grocery / evaluate.py
slz1's picture
Upload evaluate.py
fcdd8d2 verified
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '3'
import pathlib
from CoT.task import CoT_Task
from ToT.task import ToT_Task
from MCTS.task import MCTS_Task
import argparse
from utils.visualize import visualize
from utils.json_operator import *
from utils.verify_answer import *
from utils.self_consistency import get_consistency_output_scibench
import copy
def run(arguments):
print('-'*30, 'Begin testing', '-'*30, '\n')
# file = f'data/{arguments.task_name}/{arguments.file}.json'
# file = "/cpfs/29f69eb5e2e60f26/code/sft_intern/lh/slz/ReST-MCTS/data/math/math_500.json"
file = arguments.load_file_path
print('** file_path: ', file)
try:
data_list = load_file(file)
data_len = len(data_list)
except Exception as e:
print(f'File must be standardized json!\nError type:{e}\n')
return
assert data_len > 0, "Data list is empty!\n"
# assert 'content' in data_list[0].keys() and 'answer' in data_list[0].keys(), "Key error, Make sure json object contain correct keys!\n"
output_list = []
correct_count = 0
for i in range(data_len):
# for i in range(0, 1):
print(f'Begin to solve the problem {i+1}...\n')
# data = data_list[i]['question']
# answer = data_list[i]['answer'][0]
data = data_list[i]['question']
answer = data_list[i]['solution']
if arguments.mode == 'cot':
Task = CoT_Task(data, arguments.propose_method, arguments.value_method, arguments.temperature, evaluate=arguments.evaluate)
if arguments.consistency:
outputs = []
for cnt in range(3):
output = Task.run()
outputs.append(output)
output = get_consistency_output_scibench(outputs)
else:
output = Task.run()
elif arguments.mode == 'tot':
Task = ToT_Task(data, arguments.propose_method, arguments.value_method, arguments.algorithm,
arguments.branch, arguments.select_branch, arguments.max_depth, arguments.end_gate,
arguments.select_method, arguments.temperature, use_case_prompt=arguments.use_case_prompt,
low=arguments.low, high=arguments.high, evaluate=arguments.evaluate)
output, root = Task.run()
if arguments.visualize:
visualize(root, Task, arguments.task_name, arguments.file, i + 1)
else:
Task = MCTS_Task(data, arguments.propose_method, arguments.value_method, arguments.branch, arguments.end_gate,
arguments.roll_policy, arguments.roll_branch, arguments.roll_forward_steps, arguments.time_limit,
arguments.iteration_limit, arguments.exploration_constant, arguments.alpha, arguments.inf,
arguments.temperature, use_case_prompt=arguments.use_case_prompt, use_reflection=arguments.use_reflection,
low=arguments.low, high=arguments.high, evaluate=arguments.evaluate, answer=answer, lang='en')
output, root = Task.run()
if arguments.visualize:
visualize(root, Task, arguments.task_name, arguments.file, i + 1)
# evaluate metrics
if arguments.evaluate:
print('** output: ', output)
result = verify_float(answer, output['summary'])
output.update({'answer': answer, 'accurate': result})
if result:
print(f'The answer of problem {i+1} is correct.\n')
correct_count += 1
else:
print(f'The answer of problem {i+1} is wrong.\n')
print(f'The solution to problem {i+1} is complete.\n')
# output
base_dir = os.getcwd()
output_dir = pathlib.Path(f'{base_dir}/outputs/{arguments.task_name}/{arguments.file}/{Task.mode}')
output_file = f'{base_dir}/outputs/{arguments.task_name}/{arguments.file}/{Task.mode}/{Task.propose_method}_{Task.value_method}_{arguments.save_name}.json'
data_item = copy.deepcopy(data_list[i]) # 创建深拷贝
data_item['mcts_output'] = output
output_list.append(data_item)
pathlib.Path.mkdir(output_dir, exist_ok=True, parents=True)
dump_json(output_file, output_list)
print('** output_file: ', output_file)
print('_' * 60)
# accuracy
if args.evaluate:
print(f'Test accuracy:{correct_count / data_len}\n')
print(f'Correct number of problems:{correct_count}\nTotal number of questions:{data_len}\n')
print('_' * 60)
def parse_args():
base_args = argparse.ArgumentParser()
base_args.add_argument('--load_file_path', type=str, default='scibench')
base_args.add_argument('--task_name', type=str, default='scibench')
base_args.add_argument('--file', type=str, default='thermo_standardized') # json
base_args.add_argument('--save_name', type=str, default='test') # json
base_args.add_argument('--propose_method', type=str, choices=['gpt', 'glm', 'llama', 'local'], default='glm')
base_args.add_argument('--value_method', type=str, choices=['gpt', 'glm', 'local'], default='local')
base_args.add_argument('--mode', type=str, choices=['cot', 'tot', 'mcts'], default='tot')
base_args.add_argument('--temperature', type=float, default=0.7)
base_args.add_argument('--time_limit', type=int, default=None)
base_args.add_argument('--iteration_limit', type=int, default=100)
base_args.add_argument('--roll_policy', type=str, choices=['random', 'greedy'], default='greedy')
base_args.add_argument('--exploration_constant', type=float, default=0.4)
base_args.add_argument('--roll_forward_steps', type=int, default=2)
base_args.add_argument('--end_gate', type=float, default=0.9) # End threshold
base_args.add_argument('--branch', type=int, default=3)
base_args.add_argument('--roll_branch', type=int, default=1)
base_args.add_argument('--inf', type=float, default=0.8)
base_args.add_argument('--evaluate', type=str, default='scibench') # Whether to evaluate (empty means no evaluation)
base_args.add_argument('--alpha', type=float, default=0.5)
base_args.add_argument('--visualize', type=bool, default=False) # visualization
base_args.add_argument('--use_case_prompt', type=bool, default=False) # Use sample prompts
base_args.add_argument('--use_reflection', type=str, choices=['simple', 'common'], default='simple') # Use reflective mode
base_args.add_argument('--low', type=float, default=0)
base_args.add_argument('--high', type=float, default=1)
base_args.add_argument('--algorithm', type=str, choices=['dfs', 'bfs'], default='dfs')
base_args.add_argument('--select_branch', type=int, default=2)
base_args.add_argument('--max_depth', type=int, default=8)
base_args.add_argument('--select_method', type=str, choices=['greedy', 'sample'], default='greedy')
base_args.add_argument('--consistency', type=bool, default=True)
arguments = base_args.parse_args()
return arguments
if __name__ == '__main__':
args = parse_args()
run(args)