sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""ORQA finetuning/evaluation."""
from functools import partial
import sys
import math
import torch
import torch.nn.functional as F
from megatron import get_args, get_timers, get_tokenizer, print_rank_0
from megatron.core import mpu
import megatron.model.biencoder_model
from megatron.utils import average_losses_across_data_parallel_group
from pretrain_ict import get_group_world_size_rank
import tasks.finetune_utils
from tasks.orqa.supervised.eval_utils import accuracy_func_provider
from tasks.orqa.supervised.eval_utils import process_batch, task_collate_fn
from megatron.model import ModelType
# input_ is a 2D tensor
def check_and_append_tensor_for_gather(group, rank, world_size, input_):
# gather the size of the first dimension of the tensor from all ranks
current_length = input_.size()[0]
first_dim = torch.tensor([[current_length]],
device=torch.cuda.current_device())
input_list = [torch.empty_like(first_dim) for _ in range(world_size)]
input_list[rank].copy_(first_dim)
torch.distributed.all_gather(input_list, first_dim, group=group)
all_input_list = torch.cat(input_list, dim=0).contiguous()
max_length = torch.max(all_input_list)
# if the size are different than the max, extend the tensor
# accordingly
if max_length > current_length:
padding=tuple([0] * (input_.dim() * 2 - 1)) + \
tuple([max_length - current_length])
input_ = F.pad(input=input_, pad=padding)
return input_
def orqa(Dataset):
def cross_entropy_forward_step(batch, model):
"""Simple forward step with cross-entropy loss."""
timers = get_timers()
tokenizer = get_tokenizer()
# Get the batch.
timers('batch generator', log_level=2).start()
try:
batch_ = next(batch)
except BaseException:
batch_ = batch
group, rank, world_size = get_group_world_size_rank()
query_tokens, query_mask, query_types, query_pad_mask, \
context_tokens, context_mask, context_types, context_pad_mask, \
neg_context_tokens, neg_context_mask, neg_context_types, \
reference = process_batch(batch_)
timers('batch generator').stop()
local_batch_size = query_tokens.shape[0]
# Text representation of query and context
query_list, context_list = [], []
for i in range(local_batch_size):
query_list.append(tokenizer.decode(query_tokens[i].tolist()))
context_list.append(tokenizer.decode(context_tokens[i].tolist()))
if neg_context_tokens is not None:
neg_context_tokens = check_and_append_tensor_for_gather(group,
rank, world_size, neg_context_tokens)
neg_context_mask = check_and_append_tensor_for_gather(group,
rank, world_size, neg_context_mask)
neg_context_types = check_and_append_tensor_for_gather(group,
rank, world_size, neg_context_types)
if neg_context_tokens is not None:
context_tokens = torch.cat([context_tokens, neg_context_tokens])
context_mask = torch.cat([context_mask, neg_context_mask])
context_types = torch.cat([context_types, neg_context_types])
# Forward model.
output_tensor = model(query_tokens, query_mask,
query_types, context_tokens,
context_mask, context_types)
return output_tensor, partial(cross_entropy_loss_func, query_tokens, context_tokens)
def cross_entropy_loss_func(query_tokens, context_tokens, output_tensor):
args = get_args()
local_batch_size = query_tokens.shape[0]
group, rank, world_size = get_group_world_size_rank()
# recall we assert that model_parallel_size == 1
global_batch_size = world_size * local_batch_size
query_logits, context_logits = output_tensor
if world_size > 1:
input_ = torch.empty_like(context_logits).copy_(\
context_logits).detach_()
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank].copy_(input_)
torch.distributed.all_gather(tensor_list, input_, group=group)
# Check if all-gather happens in order
assert tensor_list[rank].sum().item() == \
context_logits.sum().item()
# Preserves the gradient
tensor_list[rank] = context_logits
all_context_logits = torch.cat(tensor_list, dim=0).contiguous()
# Query tensors
input_ = torch.empty_like(query_logits).copy_(\
query_logits).detach_()
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank].copy_(input_)
torch.distributed.all_gather(tensor_list, input_, group=group)
# Check if all-gather happens in order
assert tensor_list[rank].sum().item() == query_logits.sum().item()
# Preserves the gradient
tensor_list[rank] = query_logits
all_query_logits = torch.cat(tensor_list, dim=0).contiguous()
else:
all_query_logits = query_logits
all_context_logits = context_logits
retrieval_scores = torch.matmul(all_query_logits,
torch.transpose(all_context_logits, 0, 1))
# Scaling the retrieval scores
if args.retriever_score_scaling:
retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size)
if args.train_with_neg:
# if the world size is 3, local batch size is 4, and
# local context size is 8, what we want is
# labels = [0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19]
labels = []
local_context_size = context_tokens.shape[0]
for i in range(world_size):
j = i * local_context_size
labels.extend(list(range(j, j + local_batch_size)))
labels = torch.LongTensor(labels).cuda()
assert len(labels) == global_batch_size
else:
labels = torch.arange(global_batch_size).long().cuda()
# Cross-entropy loss.
softmax_scores = F.log_softmax(retrieval_scores, dim=1)
loss = F.nll_loss(softmax_scores, labels, reduction='mean')
max_score, max_idxs = torch.max(softmax_scores, 1)
correct_predictions_count = (max_idxs == labels).sum().float()
# Reduce loss for logging.
reduced_loss = average_losses_across_data_parallel_group([loss, \
correct_predictions_count])
# Loss scaling for correct losses in Supervised Retrieval
loss = loss * mpu.get_data_parallel_world_size()
return loss, {'lm loss': reduced_loss[0],
'correct_prediction_count': reduced_loss[1]}
def train_valid_datasets_provider():
"""Build train and validation dataset."""
args = get_args()
tokenizer = get_tokenizer()
train_dataset = Dataset('training',
args.train_data,
tokenizer,
args.retriever_seq_length,
evaluate=False)
valid_dataset = Dataset('validation',
args.valid_data,
tokenizer,
args.retriever_seq_length,
evaluate=True)
return train_dataset, valid_dataset
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
args = get_args()
print_rank_0('building retriever model for {} ...'.format(args.task))
model_type_orqa = ModelType.encoder_or_decoder
model = megatron.model.biencoder_model.biencoder_model_provider(only_context_model=False,
only_query_model=False,
biencoder_shared_query_context_model=args.biencoder_shared_query_context_model,
pre_process=pre_process,
post_process=post_process,
model_type=model_type_orqa)
return model
def single_dataset_provider(datapath):
args = get_args()
tokenizer = get_tokenizer()
name = datapath[0].split('/')[-1].split('.')[0]
return Dataset(name,
datapath,
tokenizer,
args.retriever_seq_length,
evaluate=True)
def metrics_func_provider():
"""Provide metrics callback function."""
return accuracy_func_provider(single_dataset_provider)
"""Finetune/evaluate."""
model_type_orqa = ModelType.encoder_or_decoder
tasks.finetune_utils.finetune(train_valid_datasets_provider,
model_provider,
model_type_orqa,
forward_step=cross_entropy_forward_step,
end_of_epoch_callback_provider=metrics_func_provider,
task_collate_fn=task_collate_fn)
def main():
args = get_args()
if args.task == 'RET-FINETUNE-NQ':
from tasks.orqa.supervised.data import NQSupervisedDataset as Dataset
else:
raise NotImplementedError('ORQA task {} is not implemented.'.format(
args.task))
orqa(Dataset)