators(self, dl_manager):
4
  import json
5
 
6
  import datasets
7
+ from datasets.tasks import QuestionAnsweringExtractive
8
 
9
 
10
  # TODO(squad_v1_pt): BibTeX citation
68
  # Homepage of the dataset for documentation
69
  homepage="https://github.com/nunorc/squad-v1.1-pt",
70
  citation=_CITATION,
71
+ task_templates=[
72
+ QuestionAnsweringExtractive(
73
+ question_column="question", context_column="context", answers_column="answers"
74
+ )
75
+ ],
76
  )
77
 
78
  def _split_generators(self, dl_manager):