chunk_id
stringlengths
44
45
chunk_content
stringlengths
21
448
filename
stringlengths
36
36
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_21
_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}") Let’s see how well the model performs on the validation set: Copied correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"]["text_label"]):
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_22
the validation set: Copied correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"]["text_label"]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 print(f"{accuracy=} % on the evaluation dataset") print(f"{eval_preds[:10]=}") print(f"{dataset['validation']['text_label'][:10]=}") "accuracy=97.3568281938326 % on the evaluation dataset" "eval_preds[:10]=['neutral',
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_23
taset['validation']['text_label'][:10]=}") "accuracy=97.3568281938326 % on the evaluation dataset" "eval_preds[:10]=['neutral', 'positive', 'neutral', 'positive', 'neutral', 'negative', 'negative', 'neutral', 'neutral', 'neutral']" "dataset['validation']['text_label'][:10]=['neutral', 'positive', 'neutral', 'positive', 'neutral', 'negative', 'negative', 'neutral', 'neutral', 'neutral']" 97% accuracy in just a few minutes; pretty good! Share mo
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_24
'neutral', 'negative', 'negative', 'neutral', 'neutral', 'neutral']" 97% accuracy in just a few minutes; pretty good! Share model You can store and share your model on the Hub if you’d like. Login to your Hugging Face account and enter your token when prompted: Copied from huggingface_hub import notebook_login notebook_login() Upload the model to a specifc model repository on the Hub with the push_to_hub function: Copied peft_model_i
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_25
notebook_login() Upload the model to a specifc model repository on the Hub with the push_to_hub function: Copied peft_model_id = "your-name/t5-large_PREFIX_TUNING_SEQ2SEQ" model.push_to_hub("your-name/t5-large_PREFIX_TUNING_SEQ2SEQ", use_auth_token=True) If you check the model file size in the repository, you’ll see that it is only 3.93MB! 🤏 Inference Once the model has been uploaded to the Hub, anyone can easily use it for inference. Loa
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_26
that it is only 3.93MB! 🤏 Inference Once the model has been uploaded to the Hub, anyone can easily use it for inference. Load the configuration and model: Copied from peft import PeftModel, PeftConfig peft_model_id = "stevhliu/t5-large_PREFIX_TUNING_SEQ2SEQ" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_27
odel = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id) Get and tokenize some text about financial news: Copied inputs = tokenizer( "The Lithuanian beer market made up 14.41 million liters in January , a rise of 0.8 percent from the year-earlier figure , the Lithuanian Brewers ' Association reporting citing the results from its members .", return_tensors="pt
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_28
r-earlier figure , the Lithuanian Brewers ' Association reporting citing the results from its members .", return_tensors="pt", ) Put the model on a GPU and generate the predicted text sentiment: Copied model.to(device) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_29
model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)) ["positive"]
14c02d08a3d458adfe91e8c9d925a41a.txt
6200969f4271910e1618223a2de243f8.txt_chunk_1
Tuners Each tuner (or PEFT method) has a configuration and model. LoRA For finetuning a model with LoRA. class peft.LoraConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False r: int = 8 target_modules: typing.Union[typi
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_2
: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False r: int = 8 target_modules: typing.Union[typing.List[str], str, NoneType] = None lora_alpha: int = 8 lora_dropout: float = 0.0 fan_in_fan_out: bool = False bias: str = 'none' modules_to_save: typing.Optional[typing.List[str]] = None init_lora_weights: bool = True layers_to_transform: typing.Union[typing.List, int, NoneType] = None layers_pattern: typing.Optional[
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_3
_lora_weights: bool = True layers_to_transform: typing.Union[typing.List, int, NoneType] = None layers_pattern: typing.Optional[str] = None ) Parameters r (int) — Lora attention dimension. target_modules (Union[List[str],str]) — The names of the modules to apply Lora to. lora_alpha (int) — The alpha parameter for Lora scaling. lora_dropout (float) — The dropout probability for Lora layers. fan_in_fan_out (bool) — Set this to True i
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_4
for Lora scaling. lora_dropout (float) — The dropout probability for Lora layers. fan_in_fan_out (bool) — Set this to True if the layer to replace stores weight like (fan_in, fan_out). For example, gpt-2 uses Conv1D which stores weights like (fan_in, fan_out) and hence this should be set to True. — bias (str) — Bias type for Lora. Can be ‘none’, ‘all’ or ‘lora_only’. If ‘all’ or ‘lora_only’, the corresponding biases will be updated duri
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_5
Bias type for Lora. Can be ‘none’, ‘all’ or ‘lora_only’. If ‘all’ or ‘lora_only’, the corresponding biases will be updated during training. Be aware that this means that, even when disabling the adapters, the model will not produce the same output as the base model would have without adaptation. modules_to_save (List[str]) —List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. layers_to_transform
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_6
t[str]) —List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. layers_to_transform (Union[List[int],int]) — The layer indexes to transform, if this argument is specified, it will apply the LoRA transformations on the layer indexes that are specified in this list. If a single integer is passed, it will apply the LoRA transformations on the layer at this index. layers_pattern (str) — The layer patter
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_7
integer is passed, it will apply the LoRA transformations on the layer at this index. layers_pattern (str) — The layer pattern name, used only if layers_to_transform is different from None and if the layer pattern is not in the common layers pattern. This is the configuration class to store the configuration of a LoraModel. class peft.LoraModel < source > ( model config adapter_name ) → torch.nn.Module Parameters model (PreTrainedMo
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_8
LoraModel. class peft.LoraModel < source > ( model config adapter_name ) → torch.nn.Module Parameters model (PreTrainedModel) — The model to be adapted. config (LoraConfig) — The configuration of the Lora model. Returns torch.nn.Module The Lora model. Creates Low Rank Adapter (Lora) model from a pretrained transformers model. Example: Copied >>> from transformers import AutoModelForSeq2SeqLM >>> from peft import LoraModel,
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_9
ined transformers model. Example: Copied >>> from transformers import AutoModelForSeq2SeqLM >>> from peft import LoraModel, LoraConfig >>> config = LoraConfig( ... task_type="SEQ_2_SEQ_LM", ... r=8, ... lora_alpha=32, ... target_modules=["q", "v"], ... lora_dropout=0.01, ... ) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> lora_model = LoraModel(model, config, "default") Copied >>> import transfor
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_10
ModelForSeq2SeqLM.from_pretrained("t5-base") >>> lora_model = LoraModel(model, config, "default") Copied >>> import transformers >>> from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_int8_training >>> target_modules = ["q_proj", "k_proj", "v_proj", "out_proj", "fc_in", "fc_out", "wte"] >>> config = LoraConfig( ... r=4, lora_alpha=16, target_modules=target_modules, lora_dropout=0.1, bias="none", task_type="CAUSAL
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_11
config = LoraConfig( ... r=4, lora_alpha=16, target_modules=target_modules, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM" ... ) >>> model = transformers.GPTJForCausalLM.from_pretrained( ... "kakaobrain/kogpt", ... revision="KoGPT6B-ryan1.5b-float16", # or float32 version: revision=KoGPT6B-ryan1.5b ... pad_token_id=tokenizer.eos_token_id, ... use_cache=False, ... device_map={"": rank}, ... torch_dtype=torch.f
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_12
... pad_token_id=tokenizer.eos_token_id, ... use_cache=False, ... device_map={"": rank}, ... torch_dtype=torch.float16, ... load_in_8bit=True, ... ) >>> model = prepare_model_for_int8_training(model) >>> lora_model = get_peft_model(model, config) Attributes: model (PreTrainedModel) — The model to be adapted. peft_config (LoraConfig): The configuration of the Lora model. add_weighted_adapter < source > ( adapters weights ad
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_13
adapted. peft_config (LoraConfig): The configuration of the Lora model. add_weighted_adapter < source > ( adapters weights adapter_name combination_type = 'svd' ) Parameters adapters (list) — List of adapter names to be merged. weights (list) — List of weights for each adapter. adapter_name (str) — Name of the new adapter. combination_type (str) — Type of merging. Can be one of [svd, linear] This method adds a new adapter by me
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_14
the new adapter. combination_type (str) — Type of merging. Can be one of [svd, linear] This method adds a new adapter by merging the given adapters with the given weights. delete_adapter < source > ( adapter_name ) Parameters adapter_name (str) — Name of the adapter to be deleted. Deletes an existing adapter. merge_adapter < source > ( ) This method merges the LoRa layers into the base model. merge_and_unload < source > (
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_15
pter. merge_adapter < source > ( ) This method merges the LoRa layers into the base model. merge_and_unload < source > ( ) This method merges the LoRa layers into the base model. This is needed if someone wants to use the base model as a standalone model. Example: Copied >>> from transformers import AutoModelForCausalLM >>> from peft import PeftModel >>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") >>> p
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_16
odelForCausalLM >>> from peft import PeftModel >>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") >>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample" >>> model = PeftModel.from_pretrained(base_model, peft_model_id) >>> merged_model = model.merge_and_unload() unload < source > ( ) Gets back the base model by removing all the lora modules without merging. This gives back the original base model
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_17
urce > ( ) Gets back the base model by removing all the lora modules without merging. This gives back the original base model. unmerge_adapter < source > ( ) This method unmerges the LoRa layers from the base model. class peft.tuners.lora.LoraLayer < source > ( in_features: int out_features: int **kwargs ) class peft.tuners.lora.Linear < source > ( adapter_name: str in_features: int out_features: int r: int = 0 lora_alpha: int =
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_18
class peft.tuners.lora.Linear < source > ( adapter_name: str in_features: int out_features: int r: int = 0 lora_alpha: int = 1 lora_dropout: float = 0.0 fan_in_fan_out: bool = False is_target_conv_1d_layer: bool = False **kwargs ) P-tuning class peft.PromptEncoderConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_19
[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tokens: int = None token_dim: int = None num_transformer_submodules: typing.Optional[int] = None num_attention_heads: typing.Optional[int] = None num_layers: typing.Optional[int] = None encoder_reparame
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_20
g.Optional[int] = None num_attention_heads: typing.Optional[int] = None num_layers: typing.Optional[int] = None encoder_reparameterization_type: typing.Union[str, peft.tuners.p_tuning.PromptEncoderReparameterizationType] = <PromptEncoderReparameterizationType.MLP: 'MLP'> encoder_hidden_size: int = None encoder_num_layers: int = 2 encoder_dropout: float = 0.0 ) Parameters encoder_reparameterization_type (Union[PromptEncoderReparameterizatio
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_21
rs: int = 2 encoder_dropout: float = 0.0 ) Parameters encoder_reparameterization_type (Union[PromptEncoderReparameterizationType, str]) — The type of reparameterization to use. encoder_hidden_size (int) — The hidden size of the prompt encoder. encoder_num_layers (int) — The number of layers of the prompt encoder. encoder_dropout (float) — The dropout probability of the prompt encoder. This is the configuration class to store the c
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_22
er. encoder_dropout (float) — The dropout probability of the prompt encoder. This is the configuration class to store the configuration of a PromptEncoder. class peft.PromptEncoder < source > ( config ) Parameters config (PromptEncoderConfig) — The configuration of the prompt encoder. The prompt encoder network that is used to generate the virtual token embeddings for p-tuning. Example: Copied >>> from peft import PromptEncod
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_23
network that is used to generate the virtual token embeddings for p-tuning. Example: Copied >>> from peft import PromptEncoder, PromptEncoderConfig >>> config = PromptEncoderConfig( ... peft_type="P_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_reparameterization_type="MLP", ...
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_24
nsformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_reparameterization_type="MLP", ... encoder_hidden_size=768, ... ) >>> prompt_encoder = PromptEncoder(config) Attributes: embedding (torch.nn.Embedding) — The embedding layer of the prompt encoder. mlp_head (torch.nn.Sequential) — The MLP head of the prompt encoder if inference_mode=False. lstm_head (torch.nn.LSTM) — The LSTM head of the prompt enc
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_25
ntial) — The MLP head of the prompt encoder if inference_mode=False. lstm_head (torch.nn.LSTM) — The LSTM head of the prompt encoder if inference_mode=False and encoder_reparameterization_type="LSTM". token_dim (int) — The hidden embedding dimension of the base transformer model. input_size (int) — The input size of the prompt encoder. output_size (int) — The output size of the prompt encoder. hidden_size (int) — The hidden size of the prompt e
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_26
e prompt encoder. output_size (int) — The output size of the prompt encoder. hidden_size (int) — The hidden size of the prompt encoder. total_virtual_tokens (int): The total number of virtual tokens of the prompt encoder. encoder_type (Union[PromptEncoderReparameterizationType, str]): The encoder type of the prompt encoder. Input shape: (batch_size, total_virtual_tokens) Output shape: (batch_size, total_virtual_tokens, token_dim) Prefix tuning
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_27
oder. Input shape: (batch_size, total_virtual_tokens) Output shape: (batch_size, total_virtual_tokens, token_dim) Prefix tuning class peft.PrefixTuningConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tok
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_28
evision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tokens: int = None token_dim: int = None num_transformer_submodules: typing.Optional[int] = None num_attention_heads: typing.Optional[int] = None num_layers: typing.Optional[int] = None encoder_hidden_size: int = None prefix_projection: bool = False ) Parameters encoder_hidden_size (int) — The hidden size of the prom
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_29
idden_size: int = None prefix_projection: bool = False ) Parameters encoder_hidden_size (int) — The hidden size of the prompt encoder. prefix_projection (bool) — Whether to project the prefix embeddings. This is the configuration class to store the configuration of a PrefixEncoder. class peft.PrefixEncoder < source > ( config ) Parameters config (PrefixTuningConfig) — The configuration of the prefix encoder. The torch.nn mod
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_30
< source > ( config ) Parameters config (PrefixTuningConfig) — The configuration of the prefix encoder. The torch.nn model to encode the prefix. Example: Copied >>> from peft import PrefixEncoder, PrefixTuningConfig >>> config = PrefixTuningConfig( ... peft_type="PREFIX_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_hea
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_31
2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_hidden_size=768, ... ) >>> prefix_encoder = PrefixEncoder(config) Attributes: embedding (torch.nn.Embedding) — The embedding layer of the prefix encoder. transform (torch.nn.Sequential) — The two-layer MLP to transform the prefix embeddings if prefix_projection is True. pre
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_32
ncoder. transform (torch.nn.Sequential) — The two-layer MLP to transform the prefix embeddings if prefix_projection is True. prefix_projection (bool) — Whether to project the prefix embeddings. Input shape: (batch_size, num_virtual_tokens) Output shape: (batch_size, num_virtual_tokens, 2*layers*hidden) Prompt tuning class peft.PromptTuningConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typi
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_33
class peft.PromptTuningConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tokens: int = None token_dim: int = None num_transformer_submodules: typing.Optional[int] = None num_attention_heads: typing.Optional
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_34
s: int = None token_dim: int = None num_transformer_submodules: typing.Optional[int] = None num_attention_heads: typing.Optional[int] = None num_layers: typing.Optional[int] = None prompt_tuning_init: typing.Union[peft.tuners.prompt_tuning.PromptTuningInit, str] = <PromptTuningInit.RANDOM: 'RANDOM'> prompt_tuning_init_text: typing.Optional[str] = None tokenizer_name_or_path: typing.Optional[str] = None ) Parameters prompt_tuning_init (Unio
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_35
text: typing.Optional[str] = None tokenizer_name_or_path: typing.Optional[str] = None ) Parameters prompt_tuning_init (Union[PromptTuningInit, str]) — The initialization of the prompt embedding. prompt_tuning_init_text (str, optional) — The text to initialize the prompt embedding. Only used if prompt_tuning_init is TEXT. tokenizer_name_or_path (str, optional) — The name or path of the tokenizer. Only used if prompt_tuning_init is TEXT.
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_36
is TEXT. tokenizer_name_or_path (str, optional) — The name or path of the tokenizer. Only used if prompt_tuning_init is TEXT. This is the configuration class to store the configuration of a PromptEmbedding. class peft.PromptEmbedding < source > ( config word_embeddings ) Parameters config (PromptTuningConfig) — The configuration of the prompt embedding. word_embeddings (torch.nn.Module) — The word embeddings of the base transform
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_37
ig) — The configuration of the prompt embedding. word_embeddings (torch.nn.Module) — The word embeddings of the base transformer model. The model to encode virtual tokens into prompt embeddings. Attributes: embedding (torch.nn.Embedding) — The embedding layer of the prompt embedding. Example: Copied >>> from peft import PromptEmbedding, PromptTuningConfig >>> config = PromptTuningConfig( ... peft_type="PROMPT_TUNING", ... task
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_38
eft import PromptEmbedding, PromptTuningConfig >>> config = PromptTuningConfig( ... peft_type="PROMPT_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... prompt_tuning_init="TEXT", ... prompt_tuning_init_text="Predict if sentiment of this review is positive, negative or neutral", ... toke
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_39
nit="TEXT", ... prompt_tuning_init_text="Predict if sentiment of this review is positive, negative or neutral", ... tokenizer_name_or_path="t5-base", ... ) >>> # t5_model.shared is the word embeddings of the base model >>> prompt_embedding = PromptEmbedding(config, t5_model.shared) Input Shape: (batch_size, total_virtual_tokens) Output Shape: (batch_size, total_virtual_tokens, token_dim) IA3 class peft.IA3Config < source > ( peft_
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_40
tal_virtual_tokens) Output Shape: (batch_size, total_virtual_tokens, token_dim) IA3 class peft.IA3Config < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False target_modules: typing.Union[typing.List[str], str, NoneType] = None
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_41
.utils.config.TaskType] = None inference_mode: bool = False target_modules: typing.Union[typing.List[str], str, NoneType] = None feedforward_modules: typing.Union[typing.List[str], str, NoneType] = None fan_in_fan_out: bool = False modules_to_save: typing.Optional[typing.List[str]] = None init_ia3_weights: bool = True ) Parameters target_modules (Union[List[str],str]) — The names of the modules to apply (IA)^3 to. feedforward_modules (Un
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_42
) Parameters target_modules (Union[List[str],str]) — The names of the modules to apply (IA)^3 to. feedforward_modules (Union[List[str],str]) — The names of the modules to be treated as feedforward modules as in the original paper. — fan_in_fan_out (bool) — Set this to True if the layer to replace stores weight like (fan_in, fan_out). For example, gpt-2 uses Conv1D which stores weights like (fan_in, fan_out) and hence this should be
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_43
ht like (fan_in, fan_out). For example, gpt-2 uses Conv1D which stores weights like (fan_in, fan_out) and hence this should be set to True. — modules_to_save (List[str]) —List of modules apart from (IA)^3 layers to be set as trainable and saved in the final checkpoint. init_ia3_weights (bool) — Whether to initialize the vectors in the (IA)^3 layers, defaults to True. This is the configuration class to store the configuration of a IA3Mo
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_44
ize the vectors in the (IA)^3 layers, defaults to True. This is the configuration class to store the configuration of a IA3Model. class peft.IA3Model < source > ( model config adapter_name ) → torch.nn.Module Parameters model (PreTrainedModel) — The model to be adapted. config (IA3Config) — The configuration of the (IA)^3 model. Returns torch.nn.Module The (IA)^3 model. Creates a Infused Adapter by Inhibiting and Amplifying I
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_45
of the (IA)^3 model. Returns torch.nn.Module The (IA)^3 model. Creates a Infused Adapter by Inhibiting and Amplifying Inner Activations ((IA)^3) model from a pretrained transformers model. The method is described in detail in https://arxiv.org/abs/2205.05638 Example: Copied >>> from transformers import AutoModelForSeq2SeqLM, ia3Config >>> from peft import IA3Model, IA3Config >>> config = IA3Config( ... peft_type="IA3", ...
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_46
oModelForSeq2SeqLM, ia3Config >>> from peft import IA3Model, IA3Config >>> config = IA3Config( ... peft_type="IA3", ... task_type="SEQ_2_SEQ_LM", ... target_modules=["k", "v", "w0"], ... feedforward_modules=["w0"], ... ) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> ia3_model = IA3Model(config, model) Attributes: model (PreTrainedModel) — The model to be adapted. peft_config (ia3Config): The configuration of
6200969f4271910e1618223a2de243f8.txt
6200969f4271910e1618223a2de243f8.txt_chunk_47
odel(config, model) Attributes: model (PreTrainedModel) — The model to be adapted. peft_config (ia3Config): The configuration of the (IA)^3 model. merge_and_unload < source > ( ) This method merges the (IA)^3 layers into the base model. This is needed if someone wants to use the base model as a standalone model.
6200969f4271910e1618223a2de243f8.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_1
Working with custom models Some fine-tuning techniques, such as prompt tuning, are specific to language models. That means in 🤗 PEFT, it is assumed a 🤗 Transformers model is being used. However, other fine-tuning techniques - like LoRA - are not restricted to specific model types. In this guide, we will see how LoRA can be applied to a multilayer perception and a computer vision model from the timm library. Multilayer perceptron Let’s assu
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_2
can be applied to a multilayer perception and a computer vision model from the timm library. Multilayer perceptron Let’s assume that we want to fine-tune a multilayer perceptron with LoRA. Here is the definition: Copied from torch import nn class MLP(nn.Module): def __init__(self, num_units_hidden=2000): super().__init__() self.seq = nn.Sequential( nn.Linear(20, num_units_hidden), nn.ReLU(),
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_3
super().__init__() self.seq = nn.Sequential( nn.Linear(20, num_units_hidden), nn.ReLU(), nn.Linear(num_units_hidden, num_units_hidden), nn.ReLU(), nn.Linear(num_units_hidden, 2), nn.LogSoftmax(dim=-1), ) def forward(self, X): return self.seq(X) This is a straightforward multilayer perceptron with an input layer, a hidden layer, and an outp
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_4
X): return self.seq(X) This is a straightforward multilayer perceptron with an input layer, a hidden layer, and an output layer. For this toy example, we choose an exceedingly large number of hidden units to highlight the efficiency gains from PEFT, but those gains are in line with more realistic examples. There are a few linear layers in this model that could be tuned with LoRA. When working with common 🤗 Transformers models, PEFT wi
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_5
ere are a few linear layers in this model that could be tuned with LoRA. When working with common 🤗 Transformers models, PEFT will know which layers to apply LoRA to, but in this case, it is up to us as a user to choose the layers. To determine the names of the layers to tune: Copied print([(n, type(m)) for n, m in MLP().named_modules()]) This should print: Copied [('', __main__.MLP), ('seq', torch.nn.modules.container.Sequential), ('se
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_6
MLP().named_modules()]) This should print: Copied [('', __main__.MLP), ('seq', torch.nn.modules.container.Sequential), ('seq.0', torch.nn.modules.linear.Linear), ('seq.1', torch.nn.modules.activation.ReLU), ('seq.2', torch.nn.modules.linear.Linear), ('seq.3', torch.nn.modules.activation.ReLU), ('seq.4', torch.nn.modules.linear.Linear), ('seq.5', torch.nn.modules.activation.LogSoftmax)] Let’s say we want to apply LoRA to the input laye
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_7
nn.modules.linear.Linear), ('seq.5', torch.nn.modules.activation.LogSoftmax)] Let’s say we want to apply LoRA to the input layer and to the hidden layer, those are 'seq.0' and 'seq.1'. Moreover, let’s assume we want to update the output layer without LoRA, that would be 'seq.4'. The corresponding config would be: Copied from peft import LoraConfig config = LoraConfig( target_modules=["seq.0", "seq.2"], modules_to_save=["seq.4"], )
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_8
opied from peft import LoraConfig config = LoraConfig( target_modules=["seq.0", "seq.2"], modules_to_save=["seq.4"], ) With that, we can create our PEFT model and check the fraction of parameters trained: Copied from peft import get_peft_model model = MLP() peft_model = get_peft_model(module, config) peft_model.print_trainable_parameters() # prints trainable params: 56,164 || all params: 4,100,164 || trainable%: 1.369798866581922 F
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_9
model.print_trainable_parameters() # prints trainable params: 56,164 || all params: 4,100,164 || trainable%: 1.369798866581922 Finally, we can use any training framework we like, or write our own fit loop, to train the peft_model. For a complete example, check out this notebook. timm model The timm library contains a large number of pretrained computer vision models. Those can also be fine-tuned with PEFT. Let’s check out how this works in p
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_10
a large number of pretrained computer vision models. Those can also be fine-tuned with PEFT. Let’s check out how this works in practice. To start, ensure that timm is installed in the Python environment: Copied python -m pip install -U timm Next we load a timm model for an image classification task: Copied import timm num_classes = ... model_id = "timm/poolformer_m36.sail_in1k" model = timm.create_model(model_id, pretrained=True, num_cla
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_11
timm num_classes = ... model_id = "timm/poolformer_m36.sail_in1k" model = timm.create_model(model_id, pretrained=True, num_classes=num_classes) Again, we need to make a decision about what layers to apply LoRA to. Since LoRA supports 2D conv layers, and since those are a major building block of this model, we should apply LoRA to the 2D conv layers. To identify the names of those layers, let’s look at all the layer names: Copied print([(n,
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_12
apply LoRA to the 2D conv layers. To identify the names of those layers, let’s look at all the layer names: Copied print([(n, type(m)) for n, m in MLP().named_modules()]) This will print a very long list, we’ll only show the first few: Copied [('', timm.models.metaformer.MetaFormer), ('stem', timm.models.metaformer.Stem), ('stem.conv', torch.nn.modules.conv.Conv2d), ('stem.norm', torch.nn.modules.linear.Identity), ('stages', torch.nn.
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_13
mer.Stem), ('stem.conv', torch.nn.modules.conv.Conv2d), ('stem.norm', torch.nn.modules.linear.Identity), ('stages', torch.nn.modules.container.Sequential), ('stages.0', timm.models.metaformer.MetaFormerStage), ('stages.0.downsample', torch.nn.modules.linear.Identity), ('stages.0.blocks', torch.nn.modules.container.Sequential), ('stages.0.blocks.0', timm.models.metaformer.MetaFormerBlock), ('stages.0.blocks.0.norm1', timm.layers.norm.Gro
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_14
r.Sequential), ('stages.0.blocks.0', timm.models.metaformer.MetaFormerBlock), ('stages.0.blocks.0.norm1', timm.layers.norm.GroupNorm1), ('stages.0.blocks.0.token_mixer', timm.models.metaformer.Pooling), ('stages.0.blocks.0.token_mixer.pool', torch.nn.modules.pooling.AvgPool2d), ('stages.0.blocks.0.drop_path1', torch.nn.modules.linear.Identity), ('stages.0.blocks.0.layer_scale1', timm.models.metaformer.Scale), ('stages.0.blocks.0.res_scal
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_15
ch.nn.modules.linear.Identity), ('stages.0.blocks.0.layer_scale1', timm.models.metaformer.Scale), ('stages.0.blocks.0.res_scale1', torch.nn.modules.linear.Identity), ('stages.0.blocks.0.norm2', timm.layers.norm.GroupNorm1), ('stages.0.blocks.0.mlp', timm.layers.mlp.Mlp), ('stages.0.blocks.0.mlp.fc1', torch.nn.modules.conv.Conv2d), ('stages.0.blocks.0.mlp.act', torch.nn.modules.activation.GELU), ('stages.0.blocks.0.mlp.drop1', torch.nn.mo
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_16
les.conv.Conv2d), ('stages.0.blocks.0.mlp.act', torch.nn.modules.activation.GELU), ('stages.0.blocks.0.mlp.drop1', torch.nn.modules.dropout.Dropout), ('stages.0.blocks.0.mlp.norm', torch.nn.modules.linear.Identity), ('stages.0.blocks.0.mlp.fc2', torch.nn.modules.conv.Conv2d), ('stages.0.blocks.0.mlp.drop2', torch.nn.modules.dropout.Dropout), ('stages.0.blocks.0.drop_path2', torch.nn.modules.linear.Identity), ('stages.0.blocks.0.layer_sca
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_17
nn.modules.dropout.Dropout), ('stages.0.blocks.0.drop_path2', torch.nn.modules.linear.Identity), ('stages.0.blocks.0.layer_scale2', timm.models.metaformer.Scale), ('stages.0.blocks.0.res_scale2', torch.nn.modules.linear.Identity), ('stages.0.blocks.1', timm.models.metaformer.MetaFormerBlock), ('stages.0.blocks.1.norm1', timm.layers.norm.GroupNorm1), ('stages.0.blocks.1.token_mixer', timm.models.metaformer.Pooling), ('stages.0.blocks.1.to
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_18
orm1', timm.layers.norm.GroupNorm1), ('stages.0.blocks.1.token_mixer', timm.models.metaformer.Pooling), ('stages.0.blocks.1.token_mixer.pool', torch.nn.modules.pooling.AvgPool2d), ... ('head.global_pool.flatten', torch.nn.modules.linear.Identity), ('head.norm', timm.layers.norm.LayerNorm2d), ('head.flatten', torch.nn.modules.flatten.Flatten), ('head.drop', torch.nn.modules.linear.Identity), ('head.fc', torch.nn.modules.linear.Linear)]
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_19
h.nn.modules.flatten.Flatten), ('head.drop', torch.nn.modules.linear.Identity), ('head.fc', torch.nn.modules.linear.Linear)] ] Upon closer inspection, we see that the 2D conv layers have names such as "stages.0.blocks.0.mlp.fc1" and "stages.0.blocks.0.mlp.fc2". How can we match those layer names specifically? You can write a regular expressions to match the layer names. For our case, the regex r".*\.mlp\.fc\d" should do the job. Furthermore,
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_20
n write a regular expressions to match the layer names. For our case, the regex r".*\.mlp\.fc\d" should do the job. Furthermore, as in the first example, we should ensure that the output layer, in this case the classification head, is also updated. Looking at the end of the list printed above, we can see that it’s named 'head.fc'. With that in mind, here is our LoRA config: Copied config = LoraConfig(target_modules=r".*\.mlp\.fc\d", modules_
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_21
d 'head.fc'. With that in mind, here is our LoRA config: Copied config = LoraConfig(target_modules=r".*\.mlp\.fc\d", modules_to_save=["head.fc"]) Then we only need to create the PEFT model by passing our base model and the config to get_peft_model: Copied peft_model = get_peft_model(model, config) peft_model.print_trainable_parameters() # prints trainable params: 1,064,454 || all params: 56,467,974 || trainable%: 1.88505789139876 This sho
697d84664f8f500d30e28e9435e7a332.txt
697d84664f8f500d30e28e9435e7a332.txt_chunk_22
t_trainable_parameters() # prints trainable params: 1,064,454 || all params: 56,467,974 || trainable%: 1.88505789139876 This shows us that we only need to train less than 2% of all parameters, which is a huge efficiency gain. For a complete example, check out this notebook.
697d84664f8f500d30e28e9435e7a332.txt
7d4cf0a1a3b22cb5d3b65cc06163b832.txt_chunk_1
Installation Before you start, you will need to setup your environment, install the appropriate packages, and configure 🤗 PEFT. 🤗 PEFT is tested on Python 3.8+. 🤗 PEFT is available on PyPI, as well as GitHub: PyPI To install 🤗 PEFT from PyPI: Copied pip install peft Source New features that haven’t been released yet are added every day, which also means there may be some bugs. To try them out, install from the GitHub repository: C
7d4cf0a1a3b22cb5d3b65cc06163b832.txt
7d4cf0a1a3b22cb5d3b65cc06163b832.txt_chunk_2
ased yet are added every day, which also means there may be some bugs. To try them out, install from the GitHub repository: Copied pip install git+https://github.com/huggingface/peft If you’re working on contributing to the library or wish to play with the source code and see live results as you run the code, an editable version can be installed from a locally-cloned version of the repository: Copied git clone https://github.com/huggingfa
7d4cf0a1a3b22cb5d3b65cc06163b832.txt
7d4cf0a1a3b22cb5d3b65cc06163b832.txt_chunk_3
table version can be installed from a locally-cloned version of the repository: Copied git clone https://github.com/huggingface/peft cd peft pip install -e .
7d4cf0a1a3b22cb5d3b65cc06163b832.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_1
LoRA for semantic similarity tasks Low-Rank Adaptation (LoRA) is a reparametrization method that aims to reduce the number of trainable parameters with low-rank representations. The weight matrix is broken down into low-rank matrices that are trained and updated. All the pretrained model parameters remain frozen. After training, the low-rank matrices are added back to the original weights. This makes it more efficient to store and train a LoR
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_2
er training, the low-rank matrices are added back to the original weights. This makes it more efficient to store and train a LoRA model because there are significantly fewer parameters. 💡 Read LoRA: Low-Rank Adaptation of Large Language Models to learn more about LoRA. In this guide, we’ll be using a LoRA script to fine-tune a intfloat/e5-large-v2 model on the smangrul/amazon_esci dataset for semantic similarity tasks. Feel free to explore the
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_3
e-tune a intfloat/e5-large-v2 model on the smangrul/amazon_esci dataset for semantic similarity tasks. Feel free to explore the script to learn how things work in greater detail! Setup Start by installing 🤗 PEFT from source, and then navigate to the directory containing the training scripts for fine-tuning DreamBooth with LoRA: Copied cd peft/examples/feature_extraction Install all the necessary required libraries with: Copied pip inst
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_4
h with LoRA: Copied cd peft/examples/feature_extraction Install all the necessary required libraries with: Copied pip install -r requirements.txt Setup Let’s start by importing all the necessary libraries you’ll need: 🤗 Transformers for loading the intfloat/e5-large-v2 model and tokenizer 🤗 Accelerate for the training loop 🤗 Datasets for loading and preparing the smangrul/amazon_esci dataset for training and inference 🤗 Evaluate for ev
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_5
training loop 🤗 Datasets for loading and preparing the smangrul/amazon_esci dataset for training and inference 🤗 Evaluate for evaluating the model’s performance 🤗 PEFT for setting up the LoRA configuration and creating the PEFT model 🤗 huggingface_hub for uploading the trained model to HF hub hnswlib for creating the search index and doing fast approximate nearest neighbor search It is assumed that PyTorch with CUDA support is already installed
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_6
earch index and doing fast approximate nearest neighbor search It is assumed that PyTorch with CUDA support is already installed. Train Launch the training script with accelerate launch and pass your hyperparameters along with the --use_peft argument to enable LoRA. This guide uses the following LoraConfig: Copied peft_config = LoraConfig( r=8, lora_alpha=16, bias="none", task_type=TaskType.
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_7
d peft_config = LoraConfig( r=8, lora_alpha=16, bias="none", task_type=TaskType.FEATURE_EXTRACTION, target_modules=["key", "query", "value"], ) Here’s what a full set of script arguments may look like when running in Colab on a V100 GPU with standard RAM: Copied accelerate launch \ --mixed_precision="fp16" \ peft_lora_embedding_semantic_search.py \ --dataset_name="smangrul/a
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_8
AM: Copied accelerate launch \ --mixed_precision="fp16" \ peft_lora_embedding_semantic_search.py \ --dataset_name="smangrul/amazon_esci" \ --max_length=70 --model_name_or_path="intfloat/e5-large-v2" \ --per_device_train_batch_size=64 \ --per_device_eval_batch_size=128 \ --learning_rate=5e-4 \ --weight_decay=0.0 \ --num_train_epochs 3 \ --gradient_accumulation_steps=1 \ --output_dir="results/peft_lora_e5_ecommerce_semantic_search_colab" \ --s
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_9
num_train_epochs 3 \ --gradient_accumulation_steps=1 \ --output_dir="results/peft_lora_e5_ecommerce_semantic_search_colab" \ --seed=42 \ --push_to_hub \ --hub_model_id="smangrul/peft_lora_e5_ecommerce_semantic_search_colab" \ --with_tracking \ --report_to="wandb" \ --use_peft \ --checkpointing_steps "epoch" Dataset for semantic similarity The dataset we’ll be using is a small subset of the esci-data dataset (it can be found on Hub at smangru
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_10
r semantic similarity The dataset we’ll be using is a small subset of the esci-data dataset (it can be found on Hub at smangrul/amazon_esci). Each sample contains a tuple of (query, product_title, relevance_label) where relevance_label is 1 if the product matches the intent of the query, otherwise it is 0. Our task is to build an embedding model that can retrieve semantically similar products given a product query. This is usually the first
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_11
is to build an embedding model that can retrieve semantically similar products given a product query. This is usually the first stage in building a product search engine to retrieve all the potentially relevant products of a given query. Typically, this involves using Bi-Encoder models to cross-join the query and millions of products which could blow up quickly. Instead, you can use a Transformer model to retrieve the top K nearest similar prod
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_12
ons of products which could blow up quickly. Instead, you can use a Transformer model to retrieve the top K nearest similar products for a given query by embedding the query and products in the same latent embedding space. The millions of products are embedded offline to create a search index. At run time, only the query is embedded by the model, and products are retrieved from the search index with a fast approximate nearest neighbor search li
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_13
ry is embedded by the model, and products are retrieved from the search index with a fast approximate nearest neighbor search library such as FAISS or HNSWlib. The next stage involves reranking the retrieved list of products to return the most relevant ones; this stage can utilize cross-encoder based models as the cross-join between the query and a limited set of retrieved products. The diagram below from awesome-semantic-search outlines a roug
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_14
s-join between the query and a limited set of retrieved products. The diagram below from awesome-semantic-search outlines a rough semantic search pipeline: For this task guide, we will explore the first stage of training an embedding model to predict semantically similar products given a product query. Training script deep dive We finetune e5-large-v2 which tops the MTEB benchmark using PEFT-LoRA. AutoModelForSentenceEmbedding returns the
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_15
t deep dive We finetune e5-large-v2 which tops the MTEB benchmark using PEFT-LoRA. AutoModelForSentenceEmbedding returns the query and product embeddings, and the mean_pooling function pools them across the sequence dimension and normalizes them: Copied class AutoModelForSentenceEmbedding(nn.Module): def __init__(self, model_name, tokenizer, normalize=True): super(AutoModelForSentenceEmbedding, self).__init__() self.m
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_16
it__(self, model_name, tokenizer, normalize=True): super(AutoModelForSentenceEmbedding, self).__init__() self.model = AutoModel.from_pretrained(model_name) self.normalize = normalize self.tokenizer = tokenizer def forward(self, **kwargs): model_output = self.model(**kwargs) embeddings = self.mean_pooling(model_output, kwargs["attention_mask"]) if self.normalize: embeddi
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_17
s) embeddings = self.mean_pooling(model_output, kwargs["attention_mask"]) if self.normalize: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings def mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(to
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_18
First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer
5c1fa8dadc86e3a282900d1df405f9cb.txt
5c1fa8dadc86e3a282900d1df405f9cb.txt_chunk_19
"""Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def get_cosine_embeddings(query_embs, product_embs): return torch.sum(query_embs * product_embs, axis=1) def get_loss(cosine_score, labels): return torch.mean(torch.square(labels * (1 - cosine_score) + torch.cl
5c1fa8dadc86e3a282900d1df405f9cb.txt