|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SituatedQA: Incorporating Extra-Linguistic Contexts into QA.""" |
|
|
|
|
|
import json |
|
import re |
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{ zhang2021situatedqa, |
|
title={ {S}ituated{QA}: Incorporating Extra-Linguistic Contexts into {QA} }, |
|
author={ Zhang, Michael J.Q. and Choi, Eunsol }, |
|
journal={ Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) }, |
|
year={ 2021 } |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/mikejqzhang/SituatedQA/master/data/qa_data/" |
|
_URLS = { |
|
"geo_train": _URL + "geo.train.jsonl", |
|
"geo_dev": _URL + "geo.dev.jsonl", |
|
"geo_test": _URL + "geo.test.jsonl", |
|
"temp_train": _URL + "temp.train.jsonl", |
|
"temp_dev": _URL + "temp.dev.jsonl", |
|
"temp_test": _URL + "temp.test.jsonl", |
|
} |
|
|
|
class SituatedQAConfig(datasets.BuilderConfig): |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SituatedQAConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Squall(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
SituatedQAConfig(name = 'geo'), |
|
SituatedQAConfig(name = 'temp')] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"question": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"edited_question": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"date_type": datasets.Value("string"), |
|
"location": datasets.Value("string"), |
|
"answer": datasets.features.Sequence(datasets.Value("string")), |
|
"any_answer": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://github.com/mikejqzhang/SituatedQA/tree/master", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls_to_download = { |
|
"geo_train": _URLS["geo_train"], |
|
"geo_dev": _URLS["geo_dev"], |
|
"geo_test": _URLS["geo_test"], |
|
"temp_train": _URLS["temp_train"], |
|
"temp_dev": _URLS["temp_dev"], |
|
"temp_test": _URLS["temp_test"], |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
if self.config.name == 'geo': |
|
train_file = downloaded_files["geo_train"] |
|
dev_file = downloaded_files["geo_dev"] |
|
test_file = downloaded_files["geo_test"] |
|
else: |
|
train_file = downloaded_files["temp_train"] |
|
dev_file = downloaded_files["temp_dev"] |
|
test_file = downloaded_files["temp_test"] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"split_key": "train", "filepath": train_file}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"split_key": "dev", "filepath": dev_file}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"split_key": "test", "filepath": test_file}), |
|
] |
|
|
|
def _generate_examples(self, split_key, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
|
|
with open(filepath, 'r') as file: |
|
json_list = list(file) |
|
|
|
for i, line in enumerate(json_list): |
|
data = json.loads(line) |
|
if 'location' not in data: |
|
data['location']='' |
|
if 'date' not in data: |
|
data['date']='' |
|
if 'date_type' not in data: |
|
data['date_type']='' |
|
|
|
yield i, { |
|
"question": data["question"], |
|
"id": str(data["id"]), |
|
"edited_question": data["edited_question"], |
|
"date": data["date"], |
|
"date_type": data["date_type"], |
|
"location": data["location"], |
|
"answer": data["answer"], |
|
"any_answer": data["any_answer"] |
|
} |
|
|