sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import torch
from megatron import get_args, print_rank_0
from megatron.data.orqa_wiki_dataset import get_open_retrieval_wiki_dataset
from megatron.data.realm_index import OpenRetreivalDataStore, FaissMIPSIndex
import megatron.model.biencoder_model
from megatron.training import get_model
from tasks.orqa.unsupervised.nq import get_nq_dataset
from tasks.orqa.unsupervised.nq import get_one_epoch_nq_dataloader
from tasks.orqa.unsupervised.nq import process_nq_batch
from tasks.orqa.unsupervised.qa_utils import calculate_matches
from megatron.model import ModelType
class ORQAEvaluator(object):
def __init__(self):
args = get_args()
self.embedding_size = args.hidden_size
self.faiss_use_gpu = args.faiss_use_gpu
self.evidence_embedder_obj = None
self.evidence_dataset = None
self.mips_index = None
self.eval_dataset = None
# Get Evidence (Wikipedia) dataset
self.get_evidence_dataset()
# Load query encoder checkpoint
only_query_model = True
if args.biencoder_shared_query_context_model:
only_query_model = False
model_type = ModelType.encoder_or_decoder
model_provider_func = megatron.model.biencoder_model.get_model_provider(only_query_model=only_query_model,
biencoder_shared_query_context_model=args.biencoder_shared_query_context_model,
model_type=model_type)
wrap_with_ddp: bool = True
model = get_model(model_provider_func, model_type, wrap_with_ddp, args)
self.model = megatron.checkpointing.load_biencoder_checkpoint(model, only_query_model=only_query_model)
assert len(self.model) == 1
self.model[0].eval()
# Load faiss indexer
self.faiss_wrapper()
def get_evidence_embedding(self):
# This will load the embedding from the embedding path
self.evidence_embedder_obj = OpenRetreivalDataStore(load_from_path=True)
def get_evidence_dataset(self):
self.evidence_dataset = get_open_retrieval_wiki_dataset()
def faiss_wrapper(self):
# Initialize FAISS wrapper on local rank = 0 as the evidence embeddings
# is distributed over all the GPUs in a node and FAISS is not
# thread-safe
args = get_args()
if args.local_rank == 0:
# Get evidence embeddings computed using context encoder
self.get_evidence_embedding()
assert self.evidence_embedder_obj is not None
self.mips_index = FaissMIPSIndex(embed_size=self.embedding_size,
embed_data=self.evidence_embedder_obj,
use_gpu=self.faiss_use_gpu)
# Wait for the FAISS index to be initialized in all the nodes
torch.distributed.barrier()
def generate_query_vectors(self, qa_data, split):
self.eval_dataset = get_nq_dataset(qa_data, split)
dataloader = get_one_epoch_nq_dataloader(self.eval_dataset)
query_vectors = []
reference_list = []
for batch in dataloader:
# batch also has query_tokens and query_pad_data
query_tokens, query_mask, query_types, \
query_len, reference = process_nq_batch(batch)
assert len(self.model) == 1
unwrapped_model = self.model[0]
while not hasattr(unwrapped_model, 'embed_text'):
unwrapped_model = unwrapped_model.module
with torch.no_grad():
query_logits = unwrapped_model.embed_text(
unwrapped_model.query_model, query_tokens,
query_mask, query_types)
reference_list.extend(reference)
query_vectors.extend(query_logits.split(1, dim=0))
if len(query_vectors) % 100 == 0:
print_rank_0('Encoded queries {}'.format(len(query_vectors)))
query_tensor = torch.cat(query_vectors, dim=0)
print_rank_0('Total encoded queries tensor {}'.format(query_tensor.size()))
assert query_tensor.size(0) == len(self.eval_dataset)
return query_tensor, reference_list
def evaluate(self, qa_data, split):
args = get_args()
query_tensor, reference_list = self.generate_query_vectors(qa_data, \
split)
local_rank = args.local_rank
rank = torch.distributed.get_rank()
device_count = torch.cuda.device_count()
num_nodes = torch.distributed.get_world_size() // device_count
node_id = rank // device_count
for node in range(num_nodes):
start_rank = node * device_count
end_rank = (node + 1) * device_count
ranks_list = list(range(start_rank, end_rank))
node_group = torch.distributed.new_group(ranks=ranks_list)
if node_id == node:
device_start_rank = start_rank
group = node_group
input_ = torch.empty_like(query_tensor).copy_(query_tensor).detach_()
tensor_list = [torch.empty_like(input_) for _ in range(device_count)]
torch.distributed.all_gather(tensor_list, query_tensor, group=group)
if local_rank == 0 and self.mips_index is not None:
all_query_tensor = torch.cat(tensor_list, dim=0).contiguous()
distance, topkindex = self.mips_index.search_mips_index(
all_query_tensor, top_k=args.faiss_topk_retrievals,
reconstruct=False)
distance = torch.from_numpy(distance).cuda()
topkindex = torch.LongTensor(topkindex).cuda()
if local_rank != 0:
distance = torch.empty(device_count * len(query_tensor), \
args.faiss_topk_retrievals, dtype=torch.float32).cuda()
topkindex = torch.empty(device_count * len(query_tensor), \
args.faiss_topk_retrievals, dtype=torch.int64).cuda()
torch.distributed.broadcast(distance, src=device_start_rank, \
group=group)
torch.distributed.broadcast(topkindex, src=device_start_rank, \
group=group)
distance = torch.split(distance, len(query_tensor), dim=0)\
[local_rank]
topkindex = torch.split(topkindex, len(query_tensor), dim=0)\
[local_rank]
top_ids_and_scores = []
for darray, topkarray in zip(distance, topkindex):
top_ids_and_scores.append((topkarray.tolist(), darray.tolist()))
passages = self.evidence_dataset.id2text
match_stats = calculate_matches(passages,
reference_list,
top_ids_and_scores,
workers_num=args.num_workers,
match_type=args.faiss_match)
top_k_hits = match_stats.top_k_hits
print_rank_0("{} SET RESULTS".format(split))
print_rank_0("topk-{} documents hits {}".format(
args.faiss_topk_retrievals, top_k_hits))
top_k_hits = [v / len(top_ids_and_scores) for v in top_k_hits]
print_rank_0("top-k documents hits accuracy {}".format(top_k_hits))
for i in args.retriever_report_topk_accuracies:
print_rank_0("top-{}: {:.2f}".format(i, top_k_hits[i-1] * 100))
return