|
|
|
|
|
|
|
#include <bits/stdc++.h> |
|
using namespace std; |
|
|
|
#define ll long long |
|
#define ull unsigned long long |
|
#define dd double |
|
#define ld long double |
|
#define sl(n) scanf("%lld", &n) |
|
#define si(n) scanf("%d", &n) |
|
#define sd(n) scanf("%lf", &n) |
|
#define pll pair <ll, ll> |
|
#define pii pair <int, int> |
|
#define mp make_pair |
|
#define pb push_back |
|
#define all(v) v.begin(), v.end() |
|
#define inf (1LL << 62) |
|
#define loop(i, start, stop, inc) for(ll i = start; i <= stop; i += inc) |
|
#define for1(i, stop) for(ll i = 1; i <= stop; ++i) |
|
#define for0(i, stop) for(ll i = 0; i < stop; ++i) |
|
#define rep1(i, start) for(ll i = start; i >= 1; --i) |
|
#define rep0(i, start) for(ll i = (start-1); i >= 0; --i) |
|
#define ms(n, i) memset(n, i, sizeof(n)) |
|
#define casep(n) printf("Case %lld:", ++n) |
|
#define pn printf("\n") |
|
#define pf printf |
|
#define EL '\n' |
|
#define fastio std::ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL); |
|
|
|
const ll sz = 5e4 + 10; |
|
|
|
pii ara[sz], lst[sz]; |
|
ll pnt[sz], dp[sz]; |
|
|
|
struct Line { |
|
ll m, c; |
|
} tree[4*sz]; |
|
|
|
bool exist[4*sz]; |
|
|
|
inline ll f(Line &line, ll x) { |
|
return line.m*x + line.c; |
|
} |
|
|
|
void add(ll lo, ll hi, Line line, ll node) |
|
{ |
|
exist[node] = 1; |
|
|
|
if(lo == hi) { |
|
if(f(line, pnt[lo]) < f(tree[node], pnt[lo])) |
|
tree[node] = line; |
|
return; |
|
} |
|
|
|
ll mid = lo+hi >> 1; |
|
|
|
bool l = f(line, pnt[lo]) < f(tree[node], pnt[lo]); |
|
bool m = f(line, pnt[mid]) < f(tree[node], pnt[mid]); |
|
|
|
if(m) swap(tree[node], line); |
|
|
|
if(l != m) add(lo, mid, line, node<<1); |
|
else add(mid +1, hi, line, node<<1|1); |
|
} |
|
|
|
ll query(ll lo, ll hi, ll idx, ll node) |
|
{ |
|
if(lo == hi) |
|
return f(tree[node], pnt[idx]); |
|
|
|
ll mid = lo+hi >> 1, ret = f(tree[node], pnt[idx]); |
|
|
|
if(idx <= mid && exist[node<<1]) ret = min(ret, query(lo, mid, idx, node<<1)); |
|
else if(idx > mid && exist[node<<1|1]) ret = min(ret, query(mid+1, hi, idx, node<<1|1)); |
|
|
|
return ret; |
|
} |
|
|
|
int main() |
|
{ |
|
ll n; |
|
cin >> n; |
|
|
|
for1(i, n) { |
|
si(ara[i].first), si(ara[i].second); |
|
} |
|
sort(ara+1, ara+n+1); |
|
|
|
ll mxw = 0, idx = 0; |
|
rep1(i, n) { |
|
if(ara[i].second > mxw) |
|
lst[++idx] = ara[i]; |
|
|
|
mxw = max(mxw, (ll)ara[i].second); |
|
} |
|
reverse(lst+1, lst+idx+1); |
|
|
|
for1(i, idx) pnt[i] = lst[i].first; |
|
for0(i, 4*sz) tree[i] = {0, inf}; |
|
|
|
for1(i, idx) { |
|
|
|
add(1, idx, {lst[i].second, dp[i-1]}, 1); |
|
|
|
dp[i] = query(1, idx, i, 1); |
|
} |
|
|
|
cout << dp[idx] << EL; |
|
|
|
return 0; |
|
|