Datasets:

Modalities:
Text
Formats:
json
Languages:
English
Libraries:
Datasets
pandas
License:
Shubhanshu Mishra commited on
Commit
252d8f7
1 Parent(s): 69d7a7e

Added datasets

Browse files
Files changed (2) hide show
  1. .gitattributes +1 -0
  2. README.md +399 -0
.gitattributes CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
56
+ data filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,402 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ configs:
4
+ - config_name: abusive-founta
5
+ data_files:
6
+ - path: data/ABUSIVE/Founta/test.json
7
+ split: test
8
+ - path: data/ABUSIVE/Founta/train.json
9
+ split: train
10
+ - path: data/ABUSIVE/Founta/validation.json
11
+ split: validation
12
+ - config_name: abusive-waseemsrw
13
+ data_files:
14
+ - path: data/ABUSIVE/WaseemSRW/test.json
15
+ split: test
16
+ - path: data/ABUSIVE/WaseemSRW/train.json
17
+ split: train
18
+ - path: data/ABUSIVE/WaseemSRW/validation.json
19
+ split: validation
20
+ - config_name: chunking-ritter
21
+ data_files:
22
+ - path: data/CHUNKING/Ritter/test.json
23
+ split: test
24
+ - path: data/CHUNKING/Ritter/train.json
25
+ split: train
26
+ - path: data/CHUNKING/Ritter/validation.json
27
+ split: validation
28
+ - config_name: ner-broad
29
+ data_files:
30
+ - path: data/NER/BROAD/test.json
31
+ split: test
32
+ - path: data/NER/BROAD/train.json
33
+ split: train
34
+ - path: data/NER/BROAD/validation.json
35
+ split: validation
36
+ - config_name: ner-finin
37
+ data_files:
38
+ - path: data/NER/Finin/test.json
39
+ split: test
40
+ - path: data/NER/Finin/train.json
41
+ split: train
42
+ - config_name: ner-hege
43
+ data_files:
44
+ - path: data/NER/Hege/test.json
45
+ split: test
46
+ - config_name: ner-msm2013
47
+ data_files:
48
+ - path: data/NER/MSM2013/test.json
49
+ split: test
50
+ - path: data/NER/MSM2013/train.json
51
+ split: train
52
+ - config_name: ner-multimodal
53
+ data_files:
54
+ - path: data/NER/MultiModal/test.json
55
+ split: test
56
+ - path: data/NER/MultiModal/train.json
57
+ split: train
58
+ - path: data/NER/MultiModal/validation.json
59
+ split: validation
60
+ - config_name: ner-neel2016
61
+ data_files:
62
+ - path: data/NER/NEEL2016/test.json
63
+ split: test
64
+ - path: data/NER/NEEL2016/train.json
65
+ split: train
66
+ - path: data/NER/NEEL2016/validation.json
67
+ split: validation
68
+ - config_name: ner-ritter
69
+ data_files:
70
+ - path: data/NER/Ritter/test.json
71
+ split: test
72
+ - path: data/NER/Ritter/train.json
73
+ split: train
74
+ - path: data/NER/Ritter/validation.json
75
+ split: validation
76
+ - config_name: ner-wnut2016
77
+ data_files:
78
+ - path: data/NER/WNUT2016/test.json
79
+ split: test
80
+ - path: data/NER/WNUT2016/train.json
81
+ split: train
82
+ - path: data/NER/WNUT2016/validation.json
83
+ split: validation
84
+ - config_name: ner-wnut2017
85
+ data_files:
86
+ - path: data/NER/WNUT2017/test.json
87
+ split: test
88
+ - path: data/NER/WNUT2017/train.json
89
+ split: train
90
+ - path: data/NER/WNUT2017/validation.json
91
+ split: validation
92
+ - config_name: ner-yodie
93
+ data_files:
94
+ - path: data/NER/YODIE/test.json
95
+ split: test
96
+ - path: data/NER/YODIE/train.json
97
+ split: train
98
+ - config_name: pos-dimsum2016
99
+ data_files:
100
+ - path: data/POS/DiMSUM2016/test.json
101
+ split: test
102
+ - path: data/POS/DiMSUM2016/train.json
103
+ split: train
104
+ - config_name: pos-foster
105
+ data_files:
106
+ - path: data/POS/Foster/test.json
107
+ split: test
108
+ - config_name: pos-lowlands
109
+ data_files:
110
+ - path: data/POS/lowlands/test.json
111
+ split: test
112
+ - config_name: pos-owoputi
113
+ data_files:
114
+ - path: data/POS/Owoputi/test.json
115
+ split: test
116
+ - path: data/POS/Owoputi/train.json
117
+ split: train
118
+ - path: data/POS/Owoputi/validation.json
119
+ split: validation
120
+ - config_name: pos-ritter
121
+ data_files:
122
+ - path: data/POS/Ritter/test.json
123
+ split: test
124
+ - path: data/POS/Ritter/train.json
125
+ split: train
126
+ - path: data/POS/Ritter/validation.json
127
+ split: validation
128
+ - config_name: pos-tweetbankv2
129
+ data_files:
130
+ - path: data/POS/Tweetbankv2/test.json
131
+ split: test
132
+ - path: data/POS/Tweetbankv2/train.json
133
+ split: train
134
+ - path: data/POS/Tweetbankv2/validation.json
135
+ split: validation
136
+ - config_name: pos-twitie
137
+ data_files:
138
+ - path: data/POS/TwitIE/test.json
139
+ split: test
140
+ - path: data/POS/TwitIE/validation.json
141
+ split: validation
142
+ - config_name: sentiment-airline
143
+ data_files:
144
+ - path: data/SENTIMENT/Airline/test.json
145
+ split: test
146
+ - path: data/SENTIMENT/Airline/train.json
147
+ split: train
148
+ - path: data/SENTIMENT/Airline/validation.json
149
+ split: validation
150
+ - config_name: sentiment-clarin
151
+ data_files:
152
+ - path: data/SENTIMENT/Clarin/test.json
153
+ split: test
154
+ - path: data/SENTIMENT/Clarin/train.json
155
+ split: train
156
+ - path: data/SENTIMENT/Clarin/validation.json
157
+ split: validation
158
+ - config_name: sentiment-gop
159
+ data_files:
160
+ - path: data/SENTIMENT/GOP/test.json
161
+ split: test
162
+ - path: data/SENTIMENT/GOP/train.json
163
+ split: train
164
+ - path: data/SENTIMENT/GOP/validation.json
165
+ split: validation
166
+ - config_name: sentiment-healthcare
167
+ data_files:
168
+ - path: data/SENTIMENT/Healthcare/test.json
169
+ split: test
170
+ - path: data/SENTIMENT/Healthcare/train.json
171
+ split: train
172
+ - path: data/SENTIMENT/Healthcare/validation.json
173
+ split: validation
174
+ - config_name: sentiment-obama
175
+ data_files:
176
+ - path: data/SENTIMENT/Obama/test.json
177
+ split: test
178
+ - path: data/SENTIMENT/Obama/train.json
179
+ split: train
180
+ - path: data/SENTIMENT/Obama/validation.json
181
+ split: validation
182
+ - config_name: sentiment-semeval
183
+ data_files:
184
+ - path: data/SENTIMENT/SemEval/test.json
185
+ split: test
186
+ - path: data/SENTIMENT/SemEval/train.json
187
+ split: train
188
+ - path: data/SENTIMENT/SemEval/validation.json
189
+ split: validation
190
+ - config_name: supersense-johannsen2014
191
+ data_files:
192
+ - path: data/SUPERSENSE/Johannsen2014/test.json
193
+ split: test
194
+ - config_name: supersense-ritter
195
+ data_files:
196
+ - path: data/SUPERSENSE/Ritter/test.json
197
+ split: test
198
+ - path: data/SUPERSENSE/Ritter/train.json
199
+ split: train
200
+ - path: data/SUPERSENSE/Ritter/validation.json
201
+ split: validation
202
+ - config_name: uncertainity-riloff
203
+ data_files:
204
+ - path: data/UNCERTAINITY/Riloff/test.json
205
+ split: test
206
+ - path: data/UNCERTAINITY/Riloff/train.json
207
+ split: train
208
+ - path: data/UNCERTAINITY/Riloff/validation.json
209
+ split: validation
210
+ - config_name: uncertainity-swamy
211
+ data_files:
212
+ - path: data/UNCERTAINITY/Swamy/test.json
213
+ split: test
214
+ - path: data/UNCERTAINITY/Swamy/train.json
215
+ split: train
216
+ - path: data/UNCERTAINITY/Swamy/validation.json
217
+ split: validation
218
  ---
219
+
220
+ # SocialMediaIE - Social Media Information Extraction
221
+
222
+ # List of datasets used for training SocialMediaIE
223
+
224
+ - [Dataset referencs](#dataset-referencs)
225
+ * [Tagging datasets](#tagging-datasets)
226
+ - [Dataset statistics](#dataset-statistics)
227
+ * [Sentiment](#sentiment)
228
+ * [Abusive](#abusive)
229
+ * [Uncertainity](#uncertainity)
230
+ * [Part of Speech Tagging](#part-of-speech-tagging)
231
+ * [Named Entity Recognition](#named-entity-recognition)
232
+ * [Chunking](#chunking)
233
+ * [Supersense Tagging](#supersense-tagging)
234
+ - [Dataset references](#dataset-references)
235
+
236
+ <small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small>
237
+
238
+
239
+
240
+ ## Dataset referencs
241
+
242
+ ### Tagging datasets
243
+
244
+ * **POS tagging:** [17,18] (OW), [7] (TIE), [20] (RT), [15](TB), [22] (DS), [12] (FS), and [12,13] (LW).
245
+ * **NER:** [20] (RT), [23] (W16), [6] (W17), [9] (FN), [10] (HG),and [4] (BR), [24] (MM), [11] (YD), [21] (we do not evaluate on this) and [1] (MSM).
246
+ * **Chunking:** [20] (RT) dataset.
247
+ * **Supersense tagging:** [20] (RT) dataset, the [14] (JH) dataset.
248
+
249
+
250
+
251
+ ## Dataset statistics
252
+
253
+ ### Sentiment
254
+
255
+ | | | tokens | tweets | vocab |
256
+ |------------ |------- |-------- |-------- |------- |
257
+ | data | split | | | |
258
+ | Airline | dev | 20079 | 981 | 3273 |
259
+ | | test | 50777 | 2452 | 5630 |
260
+ | | train | 182040 | 8825 | 11697 |
261
+ | Clarin | dev | 80672 | 4934 | 15387 |
262
+ | | test | 205126 | 12334 | 31373 |
263
+ | | train | 732743 | 44399 | 84279 |
264
+ | GOP | dev | 16339 | 803 | 3610 |
265
+ | | test | 41226 | 2006 | 6541 |
266
+ | | train | 148358 | 7221 | 14342 |
267
+ | Healthcare | dev | 15797 | 724 | 3304 |
268
+ | | test | 16022 | 717 | 3471 |
269
+ | | train | 14923 | 690 | 3511 |
270
+ | Obama | dev | 3472 | 209 | 1118 |
271
+ | | test | 8816 | 522 | 2043 |
272
+ | | train | 31074 | 1877 | 4349 |
273
+ | SemEval | dev | 105108 | 4583 | 14468 |
274
+ | | test | 528234 | 23103 | 43812 |
275
+ | | train | 281468 | 12245 | 29673 |
276
+
277
+
278
+ ### Abusive
279
+
280
+ | | | tokens | tweets | vocab |
281
+ |----------- |------- |-------- |-------- |-------- |
282
+ | data | split | | | |
283
+ | Founta | dev | 102534 | 4663 | 22529 |
284
+ | | test | 256569 | 11657 | 44540 |
285
+ | | train | 922028 | 41961 | 118349 |
286
+ | WaseemSRW | dev | 25588 | 1464 | 5907 |
287
+ | | test | 64893 | 3659 | 10646 |
288
+ | | train | 234550 | 13172 | 23042 |
289
+
290
+
291
+ ### Uncertainity
292
+
293
+ | | | tokens | tweets | vocab |
294
+ |-------- |------- |-------- |-------- |------- |
295
+ | data | split | | | |
296
+ | Riloff | dev | 2126 | 145 | 1002 |
297
+ | | test | 5576 | 362 | 1986 |
298
+ | | train | 19652 | 1301 | 5090 |
299
+ | Swamy | dev | 1597 | 73 | 738 |
300
+ | | test | 3909 | 183 | 1259 |
301
+ | | train | 14026 | 655 | 2921 |
302
+
303
+
304
+ ### Part of Speech Tagging
305
+
306
+ | | | labels | labels_unique | sequences | tokens_unique | total_tokens |
307
+ |------------- |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |--------------- |----------- |--------------- |-------------- |
308
+ | data_key | split_prefix | | | | | |
309
+ | Owoputi | train | [!, #, $, &, ,, @, A, D, E, G, L, M, N, O, P, R, S, T, U, V, X, Y, Z, ^, ~] | 25 | 1547 | 6572 | 22326 |
310
+ | | dev | [!, #, $, &, ,, @, A, D, E, G, L, N, O, P, R, S, T, U, V, X, Z, ^, ~] | 23 | 327 | 2036 | 4823 |
311
+ | | test | [!, #, $, &, ,, @, A, D, E, G, L, N, O, P, R, S, T, U, V, X, Z, ^, ~] | 23 | 500 | 2754 | 7152 |
312
+ | Foster | test | [ADJ, ADP, ADV, CCONJ, DET, NOUN, NUM, PART, PRON, PUNCT, VERB, X] | 12 | 250 | 1068 | 2841 |
313
+ | TwitIE | dev | ['', (, ), ,, :, CC, CD, DT, FW, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP$, PUNCT, RB, RBR, RBS, RP, RT, SYM, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB] | 43 | 269 | 1229 | 2998 |
314
+ | | test | ['', (, ), ,, :, CC, CD, DT, EX, FW, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP#, PUNCT, RB, RBR, RBS, RP, RT, SYM, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB] | 45 | 632 | 3539 | 12196 |
315
+ | dev | ['', (, ), ,, :, CC, CD, DT, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNS, POS, PRP, PRP#, PUNCT, RB, RBR, RP, RT, SYM, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WRB] | 41 | 84 | 735 | 1627 | |
316
+ | lowlands | test | [ADJ, ADP, ADV, CCONJ, DET, NOUN, NUM, PART, PRON, PUNCT, VERB, X] | 12 | 1318 | 4805 | 19794 |
317
+ | Tweetbankv2 | dev | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 710 | 3271 | 11759 |
318
+ | | train | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 1639 | 5632 | 24753 |
319
+ | | test | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 1201 | 4699 | 19095 |
320
+ | DiMSUM2016 | train | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 4799 | 9113 | 73826 |
321
+ | | test | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 1000 | 4010 | 16500 |
322
+
323
+
324
+ ### Named Entity Recognition
325
+
326
+ | | | boundaries | labels | labels_unique | sequences | tokens_unique | total_tokens |
327
+ |------------ |-------------- |------------ |--------------------------------------------------------------------------------------------------------------------------- |--------------- |----------- |--------------- |-------------- |
328
+ | data_key | split_prefix | | | | | | |
329
+ | Finin | train | [I, B, O] | [LOC, PER, ORG] | 3 | 10000 | 19663 | 172188 |
330
+ | | test | [I, B, O] | [LOC, PER, ORG] | 3 | 5369 | 13027 | 97525 |
331
+ | Hege | test | [I, B, O] | [LOC, PER, ORG] | 3 | 1545 | 4552 | 20664 |
332
+ | Ritter | train | [I, B, O] | [COMPANY, OTHER, FACILITY, PERSON, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 1900 | 7695 | 36936 |
333
+ | | dev | [I, B, O] | [COMPANY, OTHER, PERSON, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 240 | 1731 | 4612 |
334
+ | | test | [I, B, O] | [COMPANY, OTHER, PERSON, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 254 | 1776 | 4921 |
335
+ | YODIE | train | [I, B, O] | [COMPANY, OTHER, PERSON, LOCATION, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, UNK, TVSHOW, PRODUCT, SPORTSTEAM, ORGANIZATION] | 13 | 396 | 2554 | 7905 |
336
+ | | test | [I, B, O] | [COMPANY, OTHER, FACILITY, LOCATION, PERSON, MOVIE, MUSICARTIST, GEO-LOC, UNK, TVSHOW, PRODUCT, SPORTSTEAM, ORGANIZATION] | 13 | 397 | 2578 | 8032 |
337
+ | WNUT2016 | train | [I, B, O] | [COMPANY, OTHER, FACILITY, PERSON, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 2394 | 9068 | 46469 |
338
+ | | test | [I, B, O] | [COMPANY, OTHER, PERSON, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 3850 | 16012 | 61908 |
339
+ | | dev | [I, B, O] | [COMPANY, OTHER, FACILITY, PERSON, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 1000 | 5563 | 16261 |
340
+ | WNUT2017 | train | [I, B, O] | [GROUP, CORPORATION, PERSON, LOCATION, PRODUCT, CREATIVE-WORK] | 6 | 3394 | 12840 | 62730 |
341
+ | | dev | [I, B, O] | [GROUP, CORPORATION, PERSON, LOCATION, PRODUCT, CREATIVE-WORK] | 6 | 1009 | 3538 | 15733 |
342
+ | | test | [I, B, O] | [GROUP, CORPORATION, PERSON, LOCATION, PRODUCT, CREATIVE-WORK] | 6 | 1287 | 5759 | 23394 |
343
+ | MSM2013 | train | [I, B, O] | [LOC, MISC, PER, ORG] | 4 | 2815 | 8514 | 51521 |
344
+ | | test | [I, B, O] | [LOC, PER, ORG, MISC] | 4 | 1450 | 5701 | 29089 |
345
+ | NEEL2016 | train | [I, B, O] | [PERSON, THING, LOCATION, EVENT, PRODUCT, ORGANIZATION, CHARACTER] | 7 | 2588 | 9731 | 51669 |
346
+ | | dev | [I, B, O] | [PERSON, LOCATION, THING, EVENT, PRODUCT, ORGANIZATION, CHARACTER] | 7 | 88 | 762 | 1647 |
347
+ | | test | [I, B, O] | [PERSON, THING, LOCATION, EVENT, PRODUCT, ORGANIZATION, CHARACTER] | 7 | 2663 | 9894 | 47488 |
348
+ | BROAD | train | [I, B, O] | [LOC, PER, ORG] | 3 | 5605 | 19523 | 90060 |
349
+ | | dev | [I, B, O] | [LOC, PER, ORG] | 3 | 933 | 5312 | 15169 |
350
+ | | test | [I, B, O] | [LOC, PER, ORG] | 3 | 2802 | 11772 | 45159 |
351
+ | MultiModal | train | [I, B, O] | [LOC, PER, ORG, MISC] | 4 | 4000 | 20221 | 64439 |
352
+ | | dev | [I, B, O] | [LOC, MISC, PER, ORG] | 4 | 1000 | 6832 | 16178 |
353
+ | | test | [I, B, O] | [LOC, PER, ORG, MISC] | 4 | 3257 | 17381 | 52822 |
354
+
355
+
356
+ ### Chunking
357
+
358
+ | | | boundaries | labels | labels_unique | sequences | tokens_unique | total_tokens |
359
+ |---------- |-------------- |------------ |-------------------------------------------------- |--------------- |----------- |--------------- |-------------- |
360
+ | data_key | split_prefix | | | | | | |
361
+ | Ritter | train | [I, B, O] | [ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP, CONJP] | 9 | 551 | 3158 | 10584 |
362
+ | | dev | [I, B, O] | [ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP] | 8 | 118 | 994 | 2317 |
363
+ | | test | [I, B, O] | [ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP] | 8 | 119 | 988 | 2310 |
364
+
365
+
366
+ ### Supersense Tagging
367
+
368
+ | | | boundaries | labels | labels_unique | sequences | tokens_unique | total_tokens |
369
+ |--------------- |-------------- |------------ |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |--------------- |----------- |--------------- |-------------- |
370
+ | data_key | split_prefix | | | | | | |
371
+ | Ritter | train | [I, B, O] | [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.TOPS, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.MOTIVE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.POSSESSION, VERB.COMPETITION, NOUN.POSSESSION, NOUN.FEELING, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.WEATHER, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, NOUN.PERSON, VERB.COGNITION, VERB.EMOTION, NOUN.PLANT, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.PROCESS, NOUN.ACT, VERB.CHANGE] | 40 | 551 | 3174 | 10652 |
372
+ | | dev | [I, B, O] | [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.MOTIVE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.COMPETITION, VERB.POSSESSION, NOUN.POSSESSION, NOUN.FEELING, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, VERB.COGNITION, NOUN.PERSON, VERB.EMOTION, NOUN.PLANT, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.ACT, VERB.CHANGE] | 37 | 118 | 1014 | 2242 |
373
+ | | test | [I, B, O] | [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.TOPS, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.MOTIVE, NOUN.SHAPE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.POSSESSION, NOUN.FEELING, NOUN.POSSESSION, VERB.COMPETITION, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.WEATHER, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, NOUN.PERSON, VERB.COGNITION, VERB.EMOTION, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.PROCESS, NOUN.ACT, VERB.CHANGE] | 40 | 118 | 1011 | 2291 |
374
+ | Johannsen2014 | test | [I, B, O] | [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.SHAPE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.COMPETITION, VERB.POSSESSION, NOUN.FEELING, NOUN.POSSESSION, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, NOUN.PERSON, VERB.COGNITION, VERB.EMOTION, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.PROCESS, NOUN.ACT, VERB.CHANGE] | 37 | 200 | 1249 | 3064 |
375
+
376
+
377
+ ## Dataset references
378
+
379
+ * [1] Amparo Elizabeth Cano, Andrea Varga, Matthew Rowe, Milan Stankovic, and Aba-Sah Dadzie. 2013. Making Sense of Microposts (#MSM2013) Concept ExtractionChallenge. In#MSM.
380
+ * [2] Richard A. Caruana. 1993. Multitask Learning: A Knowledge-Based Source ofInductive Bias. InMachine Learning Proceedings 1993. Elsevier, 41–48. https://doi.org/10.1016/b978-1-55860-307-3.50012-5
381
+ * [3] Ronan Collbert, Jason Weston, LÃľon Bottou, Michael Karlen, Koray Kavukcuoglu,and Pavel Kuksa. 2011. Natural Language Processing (Almost) from Scratch.Journal ofMachine Learning Research12 (2 2011), 2493–2537. http://dl.acm.org/citation.cfm?id=2078186
382
+ * [4] Leon Derczynski, Kalina Bontcheva, and Ian Roberts. 2016.Broad Twit-ter Corpus: A Diverse Named Entity Recognition Resource.Proceedings ofCOLING 2016, the 26th International Conference on Computational Linguis-tics: Technical Papers(2016), 1169–1179.http://aclanthology.info/papers/broad-twitter-corpus-a-diverse-named-entity-recognition-resource
383
+ * [5] Leon Derczynski, Diana Maynard, Niraj Aswani, and Kalina Bontcheva. 2013.Microblog-genre Noise and Impact on Semantic Annotation Accuracy. InPro-ceedings of the 24th ACM Conference on Hypertext and Social Media (HT ’13). ACM,New York, NY, USA, 21–30. https://doi.org/10.1145/2481492.2481495
384
+ * [6] Leon Derczynski, Eric Nichols, Marieke van Erp, and Nut Limsopatham. 2017.Results of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition.InProceedings of the 3rd Workshop on Noisy User-generated Text. Association forComputational Linguistics, Copenhagen, Denmark, 140–147. https://doi.org/10.18653/v1/W17-4418
385
+ * [7] Leon Derczynski, Alan Ritter, Sam Clark, and Kalina Bontcheva. 2013. Twit-ter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data.Pro-ceedings of the International Conference Recent Advances in Natural LanguageProcessing RANLP 2013(2013), 198–206.http://aclanthology.info/papers/twitter-part-of-speech-tagging-for-all-overcoming-sparse-and-noisy-data
386
+ * [8] Jacob Eisenstein. 2013. What to do about bad language on the internet. InProceedings of the 2013 Conference of the North American Chapter of the Associationfor Computational Linguistics: Human Language Technologies. Association forComputational Linguistics, Atlanta, Georgia, 359–369. https://www.aclweb.org/anthology/N13-1037
387
+ * [9] Tim Finin, William Murnane, Anand Karandikar, Nicholas Keller, Justin Mar-tineau, and Mark Dredze. 2010. Annotating Named Entities in Twitter Data withCrowdsourcing.Proceedings of the NAACL HLT 2010 Workshop on Creating Speechand Language Data with Amazon’s Mechanical Turk2010, January, 80–88.
388
+ * [10] Hege Fromreide, Dirk Hovy, and Anders Søgaard. 2014. Crowdsourcing and anno-tating NER for Twitter #drift. InProceedings of the Ninth International Conferenceon Language Resources and Evaluation (LREC’14). European language resourcesdistribution agency, 2544–2547. http://www.lrec-conf.org/proceedings/lrec2014/pdf/421_Paper.pdf
389
+ * [11] Genevieve Gorrell, Johann Petrak, and Kalina Bontcheva. 2015. Using @TwitterConventions to Improve #LOD-Based Named Entity Disambiguation. Springer,Cham, 171–186. https://doi.org/10.1007/978-3-319-18818-8{_}11
390
+ * [12] Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014. Experiments with crowd-sourced re-annotation of a POS tagging data set. InProceedings of the 52ndAnnual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, Baltimore, Maryland, 377–382.https://doi.org/10.3115/v1/P14-2062
391
+ * [13] Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014. When POS data setsdon’t add up: Combatting sample bias.Proceedings of the Ninth InternationalConference on Language Resources and Evaluation (LREC-2014)(2014). https://aclanthology.coli.uni-saarland.de/papers/L14-1402/l14-1402
392
+ * [14] Anders Johannsen, Dirk Hovy, HÃľctor Martínez Alonso, Barbara Plank, andAnders Søgaard. 2014. More or less supervised supersense tagging of Twitter.InProceedings of the Third Joint Conference on Lexical and Computational Se-mantics (*SEM 2014). Association for Computational Linguistics and Dublin CityUniversity, Stroudsburg, PA, USA, 1–11. https://doi.org/10.3115/v1/S14-1001
393
+ * [15] Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan Schneider, and Noah A. Smith.2018. Parsing Tweets into Universal Dependencies. InProceedings of the 2018Conference of the North American Chapter of the Association for ComputationalLinguistics: Human Language Technologies, Volume 1 (Long Papers). Associationfor Computational Linguistics, New Orleans, Louisiana, 965–975. https://doi.org/10.18653/v1/N18-1088
394
+ * [16] Héctor Martínez Alonso and Barbara Plank. 2017. When is multitask learningeffective? Semantic sequence prediction under varying data conditions. InPro-ceedings of the 15th Conference of the European Chapter of the Association forComputational Linguistics: Volume 1, Long Papers. Association for ComputationalLinguistics, Valencia, Spain, 44–53. https://www.aclweb.org/anthology/E17-1005
395
+ * [17] Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, and NathanSchneider. 2012. Part-of-Speech Tagging for Twitter: Word Clusters and OtherAdvances.Cmu-Ml-12-107(2012).
396
+ * [18] Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, Nathan Schnei-der, and Noah a Smith. 2013. Improved Part-of-Speech Tagging for OnlineConversational Text with Word Clusters.Proceedings of NAACL-HLT 2013June(2013), 380–390. https://doi.org/10.1.1.343.3572
397
+ * [19] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Repre-sentations. InProceedings of the 2018 Conference of the North American Chapterof the Association for Computational Linguistics: Human Language Technologies,Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,Louisiana, 2227–2237. https://doi.org/10.18653/v1/N18-1202
398
+ * [20] Alan Ritter, Sam Clark, and Oren Etzioni. 2011. Named entity recognition intweets: an experimental study. InProceedings of Emperical Methods for NaturalLangauge Processing. 1524–1534. https://doi.org/10.1075/li.30.1.03nad
399
+ * [21] Giuseppe Rizzo, Marieke van Erp, Julien Plu, and RaphaÃńl Troncy. 2016. MakingSense of Microposts (#Microposts2016) Named Entity rEcognition and Linking(NEEL) Challenge. InWorkshop on Making Sense of Microposts (#Microposts2016).Montréal. http://ceur-ws.org/Vol-1691/microposts2016_neel-challenge-report/http://ceur-ws.org/Vol-1691/microposts2016_neel-challenge-report/microposts2016_neel-challenge-report.pdfhttp://microposts2016.seas.upenn.edu/challenge.htmlhttp://ceur-ws.org/Vol-1691/mic
400
+ * [22] Nathan Schneider and Noah A. Smith. 2015. A Corpus and Model IntegratingMultiword Expressions and Supersenses. InProceedings of the 2015 Conference ofthe North American Chapter of the Association for Computational Linguistics: Hu-man Language Technologies. Association for Computational Linguistics, Denver,Colorado, 1537–1547. https://doi.org/10.3115/v1/N15-1177
401
+ * [23] Benjamin Strauss, Bethany Toma, Alan Ritter, Marie-Catherine de Marn-effe, and Wei Xu. 2016.Results of the WNUT16 Named Entity Recog-nition Shared Task.Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)(2016), 138–144.http://aclanthology.info/papers/results-of-the-wnut16-named-entity-recognition-shared-task
402
+ * [24] Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang. 2018. Adaptive Co-attention Network for Named Entity Recognition in Tweets. https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16432