chunk_id
stringlengths
44
45
chunk_content
stringlengths
21
448
filename
stringlengths
36
36
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_9
t": "@HMRCcustomers No this is my first job", "ID": 0, "Label": 2} To make the Label column more readable, replace the Label value with the corresponding label text and store them in a text_label column. You can use the map function to apply this change over the entire dataset in one step: Copied classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names] dataset = dataset.map( lambda x: {"text_label": [classes[labe
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_10
e("_", " ") for k in dataset["train"].features["Label"].names] dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["Label"]]}, batched=True, num_proc=1, ) dataset["train"][0] {"Tweet text": "@HMRCcustomers No this is my first job", "ID": 0, "Label": 2, "text_label": "no complaint"} Preprocess dataset Next, you’ll setup a tokenizer; configure the appropriate padding token to use for padding sequences, an
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_11
} Preprocess dataset Next, you’ll setup a tokenizer; configure the appropriate padding token to use for padding sequences, and determine the maximum length of the tokenized labels: Copied tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes]) print(targ
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_12
tokenizer.eos_token_id target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes]) print(target_max_length) 3 Create a preprocess_function to: Tokenize the input text and labels. For each example in a batch, pad the labels with the tokenizers pad_token_id. Concatenate the input text and labels into the model_inputs. Create a separate attention mask for labels and model_inputs. Loop through each example in the
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_13
nd labels into the model_inputs. Create a separate attention mask for labels and model_inputs. Loop through each example in the batch again to pad the input ids, labels, and attention mask to the max_length and convert them to PyTorch tensors. Copied def preprocess_function(examples): batch_size = len(examples[text_column]) inputs = [f"{text_column} : {x} Label : " for x in examples[text_column]] targets = [str(x) for x in exampl
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_14
ext_column]) inputs = [f"{text_column} : {x} Label : " for x in examples[text_column]] targets = [str(x) for x in examples[label_column]] model_inputs = tokenizer(inputs) labels = tokenizer(targets) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] + [tokenizer.pad_token_id] # print(i, sample_input_ids, label_input_ids) model_i
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_15
ut_ids = labels["input_ids"][i] + [tokenizer.pad_token_id] # print(i, sample_input_ids, label_input_ids) model_inputs["input_ids"][i] = sample_input_ids + label_input_ids labels["input_ids"][i] = [-100] * len(sample_input_ids) + label_input_ids model_inputs["attention_mask"][i] = [1] * len(model_inputs["input_ids"][i]) # print(model_inputs) for i in range(batch_size): sample_input_ids = model_inpu
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_16
en(model_inputs["input_ids"][i]) # print(model_inputs) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * ( max_length - len(sample_input_ids) ) + sample_input_ids model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_17
+ sample_input_ids model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[ "attention_mask" ][i] labels["input_ids"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length]) model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_18
inputs["input_ids"][i][:max_length]) model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length]) labels["input_ids"][i] = torch.tensor(labels["input_ids"][i][:max_length]) model_inputs["labels"] = labels["input_ids"] return model_inputs Use the map function to apply the preprocess_function to the entire dataset. You can remove the unprocessed columns since the model won’t need them:
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_19
o apply the preprocess_function to the entire dataset. You can remove the unprocessed columns since the model won’t need them: Copied processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) Create a DataLoader from the train and eval datasets. Set pin_memory=True to speed up the dat
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_20
="Running tokenizer on dataset", ) Create a DataLoader from the train and eval datasets. Set pin_memory=True to speed up the data transfer to the GPU during training if the samples in your dataset are on a CPU. Copied train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["test"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True )
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_21
oader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) Train You’re almost ready to setup your model and start training! Initialize a base model from AutoModelForCausalLM, and pass it and peft_config to the get_peft_model() function to create a PeftModel.
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_22
lize a base model from AutoModelForCausalLM, and pass it and peft_config to the get_peft_model() function to create a PeftModel. You can print the new PeftModel’s trainable parameters to see how much more efficient it is than training the full parameters of the original model! Copied model = AutoModelForCausalLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) print(model.print_trainable_parameters()) "trainable
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_23
m_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) print(model.print_trainable_parameters()) "trainable params: 8192 || all params: 559222784 || trainable%: 0.0014648902430985358" Setup an optimizer and learning rate scheduler: Copied optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(tra
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_24
lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) Move the model to the GPU, then write a training loop to start training! Copied model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.i
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_25
total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_d
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_26
optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu()
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_27
s.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_e
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_28
taloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}") Share model You can store and share your model on the Hub if you’d like. Log in to your Hugging Face account and enter your token when prompted: Copied from huggingface_hub import notebook_login notebook_login() Use the push_to_hub function to upload your model to a model repository on the Hub:
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_29
import notebook_login notebook_login() Use the push_to_hub function to upload your model to a model repository on the Hub: Copied peft_model_id = "your-name/bloomz-560m_PROMPT_TUNING_CAUSAL_LM" model.push_to_hub("your-name/bloomz-560m_PROMPT_TUNING_CAUSAL_LM", use_auth_token=True) Once the model is uploaded, you’ll see the model file size is only 33.5kB! 🤏 Inference Let’s try the model on a sample input for inference. If you look at the
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_30
l see the model file size is only 33.5kB! 🤏 Inference Let’s try the model on a sample input for inference. If you look at the repository you uploaded the model to, you’ll see a adapter_config.json file. Load this file into PeftConfig to specify the peft_type and task_type. Then you can load the prompt tuned model weights, and the configuration into from_pretrained() to create the PeftModel: Copied from peft import PeftModel, PeftConfig p
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_31
ights, and the configuration into from_pretrained() to create the PeftModel: Copied from peft import PeftModel, PeftConfig peft_model_id = "stevhliu/bloomz-560m_PROMPT_TUNING_CAUSAL_LM" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id) Grab a tweet and tokenize it: Copied inputs = tokenizer( f'{text_c
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_32
odel = PeftModel.from_pretrained(model, peft_model_id) Grab a tweet and tokenize it: Copied inputs = tokenizer( f'{text_column} : {"@nationalgridus I have no water and the bill is current and paid. Can you do something about this?"} Label : ', return_tensors="pt", ) Put the model on a GPU and generate the predicted label: Copied model.to(device) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} o
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_33
edicted label: Copied model.to(device) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3 ) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)) [ "Tweet text : @nationalgridus I have no water and the bill is current and pai
176b966ffabdbae904d70b3c31cdac0c.txt
176b966ffabdbae904d70b3c31cdac0c.txt_chunk_34
().cpu().numpy(), skip_special_tokens=True)) [ "Tweet text : @nationalgridus I have no water and the bill is current and paid. Can you do something about this? Label : complaint" ]
176b966ffabdbae904d70b3c31cdac0c.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_1
LoRA This conceptual guide gives a brief overview of LoRA, a technique that accelerates the fine-tuning of large models while consuming less memory. To make fine-tuning more efficient, LoRA’s approach is to represent the weight updates with two smaller matrices (called update matrices) through low-rank decomposition. These new matrices can be trained to adapt to the new data while keeping the overall number of changes low. The original weig
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_2
n. These new matrices can be trained to adapt to the new data while keeping the overall number of changes low. The original weight matrix remains frozen and doesn’t receive any further adjustments. To produce the final results, both the original and the adapted weights are combined. This approach has a number of advantages: LoRA makes fine-tuning more efficient by drastically reducing the number of trainable parameters. The original pre-traine
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_3
ages: LoRA makes fine-tuning more efficient by drastically reducing the number of trainable parameters. The original pre-trained weights are kept frozen, which means you can have multiple lightweight and portable LoRA models for various downstream tasks built on top of them. LoRA is orthogonal to many other parameter-efficient methods and can be combined with many of them. Performance of models fine-tuned using LoRA is comparable to the perfor
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_4
efficient methods and can be combined with many of them. Performance of models fine-tuned using LoRA is comparable to the performance of fully fine-tuned models. LoRA does not add any inference latency because adapter weights can be merged with the base model. In principle, LoRA can be applied to any subset of weight matrices in a neural network to reduce the number of trainable parameters. However, for simplicity and further parameter efficien
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_5
atrices in a neural network to reduce the number of trainable parameters. However, for simplicity and further parameter efficiency, in Transformer models LoRA is typically applied to attention blocks only. The resulting number of trainable parameters in a LoRA model depends on the size of the low-rank update matrices, which is determined mainly by the rank r and the shape of the original weight matrix. Merge LoRA weights into the base model
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_6
which is determined mainly by the rank r and the shape of the original weight matrix. Merge LoRA weights into the base model While LoRA is significantly smaller and faster to train, you may encounter latency issues during inference due to separately loading the base model and the LoRA model. To eliminate latency, use the merge_and_unload() function to merge the adapter weights with the base model which allows you to effectively use the newly
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_7
e the merge_and_unload() function to merge the adapter weights with the base model which allows you to effectively use the newly merged model as a standalone model. This works because during training, the smaller weight matrices (A and B in the diagram above) are separate. But once training is complete, the weights can actually be merged into a new weight matrix that is identical. Utils for LoRA Use merge_adapter() to merge the LoRa layers
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_8
n actually be merged into a new weight matrix that is identical. Utils for LoRA Use merge_adapter() to merge the LoRa layers into the base model while retaining the PeftModel. This will help in later unmerging, deleting, loading different adapters and so on. Use unmerge_adapter() to unmerge the LoRa layers from the base model while retaining the PeftModel. This will help in later merging, deleting, loading different adapters and so on. Use u
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_9
base model while retaining the PeftModel. This will help in later merging, deleting, loading different adapters and so on. Use unload() to get back the base model without the merging of the active lora modules. This will help when you want to get back the pretrained base model in some applications when you want to reset the model to its original state. For example, in Stable Diffusion WebUi, when the user wants to infer with base model post try
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_10
t the model to its original state. For example, in Stable Diffusion WebUi, when the user wants to infer with base model post trying out LoRAs. Use delete_adapter() to delete an existing adapter. Use add_weighted_adapter() to combine multiple LoRAs into a new adapter based on the user provided weighing scheme. Common LoRA parameters in PEFT As with other methods supported by PEFT, to fine-tune a model using LoRA, you need to: Instantiate a ba
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_11
oRA parameters in PEFT As with other methods supported by PEFT, to fine-tune a model using LoRA, you need to: Instantiate a base model. Create a configuration (LoraConfig) where you define LoRA-specific parameters. Wrap the base model with get_peft_model() to get a trainable PeftModel. Train the PeftModel as you normally would train the base model. LoraConfig allows you to control how LoRA is applied to the base model through the following pa
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_12
ally would train the base model. LoraConfig allows you to control how LoRA is applied to the base model through the following parameters: r: the rank of the update matrices, expressed in int. Lower rank results in smaller update matrices with fewer trainable parameters. target_modules: The modules (for example, attention blocks) to apply the LoRA update matrices. alpha: LoRA scaling factor. bias: Specifies if the bias parameters should be trai
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_13
ion blocks) to apply the LoRA update matrices. alpha: LoRA scaling factor. bias: Specifies if the bias parameters should be trained. Can be 'none', 'all' or 'lora_only'. modules_to_save: List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. These typically include model’s custom head that is randomly initialized for the fine-tuning task. layers_to_transform: List of layers to be transformed by LoRA. If
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_14
om head that is randomly initialized for the fine-tuning task. layers_to_transform: List of layers to be transformed by LoRA. If not specified, all layers in target_modules are transformed. layers_pattern: Pattern to match layer names in target_modules, if layers_to_transform is specified. By default PeftModel will look at common layer pattern (layers, h, blocks, etc.), use it for exotic and custom models. LoRA examples For an example of LoR
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_15
k at common layer pattern (layers, h, blocks, etc.), use it for exotic and custom models. LoRA examples For an example of LoRA method application to various downstream tasks, please refer to the following guides: Image classification using LoRA Semantic segmentation While the original paper focuses on language models, the technique can be applied to any dense layers in deep learning models. As such, you can leverage this technique with diffu
5b417ea7788f707968c7b3e47dee06e5.txt
5b417ea7788f707968c7b3e47dee06e5.txt_chunk_16
s, the technique can be applied to any dense layers in deep learning models. As such, you can leverage this technique with diffusion models. See Dreambooth fine-tuning with LoRA task guide for an example.
5b417ea7788f707968c7b3e47dee06e5.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_1
Models PeftModel is the base model class for specifying the base Transformer model and configuration to apply a PEFT method to. The base PeftModel contains methods for loading and saving models from the Hub, and supports the PromptEncoder for prompt learning. PeftModel class peft.PeftModel < source > ( model: PreTrainedModel peft_config: PeftConfig adapter_name: str = 'default' ) Parameters model (PreTrainedModel) — The base transfo
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_2
eTrainedModel peft_config: PeftConfig adapter_name: str = 'default' ) Parameters model (PreTrainedModel) — The base transformer model used for Peft. peft_config (PeftConfig) — The configuration of the Peft model. Base model encompassing various Peft methods. Attributes: base_model (PreTrainedModel) — The base transformer model used for Peft. peft_config (PeftConfig) — The configuration of the Peft model. modules_to_save (list of str)
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_3
transformer model used for Peft. peft_config (PeftConfig) — The configuration of the Peft model. modules_to_save (list of str) — The list of sub-module names to save when saving the model. prompt_encoder (PromptEncoder) — The prompt encoder used for Peft if using PromptLearningConfig. prompt_tokens (torch.Tensor) — The virtual prompt tokens used for Peft if using PromptLearningConfig. transformer_backbone_name (str) — The name of the transform
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_4
e virtual prompt tokens used for Peft if using PromptLearningConfig. transformer_backbone_name (str) — The name of the transformer backbone in the base model if using PromptLearningConfig. word_embeddings (torch.nn.Embedding) — The word embeddings of the transformer backbone in the base model if using PromptLearningConfig. create_or_update_model_card < source > ( output_dir: str ) Updates or create model card to include information about
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_5
fig. create_or_update_model_card < source > ( output_dir: str ) Updates or create model card to include information about peft: Adds peft library tag Adds peft version Adds quantization information if it was used disable_adapter < source > ( ) Disables the adapter module. forward < source > ( *args: Any **kwargs: Any ) Forward pass of the model. from_pretrained < source > ( model: PreTrainedModel model_id: Union[str, os.PathL
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_6
kwargs: Any ) Forward pass of the model. from_pretrained < source > ( model: PreTrainedModel model_id: Union[str, os.PathLike] adapter_name: str = 'default' is_trainable: bool = False config: Optional[PeftConfig] = None **kwargs: Any ) Parameters model (PreTrainedModel) — The model to be adapted. The model should be initialized with the from_pretrained method from the 🤗 Transformers library. model_id (str or os.PathLike) — The name
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_7
hould be initialized with the from_pretrained method from the 🤗 Transformers library. model_id (str or os.PathLike) — The name of the Lora configuration to use. Can be either: A string, the model id of a Lora configuration hosted inside a model repo on the Hugging Face Hub. A path to a directory containing a Lora configuration file saved using the save_pretrained method (./my_lora_config_directory/). adapter_name (str, optional, defaults t
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_8
figuration file saved using the save_pretrained method (./my_lora_config_directory/). adapter_name (str, optional, defaults to "default") — The name of the adapter to be loaded. This is useful for loading multiple adapters. is_trainable (bool, optional, defaults to False) — Whether the adapter should be trainable or not. If False, the adapter will be frozen and use for inference config (PeftConfig, optional) — The configuration object to
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_9
or not. If False, the adapter will be frozen and use for inference config (PeftConfig, optional) — The configuration object to use instead of an automatically loaded configuation. This configuration object is mutually exclusive with model_id and kwargs. This is useful when configuration is already loaded before calling from_pretrained. kwargs — (optional): Additional keyword arguments passed along to the specific Lora configuration class.
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_10
ng from_pretrained. kwargs — (optional): Additional keyword arguments passed along to the specific Lora configuration class. Instantiate a LoraModel from a pretrained Lora configuration and weights. get_base_model < source > ( ) Returns the base model. get_nb_trainable_parameters < source > ( ) Returns the number of trainable parameters and number of all parameters in the model. get_prompt < source > ( batch_size: int ) Retur
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_11
number of trainable parameters and number of all parameters in the model. get_prompt < source > ( batch_size: int ) Returns the virtual prompts to use for Peft. Only applicable when peft_config.peft_type != PeftType.LORA. get_prompt_embedding_to_save < source > ( adapter_name: str ) Returns the prompt embedding to save when saving the model. Only applicable when peft_config.peft_type != PeftType.LORA. print_trainable_parameters <
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_12
dding to save when saving the model. Only applicable when peft_config.peft_type != PeftType.LORA. print_trainable_parameters < source > ( ) Prints the number of trainable parameters in the model. save_pretrained < source > ( save_directory: str safe_serialization: bool = False selected_adapters: Optional[List[str]] = None **kwargs: Any ) Parameters save_directory (str) — Directory where the adapter model and configuration files will
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_13
r]] = None **kwargs: Any ) Parameters save_directory (str) — Directory where the adapter model and configuration files will be saved (will be created if it does not exist). kwargs (additional keyword arguments, optional) — Additional keyword arguments passed along to the push_to_hub method. This function saves the adapter model and the adapter configuration files to a directory, so that it can be reloaded using the LoraModel.from_pret
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_14
s the adapter model and the adapter configuration files to a directory, so that it can be reloaded using the LoraModel.from_pretrained class method, and also used by the LoraModel.push_to_hub method. set_adapter < source > ( adapter_name: str ) Sets the active adapter. PeftModelForSequenceClassification A PeftModel for sequence classification tasks. class peft.PeftModelForSequenceClassification < source > ( model peft_config: PeftCon
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_15
Model for sequence classification tasks. class peft.PeftModelForSequenceClassification < source > ( model peft_config: PeftConfig adapter_name = 'default' ) Parameters model (PreTrainedModel) — Base transformer model. peft_config (PeftConfig) — Peft config. Peft model for sequence classification tasks. Attributes: config (PretrainedConfig) — The configuration object of the base model. cls_layer_name (str) — The name of the classific
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_16
ibutes: config (PretrainedConfig) — The configuration object of the base model. cls_layer_name (str) — The name of the classification layer. Example: Copied >>> from transformers import AutoModelForSequenceClassification >>> from peft import PeftModelForSequenceClassification, get_peft_config >>> config = { ... "peft_type": "PREFIX_TUNING", ... "task_type": "SEQ_CLS", ... "inference_mode": False, ... "num_virtual_tokens": 2
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_17
"peft_type": "PREFIX_TUNING", ... "task_type": "SEQ_CLS", ... "inference_mode": False, ... "num_virtual_tokens": 20, ... "token_dim": 768, ... "num_transformer_submodules": 1, ... "num_attention_heads": 12, ... "num_layers": 12, ... "encoder_hidden_size": 768, ... "prefix_projection": False, ... "postprocess_past_key_value_function": None, ... } >>> peft_config = get_peft_config(config) >>> model = Aut
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_18
n": False, ... "postprocess_past_key_value_function": None, ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased") >>> peft_model = PeftModelForSequenceClassification(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117 PeftModelForTokenClassification A PeftModel for to
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_19
params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117 PeftModelForTokenClassification A PeftModel for token classification tasks. class peft.PeftModelForTokenClassification < source > ( model peft_config: PeftConfig = None adapter_name = 'default' ) Parameters model (PreTrainedModel) — Base transformer model. peft_config (PeftConfig) — Peft config. Peft model for token classification tasks. Attributes: config
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_20
se transformer model. peft_config (PeftConfig) — Peft config. Peft model for token classification tasks. Attributes: config (PretrainedConfig) — The configuration object of the base model. cls_layer_name (str) — The name of the classification layer. Example: Copied >>> from transformers import AutoModelForSequenceClassification >>> from peft import PeftModelForTokenClassification, get_peft_config >>> config = { ... "peft_type": "P
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_21
enceClassification >>> from peft import PeftModelForTokenClassification, get_peft_config >>> config = { ... "peft_type": "PREFIX_TUNING", ... "task_type": "TOKEN_CLS", ... "inference_mode": False, ... "num_virtual_tokens": 20, ... "token_dim": 768, ... "num_transformer_submodules": 1, ... "num_attention_heads": 12, ... "num_layers": 12, ... "encoder_hidden_size": 768, ... "prefix_projection": False, ...
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_22
num_attention_heads": 12, ... "num_layers": 12, ... "encoder_hidden_size": 768, ... "prefix_projection": False, ... "postprocess_past_key_value_function": None, ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForTokenClassification.from_pretrained("bert-base-cased") >>> peft_model = PeftModelForTokenClassification(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 370178 || al
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_23
= PeftModelForTokenClassification(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117 PeftModelForCausalLM A PeftModel for causal language modeling. class peft.PeftModelForCausalLM < source > ( model peft_config: PeftConfig adapter_name = 'default' ) Parameters model (PreTrainedModel) — Base transformer model. peft_config (PeftConfig) — P
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_24
nfig adapter_name = 'default' ) Parameters model (PreTrainedModel) — Base transformer model. peft_config (PeftConfig) — Peft config. Peft model for causal language modeling. Example: Copied >>> from transformers import AutoModelForCausalLM >>> from peft import PeftModelForCausalLM, get_peft_config >>> config = { ... "peft_type": "PREFIX_TUNING", ... "task_type": "CAUSAL_LM", ... "inference_mode": False, ... "num_v
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_25
nfig = { ... "peft_type": "PREFIX_TUNING", ... "task_type": "CAUSAL_LM", ... "inference_mode": False, ... "num_virtual_tokens": 20, ... "token_dim": 1280, ... "num_transformer_submodules": 1, ... "num_attention_heads": 20, ... "num_layers": 36, ... "encoder_hidden_size": 1280, ... "prefix_projection": False, ... "postprocess_past_key_value_function": None, ... } >>> peft_config = get_peft_config(conf
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_26
"prefix_projection": False, ... "postprocess_past_key_value_function": None, ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForCausalLM.from_pretrained("gpt2-large") >>> peft_model = PeftModelForCausalLM(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 1843200 || all params: 775873280 || trainable%: 0.23756456724479544 PeftModelForSeq2SeqLM A PeftModel for sequence-to-sequence lan
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_27
00 || all params: 775873280 || trainable%: 0.23756456724479544 PeftModelForSeq2SeqLM A PeftModel for sequence-to-sequence language modeling. class peft.PeftModelForSeq2SeqLM < source > ( model peft_config: PeftConfig adapter_name = 'default' ) Parameters model (PreTrainedModel) — Base transformer model. peft_config (PeftConfig) — Peft config. Peft model for sequence-to-sequence language modeling. Example: Copied >>> from tran
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_28
t_config (PeftConfig) — Peft config. Peft model for sequence-to-sequence language modeling. Example: Copied >>> from transformers import AutoModelForSeq2SeqLM >>> from peft import PeftModelForSeq2SeqLM, get_peft_config >>> config = { ... "peft_type": "LORA", ... "task_type": "SEQ_2_SEQ_LM", ... "inference_mode": False, ... "r": 8, ... "target_modules": ["q", "v"], ... "lora_alpha": 32, ... "lora_dropout": 0.1
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_29
erence_mode": False, ... "r": 8, ... "target_modules": ["q", "v"], ... "lora_alpha": 32, ... "lora_dropout": 0.1, ... "fan_in_fan_out": False, ... "enable_lora": None, ... "bias": "none", ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> peft_model = PeftModelForSeq2SeqLM(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 8
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_30
ase") >>> peft_model = PeftModelForSeq2SeqLM(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 884736 || all params: 223843584 || trainable%: 0.3952474242013566 PeftModelForQuestionAnswering A PeftModel for question answering. class peft.PeftModelForQuestionAnswering < source > ( model peft_config: PeftConfig = None adapter_name = 'default' ) Parameters model (PreTrainedModel) — Base transformer model.
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_31
del peft_config: PeftConfig = None adapter_name = 'default' ) Parameters model (PreTrainedModel) — Base transformer model. peft_config (PeftConfig) — Peft config. Peft model for extractive question answering. Attributes: config (PretrainedConfig) — The configuration object of the base model. cls_layer_name (str) — The name of the classification layer. Example: Copied >>> from transformers import AutoModelForQuestionAnswering >>> f
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_32
tr) — The name of the classification layer. Example: Copied >>> from transformers import AutoModelForQuestionAnswering >>> from peft import PeftModelForQuestionAnswering, get_peft_config >>> config = { ... "peft_type": "LORA", ... "task_type": "QUESTION_ANS", ... "inference_mode": False, ... "r": 16, ... "target_modules": ["query", "value"], ... "lora_alpha": 32, ... "lora_dropout": 0.05, ... "fan_in_fan_out
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_33
6, ... "target_modules": ["query", "value"], ... "lora_alpha": 32, ... "lora_dropout": 0.05, ... "fan_in_fan_out": False, ... "bias": "none", ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForQuestionAnswering.from_pretrained("bert-base-cased") >>> peft_model = PeftModelForQuestionAnswering(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 592900 || all params: 108312580
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_34
stionAnswering(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 592900 || all params: 108312580 || trainable%: 0.5473971721475013 PeftModelForFeatureExtraction A PeftModel for getting extracting features/embeddings from transformer models. class peft.PeftModelForFeatureExtraction < source > ( model peft_config: PeftConfig = None adapter_name = 'default' ) Parameters model (PreTrainedModel) — Base trans
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_35
source > ( model peft_config: PeftConfig = None adapter_name = 'default' ) Parameters model (PreTrainedModel) — Base transformer model. peft_config (PeftConfig) — Peft config. Peft model for extracting features/embeddings from transformer models Attributes: config (PretrainedConfig) — The configuration object of the base model. Example: Copied >>> from transformers import AutoModel >>> from peft import PeftModelForFeatureExtracti
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_36
t of the base model. Example: Copied >>> from transformers import AutoModel >>> from peft import PeftModelForFeatureExtraction, get_peft_config >>> config = { ... "peft_type": "LORA", ... "task_type": "FEATURE_EXTRACTION", ... "inference_mode": False, ... "r": 16, ... "target_modules": ["query", "value"], ... "lora_alpha": 32, ... "lora_dropout": 0.05, ... "fan_in_fan_out": False, ... "bias": "none", ...
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_37
, "value"], ... "lora_alpha": 32, ... "lora_dropout": 0.05, ... "fan_in_fan_out": False, ... "bias": "none", ... } >>> peft_config = get_peft_config(config) >>> model = AutoModel.from_pretrained("bert-base-cased") >>> peft_model = PeftModelForFeatureExtraction(model, peft_config) >>> peft_model.print_trainable_parameters()
f6428888c0a56974a5a0734b7621bd20.txt
f6428888c0a56974a5a0734b7621bd20.txt_chunk_38
ainable_parameters()
f6428888c0a56974a5a0734b7621bd20.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_1
Prefix tuning for conditional generation Prefix tuning is an additive method where only a sequence of continuous task-specific vectors is attached to the beginning of the input, or prefix. Only the prefix parameters are optimized and added to the hidden states in every layer of the model. The tokens of the input sequence can still attend to the prefix as virtual tokens. As a result, prefix tuning stores 1000x fewer parameters than
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_2
input sequence can still attend to the prefix as virtual tokens. As a result, prefix tuning stores 1000x fewer parameters than a fully finetuned model, which means you can use one large language model for many tasks. 💡 Read Prefix-Tuning: Optimizing Continuous Prompts for Generation to learn more about prefix tuning. This guide will show you how to apply prefix tuning to train a t5-large model on the sentences_allagree subset of the financial
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_3
This guide will show you how to apply prefix tuning to train a t5-large model on the sentences_allagree subset of the financial_phrasebank dataset. Before you begin, make sure you have all the necessary libraries installed: Copied !pip install -q peft transformers datasets Setup Start by defining the model and tokenizer, text and label columns, and some hyperparameters so it’ll be easier to start training faster later. Set the environmen
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_4
okenizer, text and label columns, and some hyperparameters so it’ll be easier to start training faster later. Set the environment variable TOKENIZERS_PARALLELSIM to false to disable the fast Rust-based tokenizer which processes data in parallel by default so you can use multiprocessing in Python. Copied from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, default_data_collator, get_linear_schedule_with_warmup from peft import get_p
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_5
rmers import AutoTokenizer, AutoModelForSeq2SeqLM, default_data_collator, get_linear_schedule_with_warmup from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, PrefixTuningConfig, TaskType from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm import torch import os os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_VISIBLE_DEVICES"] = "3" device = "cuda" model_name_
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_6
import os os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_VISIBLE_DEVICES"] = "3" device = "cuda" model_name_or_path = "t5-large" tokenizer_name_or_path = "t5-large" text_column = "sentence" label_column = "text_label" max_length = 128 lr = 1e-2 num_epochs = 5 batch_size = 8 Load dataset For this guide, you’ll train on the sentences_allagree subset of the financial_phrasebank dataset. This dataset contains financial news
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_7
guide, you’ll train on the sentences_allagree subset of the financial_phrasebank dataset. This dataset contains financial news categorized by sentiment. Use 🤗 Datasets train_test_split function to create a training and validation split and convert the label value to the more readable text_label. All of the changes can be applied with the map function: Copied from datasets import load_dataset dataset = load_dataset("financial_phrasebank", "
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_8
be applied with the map function: Copied from datasets import load_dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1,
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_9
dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) dataset["train"][0] {"sentence": "Profit before taxes was EUR 4.0 mn , down from EUR 4.9 mn .", "label": 0, "text_label": "negative"} Preprocess dataset Initialize a tokenizer, and create a function to pad and truncate the model_inputs and labels: Copied tokenizer = AutoTokenizer.from_pretrained(model_name_or
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_10
te a function to pad and truncate the model_inputs and labels: Copied tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=2, padding="max_length", truncation=True,
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_11
gth", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=2, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs Use the map function to apply the preprocess_function to the dataset. You can remove the unprocessed columns since the model doesn’t need them anymore:
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_12
pply the preprocess_function to the dataset. You can remove the unprocessed columns since the model doesn’t need them anymore: Copied processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) Create a DataLoader from the train and eval datasets. Set pin_memory=True to speed up the dat
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_13
="Running tokenizer on dataset", ) Create a DataLoader from the train and eval datasets. Set pin_memory=True to speed up the data transfer to the GPU during training if the samples in your dataset are on a CPU. Copied train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=Tr
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_14
dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) Train model Now you can setup your model and make sure it is ready for training. Specify the task in PrefixTuningConfig, create the base t5-large model from AutoModelForSeq2SeqLM, and then wrap t
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_15
for training. Specify the task in PrefixTuningConfig, create the base t5-large model from AutoModelForSeq2SeqLM, and then wrap the model and configuration in a PeftModel. Feel free to print the PeftModel’s parameters and compare it to fully training all the model parameters to see how much more efficient it is! Copied peft_config = PrefixTuningConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, num_virtual_tokens=20) model = AutoM
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_16
ed peft_config = PrefixTuningConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, num_virtual_tokens=20) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() "trainable params: 983040 || all params: 738651136 || trainable%: 0.13308583065659835" Setup the optimizer and learning rate scheduler: Copied optimizer = torch.optim.AdamW(model.paramet
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_17
le%: 0.13308583065659835" Setup the optimizer and learning rate scheduler: Copied optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) Move the model to the GPU, and then write a training loop to begin! Copied model = model.to(device) for epoch in range(num_epochs): model.
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_18
the GPU, and then write a training loop to begin! Copied model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_19
outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_lo
14c02d08a3d458adfe91e8c9d925a41a.txt
14c02d08a3d458adfe91e8c9d925a41a.txt_chunk_20
in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len
14c02d08a3d458adfe91e8c9d925a41a.txt