sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
"""Llama Model."""
import warnings
from megatron import get_args
from .enums import PositionEmbeddingType
from . import GPTModel
class LlamaModel(GPTModel):
def __init__(self,
num_tokentypes: int = 0,
parallel_output: bool = True,
pre_process: bool = True,
post_process: bool = True,
model_type=None,
version: int = 2):
args = get_args()
# mandatory arguments
assert version in {1, 2}, f"Unknown llama version {version}"
assert args.position_embedding_type == PositionEmbeddingType.rotary, \
f"Llama uses rotary embedding, not {args.position_embedding_type}"
assert not args.use_post_ln, "Llama does not use post_ln"
assert args.glu_activation == "swiglu", "Llama works with swiglu activation"
assert not args.use_bias, "Llama does not use bias"
assert not args.parallel_attn, "Llama does not use parallel_attn"
assert args.use_rms_norm, "Llama uses rms_norm"
assert not args.tie_embed_logits , "Llama unties embedding and lm_head weights"
# recomended arguments
if args.bias_gelu_fusion:
warnings.warn("Llama is not intended to use bias_gelu_fusion")
if args.bias_dropout_fusion:
warnings.warn("Llama is not intended to use bias_dropout_fusion")
if args.hidden_dropout > 0.0 and not args.lima_dropout:
warnings.warn( "Llama is not intended to use dropout")
if args.attention_dropout > 0.0:
warnings.warn( "Llama is not intended to use dropout")
super().__init__(num_tokentypes=num_tokentypes, parallel_output=parallel_output,
pre_process=pre_process, post_process=post_process,
model_type=model_type)