sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
import math
import torch
from torch.nn import LayerNorm
from megatron.model.enums import AttnMaskType
from megatron.model.fused_layer_norm import MixedFusedLayerNorm
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.utils import attention_mask_func
from megatron.fused_kernels import load
def test_load_fused_kernels():
try:
import fused_mix_prec_layer_norm_cuda
import scaled_masked_softmax_cuda
import scaled_upper_triang_masked_softmax_cuda
import torch
print("[Success] load_fused_kernels")
except ImportError as e:
print("[Fail] load_fused_kernels")
raise e
def test_fused_softmax():
bert = BertModel.from_pretrained("bert-base-cased").cuda().half()
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
test_text = (
"Hello. How are you? I am fine thank you and you? yes Good. "
"hi hi hi hi hi hi hi hi hi hi hi hi hi" # 32
)
tokens = tokenizer(
[test_text] * 4,
return_tensors="pt",
)
embedding_output = bert.embeddings(
input_ids=tokens["input_ids"].cuda(),
position_ids=None,
token_type_ids=tokens["token_type_ids"].cuda(),
inputs_embeds=None,
past_key_values_length=0,
)
# (bsz, 1, 1, seq_len)
mask = bert.get_extended_attention_mask(
attention_mask=tokens["attention_mask"].cuda(),
input_shape=tokens["input_ids"].shape,
device=bert.device,
)
# (bsz, 1, seq_len, seq_len)
mask = mask.repeat(1, 1, mask.size()[-1], 1)
attention = bert.encoder.layer[0].attention.self
key_layer = attention.transpose_for_scores(attention.key(embedding_output))
query_layer = attention.transpose_for_scores(attention.query(embedding_output))
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores /= math.sqrt(key_layer.size()[-1])
fused_softmax = (
FusedScaleMaskSoftmax(
input_in_fp16=True,
input_in_bf16=False,
mask_func=attention_mask_func,
scale=None,
softmax_in_fp32=False,
attn_mask_type=AttnMaskType.padding,
scaled_masked_softmax_fusion=True,
)
.cuda()
.half()
)
fused_softmax_output = fused_softmax(
attention_scores,
(mask != 0),
)
torch_softmax = (
FusedScaleMaskSoftmax(
input_in_fp16=True,
input_in_bf16=False,
mask_func=attention_mask_func,
scale=None,
softmax_in_fp32=False,
attn_mask_type=AttnMaskType.padding,
scaled_masked_softmax_fusion=False,
)
.cuda()
.half()
)
torch_softmax_output = torch_softmax(
attention_scores,
(mask != 0),
)
test_result = (fused_softmax_output - torch_softmax_output).abs()
while test_result.dim() != 1:
test_result = test_result.mean(dim=-1)
diff = test_result.mean(dim=-1)
if diff <= 1e-3:
print(
f"\n[Success] test_fused_softmax"
f"\n > mean_difference={diff}"
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}"
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}"
)
else:
print(
f"\n[Fail] test_fused_softmax"
f"\n > mean_difference={diff}, "
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}, "
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}"
)
def test_fused_upper_triangle_mask_softmax():
gpt = GPT2Model.from_pretrained("gpt2").cuda().half()
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
test_text = (
"Hello. How are you? I am fine thank you and you? yes Good. "
"hi hi hi hi hi hi hi" # 24
)
tokens = tokenizer(
[test_text] * 4,
return_tensors="pt",
)
attention_mask = tokens["attention_mask"].cuda()
attention_mask = attention_mask.view(attention_mask.size(0), -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = (1.0 - attention_mask) * -10000.0
attention_mask = attention_mask.repeat(1, 1, attention_mask.size()[-1], 1)
attn = gpt.h[0]
hidden_states = gpt.wte(tokens["input_ids"].cuda())
q, k, v = attn.attn.c_attn(hidden_states).split(768, dim=-1)
q = attn.attn._split_heads(q, attn.attn.num_heads, attn.attn.head_dim)
k = attn.attn._split_heads(k, attn.attn.num_heads, attn.attn.head_dim)
attn_weights = torch.matmul(q, k.transpose(-1, -2))
sq, sk = q.size(-2), k.size(-2)
causal_mask = attn.attn.bias[:, :, sk - sq : sk, :sk].bool()
total_mask = ~(causal_mask & (attention_mask == 0))
"""
tensor([[[[False, True, True, ..., True, True, True],
[False, False, True, ..., True, True, True],
[False, False, False, ..., True, True, True],
...,
[False, False, False, ..., False, True, True],
[False, False, False, ..., False, False, True],
[False, False, False, ..., False, False, False]]]
"""
fused_softmax = (
FusedScaleMaskSoftmax(
input_in_fp16=True,
input_in_bf16=False,
mask_func=attention_mask_func,
scale=None,
softmax_in_fp32=False,
attn_mask_type=AttnMaskType.causal,
scaled_masked_softmax_fusion=True,
)
.cuda()
.half()
)
fused_softmax_output = fused_softmax(
attn_weights,
total_mask,
)
torch_softmax = (
FusedScaleMaskSoftmax(
input_in_fp16=True,
input_in_bf16=False,
mask_func=attention_mask_func,
scale=None,
softmax_in_fp32=False,
attn_mask_type=AttnMaskType.causal,
scaled_masked_softmax_fusion=False,
)
.cuda()
.half()
)
torch_softmax_output = torch_softmax(
attn_weights,
total_mask,
)
test_result = (fused_softmax_output - torch_softmax_output).abs()
while test_result.dim() != 1:
test_result = test_result.mean(dim=-1)
diff = test_result.mean(dim=-1)
if diff <= 1e-3:
print(
f"\n[Success] test_fused_upper_triangle_mask_softmax"
f"\n > mean_difference={diff}"
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}"
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}"
)
else:
print(
f"\n[Fail] test_fused_upper_triangle_mask_softmax"
f"\n > mean_difference={diff}, "
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}, "
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}"
)
def test_layer_norm():
bert = BertModel.from_pretrained("bert-base-cased").cuda().half()
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
test_text = (
"Hello. How are you? I am fine thank you and you? yes Good. "
"hi hi hi hi hi hi hi hi hi hi hi hi hi" # 32
)
tokens = tokenizer(
[test_text] * 4,
return_tensors="pt",
)
# [bsz, seq_len, d_model]
embedding_output = (
bert.embeddings(
input_ids=tokens["input_ids"].cuda(),
position_ids=None,
token_type_ids=tokens["token_type_ids"].cuda(),
inputs_embeds=None,
past_key_values_length=0,
)
.cuda()
.half()
)
fused_layernorm_layer = (
MixedFusedLayerNorm(normalized_shape=embedding_output.size(-1)).cuda().half()
)
torch_layernorm_layer = (
LayerNorm(normalized_shape=embedding_output.size(-1)).cuda().half()
)
fused_output = fused_layernorm_layer(embedding_output)
torch_output = torch_layernorm_layer(embedding_output)
test_result = (fused_output - torch_output).abs()
while test_result.dim() != 1:
test_result = test_result.mean(dim=-1)
diff = test_result.mean(dim=-1)
if diff <= 1e-3:
print(
f"\n[Success] test_layer_norm"
f"\n > mean_difference={diff}"
f"\n > fused_values={fused_output[-1][-1][:5].tolist()}"
f"\n > torch_values={torch_output[-1][-1][:5].tolist()}"
)
else:
print(
f"\n[Fail] test_layer_norm"
f"\n > mean_difference={diff}, "
f"\n > fused_values={fused_output[-1][-1][:5].tolist()}, "
f"\n > torch_values={torch_output[-1][-1][:5].tolist()}"
)
def attention_mask_func(attention_scores, attention_mask):
attention_scores.masked_fill_(attention_mask, -10000.0)
return attention_scores
def forward_torch_softmax(input, mask, scale):
input = input * scale
mask_output = attention_mask_func(input, mask) if mask is not None else input
probs = torch.nn.Softmax(dim=-1)(mask_output)
return probs
def test_masked_softmax_forward():
import scaled_masked_softmax_cuda
batch = 2
attn = 16
scale_t = torch.tensor([1.0])
for qlen in [128, 256, 1024, 2048, 4096]:
for klen in [128, 256, 1024, 2048]:
inputs = torch.normal(0, 2, (batch, attn, qlen, klen), dtype=torch.float16, device='cuda:0')
masks = torch.randint(0, 2, (batch, 1, qlen, klen), dtype=torch.bool, device='cuda:0')
softmax_results = scaled_masked_softmax_cuda.forward(inputs, masks, scale_t[0].item())
softmax_results_torch = forward_torch_softmax(inputs, masks, scale_t[0].item())
error = (softmax_results_torch - softmax_results).abs().max()
assert error < 1e-3
def test_masked_softmax_backward():
import scaled_masked_softmax_cuda
batch = 2
attn = 16
scale_t = torch.tensor([1.0])
for qlen in [128, 256, 1024, 2048, 4096]:
for klen in [128, 256, 1024, 2048]:
inputs = torch.normal(0, 2, (batch, attn, qlen, klen), dtype=torch.float16, device='cuda:0')
backward = torch.rand_like(inputs, dtype=torch.float16, device='cuda:0')
masks = torch.randint(0, 2, (batch, 1, qlen, klen), dtype=torch.bool, device='cuda:0')
softmax_results = scaled_masked_softmax_cuda.forward(inputs, masks, scale_t[0].item())
back_grad = scaled_masked_softmax_cuda.backward(backward, softmax_results, scale_t[0].item())
inputs.requires_grad = True
softmax_results_torch = forward_torch_softmax(inputs, masks, scale_t[0].item())
softmax_results_torch.backward(backward)
error = (back_grad - inputs.grad).abs().max()
assert error < 1e-3
def test_allmasked_softmax_forward():
import scaled_masked_softmax_cuda
batch = 2
attn = 16
scale_t = torch.tensor([1.0])
for qlen in [128, 256, 1024, 2048, 4096]:
for klen in [128, 256, 1024, 2048]:
inputs = torch.normal(0, 2, (batch, attn, qlen, klen), dtype=torch.float16, device='cuda:0')
masks = torch.ones((batch, 1, qlen, klen), dtype=torch.bool, device='cuda:0')
softmax_results = scaled_masked_softmax_cuda.forward(inputs, masks, scale_t[0].item())
softmax_results_torch = torch.zeros_like(inputs)
error = (softmax_results_torch - softmax_results).abs().max()
assert error == 0.0
def test_allmasked_softmax_backward():
import scaled_masked_softmax_cuda
batch = 2
attn = 16
scale_t = torch.tensor([1.0])
for qlen in [128, 256, 1024, 2048, 4096]:
for klen in [128, 256, 1024, 2048]:
inputs = torch.normal(0, 2, (batch, attn, qlen, klen), dtype=torch.float16, device='cuda:0')
backward = torch.rand_like(inputs, dtype=torch.float16, device='cuda:0')
masks = torch.ones((batch, 1, qlen, klen), dtype=torch.bool, device='cuda:0')
softmax_results = scaled_masked_softmax_cuda.forward(inputs, masks, scale_t[0].item())
back_grad = scaled_masked_softmax_cuda.backward(backward, softmax_results, scale_t[0].item())
inputs.requires_grad = True
softmax_results_torch = forward_torch_softmax(inputs, masks, scale_t[0].item())
softmax_results_torch.backward(backward)
error = (back_grad - inputs.grad).abs().max()
assert error < 1e-3
if __name__ == "__main__":
try:
from transformers import BertTokenizer, GPT2Tokenizer
from transformers.models.bert.modeling_bert import BertModel
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
import transformers
transformers.logging.set_verbosity(
transformers.logging.FATAL,
)
except:
print("\n[Fail] Please install `transformers` package to test fused kernels\n")
exit(-1)
load()
test_masked_softmax_forward()
test_masked_softmax_backward()
test_allmasked_softmax_forward()
test_allmasked_softmax_backward()
test_load_fused_kernels()
test_fused_softmax()
test_fused_upper_triangle_mask_softmax()
test_layer_norm()