|
|
|
|
|
"""Processing data for pretraining.""" |
|
|
|
import argparse |
|
import json |
|
import multiprocessing |
|
import os |
|
import sys |
|
|
|
sys.path.append( |
|
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) |
|
) |
|
import time |
|
|
|
import torch |
|
|
|
try: |
|
import nltk |
|
|
|
nltk_available = True |
|
except ImportError: |
|
nltk_available = False |
|
|
|
from megatron.data import indexed_dataset |
|
from megatron.tokenizer import build_tokenizer |
|
|
|
|
|
|
|
class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars): |
|
_period_context_fmt = r""" |
|
\S* # some word material |
|
%(SentEndChars)s # a potential sentence ending |
|
\s* # <-- THIS is what I changed |
|
(?=(?P<after_tok> |
|
%(NonWord)s # either other punctuation |
|
| |
|
(?P<next_tok>\S+) # <-- Normally you would have \s+ here |
|
))""" |
|
|
|
|
|
class IdentitySplitter(object): |
|
def tokenize(self, *text): |
|
return text |
|
|
|
|
|
class Encoder(object): |
|
def __init__(self, args): |
|
self.args = args |
|
|
|
def initializer(self): |
|
|
|
Encoder.tokenizer = build_tokenizer(self.args) |
|
if self.args.split_sentences: |
|
if not nltk_available: |
|
print("NLTK is not available to split sentences.") |
|
exit() |
|
library = "tokenizers/punkt/{}.pickle".format(self.args.lang) |
|
print("loading: " + library) |
|
splitter = nltk.load(library) |
|
if self.args.keep_newlines: |
|
|
|
Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer( |
|
train_text=splitter._params, lang_vars=CustomLanguageVars() |
|
) |
|
else: |
|
Encoder.splitter = splitter |
|
|
|
else: |
|
Encoder.splitter = IdentitySplitter() |
|
|
|
def encode(self, json_line): |
|
data = json.loads(json_line) |
|
ids = {} |
|
for key in self.args.json_keys: |
|
text = data[key] |
|
doc_ids = [] |
|
for sentence in Encoder.splitter.tokenize(text): |
|
sentence_ids = Encoder.tokenizer.tokenize(sentence) |
|
if len(sentence_ids) > 0: |
|
doc_ids.append(sentence_ids) |
|
if len(doc_ids) > 0 and self.args.append_eod: |
|
doc_ids[-1].append(Encoder.tokenizer.eos) |
|
ids[key] = doc_ids |
|
return ids, len(json_line) |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
group = parser.add_argument_group(title="input data") |
|
group.add_argument("--input", type=str, required=True, help="Path to input JSON") |
|
group.add_argument( |
|
"--json_keys", |
|
nargs="+", |
|
default=["text"], |
|
help="space separate listed of keys to extract from json", |
|
) |
|
group.add_argument( |
|
"--split_sentences", action="store_true", help="Split documents into sentences." |
|
) |
|
group.add_argument( |
|
"--keep_newlines", |
|
action="store_true", |
|
help="Keep newlines between sentences when splitting.", |
|
) |
|
|
|
group = parser.add_argument_group(title="tokenizer") |
|
group.add_argument( |
|
"--tokenizer_type", |
|
type=str, |
|
required=True, |
|
choices=[ |
|
"BertWordPieceLowerCase", |
|
"BertWordPieceCase", |
|
"GPT2BPETokenizer", |
|
"SentencePieceTokenizer", |
|
"PretrainedFromHF", |
|
"FalconTokenizer", |
|
], |
|
help="What type of tokenizer to use.", |
|
) |
|
group.add_argument( |
|
"--vocab_file", type=str, default=None, help="Path to the vocab file" |
|
) |
|
group.add_argument( |
|
"--merge_file", |
|
type=str, |
|
default=None, |
|
help="Path to the BPE merge file (if necessary).", |
|
) |
|
group.add_argument( |
|
"--append_eod", |
|
action="store_true", |
|
help="Append an <eod> token to the end of a document.", |
|
) |
|
group.add_argument( |
|
"--lang", |
|
type=str, |
|
default="english", |
|
help="Language to use for NLTK-powered sentence splitting.", |
|
) |
|
group = parser.add_argument_group(title="output data") |
|
group.add_argument( |
|
"--output_prefix", |
|
type=str, |
|
required=True, |
|
help="Path to binary output file without suffix", |
|
) |
|
group.add_argument( |
|
"--dataset_impl", type=str, default="mmap", choices=["lazy", "cached", "mmap"] |
|
) |
|
group = parser.add_argument_group(title="runtime") |
|
group.add_argument( |
|
"--workers", |
|
type=int, |
|
required=True, |
|
help="Number of worker processes to launch", |
|
) |
|
group.add_argument( |
|
"--chunk_size", |
|
type=int, |
|
required=True, |
|
help="Chunk size assigned to each worker process", |
|
) |
|
group.add_argument( |
|
"--log_interval", |
|
type=int, |
|
default=100, |
|
help="Interval between progress updates", |
|
) |
|
group.add_argument("--vocab_extra_ids", type=int, default=0) |
|
group.add_argument( |
|
"--vocab_extra_ids_list", |
|
type=str, |
|
default=None, |
|
help="comma separated list of special vocab ids to add to the tokenizer", |
|
) |
|
group.add_argument( |
|
"--no_new_tokens", |
|
action="store_false", |
|
dest="new_tokens", |
|
help=( |
|
"Whether to add special tokens (e.g. CLS, MASK, etc) " |
|
"in the sentenciepiece tokenizer or not" |
|
), |
|
) |
|
args = parser.parse_args() |
|
args.keep_empty = False |
|
|
|
if args.tokenizer_type.lower().startswith("bert"): |
|
if not args.split_sentences: |
|
print( |
|
"Bert tokenizer detected, are you sure you don't want to split sentences?" |
|
) |
|
|
|
|
|
args.rank = 0 |
|
args.make_vocab_size_divisible_by = 128 |
|
args.tensor_model_parallel_size = 1 |
|
|
|
return args |
|
|
|
|
|
def main(): |
|
args = get_args() |
|
startup_start = time.time() |
|
|
|
print("Opening", args.input) |
|
fin = open(args.input, "r", encoding="utf-8") |
|
|
|
if nltk_available and args.split_sentences: |
|
nltk.download("punkt", quiet=True) |
|
|
|
encoder = Encoder(args) |
|
tokenizer = build_tokenizer(args) |
|
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer) |
|
encoded_docs = pool.imap(encoder.encode, fin, args.chunk_size) |
|
|
|
|
|
level = "document" |
|
if args.split_sentences: |
|
level = "sentence" |
|
|
|
print(f"Vocab size: {tokenizer.vocab_size}") |
|
print(f"Output prefix: {args.output_prefix}") |
|
output_bin_files = {} |
|
output_idx_files = {} |
|
builders = {} |
|
for key in args.json_keys: |
|
output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, key, level) |
|
output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, key, level) |
|
builders[key] = indexed_dataset.make_builder( |
|
output_bin_files[key], |
|
impl=args.dataset_impl, |
|
vocab_size=tokenizer.vocab_size, |
|
) |
|
|
|
startup_end = time.time() |
|
proc_start = time.time() |
|
total_bytes_processed = 0 |
|
print("Time to startup:", startup_end - startup_start) |
|
|
|
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1): |
|
total_bytes_processed += bytes_processed |
|
for key, sentences in doc.items(): |
|
if len(sentences) == 0: |
|
continue |
|
for sentence in sentences: |
|
builders[key].add_item(torch.IntTensor(sentence)) |
|
builders[key].end_document() |
|
if i % args.log_interval == 0: |
|
current = time.time() |
|
elapsed = current - proc_start |
|
mbs = total_bytes_processed / elapsed / 1024 / 1024 |
|
print( |
|
f"Processed {i} documents", |
|
f"({i/elapsed} docs/s, {mbs} MB/s).", |
|
file=sys.stderr, |
|
) |
|
print("Done! Now finalizing.") |
|
|
|
for key in args.json_keys: |
|
builders[key].finalize(output_idx_files[key]) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|