sovai commited on
Commit
afbd93c
·
1 Parent(s): d8c0f94

Add traffic_agencies.parquet and README.md

Browse files
Files changed (2) hide show
  1. README.md +83 -0
  2. traffic_agencies.parquet +3 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ icon: traffic-light-slow
3
+ description: >-
4
+ This dataset provides insights into web traffic patterns for various U.S.
5
+ government agencies and domains.
6
+ ---
7
+
8
+ # Government Traffic
9
+
10
+ > **Data Notice**: This dataset provides academic research access with a 6-month data lag.
11
+ > For real-time data access, please visit [sov.ai](https://sov.ai) to subscribe.
12
+ > For market insights and additional subscription options, check out our newsletter at [blog.sov.ai](https://blog.sov.ai).
13
+
14
+ ```python
15
+ from datasets import load_dataset
16
+ df_agencies = load_dataset("sovai/government/traffic/agencies", split="train").to_pandas().set_index(["date"])
17
+ ```
18
+
19
+
20
+ `Tutorials` are the best documentation — [<mark style="color:blue;">`Government Traffic Analysis Tutorial`</mark>](https://colab.research.google.com/github/sovai-research/sovai-public/blob/main/notebooks/datasets/Government%20Internet.ipynb)
21
+
22
+ ## Description
23
+
24
+ This dataset provides web traffic data for U.S. government agencies and domains, offering insights into public engagement with government websites.
25
+
26
+ It enables analysis of traffic trends, inter-agency comparisons, and patterns of citizen interaction with government online resources.
27
+
28
+ ## Data Access
29
+
30
+ ```python
31
+ import sovai as sov
32
+ sov.token_auth(token="your_token_here")
33
+
34
+ # Agency-level traffic data
35
+ df_agencies = sov.data("government/traffic/agencies")
36
+
37
+ # Domain-level traffic data
38
+ df_domains = sov.data("government/traffic/domains")
39
+ ```
40
+
41
+ <figure><img src="https://raw.githubusercontent.com/sovai-research/sovai-documentation/main/.gitbook/assets/government_traffic_1 (2).png" alt=""><figcaption></figcaption></figure>
42
+
43
+ ### Dataset Contents
44
+
45
+ 1. **Agency Traffic (df\_agencies)**
46
+ * Provides traffic data aggregated at the agency level.
47
+ * Allows for high-level analysis of government agency website usage.
48
+ 2. **Domain Traffic (df\_domains)**
49
+ * Offers more granular data on traffic to specific government domains.
50
+ * Enables analysis of individual website performance within agencies.
51
+
52
+ ### Analysis Capabilities
53
+
54
+ * Time series analysis of traffic patterns
55
+ * Correlation analysis between different domains or agencies
56
+ * Calculation of statistical measures like coefficient of variation
57
+ * Filtering for specific types of domains (e.g., embassies)
58
+
59
+ ### Example Analyses
60
+
61
+ 1. Plotting agency-level traffic:
62
+
63
+ ```python
64
+ df_agencies.plot()
65
+ ```
66
+ 2. Analyzing embassy website traffic:
67
+
68
+ ```python
69
+ df_embassy = df_domains.loc[:, df_domains.columns.str.contains('embassy', case=False)]
70
+ df_embassy.plot()
71
+ ```
72
+ 3. Correlation analysis:
73
+
74
+ ```python
75
+ df_embassy.corr()
76
+ ```
77
+ 4. Advanced statistics (e.g., coefficient of variation):
78
+
79
+ ```python
80
+ cv = df_embassy.std().div(df_embassy.mean()).sort_values()
81
+ ```
82
+
83
+ This dataset is valuable for understanding government web presence, analyzing public engagement with government resources, and identifying trends in how citizens interact with government websites.
traffic_agencies.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:311d5af269ad3c402f99ddb729f6e6660392fab8df5febb5a5f4ef5c94233b77
3
+ size 612762