|
|
|
|
|
"""T5 Style dataset.""" |
|
|
|
import collections |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from megatron import get_tokenizer |
|
from megatron.data.dataset_utils import ( |
|
create_masked_lm_predictions, |
|
get_samples_mapping |
|
) |
|
|
|
class T5Dataset(torch.utils.data.Dataset): |
|
|
|
def __init__(self, name, indexed_dataset, data_prefix, |
|
num_epochs, max_num_samples, masked_lm_prob, |
|
max_seq_length, max_seq_length_dec, |
|
short_seq_prob, seed): |
|
|
|
|
|
self.name = name |
|
self.seed = seed |
|
self.masked_lm_prob = masked_lm_prob |
|
self.max_seq_length = max_seq_length |
|
self.max_seq_length_dec = max_seq_length_dec |
|
|
|
|
|
self.indexed_dataset = indexed_dataset |
|
|
|
|
|
self.samples_mapping = get_samples_mapping(self.indexed_dataset, |
|
data_prefix, |
|
num_epochs, |
|
max_num_samples, |
|
self.max_seq_length - 2, |
|
short_seq_prob, |
|
self.seed, |
|
self.name, |
|
False) |
|
|
|
|
|
tokenizer = get_tokenizer() |
|
self.vocab_id_list = list(tokenizer.inv_vocab.keys()) |
|
self.vocab_id_to_token_dict = tokenizer.inv_vocab |
|
self.cls_id = tokenizer.cls |
|
self.sep_id = tokenizer.sep |
|
self.mask_id = tokenizer.mask |
|
self.pad_id = tokenizer.pad |
|
self.bos_id = tokenizer.bos_token_id |
|
self.eos_id = tokenizer.eos_token_id |
|
self.sentinel_tokens = tokenizer.additional_special_tokens_ids |
|
assert len(self.sentinel_tokens) > 0, "Provide the argument --vocab_extra_ids 100 to the script" |
|
|
|
def __len__(self): |
|
return self.samples_mapping.shape[0] |
|
|
|
def __getitem__(self, idx): |
|
|
|
start_index, end_index, seq_length = self.samples_mapping[idx] |
|
sample = [] |
|
for index in range(start_index, end_index): |
|
sample.append(self.indexed_dataset[index]) |
|
|
|
|
|
np_rng = np.random.RandomState(seed=(self.seed + idx)) |
|
return build_training_sample(sample, seq_length, |
|
self.max_seq_length, |
|
self.max_seq_length_dec, |
|
self.vocab_id_list, |
|
self.vocab_id_to_token_dict, |
|
self.cls_id, self.sep_id, |
|
self.mask_id, self.pad_id, |
|
self.masked_lm_prob, np_rng, |
|
self.bos_id, self.eos_id, |
|
self.sentinel_tokens) |
|
|
|
|
|
def build_training_sample(sample, target_seq_length, |
|
max_seq_length, max_seq_length_dec, |
|
vocab_id_list, vocab_id_to_token_dict, |
|
cls_id, sep_id, mask_id, pad_id, |
|
masked_lm_prob, np_rng, bos_id=None, |
|
eos_id=None, sentinel_tokens=None): |
|
"""Build training sample. |
|
|
|
Arguments: |
|
sample: A list of sentences in which each sentence is a list token ids. |
|
target_seq_length: Desired sequence length. |
|
max_seq_length: Maximum length of the sequence. All values are padded to |
|
this length. |
|
vocab_id_list: List of vocabulary ids. Used to pick a random id. |
|
vocab_id_to_token_dict: A dictionary from vocab ids to text tokens. |
|
cls_id: Start of example id. |
|
sep_id: Separator id. |
|
mask_id: Mask token id. |
|
pad_id: Padding token id. |
|
masked_lm_prob: Probability to mask tokens. |
|
np_rng: Random number genenrator. Note that this rng state should be |
|
numpy and not python since python randint is inclusive for |
|
the opper bound whereas the numpy one is exclusive. |
|
bos_id: start of decoder example id |
|
eos_id: end of generation id |
|
sentinel_tokens: unique value to be substituted for every replaced span |
|
""" |
|
|
|
assert target_seq_length <= max_seq_length |
|
|
|
|
|
tokens = [token for sentence in sample for token in sentence] |
|
|
|
|
|
max_num_tokens = target_seq_length |
|
truncated = len(tokens) > max_num_tokens |
|
tokens = tokens[:max_num_tokens] |
|
|
|
|
|
max_predictions_per_seq = masked_lm_prob * max_num_tokens |
|
(tokens, masked_positions, masked_labels, _, masked_spans) = create_masked_lm_predictions( |
|
tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob, |
|
cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng, |
|
max_ngrams=10, geometric_dist=True, masking_style="t5") |
|
|
|
|
|
tokens_enc, tokens_dec_in, labels, enc_mask, \ |
|
dec_mask, enc_dec_mask, loss_mask \ |
|
= pad_and_convert_to_numpy(tokens, masked_positions, |
|
masked_labels, pad_id, max_seq_length, |
|
max_seq_length_dec, masked_spans, |
|
bos_id, eos_id, sentinel_tokens) |
|
|
|
train_sample = { |
|
'text_enc': tokens_enc, |
|
'text_dec': tokens_dec_in, |
|
'labels': labels, |
|
'loss_mask': loss_mask, |
|
'truncated': int(truncated), |
|
'enc_mask': enc_mask, |
|
'dec_mask': dec_mask, |
|
'enc_dec_mask': enc_dec_mask, |
|
} |
|
return train_sample |
|
|
|
|
|
def pad_and_convert_to_numpy(tokens, masked_positions, |
|
masked_labels, pad_id, |
|
max_seq_length, max_seq_length_dec, |
|
masked_spans=None, bos_id=None, |
|
eos_id=None, sentinel_tokens=None): |
|
"""Pad sequences and convert them to numpy.""" |
|
|
|
sentinel_tokens = collections.deque(sentinel_tokens) |
|
t5_input = [] |
|
(t5_decoder_in, t5_decoder_out) = ([bos_id], []) |
|
(start_index, end_index) = (0, None) |
|
for span in masked_spans: |
|
flag = sentinel_tokens.popleft() |
|
|
|
|
|
t5_decoder_in.append(flag) |
|
t5_decoder_in.extend(span.label) |
|
t5_decoder_out.append(flag) |
|
t5_decoder_out.extend(span.label) |
|
|
|
end_index = span.index[0] |
|
t5_input.extend(tokens[start_index: end_index]) |
|
t5_input.append(flag) |
|
|
|
|
|
start_index = span.index[-1] + 1 |
|
|
|
|
|
t5_decoder_out.append(eos_id) |
|
|
|
|
|
t5_input.extend(tokens[start_index:]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_tokens = len(t5_input) |
|
padding_length = max_seq_length - num_tokens |
|
assert padding_length >= 0 |
|
assert len(masked_positions) == len(masked_labels) |
|
|
|
|
|
filler = [pad_id] * padding_length |
|
tokens_enc = np.array(t5_input + filler, dtype=np.int64) |
|
|
|
|
|
num_tokens_dec = len(t5_decoder_in) |
|
padding_length_dec = max_seq_length_dec - num_tokens_dec |
|
assert padding_length_dec >= 0 |
|
filler_dec = [pad_id] * padding_length_dec |
|
tokens_dec_in = np.array(t5_decoder_in + filler_dec, dtype=np.int64) |
|
|
|
|
|
enc_mask = make_attention_mask(tokens_enc, tokens_enc) |
|
enc_dec_mask = make_attention_mask(tokens_dec_in, tokens_enc) |
|
dec_mask = make_attention_mask(tokens_dec_in, tokens_dec_in) |
|
dec_mask = dec_mask * make_history_mask(tokens_dec_in) |
|
|
|
|
|
labels = t5_decoder_out + ([-1] * padding_length_dec) |
|
labels = np.array(labels, dtype=np.int64) |
|
|
|
|
|
loss_mask = ([1] * num_tokens_dec) + ([0] * padding_length_dec) |
|
loss_mask = np.array(loss_mask, dtype=np.int64) |
|
|
|
return tokens_enc, tokens_dec_in, labels, enc_mask, \ |
|
dec_mask, enc_dec_mask, loss_mask |
|
|
|
|
|
def make_attention_mask(source_block, target_block): |
|
""" |
|
Returns a 2-dimensional (2-D) attention mask |
|
:param source_block: 1-D array |
|
:param target_block: 1-D array |
|
""" |
|
mask = (target_block[None, :] >= 1) * (source_block[:, None] >= 1) |
|
mask = mask.astype(np.int64) |
|
|
|
return mask |
|
|
|
|
|
def make_attention_mask_3d(source_block, target_block): |
|
""" |
|
Returns a 3-dimensional (3-D) attention mask |
|
:param source_block: 1-D array |
|
:param target_block: 1-D array |
|
""" |
|
mask = (target_block[:, None, :] >= 1) * (source_block[:, :, None] >= 1) |
|
|
|
|
|
return mask |
|
|
|
|
|
def make_history_mask(block): |
|
length = block.shape[0] |
|
arange = np.arange(length) |
|
history_mask = (arange[None, ] <= arange[:, None]) |
|
history_mask = history_mask.astype(np.int64) |
|
return history_mask |
|
|
|
|
|
def make_history_mask_3d(block): |
|
batch, length = block.shape |
|
arange = torch.arange(length, device=block.device) |
|
history_mask = (arange[None, ] <= arange[:, None])[None, ] |
|
history_mask = history_mask.expand(batch, length, length) |
|
return history_mask |
|
|