|
|
|
import datetime |
|
import torch |
|
import json |
|
import threading |
|
from flask import Flask, request, jsonify, current_app |
|
from flask_restful import Resource, Api |
|
from megatron import get_args |
|
from megatron.text_generation import generate_and_post_process |
|
from megatron.text_generation import beam_search_and_post_process |
|
|
|
|
|
GENERATE_NUM = 0 |
|
BEAM_NUM = 1 |
|
lock = threading.Lock() |
|
|
|
class MegatronGenerate(Resource): |
|
def __init__(self, model): |
|
self.model = model |
|
|
|
@staticmethod |
|
def send_do_generate(): |
|
choice = torch.cuda.LongTensor([GENERATE_NUM]) |
|
torch.distributed.broadcast(choice, 0) |
|
|
|
@staticmethod |
|
def send_do_beam_search(): |
|
choice = torch.cuda.LongTensor([BEAM_NUM]) |
|
torch.distributed.broadcast(choice, 0) |
|
|
|
def put(self): |
|
args = get_args() |
|
|
|
if not "prompts" in request.get_json(): |
|
return "prompts argument required", 400 |
|
|
|
if "max_len" in request.get_json(): |
|
return "max_len is no longer used. Replace with tokens_to_generate", 400 |
|
|
|
if "sentences" in request.get_json(): |
|
return "sentences is no longer used. Replace with prompts", 400 |
|
|
|
prompts = request.get_json()["prompts"] |
|
if not isinstance(prompts, list): |
|
return "prompts is not a list of strings", 400 |
|
|
|
if len(prompts) == 0: |
|
return "prompts is empty", 400 |
|
|
|
if len(prompts) > 128: |
|
return "Maximum number of prompts is 128", 400 |
|
|
|
tokens_to_generate = 64 |
|
if "tokens_to_generate" in request.get_json(): |
|
tokens_to_generate = request.get_json()["tokens_to_generate"] |
|
if not isinstance(tokens_to_generate, int): |
|
return "tokens_to_generate must be an integer greater than 0" |
|
if tokens_to_generate < 0: |
|
return "tokens_to_generate must be an integer greater than or equal to 0" |
|
|
|
logprobs = False |
|
if "logprobs" in request.get_json(): |
|
logprobs = request.get_json()["logprobs"] |
|
if not isinstance(logprobs, bool): |
|
return "logprobs must be a boolean value" |
|
|
|
if tokens_to_generate == 0 and not logprobs: |
|
return "tokens_to_generate=0 implies logprobs should be True" |
|
|
|
temperature = 1.0 |
|
if "temperature" in request.get_json(): |
|
temperature = request.get_json()["temperature"] |
|
if not (type(temperature) == int or type(temperature) == float): |
|
return "temperature must be a positive number less than or equal to 100.0" |
|
if not (0.0 < temperature <= 100.0): |
|
return "temperature must be a positive number less than or equal to 100.0" |
|
|
|
top_k = 0.0 |
|
if "top_k" in request.get_json(): |
|
top_k = request.get_json()["top_k"] |
|
if not (type(top_k) == int): |
|
return "top_k must be an integer equal to or greater than 0 and less than or equal to 1000" |
|
if not (0 <= top_k <= 1000): |
|
return "top_k must be equal to or greater than 0 and less than or equal to 1000" |
|
|
|
top_p = 0.0 |
|
if "top_p" in request.get_json(): |
|
top_p = request.get_json()["top_p"] |
|
if not (type(top_p) == float): |
|
return "top_p must be a positive float less than or equal to 1.0" |
|
if top_p > 0.0 and top_k > 0.0: |
|
return "cannot set both top-k and top-p samplings." |
|
if not (0 <= top_p <= 1.0): |
|
return "top_p must be less than or equal to 1.0" |
|
|
|
top_p_decay = 0.0 |
|
if "top_p_decay" in request.get_json(): |
|
top_p_decay = request.get_json()["top_p_decay"] |
|
if not (type(top_p_decay) == float): |
|
return "top_p_decay must be a positive float less than or equal to 1.0" |
|
if top_p == 0.0: |
|
return "top_p_decay cannot be set without top_p" |
|
if not (0 <= top_p_decay <= 1.0): |
|
return "top_p_decay must be less than or equal to 1.0" |
|
|
|
top_p_bound = 0.0 |
|
if "top_p_bound" in request.get_json(): |
|
top_p_bound = request.get_json()["top_p_bound"] |
|
if not (type(top_p_bound) == float): |
|
return "top_p_bound must be a positive float less than or equal to top_p" |
|
if top_p == 0.0: |
|
return "top_p_bound cannot be set without top_p" |
|
if not (0.0 < top_p_bound <= top_p): |
|
return "top_p_bound must be greater than 0 and less than top_p" |
|
|
|
add_BOS = False |
|
if "add_BOS" in request.get_json(): |
|
add_BOS = request.get_json()["add_BOS"] |
|
if not isinstance(add_BOS, bool): |
|
return "add_BOS must be a boolean value" |
|
|
|
if any([len(prompt) == 0 for prompt in prompts]) and not add_BOS: |
|
return "Empty prompts require add_BOS=true" |
|
|
|
stop_on_double_eol = False |
|
if "stop_on_double_eol" in request.get_json(): |
|
stop_on_double_eol = request.get_json()["stop_on_double_eol"] |
|
if not isinstance(stop_on_double_eol, bool): |
|
return "stop_on_double_eol must be a boolean value" |
|
|
|
stop_on_eol = False |
|
if "stop_on_eol" in request.get_json(): |
|
stop_on_eol = request.get_json()["stop_on_eol"] |
|
if not isinstance(stop_on_eol, bool): |
|
return "stop_on_eol must be a boolean value" |
|
|
|
prevent_newline_after_colon = False |
|
if "prevent_newline_after_colon" in request.get_json(): |
|
prevent_newline_after_colon = request.get_json()["prevent_newline_after_colon"] |
|
if not isinstance(prevent_newline_after_colon, bool): |
|
return "prevent_newline_after_colon must be a boolean value" |
|
|
|
random_seed = -1 |
|
if "random_seed" in request.get_json(): |
|
random_seed = request.get_json()["random_seed"] |
|
if not isinstance(random_seed, int): |
|
return "random_seed must be integer" |
|
if random_seed < 0: |
|
return "random_seed must be a positive integer" |
|
|
|
no_log = False |
|
if "no_log" in request.get_json(): |
|
no_log = request.get_json()["no_log"] |
|
if not isinstance(no_log, bool): |
|
return "no_log must be a boolean value" |
|
|
|
beam_width = None |
|
if "beam_width" in request.get_json(): |
|
beam_width = request.get_json()["beam_width"] |
|
if not isinstance(beam_width, int): |
|
return "beam_width must be integer" |
|
if beam_width < 1: |
|
return "beam_width must be an integer > 1" |
|
if len(prompts) > 1: |
|
return "When doing beam_search, batch size must be 1" |
|
|
|
stop_token=50256 |
|
if "stop_token" in request.get_json(): |
|
stop_token = request.get_json()["stop_token"] |
|
if not isinstance(stop_token, int): |
|
return "stop_token must be an integer" |
|
|
|
length_penalty = 1 |
|
if "length_penalty" in request.get_json(): |
|
length_penalty = request.get_json()["length_penalty"] |
|
if not isinstance(length_penalty, float): |
|
return "length_penalty must be a float" |
|
|
|
with lock: |
|
|
|
if not no_log: |
|
print("request IP: " + str(request.remote_addr)) |
|
print(json.dumps(request.get_json()),flush=True) |
|
print("start time: ", datetime.datetime.now()) |
|
|
|
try: |
|
if beam_width is not None: |
|
MegatronGenerate.send_do_beam_search() |
|
response, response_seg, response_scores = \ |
|
beam_search_and_post_process( |
|
self.model, |
|
prompts=prompts, |
|
tokens_to_generate=tokens_to_generate, |
|
beam_size = beam_width, |
|
add_BOS=add_BOS, |
|
stop_token=stop_token, |
|
num_return_gen=beam_width, |
|
length_penalty=length_penalty, |
|
prevent_newline_after_colon=prevent_newline_after_colon |
|
) |
|
|
|
return jsonify({"text": response, |
|
"segments": response_seg, |
|
"scores": response_scores}) |
|
else: |
|
MegatronGenerate.send_do_generate() |
|
response, response_seg, response_logprobs, _ = \ |
|
generate_and_post_process( |
|
self.model, |
|
prompts=prompts, |
|
tokens_to_generate=tokens_to_generate, |
|
return_output_log_probs=logprobs, |
|
top_k_sampling=top_k, |
|
top_p_sampling=top_p, |
|
top_p_decay=top_p_decay, |
|
top_p_bound=top_p_bound, |
|
temperature=temperature, |
|
add_BOS=add_BOS, |
|
use_eod_token_for_early_termination=True, |
|
stop_on_double_eol=stop_on_double_eol, |
|
stop_on_eol=stop_on_eol, |
|
prevent_newline_after_colon=prevent_newline_after_colon, |
|
random_seed=random_seed) |
|
|
|
return jsonify({"text": response, |
|
"segments": response_seg, |
|
"logprobs": response_logprobs}) |
|
|
|
except ValueError as ve: |
|
return ve.args[0] |
|
print("end time: ", datetime.datetime.now()) |
|
|
|
|
|
class MegatronServer(object): |
|
def __init__(self, model): |
|
self.app = Flask(__name__, static_url_path='') |
|
api = Api(self.app) |
|
api.add_resource(MegatronGenerate, '/api', resource_class_args=[model]) |
|
|
|
def run(self, url): |
|
self.app.run(url, threaded=True, debug=False) |
|
|