|
|
|
import glob |
|
import json |
|
import os |
|
import time |
|
|
|
from torch.utils.data import Dataset |
|
|
|
from megatron import print_rank_0 |
|
from tasks.data_utils import build_sample |
|
from tasks.data_utils import build_tokens_types_paddings_from_ids |
|
from tasks.data_utils import clean_text |
|
|
|
|
|
NUM_CHOICES = 4 |
|
MAX_QA_LENGTH = 128 |
|
|
|
|
|
class RaceDataset(Dataset): |
|
|
|
def __init__(self, dataset_name, datapaths, tokenizer, max_seq_length, |
|
max_qa_length=MAX_QA_LENGTH): |
|
|
|
self.dataset_name = dataset_name |
|
print_rank_0(' > building RACE dataset for {}:'.format( |
|
self.dataset_name)) |
|
|
|
string = ' > paths:' |
|
for path in datapaths: |
|
string += ' ' + path |
|
print_rank_0(string) |
|
|
|
self.samples = [] |
|
for datapath in datapaths: |
|
self.samples.extend(process_single_datapath(datapath, tokenizer, |
|
max_qa_length, |
|
max_seq_length)) |
|
|
|
print_rank_0(' >> total number of samples: {}'.format( |
|
len(self.samples))) |
|
|
|
|
|
|
|
self.sample_multiplier = NUM_CHOICES |
|
|
|
def __len__(self): |
|
return len(self.samples) |
|
|
|
def __getitem__(self, idx): |
|
return self.samples[idx] |
|
|
|
|
|
def process_single_datapath(datapath, tokenizer, max_qa_length, max_seq_length): |
|
"""Read in RACE files, combine, clean-up, tokenize, and convert to |
|
samples.""" |
|
|
|
print_rank_0(' > working on {}'.format(datapath)) |
|
start_time = time.time() |
|
|
|
|
|
filenames = glob.glob(os.path.join(datapath, '*.txt')) |
|
|
|
samples = [] |
|
num_docs = 0 |
|
num_questions = 0 |
|
num_samples = 0 |
|
|
|
for filename in filenames: |
|
with open(filename, 'r') as f: |
|
for line in f: |
|
data = json.loads(line) |
|
num_docs += 1 |
|
|
|
context = data["article"] |
|
questions = data["questions"] |
|
choices = data["options"] |
|
answers = data["answers"] |
|
|
|
assert len(questions) == len(answers) |
|
assert len(questions) == len(choices) |
|
|
|
|
|
context = clean_text(context) |
|
context_ids = tokenizer.tokenize(context) |
|
|
|
|
|
for qi, question in enumerate(questions): |
|
num_questions += 1 |
|
|
|
label = ord(answers[qi]) - ord("A") |
|
assert label >= 0 |
|
assert label < NUM_CHOICES |
|
assert len(choices[qi]) == NUM_CHOICES |
|
|
|
|
|
ids_list = [] |
|
types_list = [] |
|
paddings_list = [] |
|
for ci in range(NUM_CHOICES): |
|
choice = choices[qi][ci] |
|
|
|
if "_" in question: |
|
qa = question.replace("_", choice) |
|
else: |
|
qa = " ".join([question, choice]) |
|
|
|
qa = clean_text(qa) |
|
|
|
qa_ids = tokenizer.tokenize(qa) |
|
|
|
if len(qa_ids) > max_qa_length: |
|
qa_ids = qa_ids[0:max_qa_length] |
|
|
|
|
|
ids, types, paddings \ |
|
= build_tokens_types_paddings_from_ids( |
|
qa_ids, context_ids, max_seq_length, |
|
tokenizer.cls, tokenizer.sep, tokenizer.pad) |
|
|
|
ids_list.append(ids) |
|
types_list.append(types) |
|
paddings_list.append(paddings) |
|
|
|
|
|
samples.append(build_sample(ids_list, types_list, |
|
paddings_list, label, |
|
num_samples)) |
|
num_samples += 1 |
|
|
|
elapsed_time = time.time() - start_time |
|
print_rank_0(' > processed {} document, {} questions, and {} samples' |
|
' in {:.2f} seconds'.format(num_docs, num_questions, |
|
num_samples, elapsed_time)) |
|
|
|
return samples |
|
|