|
|
|
|
|
"""Megatron global variables.""" |
|
|
|
import os |
|
import sys |
|
from collections import defaultdict |
|
|
|
from megatron import dist_signal_handler |
|
from megatron.tokenizer import build_tokenizer |
|
from .microbatches import build_num_microbatches_calculator |
|
from .timers import Timers |
|
|
|
_GLOBAL_ARGS = None |
|
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = None |
|
_GLOBAL_TOKENIZER = None |
|
_GLOBAL_TENSORBOARD_WRITER = None |
|
_GLOBAL_ADLR_AUTORESUME = None |
|
_GLOBAL_TIMERS = None |
|
_GLOBAL_SIGNAL_HANDLER = None |
|
_GLOBAL_COUNTERS = None |
|
|
|
|
|
def get_args(): |
|
"""Return arguments.""" |
|
_ensure_var_is_initialized(_GLOBAL_ARGS, 'args') |
|
return _GLOBAL_ARGS |
|
|
|
|
|
def get_num_microbatches(): |
|
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get() |
|
|
|
|
|
def get_current_global_batch_size(): |
|
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_current_global_batch_size() |
|
|
|
|
|
def update_num_microbatches(consumed_samples, consistency_check=True): |
|
_GLOBAL_NUM_MICROBATCHES_CALCULATOR.update(consumed_samples, |
|
consistency_check) |
|
|
|
|
|
def get_tokenizer(): |
|
"""Return tokenizer.""" |
|
_ensure_var_is_initialized(_GLOBAL_TOKENIZER, 'tokenizer') |
|
return _GLOBAL_TOKENIZER |
|
|
|
|
|
def get_tensorboard_writer(): |
|
"""Return our wrapped tensorboard/wandb writer. It can be None so no need |
|
to check if it is initialized.""" |
|
return _GLOBAL_TENSORBOARD_WRITER |
|
|
|
|
|
def get_adlr_autoresume(): |
|
"""ADLR autoresume object. It can be None so no need |
|
to check if it is initialized.""" |
|
return _GLOBAL_ADLR_AUTORESUME |
|
|
|
|
|
def get_timers(): |
|
"""Return timers.""" |
|
_ensure_var_is_initialized(_GLOBAL_TIMERS, 'timers') |
|
return _GLOBAL_TIMERS |
|
|
|
|
|
def get_counters(): |
|
"""Return counters.""" |
|
_ensure_var_is_initialized(_GLOBAL_COUNTERS, 'counters') |
|
return _GLOBAL_COUNTERS |
|
|
|
|
|
def get_signal_handler(): |
|
_ensure_var_is_initialized(_GLOBAL_SIGNAL_HANDLER, 'signal handler') |
|
return _GLOBAL_SIGNAL_HANDLER |
|
|
|
|
|
def _set_signal_handler(): |
|
global _GLOBAL_SIGNAL_HANDLER |
|
_ensure_var_is_not_initialized(_GLOBAL_SIGNAL_HANDLER, 'signal handler') |
|
_GLOBAL_SIGNAL_HANDLER = dist_signal_handler.DistributedSignalHandler().__enter__() |
|
|
|
|
|
def _set_args(args): |
|
global _GLOBAL_ARGS |
|
_GLOBAL_ARGS = args |
|
|
|
|
|
def set_global_variables(args): |
|
"""Set args, tokenizer, tensorboard_writer, adlr_autoresume, and timers.""" |
|
assert args is not None |
|
_ensure_var_is_not_initialized(_GLOBAL_ARGS, 'args') |
|
_set_args(args) |
|
|
|
_build_num_microbatches_calculator(args) |
|
if args.vocab_file or args.tokenizer_type in ["FalconTokenizer", "LlamaTokenizer", "GPT2BPETokenizer"]: |
|
_ = _build_tokenizer(args) |
|
_set_tensorboard_writer(args) |
|
_set_adlr_autoresume(args) |
|
_set_timers(args) |
|
_set_counters(args) |
|
|
|
if args.exit_signal_handler: |
|
_set_signal_handler() |
|
|
|
|
|
def _build_num_microbatches_calculator(args): |
|
global _GLOBAL_NUM_MICROBATCHES_CALCULATOR |
|
_ensure_var_is_not_initialized(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, |
|
'num microbatches calculator') |
|
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = build_num_microbatches_calculator(args) |
|
|
|
|
|
def _build_tokenizer(args): |
|
"""Initialize tokenizer.""" |
|
global _GLOBAL_TOKENIZER |
|
_ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, 'tokenizer') |
|
_GLOBAL_TOKENIZER = build_tokenizer(args) |
|
return _GLOBAL_TOKENIZER |
|
|
|
|
|
def rebuild_tokenizer(args): |
|
global _GLOBAL_TOKENIZER |
|
_GLOBAL_TOKENIZER = None |
|
return _build_tokenizer(args) |
|
|
|
|
|
def _set_tensorboard_writer(args): |
|
"""Set our wrapped tensorboard/wandb writer.""" |
|
global _GLOBAL_TENSORBOARD_WRITER |
|
_ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER, |
|
'tensorboard writer') |
|
|
|
if getattr(args,"wandb_logger",False): |
|
""" |
|
if this arg is set to True, we check the other wandb relevant arguments and |
|
return a shim which exposes the wandb logging via a tensorboard-y API |
|
""" |
|
if args.rank == (args.world_size - 1): |
|
try: |
|
from megatron.wandb_logger import WandBConfig,WandbTBShim |
|
cfg=WandBConfig.from_args(args) |
|
shim=WandbTBShim(cfg) |
|
print('> setting wandb ...') |
|
_GLOBAL_TENSORBOARD_WRITER=shim |
|
except ModuleNotFoundError: |
|
print('WARNING: WanDB writing requested but is not ' |
|
'available, ' |
|
'no WandB logs will be written.', flush=True) |
|
else: |
|
if hasattr(args, 'tensorboard_dir') and \ |
|
args.tensorboard_dir and args.rank == (args.world_size - 1): |
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
print('> setting tensorboard ...') |
|
_GLOBAL_TENSORBOARD_WRITER = SummaryWriter( |
|
log_dir=args.tensorboard_dir, |
|
max_queue=args.tensorboard_queue_size) |
|
except ModuleNotFoundError: |
|
print('WARNING: TensorBoard writing requested but is not ' |
|
'available (are you using PyTorch 1.1.0 or later?), ' |
|
'no TensorBoard logs will be written.', flush=True) |
|
|
|
|
|
def _set_adlr_autoresume(args): |
|
"""Initialize ADLR autoresume.""" |
|
global _GLOBAL_ADLR_AUTORESUME |
|
_ensure_var_is_not_initialized(_GLOBAL_ADLR_AUTORESUME, 'adlr autoresume') |
|
|
|
if args.adlr_autoresume: |
|
if args.rank == 0: |
|
print('enabling autoresume ...', flush=True) |
|
sys.path.append(os.environ.get('SUBMIT_SCRIPTS', '.')) |
|
try: |
|
from userlib.auto_resume import AutoResume |
|
except BaseException: |
|
print('ADLR autoresume is not available, exiting ...') |
|
sys.exit() |
|
|
|
_GLOBAL_ADLR_AUTORESUME = AutoResume |
|
|
|
|
|
def _set_timers(args): |
|
"""Initialize timers.""" |
|
global _GLOBAL_TIMERS |
|
_ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers') |
|
_GLOBAL_TIMERS = Timers(args.timing_log_level, args.timing_log_option) |
|
|
|
|
|
def _set_counters(args): |
|
global _GLOBAL_COUNTERS |
|
_ensure_var_is_not_initialized(_GLOBAL_COUNTERS, 'counters') |
|
_GLOBAL_COUNTERS = defaultdict(int) |
|
|
|
|
|
def _ensure_var_is_initialized(var, name): |
|
"""Make sure the input variable is not None.""" |
|
assert var is not None, '{} is not initialized.'.format(name) |
|
|
|
|
|
def _ensure_var_is_not_initialized(var, name): |
|
"""Make sure the input variable is not None.""" |
|
assert var is None, '{} is already initialized.'.format(name) |
|
|
|
|
|
|
|
|
|
|