Datasets:
Tasks:
Text Classification
Sub-tasks:
semantic-similarity-classification
Languages:
Korean
Size:
1K<n<10K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Korean pairwise question binary classification dataset""" | |
import datasets | |
_CITATION = """\ | |
@misc{Song:2018, | |
title = "Paired Question v.2", | |
authors = "Youngsook Song", | |
publisher = "GitHub", | |
year = "2018" | |
} | |
""" | |
_DESCRIPTION = """\ | |
This is a Korean paired question dataset containing labels indicating whether two questions in a given pair are semantically identical. This dataset was used to evaluate the performance of [KoGPT2](https://github.com/SKT-AI/KoGPT2#subtask-evaluations) on a phrase detection downstream task. | |
""" | |
_HOMEPAGE = "https://github.com/songys/Question_pair" | |
_LICENSE = "The MIT License (MIT)" | |
_URL = "https://raw.githubusercontent.com/songys/Question_pair/master/" | |
_URLs = {key: f"{_URL}{key}.txt" for key in ("train", "test", "validation")} | |
class KorQpair(datasets.GeneratorBasedBuilder): | |
"""Korean pairwise question classification dataset""" | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"question1": datasets.Value("string"), | |
"question2": datasets.Value("string"), | |
"is_duplicate": datasets.ClassLabel(names=["0", "1"]), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": downloaded_files["train"], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": downloaded_files["test"], | |
"split": "test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": downloaded_files["validation"], | |
"split": "validation", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
with open(filepath, encoding="utf-8") as f: | |
next(f) | |
for id_, row in enumerate(f): | |
row = row.strip().split("\t") | |
yield id_, { | |
"question1": row[0], | |
"question2": row[1], | |
"is_duplicate": row[2], | |
} | |