SMC / medlineplus_spanish /using_dataset.py
inoid's picture
Upload using_dataset.py
39f9089 verified
# -*- coding: utf-8 -*-
"""using_dataset_hugginface.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1soGxkZu4antYbYG23GioJ6zoSt_GhSNT
"""
"""**Hugginface loggin for push on Hub**"""
###
#
# Used bibliografy:
# https://huggingface.co/learn/nlp-course/chapter5/5
#
###
import os
import time
import math
from huggingface_hub import login
from datasets import load_dataset, concatenate_datasets
from functools import reduce
from pathlib import Path
import pandas as pd
import numpy as np
# Load model directly
from transformers import AutoTokenizer
HF_TOKEN = ''
DATASET_TO_LOAD = 'spanish_health_output.json'
DATASET_TO_UPDATE = 'somosnlp/spanish_medica_llm'
BAD_CHAIN = [
'es como usted puede verificarlo',
'Un sitio oficial del Gobierno de Estados Unidos',
'lo en sitios web oficiales y seguros.',
'forma segura a un sitio web .gov. Comparta informaci',
'Gobierno de Estados Unidos.',
'pertenece a una organizaci',
'(\r\n \n ) o ',
'Un sitio\r\n'
]
#Loggin to Huggin Face
login(token = HF_TOKEN)
royalListOfCode = {}
issues_path = 'dataset'
tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium")
DATASET_SOURCE_ID = '2'
#Read current path
path = Path(__file__).parent.absolute()
dataset_CODING = pd.read_json(str(path) + os.sep + DATASET_TO_LOAD, encoding="utf8")
# raw_text: Texto asociado al documento, pregunta, caso clínico u otro tipo de información.
# topic: (puede ser healthcare_treatment, healthcare_diagnosis, tema, respuesta a pregunta, o estar vacío p.ej en el texto abierto)
# speciality: (especialidad médica a la que se relaciona el raw_text p.ej: cardiología, cirugía, otros)
# raw_text_type: (puede ser caso clínico, open_text, question)
# topic_type: (puede ser medical_topic, medical_diagnostic,answer,natural_medicine_topic, other, o vacio)
# source: Identificador de la fuente asociada al documento que aparece en el README y descripción del dataset.
# country: Identificador del país de procedencia de la fuente (p.ej.; ch, es) usando el estándar ISO 3166-1 alfa-2 (Códigos de país de dos letras.).
cantemistDstDict = {
'raw_text': '',
'topic': '',
'speciallity': '',
'raw_text_type': 'open_text',
'topic_type': 'other',
'source': DATASET_SOURCE_ID,
'country': 'es',
'document_id': ''
}
def getExtraTexInformation(item, data_top_columname):
optionalTag = ["Healthtopics Name", "titles", "subtitles", "paragraphs"]
text = ""
for key in data_top_columname:
if key not in optionalTag:
if not np.isnan(item[key]) and len(item[key]) > 1:
text += str(item[key]) + '\n'
return text
totalOfTokens = 0
corpusToLoad = []
countCopySeveralDocument = 0
counteOriginalDocument = 0
data_top_columname = dataset_CODING.head()
def verifyRepetelyChain(paragraph):
return '' if len([ x for x in BAD_CHAIN if paragraph.find(x) != -1]) > 0 else paragraph
for index, item in dataset_CODING.iterrows():
if len(item['paragraphs']) > 1:
text = reduce(lambda a, b: verifyRepetelyChain(a) + "\n "+ verifyRepetelyChain(b), item['paragraphs'], "")
else:
text = getExtraTexInformation(item, data_top_columname)
#Find topic or diagnosti clasification about the text
counteOriginalDocument += 1
newCorpusRow = cantemistDstDict.copy()
#print('Current text has ', currentSizeOfTokens)
#print('Total of tokens is ', totalOfTokens)
listOfTokens = []
try:
listOfTokens = tokenizer.tokenize(text)
except Exception:
raise Exception('Error')
currentSizeOfTokens = len(listOfTokens)
totalOfTokens += currentSizeOfTokens
newCorpusRow['topic'] = item['Healthtopics Name'] if item['Healthtopics Name'] else reduce(lambda a, b: a + "\n "+ b, item['titles'], "")
newCorpusRow['raw_text'] = text
idFile = counteOriginalDocument
newCorpusRow['document_id'] = str(idFile)
corpusToLoad.append(newCorpusRow)
df = pd.DataFrame.from_records(corpusToLoad)
if os.path.exists(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl"):
os.remove(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl")
df.to_json(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", orient="records", lines=True)
print(
f"Downloaded all the issues for {DATASET_TO_LOAD}! Dataset stored at {issues_path}/spanish_medical_llms.jsonl"
)
print(' On dataset there are as document ', counteOriginalDocument)
print(' On dataset there are as copy document ', countCopySeveralDocument)
print(' On dataset there are as size of Tokens ', totalOfTokens)
file = Path(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl") # or Path('./doc.txt')
size = file.stat().st_size
print ('File size on Kilobytes (kB)', size >> 10) # 5242880 kilobytes (kB)
print ('File size on Megabytes (MB)', size >> 20 ) # 5120 megabytes (MB)
print ('File size on Gigabytes (GB)', size >> 30 ) # 5 gigabytes (GB)
#Once the issues are downloaded we can load them locally using our
local_spanish_dataset = load_dataset("json", data_files=f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", split="train")
##Update local dataset with cloud dataset
try:
spanish_dataset = load_dataset(DATASET_TO_UPDATE, split="train")
new_spanish_dataset = concatenate_datasets([spanish_dataset, local_spanish_dataset])
except Exception:
print ('<== Exception ==> ')
raise Exception
#new_spanish_dataset = local_spanish_dataset
new_spanish_dataset.push_to_hub(DATASET_TO_UPDATE)
print(new_spanish_dataset)
# Augmenting the dataset
#Importan if exist element on DATASET_TO_UPDATE we must to update element
# in list, and review if the are repeted elements
#spanish_dataset.push_to_hub(DATASET_TO_UPDATE)