|
|
from typing import Any |
|
|
|
|
|
from pytorch_lightning import Callback, Trainer, LightningModule |
|
|
from pytorch_lightning.utilities import rank_zero_only |
|
|
from pytorch_lightning.utilities.parsing import AttributeDict |
|
|
|
|
|
|
|
|
class ParamsLog(Callback): |
|
|
"""Log the number of parameters of the model |
|
|
""" |
|
|
def __init__(self, total_params_log: bool = True, trainable_params_log: bool = True, |
|
|
non_trainable_params_log: bool = True): |
|
|
super().__init__() |
|
|
self._log_stats = AttributeDict( |
|
|
{ |
|
|
'total_params_log': total_params_log, |
|
|
'trainable_params_log': trainable_params_log, |
|
|
'non_trainable_params_log': non_trainable_params_log, |
|
|
} |
|
|
) |
|
|
|
|
|
@rank_zero_only |
|
|
def on_fit_start(self, trainer: Trainer, pl_module: LightningModule) -> None: |
|
|
logs = {} |
|
|
if self._log_stats.total_params_log: |
|
|
logs["model/params_total"] = sum(p.numel() for p in pl_module.parameters()) |
|
|
if self._log_stats.trainable_params_log: |
|
|
logs["model/params_trainable"] = sum(p.numel() for p in pl_module.parameters() |
|
|
if p.requires_grad) |
|
|
if self._log_stats.non_trainable_params_log: |
|
|
logs["model/params_not_trainable"] = sum(p.numel() for p in pl_module.parameters() |
|
|
if not p.requires_grad) |
|
|
if trainer.logger is not None: |
|
|
trainer.logger.log_hyperparams(logs) |
|
|
|