|
import numpy as np |
|
import datasets |
|
|
|
from huggingface_hub import HfApi |
|
api = HfApi() |
|
repo_files = list(api.dataset_info(repo_id="laion/laion2b-en-vit-h-14-embeddings").siblings) |
|
filenames = [x.rfilename for x in repo_files] |
|
img_embs = [x for x in filenames if x.startswith("img_emb/")] |
|
|
|
|
|
class LAIONEmbeddingsConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(LAIONEmbeddingsConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
|
|
|
|
class LAIONEmbeddings(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
LAIONEmbeddingsConfig() |
|
] |
|
|
|
def _get_features(self) -> datasets.Features: |
|
return datasets.Features({ |
|
"embedding": datasets.Sequence(datasets.Value("float32")), |
|
}) |
|
|
|
def _info(self): |
|
features = self._get_features() |
|
|
|
return datasets.DatasetInfo( |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
main_url = "https://huggingface.co/datasets/laion/laion2b-en-vit-h-14-embeddings/resolve/main/" |
|
archive_paths = dl_manager.download([main_url + x for x in img_embs]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"chunks": archive_paths, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, chunks, split): |
|
for chunk in chunks: |
|
file = np.DataSource().open(chunk) |
|
data = np.load(file.name) |
|
for example in data: |
|
yield "", { |
|
"embedding": example |
|
} |